JP2004112218A - Nonlinear compensator - Google Patents

Nonlinear compensator Download PDF

Info

Publication number
JP2004112218A
JP2004112218A JP2002270497A JP2002270497A JP2004112218A JP 2004112218 A JP2004112218 A JP 2004112218A JP 2002270497 A JP2002270497 A JP 2002270497A JP 2002270497 A JP2002270497 A JP 2002270497A JP 2004112218 A JP2004112218 A JP 2004112218A
Authority
JP
Japan
Prior art keywords
distortion
signal
electronic device
compensated
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002270497A
Other languages
Japanese (ja)
Other versions
JP4127639B2 (en
Inventor
Taku Suga
須賀 卓
Seiji Isobe
磯部 清治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002270497A priority Critical patent/JP4127639B2/en
Publication of JP2004112218A publication Critical patent/JP2004112218A/en
Application granted granted Critical
Publication of JP4127639B2 publication Critical patent/JP4127639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To adaptively compensate nonlinear characteristics even when the amount of level change of an output average power in a time base direction in a device to be compensated becomes large. <P>SOLUTION: A signal processing section captures the input/output signals of the device to be compensated, detects the time difference and phase difference of both signals, and obtains a distortion component from the amplitude and phase errors of both signals while matching the synchronization and the phases. A distortion correction section D sequentially selects the amount of compensation corresponding to the amplitude from the amounts of compensation which are registered in a compensation table in an initial stage and adaptively updated, adds the amount of the compensation to the input signal to compensate the distortion component and outputs the resultant signal to the device to be compensated. Through this configuration, a transient characteristic detection section H obtains the transient characteristic of the device to be compensated, and the distortion correction section D uses an adaptive filter I to give the inverse characteristic of the transient characteristic to the input amplitude and performs bank switching of the compensation table. Thus, the compensator can adaptively compensate the nonlinear characteristic by following a change in the nonlinear characteristic due to variations in the operating point of the device to be compensated. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば中波、短波、地上波・衛星・ケーブルテレビ等の伝送装置に用いられ、例えば送信装置の増幅器で生じる非線形特性を補償する非線形補償器に関する。
【0002】
【従来の技術】
現在、アナログ方式のテレビジョン放送では、増幅器で生じる非線形特性と逆の特性を持たせた前置補償器で非線形補償を行っている。特に、増幅器の動作温度等により増幅器の非線形特性が変化するので、増幅器の動作条件によって補償特性を切り替えて対応している。
【0003】
ところで、アナログ方式のテレビジョン放送の場合、信号ピーク値は同期尖頭値で規定されるため、ほとんど一定である。また、クリップ値近傍は同期であるため、クリップレベル近傍で発生する位相ひずみを考慮する必要はなく、同期長が同じになるよう同期振幅のみ補正すればよい。また、ピークファクタ(ピーク値/平均値)が比較的小さいため、低レベル信号領域の線形性もそれほど要求されてはいない。
【0004】
一方、次世代のデジタル方式によるテレビジョン放送にあっては、OFDM(直交周波数分割多重)方式の採用が決定され、その実用化に向けて種々の開発がなされている。ここにおいて、OFDM方式では、OFDM信号の性質上、ピークファクタがアナログ方式に比較して極めて大きいため、低レベルから高レベルまでの線形性が要求される。しかも、各キャリアの位相が情報伝達のポイントとなるため、位相回転のわずかな乱れも特性劣化につながる。このため、非線形特性、位相回転について正確な補償が求められる。
【0005】
以上の要求に基づいて、従来では、送信信号の平均電力が変動する場合には、増幅器の動作点が変動して非線形特性が変化することに着目し、非線形特性の逐次更新によってこの時間方向の非線形特性の変化に対応するようにした非線形増幅器の提案がなされている(例えば特許文献1参照。)。
【0006】
この非線形増幅器では、送信信号の平均電力が比較的緩やかに変化する環境においては、十分な性能を発揮できる。しかしながら、平均電力の時間軸方向のレベル変化量が大きくなるにつれて、逐次更新による非線形補償の追従が間に合わなくなり、最適な補償が行えなくなってしまう。
【0007】
【特許文献1】
特開2001−168774号公報。
【0008】
【発明が解決しようとする課題】
以上述べたように、OFDM方式をはじめとしたデジタル信号伝送にあっては、非線形特性の正確な補償が求められるが、従来の非線形補償器では、被補償電子装置における出力平均電力の時間軸方向のレベル変化量が大きくなるにつれて、逐次更新による非線形補償の追従が間に合わなくなり、最適な補償が行えなくなってしまうという問題があった。
本発明は、上記の事情を考慮してなされたもので、被補償電子装置における出力平均電力の時間軸方向のレベル変化量が大きくなっても非線形特性を適応補償することのできる非線形補償器を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために本発明に係る非線形補償器は、以下のような特徴的構成を有する。
(1)伝送信号を扱う被補償電子装置の非線形特性を補償する非線形補償器おいて、
前記被補償電子装置の入力信号及び出力信号を取り込み、適宜復調処理して同じ信号形式に合わせた後、両信号間の相関をとることで両信号間の時間差及び位相差を検出し、検出した時間差及び位相差に基づいて両信号の同期及び位相あわせを行う信号処理部と、この信号処理部により同期及び位相が合わせられた被補償電子装置の入力信号及び出力信号の振幅誤差及び位相誤差を歪み成分として検出する歪み検出部と、前記被補償電子装置の入力信号及び出力信号を比較して当該被補償電子装置の過渡特性を検出する過渡特性検出部と、この過渡特性検出部で検出された過渡特性の逆特性を前記被補償電子装置の入力信号に与える適応フィルタと、予め前記歪み検出部で検出される歪み成分とこの歪み成分を補償するための非線形歪み補償量とを対応付けて歪み成分の大きさ別に複数のメモリバンクに格納し、前記適応フィルタの出力レベルに応じて前記メモリバンクを選択的に切り替えて、選択メモリバンクに格納される歪み補償量を読み出し、その歪み補償量で前記被補償電子装置の入力信号を補償する歪み補正部とを具備することを特徴とする。
【0010】
(2)伝送信号を扱う被補償電子装置の非線形特性を補償する非線形補償器おいて、前記被補償電子装置の入力信号及び出力信号を取り込み、適宜復調処理して同じ信号形式に合わせた後、両信号間の相関をとることで両信号間の時間差及び位相差を検出し、検出した時間差及び位相差に基づいて両信号の同期及び位相あわせを行う信号処理部と、この信号処理部により同期及び位相が合わせられた被補償電子装置の入力信号及び出力信号の振幅誤差及び位相誤差を歪み成分として検出する歪み検出部と、前記被補償電子装置の入力信号の平均電力を求める平均電力検出部と、予め前記歪み検出部で検出される歪み成分とこの歪み成分を補償するための非線形歪み補償量とが対応付けられて平均電力別に複数のメモリバンクに格納され、前記平均電力検出部の検出レベルに応じて前記メモリバンクを選択的に切り替えて、選択メモリバンクに格納される歪み補償量を読み出し、その歪み補償量で前記被補償電子装置の入力信号を補償する歪み補正部とを具備することを特徴とする。
【0011】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
図1は本発明が適用されるOFDM送信装置の構成を示すもので、変調器1でRFのOFDM信号を出力し、本発明に係る非線形補償器2を介して、RF増幅器3にて電力増幅し、送信信号として出力する。RF増幅器3の出力は分配器(方向性結合器)4により一部分配されて非線形補償器2に供給される。
【0012】
(第1の実施形態)
図2は上記非線形補償器2に本発明を適用した場合の第1の実施形態の構成を示すブロック図である。図2において、アナログRF入力端子11には、上記変調器1からのRF信号が供給される。この端子11に供給されたRF信号は、第1ダウンコンバータ(D/C1)12により局部発振器13からのローカル信号に基づいてIF信号に変換され、AGC(自動利得制御)回路14によって所定の振幅レベルに安定化される。このAGC回路14の出力は、スケルチ(SQ)回路15により信号の有無が判別され、第1アナログ・デジタルコンバータ(ADC1)16によりデジタルIF信号に変換された後、第1直交復調回路(Q−DEM1)17で直交復調され、複素形式のデジタルベースバンド信号I1、Q1となる。ここで得られたI1、Q1信号は、必要に応じてFIRフィルタ(またはLPF)18、19によりダウンサンプリングされる。以上により、入力復調部Aが構成される。
【0013】
一方、アナログPA入力端子21には、RF増幅器3から出力されるRF信号が供給される。この端子21に供給されたRF信号は、第2ダウンコンバータ(D/C2)22により移相器23で位相調整されたローカル信号に基づいてIF信号に変換される。このIF信号は、AGC回路24によって所定の振幅レベルに安定化される。このAGC回路24の出力は、スケルチ(SQ)回路25により信号の有無が判別され、第2アナログ・デジタルコンバータ(ADC2)26によりデジタルIF信号に変換された後、第2直交復調回路(Q−DEM2)27で直交復調され、複素形式のデジタルベースバンド信号I2、Q2となる。ここで得られたI2、Q2信号は、必要に応じてFIRフィルタ(またはLPF)28、29によりダウンサンプリングされる。以上により、出力復調部Bが形成される。
【0014】
上記入力復調部Aから出力されるデジタルベースバンド信号I1、Q1は、遅延調整部C及び歪み補正部Dに供給される。ここで、上記遅延調整部Cは、入力復調部Aからのデジタルベースバンド信号I1、Q1をそれぞれ所定時間遅延するRAM遅延器31、32を備える。RAM遅延器31、32で遅延されたデジタルベースバンド信号I3、Q3は、上記出力復調部Bから出力されるデジタルベースバンド信号I2、Q2と共に、遅延検出部E及び歪み検出部Fに供給される。
【0015】
上記遅延検出部Eにおいて、遅延調整部Cからのベースバンド信号I3、Q3と出力復調部Bからのベースバンド信号I2、Q2は複素乗算器41に供給される。この複素乗算器41は、両入力信号を複素乗算することで、両者の複素相関をとってREAL(実部)信号とIMAG(虚部)信号を求めるものである。ここで得られたREAL信号及びIMAG信号は、それぞれREAL積分器42及びIMAG積分器43に供給される。
【0016】
これらの積分器42、43は、例えば累積値/累積時間を求める区間積分を行うことでノイズ等の影響を除去するものである。積分器42、43の出力はピタゴラス変換器44に供給され、デカルト座標から極座標に変換される。ピタゴラス変換器44の出力うち、振幅値は相関ピーク検出器45に供給される。この相関ピーク検出器45は、2つの入力信号の相関出力におけるピーク位置を求めるものである。この相関ピーク検出器45で検出されたピーク位置情報はピタゴラス変換器44から出力される角度値(位相値)と共に遅延/角度検出器46に供給される。
【0017】
この遅延/角度検出器46は、ピークの位置情報から増幅器入力側のデジタルベースバンド信号I3、Q3と増幅器出力側のデジタルベースバンド信号I2、Q2との時間差及び位相差(角度)を求めるもので、ここで得られた時間差は遅延制御器47に供給され、位相差は位相制御器48に供給される。遅延制御器47は、与えられた時間差に応じて遅延調整部CのRAM遅延器31、32の遅延量を設定して粗同期を行い、さらに出力復調部BのFIRフィルタ28、29の係数値を制御して精密同期させるものである。これにより増幅器入力側のデジタルベースバンド信号I3、Q3と増幅器出力側のデジタルベースバンド信号I2、Q2との同期がとられる。また、位相制御器48は、与えられた位相差に応じて、出力復調部Bの移相器23の移相量を調整する。これにより増幅器入力側と増幅器出力側の位相合わせがなされる。
【0018】
尚、上記遅延制御器47及び位相制御器48は、いずれもデジタルベースバンド信号に信号成分が含まれていない場合には時間差及び位相差が得られないため、制御不能となり、誤動作するおそれがある。そこで、入力復調部A及び出力復調部Bに設けられたスケルチ回路15、25の出力から信号成分の有無を判別し、信号成分があるときのみ制御を行うものとする。
【0019】
上記歪み検出部Fは、遅延調整部Cからのデジタルベースバンド信号I3、Q3と出力復調部Bからのデジタルベースバンド信号I2、Q2をそれぞれピタゴラス変換器51、52によってデカルト座標(I3、Q3)、(I2、Q2)から極座標(R3、θ3)、(R2、θ2)に変換した後、誤差演算器53にて両者の振幅誤差ΔR及び位相誤差Δθを求める。
ΔR=R3−R2
Δθ=θ3−θ2
ここで得られた振幅誤差ΔR及び位相誤差Δθは歪み補正部Dに供給される。
【0020】
上記歪み補正部Dは、歪み検出部Fからの振幅誤差ΔR及び位相誤差Δθをそれぞれ積分器61で区間積分し、その積分結果を歪み補償量として、RAMテーブル62に登録しておく。一方、入力復調部Aからのデジタルベースバンド信号I1、Q1をピタゴラス変換器63によりデカルト座標(I1、Q1)から極座標(R1、θ1)に変換した後、R1の値に応じた歪み補償量(ΔR、Δθ)をRAMテーブル62から読み出して、その補償量を歪み補償量加算部64で加算し、逆ピタゴラス変換器65で元のデカルト座標(I1′、Q1′)に戻して出力する。
【0021】
この歪み補正部Dから出力されるデジタルベースバンド信号は出力変換部Gに供給される。この出力変換部Gは入力デジタルベースバンド信号をFIRフィルタ(またはLPF)71、72によって元のビットレートに戻し(オーバーサンプリング)、直交変調(Q−MOD)回路73で直交変調してIF信号とし、デジタル・アナログコンバータ(DAC)74でアナログ信号に変換した後、アップコンバータ(U/C)75で局部発振器13からのローカル信号に基づいてRF信号に変換し、RF出力端子76から歪み補償された信号として出力する。
【0022】
上記構成による非線形補償器において、本発明に係る第1の実施形態の特徴とする点は以下の構成にある。
【0023】
図1において、過渡特性検出部Hは、上記遅延調整部Cからのデジタルベースバンド信号(RF増幅器3の入力)I3,Q3と出力復調部Bからのデジタルベースバンド信号(RF増幅器3の出力)I2,Q2とを比較することで、RF増幅器3の過渡特性を検出するもので、その検出結果は係数として歪み補正部D内に設けられる適応フィルタIに供給される。
【0024】
一方、上記歪み補正部Dに設けられるRAMテーブル62は、図3に示すように、それぞれ積分出力レベル別に歪み補償量を格納するn個のバンクメモリM1〜Mnと、バンクメモリM1〜Mnの読み出し出力を選択的に導出するセレクタSELとを備える。各バンクメモリM1〜Mnは、ピタゴラス変換器63から出力される振幅値R1によってアドレス制御される。この結果、R1の振幅値に対応する歪み補償量が各バンクメモリM1〜Mnから読み出し出力され、セレクタSELによって選択的に導出される。セレクタSELは、適応フィルタIの出力レベルによってバンクメモリM1〜Mnの読み出し出力を選択的に導出する。
【0025】
上記適応フィルタIは、上記ピタゴラス変換器63から出力される振幅値R1に上記過渡特性検出部Hで得られた過渡特性とは逆の特性を与える。具体的には、過渡特性を示す係数の逆数を振幅値R1に乗算出力する。したがって、RF増幅器3の過渡特性が急峻になるに従って、適応フィルタIから出力される振幅値R1のレベル変化は緩やかとなり、セレクタSELの切替速度が遅くなる。逆に、RF増幅器4の過渡特性が緩やかになるに従って、適応フィルタIから出力される振幅値R1のレベル変化は速くなる。
これにより、RF増幅器3の動作点が変動しその非線形特性が変化しても、この時間方向の非線形特性の変化に追従して非線形補償特性が逐次更新されるようになる。
【0026】
(第2の実施形態)
図4は上記非線形補償器2に本発明を適用した場合の第2の実施形態の構成を示すブロック図である。尚、図4において、図2と同一部分には同一符号を付して示し、ここでは異なる部分について詳述する。
【0027】
すなわち、本発明に係る第2の実施形態の特徴とする点は以下の構成にある。
図4において、平均電力検出部Kは、歪み補正部Dのピタゴラス変換器63から出力される振幅値R1を入力し、非巡回型ディジタルフィルタ(IIR)による積分処理によって平均電力を求めるものである。また、RAMテーブル62は、前述の適応フィルタIを除き、図3に示した構成であり、バンクメモリM1〜MnとセレクタSELを備える。但し、本実施形態の場合は、平均電力検出部Kの検出結果に基づいてバンクメモリM1〜Mnの読み出し出力を切替制御するようにしている。
【0028】
上記構成よれば、第1の実施形態と比べると精度が落ちるが、簡易な構成で実現することが可能であり、RF増幅器3の動作点の変動が平均電力の変化に追従しているとみなせる場合には十分その機能を発揮することができるので、コストパフォーマンスに優れていると言える。
【0029】
以上のように、本実施形態の非線形補償器2では、入力復調部Aと出力復調部BとでRF増幅器3のRF入力及びRF出力のデジタルベースバンド信号を抽出し、両信号の時間差、位相差を遅延検出部Eで相関演算により検出して、遅延調整部Cにより両信号の同期合わせを行う。また、移相器23にて両信号の位相合わせを行う。この状態で、歪み検出部Fにて両信号の振幅誤差及び位相誤差を求め、歪み成分として歪み補正部Dに入力する。歪み補正部Dにて、振幅値に対応する補償量を前記手段で登録された補償量の中から順次選び出し、この補償量を入力復調部Aで得られたデジタルベースバンド信号に加算することで歪み成分を補償し、出力変換部Gにて元の信号フォーマットに変換してRF増幅器3へ出力する。これにより、RF増幅器3の持つ非線形特性と逆の特性を持たせてRF信号をRF増幅器3に入力することができ、そのRF出力の非線形特性による歪み成分を補償することができる。
【0030】
ここで、第1の実施形態では、RF増幅器3の過渡特性を求め、歪み補正部Dにて、その逆特性を入力振幅値に与えて補償テーブルのバンク切替を行うようにしているので、送信平均電力のレベル変化量が大きくなって、RF増幅器3の動作点が変動しその非線形特性が変化しても、この時間方向の非線形特性の変化に追従して非線形補償特性を逐次更新することができる。
【0031】
また、第2の実施形態では、歪み補正部Dの入力振幅値から平均電力を求め、その結果に基づいて補償テーブルのバンク切替を行うようにしているので、RF増幅器3の動作点が変動しその非線形特性が変化しても、簡易な構成で送信平均電力の時間方向の非線形特性の変化に追従して非線形補償特性を逐次更新することができる。
【0032】
尚、本発明は上記実施形態に限定されるものではない。
例えば、上記実施形態では、出力復調部BのFIRフィルタ28、29の係数値を制御して精密同期をとるようにしているが、入力復調部AのFIRフィルタ18、19の係数値を制御して精密同期をとることも同様に可能である。
【0033】
また、上記実施形態では、出力復調部Bの移相器23の移相量を調整することによって位相合わせを行うようにしているが、入力復調部Aのダウンコンバータ12に供給されるローカル信号の位相を移相器によって調整するようにしても、同様に位相合わせを行うことができる。
【0034】
さらに、上記実施形態では、変調器1からアナログRF信号を入力する場合について説明したが、変調器1がデジタルベースバンド信号を直接出力する場合には、このデジタルベースバンド信号を入力して、入力復調部Aの出力に代わって遅延調整部C及び歪み補正部Dに直接供給するようにすれば、上記実施形態と同様の効果を得ることができる。
【0035】
また、上記実施形態はOFDM送信装置に適用した場合であるが、本発明はこれに限定されるものではなく、他のアナログ通信系、デジタル通信系の電子回路、例えばNTSC方式によるアナログテレビジョン信号の送信装置、ATSC方式によるデジタルテレビジョン信号の送信装置等における非線形特性及び位相回転の補償についても適用可能である。 また、上記実施形態では、歪み補正を極座標(R,θ)の加算により行うものとしたが、デカルト座標(I,Q)での乗算により行うことも可能である。
【0036】
さらに、上記実施形態では、全てループ構成とすることにより自動調整、自動制御で非線形特性や位相回転を適応補償するようにしているが、それぞれの検出部の検出結果を適宜表示し、この表示内容を見ながら手動で調整、補正を行うようにしてもよいことは勿論である。
また、上記実施形態では、RF増幅器の非線形特性を補償する場合について説明したが、非線形特性の補償が要求される他の電子装置に対しても同様に実施可能である。
【0037】
【発明の効果】
以上説明したように本発明によれば、送信平均電力の時間軸方向のレベル変化量が大きくなっても非線形特性を適応補償することのできる非線形補償器を提供することができる。
【図面の簡単な説明】
【図1】本発明が適用されるOFDM送信装置の構成を示すブロック図。
【図2】本発明の第1の実施形態として、図1のRF増幅器の非線形特性を補償する非線形補償器の構成を示すブロック図。
【図3】図2に示す実施形態の歪み補正部の具体的な構成を示すブロック図。
【図4】本発明に係る非線形補償器の第2の実施形態の構成を示すブロック図。
【符号の説明】
1…変調器
2…非線形補償器
3…RF増幅器
4…分配器
A…入力復調部
B…出力復調部
C…遅延制御部
D…歪み補正部
E…遅延検出部
F…歪み検出部
G…出力変換部
H…過渡特性検出部
I…適応フィルタ
K…平均電力検出部
M1〜Mn…バンクメモリ
SEL…セレクタ
11…アナログRF入力端子
12…第1ダウンコンバータ(D/C1)
13…局部発振器
14…AGC回路
15…スケルチ回路(SQ)
16…第1アナログ・デジタルコンバータ(ADC1)
17…第1直交復調回路(Q−DEM1)
18、19…FIRフィルタ
21…アナログPA入力端子
22…第2ダウンコンバータ(D/C2)
23…移相器
24…AGC回路
25…スケルチ回路(SQ)
26…第2アナログ・デジタルコンバータ(ADC2)
27…第2直交復調回路(Q−DEM2)
28、29…FIRフィルタ
30…局部発振器
31、32…RAM遅延器
41…複素乗算器
42…REAL積分器
43…IMAG積分器
44…ピタゴラス変換器
45…自己相関ピーク検出器
46…遅延/角度検出器
47…遅延制御器
48…位相制御器
49…キャリア同期回路
491…微分器
492…ループフィルタ
493…加算器
494…ループフィルタ
51、52…ピタゴラス変換器
53…誤差演算器
61…積分器
62…RAMテーブル
621…現用領域
622…予備領域
623…アドレスタイミング制御部
63…ピタゴラス変換器
64…歪み加算部
65…逆ピタゴラス変換器
71、72…FIRフィルタ
73…直交変調回路(Q−MOD)
74…デジタル・アナログコンバータ(ADC)
75…アップコンバータ(U/C)
76…RF出力端子
77…局部発振器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-linear compensator which is used in transmission devices such as medium-wave, short-wave, terrestrial / satellite / cable television, and compensates for non-linear characteristics generated in an amplifier of a transmission device, for example.
[0002]
[Prior art]
At present, in analog television broadcasting, nonlinear compensation is performed by a pre-compensator having characteristics opposite to those produced by an amplifier. In particular, since the non-linear characteristics of the amplifier change depending on the operating temperature of the amplifier, the compensation characteristics are switched according to the operating conditions of the amplifier.
[0003]
By the way, in the case of analog television broadcasting, the signal peak value is almost constant because it is defined by the synchronization peak value. Further, since the vicinity of the clip value is synchronous, there is no need to consider phase distortion occurring near the clip level, and only the synchronization amplitude needs to be corrected so that the synchronization length is the same. Further, since the peak factor (peak value / average value) is relatively small, the linearity of the low-level signal region is not so much required.
[0004]
On the other hand, in next-generation digital television broadcasting, the adoption of the OFDM (orthogonal frequency division multiplexing) system has been decided, and various developments have been made for practical use. Here, in the OFDM system, since the peak factor is extremely large compared to the analog system due to the nature of the OFDM signal, linearity from a low level to a high level is required. In addition, since the phase of each carrier is the point of information transmission, even a slight disturbance in phase rotation leads to deterioration of characteristics. For this reason, accurate compensation for the non-linear characteristics and phase rotation is required.
[0005]
Based on the above requirements, conventionally, when the average power of the transmission signal fluctuates, attention is paid to the fact that the operating point of the amplifier fluctuates and the nonlinear characteristic changes, and by sequentially updating the nonlinear characteristic, this temporal direction is updated. There has been proposed a nonlinear amplifier adapted to a change in nonlinear characteristics (for example, see Patent Document 1).
[0006]
This nonlinear amplifier can exhibit sufficient performance in an environment in which the average power of a transmission signal changes relatively slowly. However, as the level change amount of the average power in the time axis direction increases, the tracking of the nonlinear compensation by the successive update cannot be performed in time, and the optimal compensation cannot be performed.
[0007]
[Patent Document 1]
JP-A-2001-168774.
[0008]
[Problems to be solved by the invention]
As described above, in digital signal transmission such as OFDM, accurate compensation of nonlinear characteristics is required. However, in a conventional nonlinear compensator, the average output power of the compensated electronic device in the time axis direction is required. However, as the level change amount increases, there is a problem that the tracking of the nonlinear compensation by the successive update cannot be performed in time, and the optimum compensation cannot be performed.
The present invention has been made in view of the above circumstances, and provides a non-linear compensator capable of adaptively compensating for non-linear characteristics even when the level change amount in the time axis direction of the output average power in the compensated electronic device is large. The purpose is to provide.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a nonlinear compensator according to the present invention has the following characteristic configuration.
(1) In a non-linear compensator for compensating for non-linear characteristics of a compensated electronic device that handles a transmission signal,
After capturing the input signal and output signal of the compensated electronic device, suitably demodulating and matching the same signal format, the time difference and the phase difference between the two signals were detected by taking the correlation between the two signals, and were detected. A signal processing unit that performs synchronization and phase adjustment of both signals based on the time difference and the phase difference, and an amplitude error and a phase error of an input signal and an output signal of the compensated electronic device whose synchronization and phase are adjusted by the signal processing unit. A distortion detector that detects a distortion component, a transient characteristic detector that compares an input signal and an output signal of the compensated electronic device to detect a transient characteristic of the compensated electronic device, and a transient characteristic detector that detects the transient characteristic. An adaptive filter for applying an inverse characteristic of the transient characteristic to an input signal of the compensated electronic device, a distortion component detected in advance by the distortion detection unit, and a non-linear distortion compensation for compensating the distortion component Are stored in a plurality of memory banks according to the magnitude of the distortion component, and the memory banks are selectively switched according to the output level of the adaptive filter to read the distortion compensation amount stored in the selected memory bank. And a distortion correction unit for compensating an input signal of the compensated electronic device with the distortion compensation amount.
[0010]
(2) In a non-linear compensator for compensating for non-linear characteristics of a compensated electronic device handling a transmission signal, an input signal and an output signal of the compensated electronic device are fetched, appropriately demodulated, and adjusted to the same signal format. A signal processing unit that detects a time difference and a phase difference between the two signals by calculating a correlation between the two signals, and performs synchronization and phase adjustment of the two signals based on the detected time difference and the phase difference. A distortion detection unit that detects, as a distortion component, an amplitude error and a phase error of an input signal and an output signal of the compensated electronic device whose phases are matched, and an average power detection unit that determines an average power of the input signal of the compensated electronic device. And a distortion component detected in advance by the distortion detection unit and a nonlinear distortion compensation amount for compensating the distortion component are stored in a plurality of memory banks for each average power, and The memory bank is selectively switched in accordance with the detection level of the equalizing power detection unit, a distortion compensation amount stored in the selected memory bank is read, and the distortion compensation amount compensates an input signal of the compensated electronic device with the distortion compensation amount. And a correction unit.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows the configuration of an OFDM transmission apparatus to which the present invention is applied. An OFDM signal is output from a modulator 1 and power is amplified by an RF amplifier 3 via a nonlinear compensator 2 according to the present invention. And outputs it as a transmission signal. The output of the RF amplifier 3 is partially distributed by a distributor (directional coupler) 4 and supplied to the nonlinear compensator 2.
[0012]
(1st Embodiment)
FIG. 2 is a block diagram showing the configuration of the first embodiment when the present invention is applied to the nonlinear compensator 2. In FIG. 2, an analog RF input terminal 11 is supplied with an RF signal from the modulator 1. The RF signal supplied to this terminal 11 is converted by a first down converter (D / C1) 12 into an IF signal based on a local signal from a local oscillator 13, and is given a predetermined amplitude by an AGC (automatic gain control) circuit 14. Stabilized to a level. The output of the AGC circuit 14 is discriminated by a squelch (SQ) circuit 15 to determine the presence or absence of a signal, is converted to a digital IF signal by a first analog-to-digital converter (ADC1) 16, and then is converted to a first quadrature demodulation circuit (Q- DEM1) 17 performs quadrature demodulation to obtain complex digital baseband signals I1 and Q1. The I1 and Q1 signals obtained here are down-sampled by FIR filters (or LPFs) 18 and 19 as necessary. Thus, the input demodulation unit A is configured.
[0013]
On the other hand, an analog PA input terminal 21 is supplied with an RF signal output from the RF amplifier 3. The RF signal supplied to the terminal 21 is converted to an IF signal by a second down converter (D / C2) 22 based on the local signal whose phase has been adjusted by the phase shifter 23. This IF signal is stabilized by the AGC circuit 24 to a predetermined amplitude level. The output of the AGC circuit 24 is discriminated by a squelch (SQ) circuit 25 to determine the presence or absence of a signal, and is converted to a digital IF signal by a second analog-to-digital converter (ADC2) 26. DEM2) 27 performs quadrature demodulation to obtain complex digital baseband signals I2 and Q2. The I2 and Q2 signals obtained here are down-sampled by FIR filters (or LPFs) 28 and 29 as necessary. As described above, the output demodulation unit B is formed.
[0014]
The digital baseband signals I1 and Q1 output from the input demodulation unit A are supplied to a delay adjustment unit C and a distortion correction unit D. Here, the delay adjustment unit C includes RAM delay units 31 and 32 for respectively delaying the digital baseband signals I1 and Q1 from the input demodulation unit A for a predetermined time. The digital baseband signals I3 and Q3 delayed by the RAM delay units 31 and 32 are supplied to a delay detection unit E and a distortion detection unit F together with the digital baseband signals I2 and Q2 output from the output demodulation unit B. .
[0015]
In the delay detector E, the baseband signals I3 and Q3 from the delay adjuster C and the baseband signals I2 and Q2 from the output demodulator B are supplied to the complex multiplier 41. The complex multiplier 41 obtains a REAL (real part) signal and an IMAG (imaginary part) signal by complexly multiplying both input signals to obtain a complex correlation between them. The obtained REAL signal and IMAG signal are supplied to a REAL integrator 42 and an IMAG integrator 43, respectively.
[0016]
The integrators 42 and 43 remove the influence of noise and the like by performing, for example, section integration for obtaining the cumulative value / cumulative time. The outputs of the integrators 42 and 43 are supplied to a Pythagoras converter 44, which converts the Cartesian coordinates into polar coordinates. Among the outputs of the Pythagorean converter 44, the amplitude value is supplied to the correlation peak detector 45. The correlation peak detector 45 determines a peak position in a correlation output between two input signals. The peak position information detected by the correlation peak detector 45 is supplied to the delay / angle detector 46 together with the angle value (phase value) output from the Pythagoras converter 44.
[0017]
The delay / angle detector 46 calculates a time difference and a phase difference (angle) between the digital baseband signals I3 and Q3 on the amplifier input side and the digital baseband signals I2 and Q2 on the amplifier output side from the peak position information. The obtained time difference is supplied to a delay controller 47, and the phase difference is supplied to a phase controller 48. The delay controller 47 sets the delay amounts of the RAM delay units 31 and 32 of the delay adjustment unit C according to the given time difference, performs coarse synchronization, and furthermore, sets the coefficient values of the FIR filters 28 and 29 of the output demodulation unit B. For precise synchronization. As a result, the digital baseband signals I3 and Q3 on the amplifier input side are synchronized with the digital baseband signals I2 and Q2 on the amplifier output side. Further, the phase controller 48 adjusts the phase shift amount of the phase shifter 23 of the output demodulation unit B according to the given phase difference. Thus, the phases of the amplifier input side and the amplifier output side are matched.
[0018]
Note that the delay controller 47 and the phase controller 48 cannot obtain a time difference and a phase difference when no signal component is included in the digital baseband signal, so that the control becomes impossible and a malfunction may occur. . Therefore, the presence or absence of a signal component is determined from the outputs of the squelch circuits 15 and 25 provided in the input demodulation unit A and the output demodulation unit B, and control is performed only when there is a signal component.
[0019]
The distortion detecting unit F converts the digital baseband signals I3 and Q3 from the delay adjusting unit C and the digital baseband signals I2 and Q2 from the output demodulating unit B into Cartesian coordinates (I3 and Q3) by the Pythagoras converters 51 and 52, respectively. , (I2, Q2) are converted into polar coordinates (R3, θ3) and (R2, θ2), and the error calculator 53 obtains the amplitude error ΔR and the phase error Δθ of both.
ΔR = R3-R2
Δθ = θ3-θ2
The obtained amplitude error ΔR and phase error Δθ are supplied to the distortion correction unit D.
[0020]
In the distortion correction unit D, the amplitude error ΔR and the phase error Δθ from the distortion detection unit F are each section-integrated by the integrator 61, and the integration result is registered in the RAM table 62 as a distortion compensation amount. On the other hand, after the digital baseband signals I1 and Q1 from the input demodulation unit A are converted from the Cartesian coordinates (I1, Q1) to the polar coordinates (R1, θ1) by the Pythagoras converter 63, the distortion compensation amount (R1) according to the value of R1 ΔR, Δθ) are read from the RAM table 62, the compensation amount is added by the distortion compensation amount adding section 64, and the inverse Pythagoras converter 65 returns the original Cartesian coordinates (I1 ′, Q1 ′) and outputs the original Cartesian coordinates (I1 ′, Q1 ′).
[0021]
The digital baseband signal output from the distortion correction unit D is supplied to an output conversion unit G. The output conversion unit G returns the input digital baseband signal to the original bit rate by FIR filters (or LPFs) 71 and 72 (oversampling), and performs quadrature modulation by a quadrature modulation (Q-MOD) circuit 73 to obtain an IF signal. After being converted into an analog signal by a digital / analog converter (DAC) 74, the signal is converted into an RF signal by an up-converter (U / C) 75 based on a local signal from the local oscillator 13, and distortion is compensated from an RF output terminal 76. Output as a signal.
[0022]
The feature of the first embodiment according to the present invention in the nonlinear compensator having the above configuration lies in the following configuration.
[0023]
In FIG. 1, a transient characteristic detecting unit H includes a digital baseband signal (input to the RF amplifier 3) I3, Q3 from the delay adjusting unit C and a digital baseband signal (output from the RF amplifier 3) from the output demodulating unit B. The transient characteristic of the RF amplifier 3 is detected by comparing I2 and Q2, and the detection result is supplied as a coefficient to the adaptive filter I provided in the distortion correction unit D.
[0024]
On the other hand, as shown in FIG. 3, the RAM table 62 provided in the distortion correction unit D includes n bank memories M1 to Mn for storing distortion compensation amounts for respective integrated output levels, and reading of the bank memories M1 to Mn. And a selector SEL for selectively deriving an output. The addresses of the bank memories M1 to Mn are controlled by the amplitude value R1 output from the Pythagorean converter 63. As a result, the distortion compensation amount corresponding to the amplitude value of R1 is read out and output from each of the bank memories M1 to Mn, and is selectively derived by the selector SEL. The selector SEL selectively derives the read output of the bank memories M1 to Mn according to the output level of the adaptive filter I.
[0025]
The adaptive filter I gives the amplitude value R1 output from the Pythagorean converter 63 a characteristic opposite to the transient characteristic obtained by the transient characteristic detector H. Specifically, the amplitude value R1 is multiplied and output by the reciprocal of the coefficient indicating the transient characteristic. Therefore, as the transient characteristics of the RF amplifier 3 become steeper, the level change of the amplitude value R1 output from the adaptive filter I becomes gentler, and the switching speed of the selector SEL becomes slower. Conversely, as the transient characteristics of the RF amplifier 4 become gentler, the level change of the amplitude value R1 output from the adaptive filter I becomes faster.
Thus, even if the operating point of the RF amplifier 3 fluctuates and its non-linear characteristic changes, the non-linear compensation characteristic is sequentially updated following the change in the non-linear characteristic in the time direction.
[0026]
(Second embodiment)
FIG. 4 is a block diagram showing a configuration of the second embodiment in which the present invention is applied to the nonlinear compensator 2. In FIG. 4, the same parts as those in FIG. 2 are denoted by the same reference numerals, and different parts will be described in detail.
[0027]
That is, the feature of the second embodiment according to the present invention lies in the following configuration.
In FIG. 4, the average power detection unit K receives the amplitude value R1 output from the Pythagoras converter 63 of the distortion correction unit D, and obtains the average power by an integration process using a non-recursive digital filter (IIR). . The RAM table 62 has the configuration shown in FIG. 3 except for the aforementioned adaptive filter I, and includes bank memories M1 to Mn and a selector SEL. However, in the case of the present embodiment, the read output of the bank memories M1 to Mn is switch-controlled based on the detection result of the average power detection unit K.
[0028]
According to the above configuration, although the accuracy is lower than that of the first embodiment, it can be realized with a simple configuration, and it can be considered that the fluctuation of the operating point of the RF amplifier 3 follows the change of the average power. In such a case, the function can be sufficiently exhibited, so that it can be said that the cost performance is excellent.
[0029]
As described above, in the non-linear compensator 2 of the present embodiment, the input demodulation unit A and the output demodulation unit B extract the digital baseband signals of the RF input and the RF output of the RF amplifier 3 and determine the time difference between the two signals. The phase difference is detected by the correlation calculation in the delay detection unit E, and the synchronization of the two signals is performed by the delay adjustment unit C. In addition, the phase shifter 23 adjusts the phase of both signals. In this state, the amplitude error and the phase error of both signals are obtained by the distortion detection unit F, and input to the distortion correction unit D as distortion components. In the distortion correction unit D, a compensation amount corresponding to the amplitude value is sequentially selected from the compensation amounts registered by the means, and the compensation amount is added to the digital baseband signal obtained in the input demodulation unit A. The distortion component is compensated, the output signal is converted to the original signal format by the output conversion unit G, and output to the RF amplifier 3. As a result, the RF signal can be input to the RF amplifier 3 with the opposite characteristic to the nonlinear characteristic of the RF amplifier 3, and the distortion component due to the nonlinear characteristic of the RF output can be compensated.
[0030]
Here, in the first embodiment, the transient characteristic of the RF amplifier 3 is obtained, and the distortion correction unit D gives the inverse characteristic to the input amplitude value to switch the bank of the compensation table. Even when the level change amount of the average power becomes large and the operating point of the RF amplifier 3 fluctuates and its non-linear characteristic changes, it is possible to sequentially update the non-linear compensation characteristic following the change in the non-linear characteristic in the time direction. it can.
[0031]
Further, in the second embodiment, the average power is obtained from the input amplitude value of the distortion correction unit D, and the bank switching of the compensation table is performed based on the result, so that the operating point of the RF amplifier 3 varies. Even if the non-linear characteristic changes, the non-linear compensation characteristic can be successively updated by following a change in the non-linear characteristic of the transmission average power in the time direction with a simple configuration.
[0032]
Note that the present invention is not limited to the above embodiment.
For example, in the above embodiment, the coefficient values of the FIR filters 28 and 29 of the output demodulation unit B are controlled to achieve precise synchronization. However, the coefficient values of the FIR filters 18 and 19 of the input demodulation unit A are controlled. It is also possible to achieve precise synchronization.
[0033]
In the above embodiment, the phase is adjusted by adjusting the phase shift amount of the phase shifter 23 of the output demodulation unit B. However, the local signal supplied to the down converter 12 of the input demodulation unit A is adjusted. Even if the phase is adjusted by the phase shifter, the phase can be adjusted similarly.
[0034]
Furthermore, in the above embodiment, the case where the analog RF signal is input from the modulator 1 has been described. However, when the modulator 1 directly outputs the digital baseband signal, the digital baseband signal is input and the input is performed. If the output of the demodulation unit A is directly supplied to the delay adjustment unit C and the distortion correction unit D instead of the output of the demodulation unit A, the same effect as the above embodiment can be obtained.
[0035]
Although the above embodiment is applied to the OFDM transmission apparatus, the present invention is not limited to this. Other electronic circuits of analog communication system and digital communication system, for example, analog television signal by NTSC system The present invention can also be applied to compensation of non-linear characteristics and phase rotation in a transmission device of the above, a transmission device of a digital television signal according to the ATSC system, and the like. Further, in the above embodiment, the distortion correction is performed by adding the polar coordinates (R, θ). However, the distortion correction may be performed by multiplication by the Cartesian coordinates (I, Q).
[0036]
Further, in the above embodiment, the non-linear characteristic and the phase rotation are adaptively compensated by the automatic adjustment and the automatic control by making all the loops. However, the detection results of the respective detection units are appropriately displayed, and the display contents are displayed. It is needless to say that the adjustment and the correction may be manually performed while watching.
Further, in the above embodiment, the case where the non-linear characteristic of the RF amplifier is compensated has been described. However, the present invention can be similarly applied to other electronic devices that require compensation of the non-linear characteristic.
[0037]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a non-linear compensator capable of adaptively compensating for non-linear characteristics even when the amount of level change of the transmission average power in the time axis direction is large.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an OFDM transmitting apparatus to which the present invention is applied.
FIG. 2 is a block diagram showing a configuration of a non-linear compensator for compensating for non-linear characteristics of the RF amplifier of FIG. 1 as a first embodiment of the present invention;
FIG. 3 is a block diagram showing a specific configuration of a distortion correction unit of the embodiment shown in FIG.
FIG. 4 is a block diagram showing a configuration of a second embodiment of the nonlinear compensator according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Modulator 2 ... Nonlinear compensator 3 ... RF amplifier 4 ... Distributor A ... Input demodulation part B ... Output demodulation part C ... Delay control part D ... Distortion correction part E ... Delay detection part F ... Distortion detection part G ... Output Converter H Transient characteristic detector I Adaptive filter K Average power detectors M1 to Mn Bank memory SEL Selector 11 Analog RF input terminal 12 First down converter (D / C1)
13 local oscillator 14 AGC circuit 15 squelch circuit (SQ)
16 First analog-to-digital converter (ADC1)
17 1st quadrature demodulation circuit (Q-DEM1)
18, 19 ... FIR filter 21 ... analog PA input terminal 22 ... second down converter (D / C2)
23 phase shifter 24 AGC circuit 25 squelch circuit (SQ)
26 Second analog-to-digital converter (ADC2)
27: second quadrature demodulation circuit (Q-DEM2)
28, 29 FIR filter 30 Local oscillator 31, 32 RAM delay 41 Complex multiplier 42 REAL integrator 43 IMAG integrator 44 Pythagoras converter 45 Autocorrelation peak detector 46 Delay / angle detection Device 47 delay controller 48 phase controller 49 carrier synchronization circuit 491 differentiator 492 loop filter 493 adder 494 loop filters 51 and 52 Pythagoras converter 53 error calculator 61 integrator 62 RAM table 621... Working area 622... Reserve area 623... Address timing control unit 63.
74 Digital-to-analog converter (ADC)
75 ... Up converter (U / C)
76: RF output terminal 77: Local oscillator

Claims (2)

伝送信号を扱う被補償電子装置の非線形特性を補償する非線形補償器おいて、
前記被補償電子装置の入力信号及び出力信号を取り込み、適宜復調処理して同じ信号形式に合わせた後、両信号間の相関をとることで両信号間の時間差及び位相差を検出し、検出した時間差及び位相差に基づいて両信号の同期及び位相あわせを行う信号処理部と、
この信号処理部により同期及び位相が合わせられた被補償電子装置の入力信号及び出力信号の振幅誤差及び位相誤差を歪み成分として検出する歪み検出部と、
前記被補償電子装置の入力信号及び出力信号を比較して当該被補償電子装置の過渡特性を検出する過渡特性検出部と、
この過渡特性検出部で検出された過渡特性の逆特性を前記被補償電子装置の入力信号に与える適応フィルタと、
予め前記歪み検出部で検出される歪み成分とこの歪み成分を補償するための非線形歪み補償量とを対応付けて歪み成分の大きさ別に複数のメモリバンクに格納し、前記適応フィルタの出力レベルに応じて前記メモリバンクを選択的に切り替えて、選択メモリバンクに格納される歪み補償量を読み出し、その歪み補償量で前記被補償電子装置の入力信号を補償する歪み補正部とを具備することを特徴とする非線形補償器。
In a non-linear compensator for compensating for non-linear characteristics of a compensated electronic device that handles a transmission signal,
After capturing the input signal and output signal of the compensated electronic device, suitably demodulating and matching the same signal format, the time difference and the phase difference between the two signals were detected by taking the correlation between the two signals, and were detected. A signal processing unit that performs synchronization and phase adjustment of both signals based on the time difference and the phase difference,
A distortion detection unit that detects, as a distortion component, an amplitude error and a phase error of an input signal and an output signal of the compensated electronic device whose synchronization and phase are adjusted by the signal processing unit;
A transient characteristic detecting unit that compares an input signal and an output signal of the compensated electronic device and detects a transient characteristic of the compensated electronic device;
An adaptive filter that applies an inverse characteristic of the transient characteristic detected by the transient characteristic detection unit to an input signal of the compensated electronic device;
The distortion component detected in advance by the distortion detection unit and a nonlinear distortion compensation amount for compensating the distortion component are stored in a plurality of memory banks for each magnitude of the distortion component, and the output level of the adaptive filter is And a distortion correction unit for selectively switching the memory bank in response to the distortion compensation amount stored in the selected memory bank, and for compensating the input signal of the compensated electronic device with the distortion compensation amount. Characteristic non-linear compensator.
伝送信号を扱う被補償電子装置の非線形特性を補償する非線形補償器おいて、
前記被補償電子装置の入力信号及び出力信号を取り込み、適宜復調処理して同じ信号形式に合わせた後、両信号間の相関をとることで両信号間の時間差及び位相差を検出し、検出した時間差及び位相差に基づいて両信号の同期及び位相あわせを行う信号処理部と、
この信号処理部により同期及び位相が合わせられた被補償電子装置の入力信号及び出力信号の振幅誤差及び位相誤差を歪み成分として検出する歪み検出部と、
前記被補償電子装置の入力信号の平均電力を求める平均電力検出部と、
予め前記歪み検出部で検出される歪み成分とこの歪み成分を補償するための非線形歪み補償量とが対応付けられて平均電力別に複数のメモリバンクに格納され、前記平均電力検出部の検出レベルに応じて前記メモリバンクを選択的に切り替えて、選択メモリバンクに格納される歪み補償量を読み出し、その歪み補償量で前記被補償電子装置の入力信号を補償する歪み補正部とを具備することを特徴とする非線形補償器。
In a non-linear compensator for compensating for non-linear characteristics of a compensated electronic device that handles a transmission signal,
After capturing the input signal and output signal of the compensated electronic device, suitably demodulating and matching the same signal format, the time difference and the phase difference between the two signals were detected by taking the correlation between the two signals, and were detected. A signal processing unit that performs synchronization and phase adjustment of both signals based on the time difference and the phase difference,
A distortion detection unit that detects, as a distortion component, an amplitude error and a phase error of an input signal and an output signal of the compensated electronic device whose synchronization and phase are adjusted by the signal processing unit;
An average power detection unit that determines an average power of an input signal of the compensated electronic device;
The distortion component detected by the distortion detection unit and the nonlinear distortion compensation amount for compensating the distortion component are previously stored in a plurality of memory banks for each average power, and the detection level of the average power detection unit is And a distortion correction unit for selectively switching the memory bank in response to the distortion compensation amount stored in the selected memory bank, and for compensating the input signal of the compensated electronic device with the distortion compensation amount. Characteristic non-linear compensator.
JP2002270497A 2002-09-17 2002-09-17 Nonlinear compensator Expired - Fee Related JP4127639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002270497A JP4127639B2 (en) 2002-09-17 2002-09-17 Nonlinear compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002270497A JP4127639B2 (en) 2002-09-17 2002-09-17 Nonlinear compensator

Publications (2)

Publication Number Publication Date
JP2004112218A true JP2004112218A (en) 2004-04-08
JP4127639B2 JP4127639B2 (en) 2008-07-30

Family

ID=32268111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002270497A Expired - Fee Related JP4127639B2 (en) 2002-09-17 2002-09-17 Nonlinear compensator

Country Status (1)

Country Link
JP (1) JP4127639B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016423A (en) * 2008-06-30 2010-01-21 Sumitomo Electric Ind Ltd Distortion compensation circuit
US9172333B2 (en) 2012-11-29 2015-10-27 Fujitsu Limited Distortion compensation device and distortion compensation method
WO2019242842A1 (en) * 2018-06-19 2019-12-26 Nokia Technologies Oy Gain transient response compensation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016423A (en) * 2008-06-30 2010-01-21 Sumitomo Electric Ind Ltd Distortion compensation circuit
US9172333B2 (en) 2012-11-29 2015-10-27 Fujitsu Limited Distortion compensation device and distortion compensation method
WO2019242842A1 (en) * 2018-06-19 2019-12-26 Nokia Technologies Oy Gain transient response compensation
US11658619B2 (en) 2018-06-19 2023-05-23 Nokia Technologies Oy Gain transient response compensation

Also Published As

Publication number Publication date
JP4127639B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
US8159297B2 (en) Transmission device, distortion compensation device, and distortion compensation method
US8023587B2 (en) Device and method for pre-distorting a base-band digital signal
JP4492264B2 (en) Quadrature detector and quadrature demodulator and sampling quadrature demodulator using the same
KR100581059B1 (en) Appratus and its Method for I/Q Imbalance Compensation by using Variable Loop Gain in Demodulator
JP4256057B2 (en) Nonlinear compensator
JPH09199961A (en) Agc equipment
EP1835626B1 (en) Dc offset compensation method and device
US7248654B2 (en) Apparatus and method for compensating I/Q imbalance based on gain-controlled reference channel in orthogonal frequency division multiplex
EP1089428B1 (en) Nonlinear compensator
JPH08340359A (en) Phase detecting method and phase tracking loop circuit for digital vestigal sideband modulating communication equipment
JP2008172544A (en) Distortion compensation circuit using diode linearizer
JP5281979B2 (en) Receiving machine
EP1381155A2 (en) A power amplifier distortion compensation apparatus and method thereof
JP6059003B2 (en) Distortion compensation apparatus and distortion compensation method
WO2009142027A1 (en) Carrier recovery device and method, and demodulator
JP4127639B2 (en) Nonlinear compensator
KR100535774B1 (en) Apparatus for compensation DC offset and I/Q gain and phase imbalance and compensation system using it
JP3642040B2 (en) Distortion compensation circuit and distortion compensation method
JP2004165900A (en) Communication device
JP3221326B2 (en) Transmission device
US20020137488A1 (en) Direct conversion receiver for performing phase correction upon change of the gain of low-noise amplifier
JP3954362B2 (en) Nonlinear compensator and nonlinear compensation method
JP2008205759A (en) Distortion compensating device
JP2816917B2 (en) Wireless receiver
JP4292667B2 (en) Receiving apparatus and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees