JP2004107202A - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition Download PDF

Info

Publication number
JP2004107202A
JP2004107202A JP2003302421A JP2003302421A JP2004107202A JP 2004107202 A JP2004107202 A JP 2004107202A JP 2003302421 A JP2003302421 A JP 2003302421A JP 2003302421 A JP2003302421 A JP 2003302421A JP 2004107202 A JP2004107202 A JP 2004107202A
Authority
JP
Japan
Prior art keywords
value
temperature
dielectric
glass component
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003302421A
Other languages
Japanese (ja)
Other versions
JP4400860B2 (en
Inventor
Takao Nukushina
温品 貴夫
Nobuhiro Arikawa
有川 展弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003302421A priority Critical patent/JP4400860B2/en
Publication of JP2004107202A publication Critical patent/JP2004107202A/en
Application granted granted Critical
Publication of JP4400860B2 publication Critical patent/JP4400860B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonreducing dielectric porcelain composition for temperature compensation, which can be stably fired even under a reducing atmosphere of 1,100-1,300°C, gives markedly increased Q value, and is small in dispersion of the characteristic such as capacitance Cap, dielectric constant ε<SB>s</SB>, temperature characteristic TC or insulating resistance ρ, and which is able to prevent flocculation of glass components. <P>SOLUTION: The dielectric composition contains 1-5 pts. wt. of MnCO<SB>3</SB>, and 0.5-5 pts. wt. of a glass component expressed by general formula: aSiO<SB>2</SB>-bLi<SB>2</SB>O-cB<SB>2</SB>O<SB>3</SB>-dCaO-eBaO (wherein, 0.25≤a≤0.45; 0.05≤b≤0.35; 0.05≤c≤0.15; 0.10≤d≤0.35; 0.10≤e≤0.35, and a + b + c + d + e =1) to 100 pts. wt. of a base component expressed by general formula: (CaO)<SB>x</SB>(Zr<SB>1-y</SB>-Ti<SB>y</SB>)O<SB>2</SB>(wherein, 0.95≤x≤1.05; and 0.01≤y≤0.10). <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、Ni等の卑金属を内部電極層とする温度補償用積層セラミックコンデンサ等に用いられる誘電体層に好適な誘電体磁器組成物に関する。 The present invention relates to a dielectric ceramic composition suitable for a dielectric layer used for a temperature-compensating multilayer ceramic capacitor or the like having a base metal such as Ni as an internal electrode layer.

 図1は、一般的な積層セラミックコンデンサの外観斜視図であり、図2は、その断面図である。 FIG. 1 is an external perspective view of a general multilayer ceramic capacitor, and FIG. 2 is a cross-sectional view thereof.

 従来、積層セラミックコンデンサ10を製造する際には、誘電体原料粉末からなるセラミックグリーンシートにPd又はAg/Pd等の貴金属の導電性ペーストを所望パターンに印刷し、これを複数枚積層して熱圧着し、1200〜1300℃の酸化性雰囲気中で焼成し、Ag下地電極を塗布後、600〜800℃で焼成後、Ni及びSnの2層構造よりなるメッキ層を施して、積層セラミックコンデンサ10を構成していた。 Conventionally, when manufacturing a multilayer ceramic capacitor 10, a conductive paste of a noble metal such as Pd or Ag / Pd is printed in a desired pattern on a ceramic green sheet made of a dielectric raw material powder, and a plurality of such pastes are laminated and heated. Crimping, baking in an oxidizing atmosphere at 1200 to 1300 ° C., applying an Ag base electrode, baking at 600 to 800 ° C., applying a plating layer having a two-layer structure of Ni and Sn, Was composed.

 しかし、近年になってPd価格は驚異的な高騰が続いているため、比較的Pd使用量の少ない温度補償用積層セラミックコンデンサ10においても、原価に影響を及ぼし始めている。このため、内部電極層3、4の卑金属化は、従来では内部電極層3、4枚数が多いB・F特性のような大容量型に限られていたが、温度補償用積層セラミックコンデンサ10においても求められてきている。 However, since the price of Pd has been surprisingly increasing in recent years, the cost of the multilayer ceramic capacitor 10 for temperature compensation, which uses a relatively small amount of Pd, is beginning to affect the cost. For this reason, the base metalization of the internal electrode layers 3 and 4 has conventionally been limited to a large-capacity type such as the BF characteristic in which the number of the internal electrode layers 3 and 4 is large. Is also required.

 しかし、誘電体層2と内部電極層3、4を交互に積層した積層セラミックコンデンサ10の構造では、Ni内部電極層3、4と誘電体層2の一体焼成となることから、Ni等の酸化を防止するために、中性(雰囲気:N100%)又は還元性雰囲気(雰囲気:N+H数%)にて同時焼成しても誘電体層2が還元されることなく、電気的な特性及び電圧負荷寿命等の信頼性に関して、十分満足される誘電体材料の開発が必要となる。 However, in the structure of the multilayer ceramic capacitor 10 in which the dielectric layers 2 and the internal electrode layers 3 and 4 are alternately stacked, since the Ni internal electrode layers 3 and 4 and the dielectric layer 2 are integrally fired, oxidation of Ni or the like is performed. To prevent the dielectric layer 2 from being reduced even when co-fired in a neutral atmosphere (atmosphere: N 2 100%) or a reducing atmosphere (atmosphere: N 2 + H 2 several%). Therefore, it is necessary to develop a dielectric material that satisfies various requirements and reliability such as voltage load life.

 そこで、CaZrOとCaTiOとから成る基本成分に、Si−Li−アルカリ土類金属で構成されるガラス成分(焼結助剤)を添加した非還元性温度補償用誘電体磁器組成物が提案されている(例えば、特許文献1参照。)。
特公平5−52604号公報
Therefore, a non-reducing temperature-compensating dielectric ceramic composition in which a glass component (sintering aid) composed of Si-Li-alkaline earth metal is added to a basic component composed of CaZrO 3 and CaTiO 3 is proposed. (For example, see Patent Document 1).
Japanese Patent Publication No. 5-52604

 しかしながら、上記誘電体磁器組成物によれば、1350℃〜1380℃と高温での焼成処理を行わなければ焼結不足となり、電気的に満足な特性を得られない。しかし積層セラミックコンデンサ10では、誘電体層2と内部電極層3、4のモノリシック構造のため、このような高温下での焼成処理を施すと、Ni等で構成される内部電極層3、4に溶融・凝集が生じ、Ni等の金属が玉状に分布する。また、高温焼成のために、Ni等の金属が誘電体磁器中に拡散し、誘電体層2の絶縁抵抗劣化を引き起こす。この結果、所望の静電容量、及び絶縁抵抗を有する積層セラミックコンデンサ10を得ることが困難であった。このような問題点を解決するために、上記特許文献1に示されている材料系では、Si−LiO−アルカリ土類で構成される焼結助剤の組成系で、1200℃以下での焼成温度域迄の低温焼成化を図り、所望の特性を満足するTC系Ni積層セラミックコンデンサとしていた。 However, according to the above-mentioned dielectric porcelain composition, sintering becomes insufficient unless firing treatment is performed at a high temperature of 1350 ° C. to 1380 ° C., and electrical satisfactory characteristics cannot be obtained. However, in the monolithic ceramic capacitor 10, since the dielectric layer 2 and the internal electrode layers 3 and 4 have a monolithic structure, when the firing treatment is performed at such a high temperature, the internal electrode layers 3 and 4 made of Ni or the like are formed. Melting and aggregation occur, and metals such as Ni are distributed in a ball shape. In addition, due to the high-temperature firing, a metal such as Ni diffuses into the dielectric porcelain, causing the insulation resistance of the dielectric layer 2 to deteriorate. As a result, it was difficult to obtain a multilayer ceramic capacitor 10 having a desired capacitance and insulation resistance. In order to solve such a problem, in the material system disclosed in Patent Document 1, a sintering aid composed of Si—Li 2 O—alkaline earth is used at a temperature of 1200 ° C. or less. At a low temperature up to the sintering temperature range described above to obtain a TC-based Ni multilayer ceramic capacitor satisfying desired characteristics.

 しかし、この組成系で構成される焼結助剤では、低融点元素であるLiの蒸発が著しく、焼成時に発生する磁器組成の斑が顕著に発生する事により、結果として個々の電気特性にバラツキが生じる他、図3に示すように、Li元素の蒸発開始温度とほぼ同じくして誘電体磁器内部に、ガラス成分の凝集20が発生し、結果的には湿中雰囲気での作動試験において、Q値の劣化を引き起こす問題がある。 However, in the sintering aid composed of this composition system, Li, which is a low-melting element, evaporates remarkably, and unevenness of the porcelain composition generated during firing is remarkably generated, resulting in variations in individual electric characteristics. In addition, as shown in FIG. 3, agglomeration 20 of the glass component is generated inside the dielectric ceramic at almost the same temperature as the evaporation start temperature of the Li element, and as a result, in the operation test in a wet atmosphere, There is a problem that causes deterioration of the Q value.

 さらに詳しく説明すると、中性又は還元雰囲気状況下での1000℃以上の温度域になるとLiの蒸発が発生し始めると同時に、ガラス成分の凝集体20が磁器中に存在し始める。この現象は、特にJIS規格3216型以下の小型形状なるバルク体になると顕著であり、そのため磁器中の組成変動に対する安定な焼成を行うことが非常に困難であった。 More specifically, in a temperature range of 1000 ° C. or more under a neutral or reducing atmosphere, Li begins to evaporate, and at the same time, aggregates 20 of glass components begin to exist in the porcelain. This phenomenon is particularly remarkable in a bulk body having a small shape conforming to JIS standard 3216 type or less. Therefore, it has been extremely difficult to perform stable firing with respect to composition fluctuation in porcelain.

 本発明は上記の事情に鑑みてなされたものであり、その目的は、1100℃〜1300℃の還元性雰囲気中でも安定な焼成が可能で、Q値が著しく増大するとともに、静電容量Cap、比誘電率ε、温度特性TC、絶縁抵抗ρなどの特性ばらつきが小さく、且つガラス成分の凝集を防ぐことが可能な非還元性温度補償用の誘電体磁器組成物を提供することにある。 The present invention has been made in view of the above circumstances, and has as its object to enable stable firing even in a reducing atmosphere at 1100 ° C. to 1300 ° C., significantly increase the Q value, and increase the capacitance Cap, It is an object of the present invention to provide a non-reducing temperature-compensating dielectric ceramic composition which has a small characteristic variation such as a dielectric constant ε s , a temperature characteristic TC, and an insulation resistance ρ and can prevent aggregation of glass components.

 本発明の誘電体磁器組成物は、一般式(CaO)(Zr1−y・Ti)O(但し、x及びyは、モル換算で表され、0.95≦x≦1.05、0.01≦y≦0.10の範囲の数値)で表される基本成分100重量部に対して、
 MnCOを1〜5重量部と、
 一般式aSiO−bLiO−cB―dCaO−eBaO(但し、a〜eはモル換算で表され、0.25≦a≦0.45、0.05≦b≦0.35、0.05≦c≦0.15、0.10≦d≦0.35、0.10≦e≦0.35、a+b+c+d+e=1の範囲の数値)で表されるガラス成分を0.5〜5重量部とを含有するとともに、前記ガラス成分のbとcとの関係が0.9≦b/cであり、且つdとeとの関係が0.33≦d/e≦3.00である。
The dielectric ceramic composition of the present invention has a general formula (CaO) x (Zr 1-y · Ti y ) O 2 (where x and y are expressed in terms of mol, and 0.95 ≦ x ≦ 1.05). , 0.01 ≦ y ≦ 0.10), and 100 parts by weight of the basic component represented by
1 to 5 parts by weight of MnCO 3 ,
General formula aSiO 2 -bLi 2 O-cB 2 O 3 -dCaO-eBaO (where a to e are expressed in terms of mol, and 0.25 ≦ a ≦ 0.45, 0.05 ≦ b ≦ 0.35, The glass component represented by 0.05 ≦ c ≦ 0.15, 0.10 ≦ d ≦ 0.35, 0.10 ≦ e ≦ 0.35, a + b + c + d + e = 1) is 0.5 to 5 And the relationship between b and c of the glass component is 0.9 ≦ b / c, and the relationship between d and e is 0.33 ≦ d / e ≦ 3.00. .

 本発明の誘電体磁器は、CaZrOとCaTiOとから成る基本成分に、SiO−LiO−B―CaO−MgOで構成される軟化点が低いガラス成分(焼結助剤)を添加することにより、中性又は還元性雰囲気中での焼成時に、Q値が著しく増大するとともに、容量バラツキの低減を図ることが可能であり、さらには、比誘電率ε、温度特性TC、絶縁抵抗ρなどについても十分に満足なものとなる。 The dielectric porcelain of the present invention includes a glass component having a low softening point composed of SiO 2 —Li 2 O—B 2 O 3 —CaO—MgO (a sintering aid) as a basic component comprising CaZrO 3 and CaTiO 3. ) Can significantly increase the Q value during firing in a neutral or reducing atmosphere, reduce the variation in capacitance, and further increase the relative dielectric constant ε s and temperature characteristics. The TC, the insulation resistance ρ, and the like are also sufficiently satisfied.

 従って、本発明における非還元性誘電体磁器組成物を応用することにより、品質的に極めて安定で、且つ静電容量Cap、温度特性TC、Q値、絶縁抵抗ρなどについても十分満足させる温度補償用積層セラミックコンデンサを提供することが可能になる。 Therefore, by applying the non-reducing dielectric ceramic composition of the present invention, temperature compensation which is extremely stable in quality and sufficiently satisfies the capacitance Cap, the temperature characteristic TC, the Q value, the insulation resistance ρ, etc. It is possible to provide a multilayer ceramic capacitor for use.

 本発明における非還元性誘電体磁器組成物の主成分である(CaO)(Zr1−y・Ti)O(但し、x及びyは、モル換算で表され、0.95≦x≦1.05、0.01≦y≦0.10の範囲の数値)で表されるペロブスカイト型化合物は中性或いは還元性雰囲気中で焼成した際にチタン酸塩を主成分系とした場合と比較すると還元されにくく、その結果本主成分系ではTiOの含有量が極めて少ない為に、上記雰囲気中で焼成したとしても安定な電気的特性が得られる。 Which is the main component of the non-reducing dielectric ceramic composition of the present invention (CaO) x (Zr 1- y · Ti y) O 2 ( here, x and y are represented on a molar basis, 0.95 ≦ x ≦ 1.05, 0.01 ≦ y ≦ 0.10) perovskite-type compounds when titanate is the main component when fired in a neutral or reducing atmosphere. By comparison, it is difficult to be reduced, and as a result, since the content of TiO 2 is very small in the present main component system, stable electric characteristics can be obtained even when firing in the above atmosphere.

 組成比を限定した理由は以下の通りである。 理由 The reasons for limiting the composition ratio are as follows.

 即ち、基本成分のCaの比率xが0.95未満では、Q値が低下し、1.05を越える場合は、1100〜1300℃で十分に焼結しない事によるQ値等の特性劣化を引き起こす。つまりペロブスカイト型化合物のAサイト/Bサイト比は1:1で存在する事が最も好ましく、Aサイト/Bサイト比が上述した範囲内を逸脱する事により問題点が顕在化する。 That is, when the ratio x of Ca as the basic component is less than 0.95, the Q value decreases, and when it exceeds 1.05, the characteristics such as the Q value deteriorate due to insufficient sintering at 1100 to 1300 ° C. . In other words, the ratio of the A site / B site of the perovskite compound is most preferably 1: 1. When the A site / B site ratio deviates from the above range, the problem becomes apparent.

 また、Tiの比率yが0.01未満では、誘電率が25以下となり目標を満足しなくなる。さらに、yが0.10を越える場合は、誘電率の温度特性の絶対値が30ppmより大きくなる。 で は If the ratio y of Ti is less than 0.01, the dielectric constant becomes 25 or less, and the target is not satisfied. Further, when y exceeds 0.10, the absolute value of the temperature characteristic of the dielectric constant becomes larger than 30 ppm.

 さらに、添加剤であるMnは、一方では焼結助剤的な役割と共に、電荷補償の役割となる。これは、磁器生成中の何らかの要因で生成した格子欠陥により空間電荷が形成され、これが要因となって発生する空間電荷分極により、高温、低周波で誘電率、tanδが増加する現象である。更に詳述すれば、Mnの添加量zが1重量部未満では、1100〜1300℃で十分に焼結しないことにより誘電率/Q値が低下し、又、zが5重量部を超える場合は、絶縁抵抗値が劣化する。 Mn Further, Mn as an additive has a role of a sintering aid and a role of charge compensation. This is a phenomenon in which a space charge is formed by lattice defects generated by some factor during porcelain generation, and the dielectric constant and tan δ increase at high temperature and low frequency due to space charge polarization generated by this. More specifically, when the addition amount z of Mn is less than 1 part by weight, the dielectric constant / Q value is reduced by insufficient sintering at 1100 to 1300 ° C., and when z exceeds 5 parts by weight, In addition, the insulation resistance value deteriorates.

 そして、本発明のガラス成分は、その組成を一般式(1)
aSiO−bLiO−cB―dCaO−eBaO・・・・・・・(1)
(式中、a+b+c+d+e=100)
で表した時、モル換算で0.25≦a≦0.45、0.05≦b≦0.35、0.05≦c≦0.15、0.10≦d≦0.35、0.10≦e≦0.35、a+b+c+d+e=1の範囲にある組成から構成される。
The composition of the glass component of the present invention is represented by the general formula (1)
aSiO 2 -bLi 2 O-cB 2 O 3 -dCaO-eBaO ······· (1)
(Where a + b + c + d + e = 100)
When expressed in terms of mol, 0.25 ≦ a ≦ 0.45, 0.05 ≦ b ≦ 0.35, 0.05 ≦ c ≦ 0.15, 0.10 ≦ d ≦ 0.35, 0. It is composed of a composition in the range of 10 ≦ e ≦ 0.35 and a + b + c + d + e = 1.

 このガラス成分は、磁器焼成温度に関し、1100℃〜1300℃の範囲内での低温焼成化を実現する為には必要不可欠であり、磁器中で液相を生じる事により、主成分系であるジルコン酸カルシウムを低温で焼結する事が可能となる。しかしガラスの組成形態によって、磁器の焼成温度が所定の温度範囲を逸脱する事は基より、積層セラミックコンデンサを形成した場合に、特に内部電極層近傍で発生するガラス成分の凝集が発生する事により、Q値等の電気特性劣化を引き起こす。本発明では、特に後者の問題点に焦点を当ててなされたものである。 This glass component is indispensable for realizing low-temperature sintering in the range of 1100 ° C. to 1300 ° C. with respect to the sintering temperature of the porcelain. Calcium acid can be sintered at a low temperature. However, depending on the composition of the glass, the sintering temperature of the porcelain deviates from the predetermined temperature range.In the case of forming a multilayer ceramic capacitor, the aggregation of glass components particularly occurring near the internal electrode layer occurs. , Q value and the like are caused to deteriorate. In the present invention, the latter problem is particularly focused.

 更に組成形態について詳述する。 Further, the composition form will be described in detail.

 このガラス成分においてSi成分即ち、ガラス成分中のSiOは、焼結を進行させる役割を持つため、その比率aが0.25未満では、十分に焼結しない。一方、aが0.45を超えると、ガラス成分に結晶ピークが生成される事により更には、LiSiOなるガラス成分の凝集が生じるためQ値が低下する。 In this glass component, the Si component, that is, SiO 2 in the glass component has a role of promoting sintering. Therefore, if the ratio a is less than 0.25, sintering is not sufficiently performed. On the other hand, when a exceeds 0.45, a crystal peak is generated in the glass component, and further, aggregation of the glass component of Li 2 SiO 3 occurs, so that the Q value decreases.

 また、LiOは低温焼結化には不可欠な役割を持つため、その比率bが0.05未満となると、十分に焼結しない。一方、LiOは軽元素である事から焼成時に蒸発しやすいため、bが0.35を超えると、焼成時の炉内の位置によって、容量バラツキが発生しやすくなる。 Further, since Li 2 O has an essential role in low-temperature sintering, if its ratio b is less than 0.05, it will not be sufficiently sintered. On the other hand, since Li 2 O is a light element and easily evaporates at the time of firing, when b exceeds 0.35, capacity variation tends to occur depending on the position in the furnace at the time of firing.

 また、BはLiO同様に、焼結温度を低下させる役割を持つため、その比率cが0.05未満となると、1100〜1300℃で十分に焼結しない。一方、Bが過剰に調製されると、LiO同様に軽元素である事から焼成時に蒸発を引き起こし易く、つまりはcが0.15を超えると、焼成時の炉内或いは焼成用セッタ内での位置によって、容量バラツキが発生しやすくなる。 Further, B 2 O 3 is Li 2 O Similarly, to have a role to lower the sintering temperature, when the ratio c becomes less than 0.05, not sufficiently sintered at 1100 to 1300 ° C.. On the other hand, if B 2 O 3 is excessively prepared, it is a light element like Li 2 O, so that it is easy to cause evaporation during firing. That is, if c exceeds 0.15, the inside of the furnace during firing or firing Depending on the position in the use setter, capacity variation is likely to occur.

 さらに、CaOの比率d或いはBaOの比率eが所定範囲を下回った場合、dが0.10未満或いはeが0.10未満では、十分な磁器の焼結性が得られない事により、その結果絶縁抵抗値の劣化を引き起こす。また、CaOの比率d、或いは、BaOの比率eが所定範囲を上回った場合、dがモル比で0.35超、或いは、eが0.35超では、同様に、焼成温度が1300℃以上になり焼結不足を引き起こす。 Further, when the ratio d of CaO or the ratio e of BaO is below a predetermined range, if d is less than 0.10 or e is less than 0.10, sufficient sinterability of the porcelain cannot be obtained. This causes the insulation resistance to deteriorate. Further, when the ratio d of CaO or the ratio e of BaO exceeds a predetermined range, if d exceeds 0.35 in molar ratio, or if e exceeds 0.35, similarly, the sintering temperature is 1300 ° C. or higher. And causes insufficient sintering.

 ここで、ガラス成分の凝集に、組成式LiSiOで表される成分や、Bを主成分とする成分が含有していることが確認されており、全体として、LiO、SiO及びB比率を下げることにより、ガラス成分の凝集を防ぎ、さらにはQ値の劣化を防ぐことができる。 Here, it has been confirmed that a component represented by the composition formula Li 2 SiO 3 and a component containing B as a main component are contained in the aggregation of the glass component, and Li 2 O, SiO 2 By lowering the B 2 O 3 ratio, it is possible to prevent agglomeration of the glass component and further prevent deterioration of the Q value.

 さらに、SiOの比率を下げるとともに、所定量の範囲内でのBaO及びCaOの比率を上げることにより、ガラス成分の転移温度(Tg)が低下するため、焼結が進行しやすくなり、Q値が増大する。 Further, by lowering the ratio of SiO 2 and increasing the ratio of BaO and CaO within a predetermined range, the transition temperature (Tg) of the glass component is lowered, so that sintering can easily proceed and the Q value can be improved. Increase.

 また、最も望ましい範囲は0.98≦x≦1.00、0.02≦y≦0.03、2.0≦z≦4.0、0.30≦a≦0.40、0.20≦b≦0.30、0.08≦c≦0.12、0.10≦d≦0.20、0.10≦e≦0.20の範囲である。 The most desirable ranges are 0.98 ≦ x ≦ 1.00, 0.02 ≦ y ≦ 0.03, 2.0 ≦ z ≦ 4.0, 0.30 ≦ a ≦ 0.40, 0.20 ≦ b ≦ 0.30, 0.08 ≦ c ≦ 0.12, 0.10 ≦ d ≦ 0.20, 0.10 ≦ e ≦ 0.20.

 好ましくは、ガラス成分が0.9≦b/cの範囲にあることを特徴とする。すなわち、LiOとBのモル比b/c比が0.9より小さくなった場合、原料調合時にBが過剰になることにより、ガラス成分の凝集が生じるためQ値が低下する。 Preferably, the glass component is in the range of 0.9 ≦ b / c. That is, when the molar ratio b / c ratio of Li 2 O and B 2 O 3 is smaller than 0.9, the excess of B 2 O 3 during the preparation of the raw materials causes aggregation of the glass component, so that the Q value is increased. Decreases.

 また、ガラス成分が0.33≦d/e≦3.00の範囲にあることを特徴とする。すなわち、CaOとBaOの一方が上記範囲を逸脱することにより、焼結性が低下し、結果としてQ値或いは絶縁性の不良を引き起こす。また、上記ガラス成分が1/1.5≦d/e≦1.5の範囲にあることが望ましく、さらにはモル比がd/e=1であることがより望ましい。また、上記理由から、上記モル比は焼結後の誘電体磁器組成物のモル比ではなく、原料調合時のモル比であることが望ましい。 The glass component is characterized by being in the range of 0.33 ≦ d / e ≦ 3.00. That is, when one of CaO and BaO deviates from the above range, sinterability is reduced, and as a result, a Q value or poor insulation property is caused. Further, it is desirable that the above glass component is in the range of 1 / 1.5 ≦ d / e ≦ 1.5, and it is more desirable that the molar ratio is d / e = 1. For the above reason, it is preferable that the above molar ratio is not the molar ratio of the dielectric ceramic composition after sintering but the molar ratio at the time of mixing the raw materials.

 上述の様に構成されたガラス成分は、基本成分である(CaO)(Zr1−y・Ti)O(但し、x及びyは、モル換算で表され、0.95≦x≦1.05、0.01≦y≦0.10の範囲の数値)に対して重量部換算で0.5〜5%添加して、初めて所望の特性を得ることができる。 The glass component configured as described above is a basic component of (CaO) x (Zr 1-y · Ti y ) O 2 (where x and y are expressed in terms of mol and 0.95 ≦ x ≦ 1.05, a numerical value in the range of 0.01 ≦ y ≦ 0.10), the desired properties can be obtained only by adding 0.5 to 5% in terms of parts by weight.

 ここで、前記ガラス成分は、1100℃〜1300℃の比較的低温で、主成分系の焼結を完了するために添加するものであり、基本成分に対する添加量が重量部換算で0.5%を下回るガラス成分の添加量では、誘電体磁器の焼結が不十分となり、結果的には絶縁抵抗値の低下をもたらすととともに、Q値を著しく劣化してしまう。一方、重量部換算で5%を超えて添加すると、粒界相に過剰に存在するガラス成分が原因となり、更に詳細に述べると、主成分系であるジルコン酸カルシウムの誘電特性が、その粒界相に存在する過剰なガラス成分により阻害されることにより、誘電率の低下を招いてしまう。従って、最も望ましい添加量の範囲は、重量部換算で、1.5%〜2%の範囲である。 Here, the glass component is added at a relatively low temperature of 1100 ° C. to 1300 ° C. to complete the sintering of the main component, and the amount added to the basic component is 0.5% by weight in terms of parts by weight. If the amount of the glass component is less than the above, the sintering of the dielectric porcelain becomes insufficient, and as a result, the insulation resistance value is reduced and the Q value is significantly deteriorated. On the other hand, if the addition exceeds 5% in terms of parts by weight, the glass component excessively present in the grain boundary phase is the cause. Inhibition by excess glass components in the phase leads to a decrease in the dielectric constant. Therefore, the most preferable range of the addition amount is 1.5% to 2% in terms of parts by weight.

 以下、本発明の誘電体磁器組成物の実施例について説明する。 Hereinafter, examples of the dielectric ceramic composition of the present invention will be described.

 炭酸カルシウム(CaCO)、二酸化チタン(TiO)、酸化ジルコニウム(ZrO)、炭酸マンガン(MnCO)を出発原料として用意し、表1に示すような比率になるようにそれぞれ秤量した。なお、この秤量において、不可避的に混入された不純物はその重量に入れないで秤量した。次に、これらの秤量された原料をポットミルに入れ、さらにアルミナボールと水2.5リットルとを入れ、15時間湿式撹拌した後、撹拌物をステンレスバットに入れて熱風式乾燥機で150℃×4時間乾燥した。次にこの乾燥物を粗粉砕し、この粗粉砕物をトンネル炉にて大気中で1300℃×2時間の焼成を行い、表1に示す組成式の平均粒径1μm程度の基本成分を得た。 Calcium carbonate (CaCO 3 ), titanium dioxide (TiO 2 ), zirconium oxide (ZrO 2 ), and manganese carbonate (MnCO 3 ) were prepared as starting materials and weighed so as to have the ratios shown in Table 1. In this weighing, impurities unavoidably mixed were weighed without being included in the weight. Next, these weighed raw materials were put into a pot mill, and further, alumina balls and 2.5 liters of water were put therein. After wet stirring for 15 hours, the stirred product was put in a stainless steel vat and heated at 150 ° C. with a hot air dryer. Dried for 4 hours. Next, the dried product was coarsely pulverized, and the coarsely pulverized product was fired in a tunnel furnace at 1300 ° C. for 2 hours in the air to obtain a basic component having an average particle size of about 1 μm in the composition formula shown in Table 1. .

Figure 2004107202
Figure 2004107202

 一方、ガラス成分を得るために、二酸化珪素(SiO)、炭酸リチウム(LiCO)、酸化硼素(B)、炭酸カルシウム(CaCO)、炭酸バリウム(BaCO)を適宜秤量し、これに水を300cc加え、ポリエチレンポットにてアルミナボールを用いて10時間撹拌した後、大気中1300℃で2時間仮焼成し、これを300ccの水と共にアルミナポットに入れ、アルミナボールで15時間粉砕し、しかる後、150℃で4時間乾燥させて、表1に示す平均粒径1μm程度のガラス成分の粉末を得た。 On the other hand, in order to obtain a glass component, silicon dioxide (SiO 2 ), lithium carbonate (Li 2 CO 3 ), boron oxide (B 2 O 3 ), calcium carbonate (CaCO 3 ), and barium carbonate (BaCO 3 ) are appropriately weighed. Then, 300 cc of water was added thereto, and the mixture was stirred for 10 hours using an alumina ball in a polyethylene pot, and then temporarily calcined at 1300 ° C. for 2 hours in the atmosphere. The mixture was pulverized for an hour, and then dried at 150 ° C. for 4 hours to obtain a glass component powder having an average particle size of about 1 μm shown in Table 1.

 次に、上記基本成分の粉末100重量部に対して、ガラス成分の粉末1.2重量部を加え、さらに、アクリル酸エステルポリマー、グリセリン、縮合リン酸塩の水溶液から成る有機バインダを基本成分と添加成分との合計重量に対して15重量%となるように添加し、さらに50重量%の水を加え、これらをボールミルに入れて約20時間粉砕及び混合して磁器原料のスラリーを作製した。 Next, 1.2 parts by weight of the glass component powder was added to 100 parts by weight of the basic component powder, and an organic binder composed of an aqueous solution of an acrylate polymer, glycerin, and condensed phosphate was used as the basic component. It was added so as to be 15% by weight with respect to the total weight of the additional components, and 50% by weight of water was further added. These were put into a ball mill and ground and mixed for about 20 hours to prepare a slurry of a porcelain raw material.

 次に、上記スラリーを真空脱泡機に入れて脱泡し、このスラリーをリバースロールコーターに入れ、これを使用してポリエステルフイルム上にスラリーに基づく薄膜を形成し、この薄膜をフイルム上で100℃に加熱して乾燥させ、厚さ約25μmのセラミックグリーンシートを得た。このシートは、長尺なものであるが、これを10cm角の正方形に打ち抜いて使用した。 Next, the slurry is put into a vacuum defoaming machine to remove bubbles. The slurry is put into a reverse roll coater, and a thin film based on the slurry is formed on a polyester film using the slurry. C. and dried to obtain a ceramic green sheet having a thickness of about 25 μm. This sheet was long, and was used by punching it into a 10 cm square.

 一方、内部電極層用の導電ペーストは、粒径平均1.5μmのNi粉末10gと、エチルセルローズ0.9gをブチルカルビトール9.1gに溶解させたものとを撹拌機に入れ、10時間撹拌することにより得た。この導電ペーストを長さ14mm、幅7mmのパターンを50個有するスクリーンを介して上記セラミックグリーンシートの片面に印刷した後、これを乾燥させた。 On the other hand, the conductive paste for the internal electrode layer is prepared by dissolving 10 g of Ni powder having an average particle size of 1.5 μm and 0.9 g of ethyl cellulose dissolved in 9.1 g of butyl carbitol in a stirrer and stirring for 10 hours. It was obtained by doing. This conductive paste was printed on one side of the ceramic green sheet through a screen having 50 patterns having a length of 14 mm and a width of 7 mm, and then dried.

 次に、上記印刷面を上にしてセラミックグリーンシートを2枚積層した。この際、隣接する上下のシートにおいて、その印刷面がパターンの長手方向に約半分程ずれるように配置した。さらに、この積層物の上下両面にそれぞれ4枚ずつ厚さ60μmのセラミックグリーンシートを積層した。次いで、この積層物を約50℃の温度で厚さ方向に約400kNの圧力を加えて圧着させた。しかる後、この積層物を格子状に裁断し、約100個の積層体を得た。 Next, two ceramic green sheets were laminated with the printing surface facing up. At this time, the printing surfaces of the adjacent upper and lower sheets were arranged such that the printing surfaces were shifted by about half in the longitudinal direction of the pattern. Further, four ceramic green sheets each having a thickness of 60 μm were laminated on each of the upper and lower surfaces of the laminate. Next, the laminate was pressed at a temperature of about 50 ° C. by applying a pressure of about 400 kN in the thickness direction. Thereafter, the laminate was cut into a lattice to obtain about 100 laminates.

 次に、この積層体を雰囲気焼成が可能な炉に入れ、大気雰囲気中で100℃/hの速度で300℃まで昇温して2時間保持し、有機バインダを燃焼させた。しかる後、炉の雰囲気を大気からH2体積%+N98体積%の雰囲気に変えた。そして、炉を上述の如き還元性雰囲気とした状態を保って、積層体の加熱温度を600℃から焼結温度まで100℃/hの速度で昇温して1100〜1300℃(最高温度)×3時間保持した後、100℃/hの速度で600℃まで降温し、雰囲気を大気雰囲気(酸化性雰囲気)におきかえて、600℃を30分間保持して酸化処理を行い、その後、室温まで冷却して焼結体を作製した。 Next, this laminate was placed in a furnace capable of firing in an atmosphere, heated to 300 ° C. at a rate of 100 ° C./h in an air atmosphere, and held for 2 hours to burn the organic binder. Thereafter, the atmosphere of the furnace was changed from the atmosphere to an atmosphere of 2 % by volume of H 2 + 98% by volume of N 2 . Then, while maintaining the furnace in the reducing atmosphere as described above, the heating temperature of the laminate was increased from 600 ° C. to the sintering temperature at a rate of 100 ° C./h, and 1100 to 1300 ° C. (maximum temperature) × After holding for 3 hours, the temperature was lowered to 600 ° C. at a rate of 100 ° C./h, the atmosphere was changed to an air atmosphere (oxidizing atmosphere), the oxidation treatment was performed by holding at 600 ° C. for 30 minutes, and then cooled to room temperature. Thus, a sintered body was produced.

 次に、内部電極層が露出する焼結体の側面にCuとガラスフリットとビヒクルとから成る導電性ペーストを塗布して乾燥し、これを大気中で800〜900℃の温度で15分間焼付け、Cu下地導体膜を形成し、この上にNiを無電解メッキで被着させ、さらにこの上に電気メッキ法でSn半田層を設けて、一対の外部電極を形成した。 Next, a conductive paste composed of Cu, glass frit and vehicle is applied to the side surface of the sintered body where the internal electrode layer is exposed and dried, and baked at a temperature of 800 to 900 ° C. for 15 minutes in the air. A Cu base conductor film was formed, Ni was applied thereon by electroless plating, and a Sn solder layer was further provided thereon by electroplating to form a pair of external electrodes.

 これにより、図1及び図2に示す誘電体層2、内部電極層3、4と、外部電極5、6から成る積層セラミックコンデンサ10を得た。なお、この積層セラミックコンデンサ10の寸法は2.0mm×1.25mmであり、積層仕様は15μm×40層である。 Thus, a multilayer ceramic capacitor 10 including the dielectric layer 2, the internal electrode layers 3, 4 and the external electrodes 5, 6 shown in FIGS. 1 and 2 was obtained. The size of the multilayer ceramic capacitor 10 is 2.0 mm × 1.25 mm, and the multilayer specification is 15 μm × 40 layers.

 次に、完成した積層セラミックコンデンサの静電容量Cap、比誘電率ε、温度係数TC、容量バラツキ(CV値)、Q値、絶縁抵抗ρを測定した。 Next, the capacitance Cap, the relative dielectric constant ε s , the temperature coefficient TC, the capacitance variation (CV value), the Q value, and the insulation resistance ρ of the completed multilayer ceramic capacitor were measured.

 なお、上記電気的特性は次の要領で測定した。 上 記 The above electrical characteristics were measured as follows.

(1) 比誘電率εは、温度25℃、周波数1MHz、交流電圧〔実効値〕1.
0Vの条件で静電容量を測定し、この測定値と一対の内部電極層の対向面積1.5mmと誘電体層の厚さ0.01mmから計算で求めた。静電容量Capも同様の方法で求めた。
(1) The relative dielectric constant ε s is as follows: temperature 25 ° C., frequency 1 MHz, AC voltage [effective value]
The capacitance was measured under the condition of 0 V, and the capacitance was calculated from this measured value, the facing area of the pair of internal electrode layers of 1.5 mm 2 and the thickness of the dielectric layer of 0.01 mm. The capacitance Cap was determined in the same manner.

(2)静電容量バラツキ(CV値)=(標準偏差×100)/(Cap平均値)で算出した。 (2) Capacitance variation (CV value) = (standard deviation × 100) / (Cap average value).

(3)温度係数(TC)=((C85−C25)×10)/C25×(C85−C25)で算出した。C85は85℃における誘電率であり、C25は25℃における誘電率である。 (3) calculated in the temperature coefficient (TC) = ((C 85 -C 25) × 10 6) / C 25 × (C 85 -C 25). C 85 is the dielectric constant at 85 ° C., C 25 is the dielectric constant at 25 ° C..

(4)抵抗率ρ(Ω・cm)は、温度20℃においてDC50Vを1分間印加した後に一対の外部電極間の抵抗値を測定し、この測定値と寸法とに基づいて計算で求めた。 (4) The resistivity ρ (Ω · cm) was obtained by measuring the resistance value between a pair of external electrodes after applying DC 50 V for 1 minute at a temperature of 20 ° C., and calculating based on the measured value and the dimensions.

(5)Q値は温度25℃において、周波数1MHz、電圧〔実効値]0.5Vの交流でQメータにより測定した。 (5) The Q value was measured with a Q meter at a temperature of 25 ° C. and an alternating current of 1 MHz and a voltage [effective value] of 0.5 V.

 これらの結果を表2に示す。 These results are shown in Table 2.

Figure 2004107202
Figure 2004107202

 表2に示すように、本発明に従う試料(試料No.2〜5、8〜11、14〜17、20〜21、24、26〜30、34〜35、40、42〜43)では、静電容量Capが950〜1050pF、比誘電率εが28〜33、CV値が2.0%以下、誘電率の温度係数TCが±30ppm以内、Q値が1000以上、絶縁抵抗ρが1×1011Ω・cm以上となり、所望の特性の温度補償用コンデンサを得ることができた。 As shown in Table 2, in the samples according to the present invention (sample Nos. 2 to 5, 8 to 11, 14 to 17, 20 to 21, 24, 26 to 30, 34 to 35, 40, 42 to 43), capacitance Cap is 950~1050PF, the dielectric constant epsilon s is 28 to 33, CV value of 2.0% or less, within the temperature coefficient TC of ± 30 ppm in the dielectric constant, Q value of 1000 or higher, the insulation resistance ρ of 1 × It was 10 11 Ω · cm or more, and a capacitor for temperature compensation having desired characteristics could be obtained.

 これに対し、xが0.90の場合(試料No.1)は、Q値が880と低下した。一方、xが1.10の場合(試料No.6)は、Q値が940、絶縁抵抗ρが4.19×10Ω・cmとなった。 On the other hand, when x was 0.90 (sample No. 1), the Q value was reduced to 880. On the other hand, when x was 1.10 (Sample No. 6), the Q value was 940, and the insulation resistance ρ was 4.19 × 10 8 Ω · cm.

 また、yが0の場合(試料No.7)は、静電容量Capが865、比誘電率εが22、CV値が2.3%となった。一方、yが0.15の場合(試料No.12)は、静電容量Capが1315、誘電率の温度特性TCの絶対値が57ppm、CV値が2.2%となった。 Further, y is a case of 0 (Sample No.7), an electrostatic capacitance Cap is 865, the dielectric constant epsilon s is 22, CV value becomes 2.3%. On the other hand, when y was 0.15 (Sample No. 12), the capacitance Cap was 1315, the absolute value of the temperature characteristic TC of the dielectric constant was 57 ppm, and the CV value was 2.2%.

 さらに、zが0.5の場合(試料No.13)は、絶縁抵抗ρが2.5×10Ω・cm、Q値が890と低下した。一方、5.5重量部の場合(試料No.18)においても、絶縁抵抗ρが4.23×10Ω・cm、Q値が780と低下した。 Further, when z was 0.5 (Sample No. 13), the insulation resistance ρ was reduced to 2.5 × 10 7 Ω · cm, and the Q value was reduced to 890. On the other hand, also in the case of 5.5 parts by weight (Sample No. 18), the insulation resistance ρ decreased to 4.23 × 10 7 Ω · cm, and the Q value decreased to 780.

 すなわち、基本成分を、一般式(CaO)(Zr1−y・Ti)Oとしたとき、xが0.95未満の場合、Q値が1000未満となり、xが1.05より大きい場合、Q値が1000未満、絶縁抵抗ρが1×1011Ω・cm未満となることがわかる。また、yが0.01未満の場合、静電容量Capが950pF未満、比誘電率εが25未満、CV値が2.0%より大きくなり、yが0.10より大きい場合、静電容量Capが1050pFより大きく、誘電率の温度係数TCが−30ppmより大きく、CV値が2.0%より大きくなることがわかる。 That is, when the basic component is represented by the general formula (CaO) x (Zr 1−y · Ti y ) O 2 , if x is less than 0.95, the Q value is less than 1000, and x is greater than 1.05. In this case, it can be seen that the Q value is less than 1000 and the insulation resistance ρ is less than 1 × 10 11 Ω · cm. Further, if y is less than 0.01, the capacitance Cap is less than 950PF, the dielectric constant epsilon s is less than 25, greater than the CV value of 2.0% if y is larger than 0.10, electrostatic It can be seen that the capacitance Cap is larger than 1050 pF, the temperature coefficient TC of the dielectric constant is larger than -30 ppm, and the CV value is larger than 2.0%.

 さらに、MnCOの添加量をz重量部とした場合、zが1重量部未満の場合も、5重量部より大きい場合も、絶縁抵抗ρが1×1011Ω・cm未満となることがわかる。 Furthermore, when the addition amount of MnCO 3 is z parts by weight, the insulation resistance ρ is less than 1 × 10 11 Ω · cm when z is less than 1 part by weight or when z is more than 5 parts by weight. .

 また、aが0.2の場合(試料No.19)は、Q値が880、絶縁抵抗ρが3.65×10Ω・cmとなった。一方、aが0.5の場合(試料No.22)は、Q値が820、絶縁抵抗ρが3.35×10Ω・cmと低下した。 When a was 0.2 (Sample No. 19), the Q value was 880, and the insulation resistance ρ was 3.65 × 10 7 Ω · cm. On the other hand, when a was 0.5 (Sample No. 22), the Q value decreased to 820, and the insulation resistance ρ decreased to 3.35 × 10 9 Ω · cm.

 さらに、bが0.045の場合(試料No.23)は、絶縁抵抗ρが1.82×10Ω・cmとなった。一方、bが0.36の場合(試料No.31)は、CV値が2.5%となった。 Furthermore, when b was 0.045 (sample No. 23), the insulation resistance ρ was 1.82 × 10 7 Ω · cm. On the other hand, when b was 0.36 (sample No. 31), the CV value was 2.5%.

 また、cが0.045の場合(試料No.38)は、絶縁抵抗ρが2.55×10Ω・cmとなった。一方、cが0.16の場合(試料No.39)は、CV値が2.3%となった。 When c was 0.045 (Sample No. 38), the insulation resistance ρ was 2.55 × 10 7 Ω · cm. On the other hand, when c was 0.16 (sample No. 39), the CV value was 2.3%.

 ここで、b/cが0.85の場合(試料No.25)は、絶縁抵抗ρが2.58×1010Ω・cm、Q値が560となった。 Here, when b / c was 0.85 (Sample No. 25), the insulation resistance ρ was 2.58 × 10 10 Ω · cm, and the Q value was 560.

 また、dが0.095の場合(試料No.32)は、絶縁抵抗ρが3.2×10Ω・cmとなった。一方、0.4の場合(試料No.33)は、絶縁抵抗ρが2.55×10Ω・cmとなった。 When d was 0.095 (Sample No. 32), the insulation resistance ρ was 3.2 × 10 7 Ω · cm. On the other hand, in the case of 0.4 (sample No. 33), the insulation resistance ρ was 2.55 × 10 7 Ω · cm.

 さらに、eが0.095の場合(試料No.36)は、絶縁抵抗ρが2.52×10Ω・cmとなった。一方、0.4の場合(試料No.37)は、絶縁抵抗ρが3.2×10Ω・cmとなった。 Furthermore, when e was 0.095 (sample No. 36), the insulation resistance ρ was 2.52 × 10 7 Ω · cm. On the other hand, in the case of 0.4 (sample No. 37), the insulation resistance ρ was 3.2 × 10 7 Ω · cm.

 ここで、d/eが0.286の場合(試料No.41)は、絶縁抵抗ρが1.82×10Ω・cmとなり、d/eが3.043の場合(試料No.44)は、絶縁抵抗ρが3.2×10Ω・cmとなった。 Here, when d / e is 0.286 (Sample No. 41), the insulation resistance ρ is 1.82 × 10 7 Ω · cm, and when d / e is 3.043 (Sample No. 44). Has an insulation resistance ρ of 3.2 × 10 7 Ω · cm.

 すなわち、ガラス成分の組成を、一般式aSiO−bLiO−cB―dCaO−eBaOで表した場合、SiOの比率aが0.25未満の場合、十分に焼結しないため、Q値が1000未満、絶縁抵抗ρが1×1011Ω・cm未満となり、aが0.45より大きい場合、ガラス成分の凝集が生じるため、Q値が1000未満、絶縁抵抗ρが1×1011Ω・cm未満となることがわかる。 In other words, when the composition of the glass component is represented by the general formula aSiO 2 -bLi 2 O-cB 2 O 3 -dCaO-eBaO, if the ratio a of SiO 2 is less than 0.25, the composition is not sufficiently sintered. When the Q value is less than 1000 and the insulation resistance ρ is less than 1 × 10 11 Ω · cm, and when a is greater than 0.45, the glass component is aggregated, so that the Q value is less than 1000 and the insulation resistance ρ is 1 × 10 11 It turns out that it becomes less than 11 ohm * cm.

 また、LiOの比率bが0.05未満の場合、十分に焼結しないため、絶縁抵抗ρが1×1011Ω・cm未満となり、bが0.35より大きい場合、焼成時の炉内の位置によって、容量バラツキが発生しやすくなるため、CV値が2.0%より大きくなることがわかる。 When the ratio b of Li 2 O is less than 0.05, the sintering is not sufficiently performed, so that the insulation resistance ρ is less than 1 × 10 11 Ω · cm. It can be seen that the capacity variation tends to occur depending on the position inside, so that the CV value becomes larger than 2.0%.

 さらに、Bの比率cが0.05未満の場合、十分に焼結しないため、絶縁抵抗ρが1×1011Ω・cm未満となり、cが0.15より大きい場合、焼成時の炉内の位置によって、容量バラツキが発生しやすくなるため、CV値が2.0%より大きくなることがわかる。 Further, when the ratio c of B 2 O 3 is less than 0.05, the sintering is not sufficiently performed, so that the insulation resistance ρ is less than 1 × 10 11 Ω · cm. It can be seen that the capacity variation tends to occur depending on the position in the furnace, so that the CV value is larger than 2.0%.

 ここで、LiOとBの原料調合時のモル比b/c比が0.9より小さくなった場合、ガラス成分の凝集が生じるため、Q値が1000未満、絶縁抵抗ρが1×1011Ω・cm未満となることがわかる。 Here, if the molar ratio b / c ratio of the raw material mixture of Li 2 O and B 2 O 3 is less than 0.9, the glass component is agglomerated, so that the Q value is less than 1000 and the insulation resistance ρ is It turns out that it becomes less than 1 × 10 11 Ω · cm.

 また、CaOの比率dが0.10未満の場合も、0.35より大きい場合も、1100〜1300℃で十分に焼結しないため、絶縁抵抗ρが1×1011Ω・cm未満となることがわかる。 Also, when the CaO ratio d is less than 0.10 or greater than 0.35, the insulation resistance ρ is less than 1 × 10 11 Ω · cm because the sintering is not sufficiently performed at 1100 to 1300 ° C. I understand.

 さらに、BaOの比率eが0.10未満の場合も、0.35より大きい場合も、1100〜1300℃で十分に焼結しないため、絶縁抵抗ρが1×1011Ω・cm未満となることがわかる。 Furthermore, when the BaO ratio e is less than 0.10 or greater than 0.35, the insulation resistance ρ is less than 1 × 10 11 Ω · cm because the material is not sufficiently sintered at 1100 to 1300 ° C. I understand.

 ここで、CaOとBaOの原料調合時のモル比d/e比が3.00より大きくなった場合も、0.33より小さくなった場合も、1100〜1300℃で十分に焼結しないため、絶縁抵抗ρが1×1011Ω・cm未満となることがわかる。 Here, when the molar ratio d / e ratio at the time of mixing the raw materials of CaO and BaO is larger than 3.00 or smaller than 0.33, it is not sufficiently sintered at 1100 to 1300 ° C. It can be seen that the insulation resistance ρ is less than 1 × 10 11 Ω · cm.

 また、EPMAにより、焼結体断面における凝集を調べたところ、本発明(試料No.10)の誘電体磁器組成物は、ガラス成分の凝集は見られなかったが、比較例(試料No.22)の誘電体磁器組成物は、組成式LiSiOで表されるガラス成分の凝集が見られた。また、比較例(試料No.25)の誘電体磁器組成物は、Bを主成分とするガラス成分の凝集が見られた。 Further, when the aggregation in the cross section of the sintered body was examined by EPMA, the dielectric ceramic composition of the present invention (Sample No. 10) did not show aggregation of the glass component, but the comparative example (Sample No. 22). In the dielectric ceramic composition of ( 2 ), aggregation of the glass component represented by the composition formula Li 2 SiO 3 was observed. In the dielectric ceramic composition of the comparative example (sample No. 25), aggregation of a glass component containing B as a main component was observed.

 さらに、ガラス成分の転移温度(Tg)について調べたところ、本発明(試料No.10)のガラス成分のTgは483℃だったが、比較例(試料No.22)のガラス成分のTgは534℃であり、SiOの比率を下げるとともに、BaO及びCaOの比率を上げることにより、ガラス成分の転移温度(Tg)が低下することが確認できた。 Further, when the transition temperature (Tg) of the glass component was examined, the Tg of the glass component of the present invention (Sample No. 10) was 483 ° C., but the Tg of the glass component of Comparative Example (Sample No. 22) was 534. ° C, it was confirmed that the transition temperature (Tg) of the glass component was lowered by lowering the ratio of SiO 2 and raising the ratio of BaO and CaO.

 尚、ガラス成分の添加量については、主成分に対して重量部換算で0.5〜5%添加している。このガラス成分は、1100℃〜1300℃の比較的低温で、主成分系の焼結を完了するために添加するものであり、添加量が重量部換算で0.5%を下回ると、ガラス成分の組成にかかわらず、誘電体磁器の焼結が不十分となり、結果的には絶縁抵抗値の低下をもたらしてしまい、Q値を著しく劣化してしまう。一方、重量部換算で5%を超えて添加すると、ガラス成分のb/cの値、d/eの値にかかわらず、粒界相に過剰に存在するガラス成分が原因となり、主成分系であるジルコン酸カルシウムの誘電特性が、その粒界相に存在する過剰なガラス成分により阻害されることにより、誘電率の低下を招いてしまい、実用レブベルに達しない試料番号7、39(本発明の範囲外)にも達しないことを確認した。尚、ガラス成分の最も望ましい添加量の範囲は、重量部換算で、1.5%〜2%の範囲である。 The glass component is added in an amount of 0.5 to 5% in terms of parts by weight based on the main component. This glass component is added at a relatively low temperature of 1100 ° C. to 1300 ° C. to complete the sintering of the main component system. If the amount added is less than 0.5% in terms of parts by weight, the glass component is added. Irrespective of the composition, the sintering of the dielectric porcelain becomes insufficient, and as a result, the insulation resistance value is lowered, and the Q value is remarkably deteriorated. On the other hand, if it is added in excess of 5% in terms of parts by weight, regardless of the value of b / c and d / e of the glass component, the glass component excessively present in the grain boundary phase is the cause. The dielectric properties of a certain calcium zirconate are hindered by the excess glass component present in the grain boundary phase, resulting in a decrease in the dielectric constant, and sample numbers 7, 39 which do not reach the practical revel level (the present invention). (Out of range). The most desirable range of the glass component is 1.5% to 2% in terms of parts by weight.

 以上、本発明の実施例について述べたが、本発明はこれに限定されるものではなく、例えば次に挙げるような変形例が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the embodiments, and for example, the following modifications are possible.

(1)基本成分の中に、本発明の目的を阻害しない範囲で微量(好ましくは0.05〜0.1重量%)の鉱化剤を添加し、焼結性を向上させてもよい。 (1) A trace amount (preferably 0.05 to 0.1% by weight) of a mineralizer may be added to the basic components within a range that does not impair the purpose of the present invention to improve sinterability.

(2)基本成分を得るための出発原料を、実施例で示したもの以外の例えば、CaO等の酸化物又は水酸化物又はその他の化合物してもよい。また、添加成分の出発原料を酸化物、水酸化物等の他の化合物としてもよい。 (2) The starting material for obtaining the basic component may be, for example, an oxide or hydroxide such as CaO or another compound other than those shown in the examples. The starting material of the additional component may be another compound such as an oxide or a hydroxide.

(3)酸化温度を600℃以外の焼結温度よりも低い温度(好ましくは500℃〜1000℃の範囲)としてもよい。即ち、Ni等の電極と磁器の酸化とを考慮して種々変更することが可能である。 (3) The oxidation temperature may be lower than the sintering temperature other than 600 ° C (preferably in the range of 500 ° C to 1000 ° C). That is, various changes can be made in consideration of the electrode of Ni or the like and the oxidation of the porcelain.

(4)非酸化性雰囲気中の焼成温度を、電極材料を考慮して種々変えることができる。Niを内部電極層とする場合には、1050℃〜1200℃の範囲で溶融凝集がほとんど生じない。 (4) The firing temperature in the non-oxidizing atmosphere can be variously changed in consideration of the electrode material. When Ni is used as the internal electrode layer, almost no melt aggregation occurs in the range of 1050 ° C to 1200 ° C.

(5)焼結を中性雰囲気で行ってもよい。 (5) Sintering may be performed in a neutral atmosphere.

(6)積層セラミックコンデンサ以外の一般的な磁器コンデンサにも適用可能である。 (6) The present invention is applicable to general ceramic capacitors other than the multilayer ceramic capacitor.

(7)他の融点が低いガラス成分にも適用可能である。 (7) It is applicable to other glass components having a low melting point.

一般的な積層セラミックコンデンサの外観斜視図である。1 is an external perspective view of a general multilayer ceramic capacitor. 図1の積層セラミックコンデンサの断面図である。It is sectional drawing of the laminated ceramic capacitor of FIG. 従来の誘電体磁器組成物の問題点を示す図である。It is a figure which shows the problem of the conventional dielectric ceramic composition.

符号の説明Explanation of reference numerals

 10    積層セラミックコンデンサ
 1     積層体
 2     誘電体層
 3、4   内部電極層
 5、6   外部電極
 5a、6a 下地導体膜
 5b、6b メッキ層
 20    ガラス成分の凝集部分
DESCRIPTION OF SYMBOLS 10 Laminated ceramic capacitor 1 Laminated body 2 Dielectric layer 3, 4 Internal electrode layer 5, 6 External electrode 5a, 6a Base conductive film 5b, 6b Plating layer 20 Aggregation part of glass component

Claims (1)

一般式(CaO)(Zr1−y・Ti)O(但し、x及びyは、モル換算で表され、0.95≦x≦1.05、0.01≦y≦0.10の範囲の数値)で表される基本成分100重量部に対して、
 MnCOを1〜5重量部と、
 一般式aSiO−bLiO−cB―dCaO−eBaO(但し、a〜eはモル換算)で表され、a乃至eの値がそれぞれ0.25≦a≦0.45、0.05≦b≦0.35、0.05≦c≦0.15、0.10≦d≦0.35、0.10≦e≦0.35の範囲で、且つbとcとの関係が0.9≦b/c、dとeとの関係が0.33≦d/e≦3.00(ただしa+b+c+d+e=1)のガラス成分を0.5〜5重量部とを含有することを特徴とする誘電体磁器組成物。
General formula (CaO) x (Zr 1-y · Ti y ) O 2 (where x and y are expressed in terms of mole, and 0.95 ≦ x ≦ 1.05, 0.01 ≦ y ≦ 0.10) With respect to 100 parts by weight of the basic component represented by
1 to 5 parts by weight of MnCO 3 ,
It is represented by the general formula aSiO 2 -bLi 2 O-cB 2 O 3 -dCaO-eBaO (where a to e are in terms of moles), and the values of a to e are 0.25 ≦ a ≦ 0.45 and 0. 05 ≦ b ≦ 0.35, 0.05 ≦ c ≦ 0.15, 0.10 ≦ d ≦ 0.35, 0.10 ≦ e ≦ 0.35, and the relationship between b and c is 0. 0.9 ≦ b / c, and 0.5 to 5 parts by weight of a glass component in which the relationship between d and e is 0.33 ≦ d / e ≦ 3.00 (a + b + c + d + e = 1). Dielectric porcelain composition.
JP2003302421A 2002-08-30 2003-08-27 Dielectric porcelain composition Expired - Lifetime JP4400860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003302421A JP4400860B2 (en) 2002-08-30 2003-08-27 Dielectric porcelain composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002253865 2002-08-30
JP2003302421A JP4400860B2 (en) 2002-08-30 2003-08-27 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JP2004107202A true JP2004107202A (en) 2004-04-08
JP4400860B2 JP4400860B2 (en) 2010-01-20

Family

ID=32301349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003302421A Expired - Lifetime JP4400860B2 (en) 2002-08-30 2003-08-27 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP4400860B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099193A1 (en) * 2011-01-21 2012-07-26 株式会社村田製作所 Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
KR20190034090A (en) * 2017-09-22 2019-04-01 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor
JP2019062177A (en) * 2017-09-22 2019-04-18 太陽誘電株式会社 Multilayer ceramic capacitor
US10607780B2 (en) 2016-08-09 2020-03-31 Murata Manufacturing Co., Ltd. Ceramic electronic component and dielectric ceramic composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099193A1 (en) * 2011-01-21 2012-07-26 株式会社村田製作所 Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
US10607780B2 (en) 2016-08-09 2020-03-31 Murata Manufacturing Co., Ltd. Ceramic electronic component and dielectric ceramic composition
KR20190034090A (en) * 2017-09-22 2019-04-01 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor
JP2019062177A (en) * 2017-09-22 2019-04-18 太陽誘電株式会社 Multilayer ceramic capacitor
KR102649914B1 (en) * 2017-09-22 2024-03-22 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor

Also Published As

Publication number Publication date
JP4400860B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
KR100438517B1 (en) Reduction-Resistant Dielectric Ceramic Compact and Laminated Ceramic Capacitor
JP4521387B2 (en) Reduction-resistant dielectric ceramic composition
KR100313234B1 (en) Dielectric Ceramic Composition and Laminated Ceramic Capacitor
JP3746763B2 (en) Reduction-resistant low-temperature fired dielectric ceramic composition, multilayer ceramic capacitor using the same, and manufacturing method thereof
JP4821357B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP3039397B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP4635928B2 (en) Multilayer electronic component and manufacturing method thereof
JP5461774B2 (en) Electronic component and manufacturing method thereof
JP5077362B2 (en) Dielectric ceramic and multilayer ceramic capacitor
JP6753221B2 (en) Dielectric composition and laminated electronic components
JP2007063040A (en) Method for producing dielectric porcelain composition, and electronic component
US7239501B2 (en) Dielectric ceramic composition and laminated ceramic capacitor
JP4461679B2 (en) Dielectric porcelain composition and electronic component
JP2007022819A (en) Dielectric porcelain composition and electronic parts
JP3961454B2 (en) Low temperature fired dielectric ceramic composition and multilayer ceramic capacitor using the same
JP4275036B2 (en) Dielectric ceramic composition and electronic component
JP2010208905A (en) Method for manufacturing dielectric ceramic, dielectric ceramic, method for manufacturing laminated ceramic capacitor and the laminated ceramic capacitor
JP4576807B2 (en) Dielectric porcelain composition and electronic component
JP5167579B2 (en) Dielectric ceramic composition and electronic component
JP4325900B2 (en) Dielectric porcelain composition
JP4400860B2 (en) Dielectric porcelain composition
JP4320549B2 (en) Dielectric ceramic and multilayer ceramic capacitor
JP4752327B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP4784172B2 (en) Sintering aid, dielectric ceramic composition manufacturing method and electronic component manufacturing method
JP2007254169A (en) Electronic component, dielectric ceramic composition and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091023

R150 Certificate of patent or registration of utility model

Ref document number: 4400860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

EXPY Cancellation because of completion of term