JP2004105938A - Gas dissolution regulator - Google Patents

Gas dissolution regulator Download PDF

Info

Publication number
JP2004105938A
JP2004105938A JP2002310293A JP2002310293A JP2004105938A JP 2004105938 A JP2004105938 A JP 2004105938A JP 2002310293 A JP2002310293 A JP 2002310293A JP 2002310293 A JP2002310293 A JP 2002310293A JP 2004105938 A JP2004105938 A JP 2004105938A
Authority
JP
Japan
Prior art keywords
gas
liquid
cylindrical
pressure
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002310293A
Other languages
Japanese (ja)
Inventor
Tetsuhiko Fujisato
藤里 哲彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002310293A priority Critical patent/JP2004105938A/en
Publication of JP2004105938A publication Critical patent/JP2004105938A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly efficient gas dissolution regulator which can generate a high concentration solution by ejecting pressurized gas and liquid mixed liquid with a ejector nozzle to form a mass of a large amount of bubbles and instantly dissolving a pressurized gas in the bubbles and surface liquid of the bubbles, and which can efficiently and completely dissolve the mixed gas and can be used for supplying oxygen to animals and plants or for a dissolving reaction vessel in a chemical plant or the like. <P>SOLUTION: The regulator is equipped with a cylindrical part 3 to which an ejector nozzle 3b is attached from the tangential direction of a cylindrical side wall, an ejector self-priming pipe 3c connected with the ejector nozzle 3b from the uppermost part of the cylindrical part 3, a diameter-reduced dissolution stabilization part 3D having a reduced diameter and connected to the lower part of the cylindrical part 3, a cylindrical water passage part 4 having an enlarged diameter and connected to the lower part of the diameter-reduced dissolution stabilization part 3D, and a liquid discharging part 5 connected to the lower part of the cylindrical water passage part 4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、気液混合液中の気体を液体に高効率に溶解させ、水中の微生物や動植物への酸素供給等や、化学工場等における気体溶解反応槽などの気体溶解調整器に関する。
【0002】
【従来の技術】
気体を液体中に溶解させる気体溶解調整器としては、圧力タンク上部の気体中からノズルで噴射しその水滴に溶解させたり、又その水滴を表面水に衝突させて気泡を発生させ溶解させる方法や、圧力タンク内で気体と液体をミキシングさせ溶解させる方法が知られている。又、液体中に直接微細気泡を発生させて、気体と液体の接触面積を増やし、溶解させる方法も研究開発されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来の技術は以下のような課題を有してした。
(1)圧力タンク上部の気体中から、液体をノズルで噴射する方法は、水滴液になる為、液体に厚みが有り、気体が接触する表面液だけが、気体の圧力に比例して溶解するので、溶解効率が悪くる。又、適量の追加気体を圧力タンク内に注入させる事が難しく、溶存濃度を所定値に維持させる制御性に欠け、処理効率が悪いという課題があった。
(2)液体と気体を圧力タンク内で、ミキシングする方法は、気体を大量に使用し、未溶解気体を溶解器外部に排出しなければ連続運転できず、付属センサー付属制御装置が多数必要で、経済性に欠け処理コストが高く、効率が悪いという課題があった。
(3)液体中に微細気泡を発生させる方法は、液体中での液体と気体との接触面積の増大による溶解の為、高濃度の溶解液を作る事が、難しいという課題があった。
【0004】
本発明は上記の課題を解決するもので、酸素ガス等の活性ガスの富化における制御性に優れ、処理液中に溶解させるガスの濃度を所定値に維持させ、コストの掛かる気体を無駄なく溶解する事ができ、又、省エネルギー性に優れた高効率の気体溶解調整器を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の請求項1に記載の気体溶解調整器は、気体量を適量に調整し混入した、加圧気液混合液中の気体を、液体に溶解させる気体溶解調整器であって、円筒状側壁の中部又は下部の接線方向から取り付けられたエジェクターノズルと、そのエジェクターノズルに気体を自吸する為のパイプを取り付け、円筒状内の最上部まで繋いで開口している、エジェクター自吸パイプとで構成された円筒状部と、前記円筒状部の下部に連設された前記円筒状部径より1/3径位に縮径した溶解安定縮径部と、前記溶解安定縮径部の下部に連設された前記円筒状部径の1/2位の径に拡径され連接された円筒状通水部と、前記円筒状通水部の下部に連設された円筒状気体止め部と圧力流量調整弁とで構成された排液部と、を有して構成されている。
この構成によって以下の作用を有する。
(1)円筒状部を有するので、所望の気体量を混入された加圧気液混合液は、圧力流量調整弁等で調整され減圧になった気体溶解調整器内へ、エジェクターノズルから噴射する事で、気液混合液中の気体と液体は、3mm〜10mm位の水泡になる。(以下、水泡は塊になっている状態を言い、水泡と水泡が分離して液中にある状態を気泡と言う)その水泡内は圧力気体なので、水泡と水泡の薄い表面液体に、その圧力気体に比例して瞬間的に溶解させる事ができる。
(2)エジェクター自吸パイプを有するので、円筒状部内の水泡はエジェクターノズルによって発生した旋回渦流で破壊され、その破壊された水泡中の気体は、円筒状部の上部に集められ、溶解するまでエジェクター自吸パイプによって、還流自吸(供給気体量の約6〜12倍)させる事ができる。例えば、一定量の液体に毎分600ccの気体を供給し、加圧気液混合液を作り連続稼動で完全に溶解させている状態で、エジェクター自吸パイプから還流気体を10倍自吸したとして毎分6000cc、気体供給量毎分600cc、合わせて毎分6600ccの気体を、液体と共にエジェクターノズルから噴射し、水泡にしている事になる。結果的に、気体溶解分は気体供給量の毎分600ccを溶解した事になり、コストの掛かる気体を溶解する場合、無駄がないので特に適している。
(3)安定溶解縮径部を有するので、円筒状部内の旋回液体量を遠心力によって維持させる事ができることで、エジェクターノズルが常時液体中にあり、エジェクター効果を維持させる事ができる。よってエジェクター自吸パイプにより、気体を安定して多量に還流自吸させる事で、安定溶解させる事ができる。
(4)円筒状通水部と排液部の円筒状気体止め部を有するので、円筒状部内で破壊されなかった気泡や、浮力の小さい微細気泡も、旋回流よる向心力で中心部に集まり合体し、浮力増大により上昇し円筒状部内に戻す事ができる。又、溶解液体は円筒状通水部内の外周を下降旋回させて排液部から排出できるので、未溶解気体と溶解液体を分離させる事ができる。
(5)排液部の圧力流量調整弁(インバーター制御で排出流量調整できるポンプや、前記加圧ポンプ出力の1/2から1/4の低い出力のモノフレックスポンプなども調整弁として使用する事も含む)を有するので、気体溶解調整器内の圧力を所望に調整する事ができる。よって円筒状内で発生する水泡内の気体圧力を調整する事になり、水泡と水泡の表面液体に、その気体圧力に比例して溶解するので、所望の溶解濃度を求めることができる。
【0006】
請求項2に記載の気体溶解調整器は、請求項1に記載の発明において、加圧液体を中空器体の後部側周壁の接線方向から液体導入管で供給し、縮径された前部端に穿設された噴出口から排出する事で、前記中空器体内に強い旋回流を作り出すこと事ができる前記中空器体と、前記中空器体の後壁側からの負圧軸の真中心に設けられた気体自吸細孔部と、前記中空器体の噴出口と前記エジェクターノズルを接続する直角パイプとを有して構成されている。
この構成によって、請求項1の作用の他に、以下の作用を有する。
(1)中空器体を有するので、液体導入管から加圧液体(水道水など)を供給する事で、液体は中空器体内を旋回し、縮径された噴出口部分では高速旋回流になる。その噴出口とエジェクターノズルを直角パイプで接続して、気体溶解調整器内へ噴出させる事で、中空器体内の中心付近に偏心して形成される負圧軸の負圧力低下を最小限にできるので、中空器体の後壁側からの負圧軸の真中心に気体自吸細孔部を設ければ、最大の気体自吸力を得る事ができる。又、気体の自吸量は気体溶解調整器内の圧力で決まり、所望に合わせて圧力流量調整弁で調整する事ができる。よって加圧液(水道水など)さえ有れば気体を自吸し溶解することができる。
【0007】
請求項3に記載の気体溶解調整器は、請求項1又は2に記載の発明において、前記安定溶解縮径部に処理液を取り出す還流口と、前記還流口から取液管を介して前記処理液を吸引する還流用ポンプと、前記還流用ポンプから吐出し管を介して前記旋回流と同旋回になるように、前記円筒状部側壁の中部又は下部の接線方向から取り付けられた還流用エジェクターノズルと、還流用エジェクター自吸パイプとを有して構成されている。
この構成によって、請求項1又は2の作用の他に、以下の作用を有する。
(1)還流用ポンプを稼動させ、処理液を還流用エジェクターノズルから円筒状内へ噴射させる事で、水泡の発生量を倍増する事ができるので、気体混入量を増やす事ができる。又、粘性及び微細な異物が混入している、例えば汚水等の気体溶解性の悪い液体でも、溶解率及び溶解濃度を上げる事ができる。
(2)安定溶解縮径部内は、加圧気液混合液の圧力よりは減圧になっているが、圧力状態なので圧力液を吸引する事になり、還流用ポンプの出力が小さくても、還流用エジェクターノズルから円筒状内へ噴射する事ができることで、未溶解気体を自吸し水泡を作る事ができる。
(3)溶解液排出量が変わらない為、旋回流速が速くなり円筒状部内で発生した水泡を、速くなった旋回渦流で早く破壊し、その未溶解気体を早く利用する事で、溶解効率を上げる事ができる。又、円筒状通水部内や円筒状気体止め部上部の旋回流も速く、例えば粘性液体中の微細な気泡でも、強い向心力が得られるので、旋回流中心部に集められて合体し、浮力増大による上昇で円筒状内へ戻し、溶解させる事ができる。
【0008】
(実施の形態1)
本発明の実施の形態1の気体溶解調整器について以下の図面を参照しながら説明する。
図1(a)は、本発明の実施の形態1の気体溶解調整器の平面図であり、図1(b)はその正面図であり、図1(c)は圧力流量調整弁の代わりに、排出流量を調整できるポンプ(インバーター制御ポンプ等)を取り付けた正面図である。図1において、1は実施の形態1の気体溶解調整器、2は加圧気液混合液を供給するための加圧ポンプ部、3は加圧ポンプ部2を介して加圧された加圧気液混合液を、気液混合供給管3aから周壁中部又は下部の接線方向に配置されたエジェクターノズル3bへ供給し円筒状内へ噴射させ、そのエジェクターノズル3bから円筒状部の最上部に開口して取り付けられた、エジェクター自吸パイプ3cによって未溶解気体を自吸し、水泡及び旋回渦流を発生させる全体が円筒状に形成された内径D高さLの円筒状部、3Dは円筒状部3の下部に連設して縮径している溶解安定縮径部、4は溶解安定縮径部3Dの下部に連設して拡径している内径d高さ1の円筒状通水部、5は円筒状通水部4の下部に連設され、その側壁部に配置された排出口5aと、底部に突出して形成された円筒状気体止め部5bと、処理液の流量及び気体溶解調整器内圧力を制御する圧力流量調整弁6とを備えた排液部、7は圧力計、2Aは圧力流量調整弁6の代わりに取り付けられた排出流量調整ポンプ(インバータ制御ポンプでも良い)である。
例えば、所定気体量を含む気液混合液を加圧ポンプ部2でゲージ圧0.21MPaに加圧した気液混合液を、気体溶解調整器内の圧力を0.15MPaに圧力流量調整弁6で調整した中へ、エジェクターノズル3bから噴射する事によって、加圧気液混合液中の気体は減圧によって膨張し、液体とその気体は多量の水泡(水泡内の気体圧力は0.15MPaになる)になり、その水泡と水泡の表面液体に水泡内の気体圧力に比例して、瞬間的に溶解させることができる。又、エジェクターノズル3bの噴射によって円筒状部3や円筒状通水部4に旋回流が発生し、円筒状内で発生した水泡を、その旋回渦流によって破壊し溶解液と気体に分け、その気体を円筒状部3の最上部からエジェクター自吸パイプ3cによって、エジェクターノズル3bに多量(気体供給量の6〜12倍)に自吸させ水泡化させる事で、更に溶解度を高める事ができる。又、溶解安定縮径部3Dによって、円筒状部3内の旋回液体量を遠心力で維持させる事ができるので、常時エジェクターノズルを液中に置く事ができることによって、エジェクター効果を持続させ安定して溶解させる事ができる。又、円筒状通水部4内の旋回流は、溶解液を円筒状通水部4内の外周部を下降旋回させ排液部5へ流す事ができ、又、円筒状部3内で破壊されなかった気泡や浮力の小さい微細な気泡を、その旋回流による向心力と、排液部5の円筒状気体止め部5bによって、その上部の液体を停滞旋回させる事によって、気体は円筒状通水部4の中心部に集められ、合体する事によって浮力増大し上昇するので、再び円筒状部3内へ戻す事ができる。圧力流量調整弁6によって、円筒状部3内で発生する水泡内の気体圧力を調整できるので、所望の溶解濃度を求められる。又、圧力流量調整弁6を除き排出流量調整ポンプ2Aを取り付けて、インバーター制御で気体溶解調整器内の圧力を、所望の圧力に調整する事ができるので、閉塞部分がなくなり詰まる事がなくなるので、異物混入液(汚水等)でも稼動できる。
【0009】
なお、液体に供給する空気や酸素等の気体分は、加圧ポンプ部2の吸引側2aや吐出側2bから気体量を調整して供給できるが、2aはポンプに自吸させる場合、2bは気体を混入できないポンプ、又は加圧液(水道水など)を利用する時に、圧力気体を供給して加圧気液混合液を作る。
また、この円筒状部3の天井付近や排液部5などに内部の圧力を検知する圧力計7(圧力センサーでも良い)を設け、これによって加圧ポンプ部2及び圧力流量調整弁6(インバータ等で流量調整できるポンプも含む)を制御して気体溶解調整器内の圧力を所定に維持するようにしてもよい。
【0010】
ここで表1はモノフレックスポンプ400W(供給最大圧力はゲージ圧0.3MPa)で、気体溶解調整器内の圧力を変動させた実験条件のもとで得られた処理水の溶存酸素濃度(DO:単位ppm)、処理水の量(毎分リットル)のそれぞれの測定データを示しており、液体(水道水)に混合させる気体として酸素と空気を用いた実験例を示している。なお、この実験例において、エジェクターノズル3bは8mmから15mm径に広径したノズルを用い、その気体自給孔径は2mm、円筒状部内径(D)100mm、高さ(L)180mm、溶解安定縮径部の縮径部分は30mm、円筒状通水部内径(d)45mm、高さ(l)450mm、円筒状気体止め部内径(E)25mmである。尚、円筒状部3、円筒状通水部4及び排出口5aは、溶解を確認する目的で透明管を用い、目視で無駄なく完全溶解している気体量と圧力と溶存量を求める為に、観察した結果である。また、気液混合液の液体分として用いた水道水の水温は、12.3℃、溶存酸素濃度(DO)は9.8ppmである。
【0011】
【表1】

Figure 2004105938
【0012】
表1のデータ等から大気圧下で高効率溶解酸素水を得るには、気体溶解調整器内圧が0.1〜0.15MPa前後有り、加圧ポンプ供給圧力との差が最低0.06MPa以上有る事が望ましい。又、気体溶解調整器内圧が0.2MPaになると一旦は透明管排出口5a通過時は透明液体であり完全溶解を確認できるが、圧力流量調整弁6を過ぎて大気圧中に放置すると、超過飽和状態の為に、減圧発泡し白濁する。この事によって圧力流量調整弁6を過ぎ減圧発泡した直後の溶解液と、気体溶存量の低い液体と、を混合すると周辺液体が過飽和でなくなるので、減圧発泡した気泡内への気体放出が止る事で気泡拡大が止まる。よって微細気泡発生器としても利用できる。尚、その気泡径も圧力流量調整弁6から近づいて混ぜる程小さく、離れる程時間が経ち拡大するので、所望の微細気泡径に合わせて距離を調整し、混合させて利用できる。
【0013】
図2は加圧気液混合液の処理において、気体溶解調整器内の円筒状部に水泡が形成され、安定縮径縮径部によって旋回液体量が維持され、水泡が塊になって旋回している様子と、円筒状通水部の旋回流によって未溶解気泡が向心力で中心部に集まり、合体し上昇しているパターンを示す模式図であり、円筒状通水部内の外周部の溶解液体は下降旋回して排液部へ送られるが、円筒状気体止め部の上部液体は停滞旋回をしているので、例え微細な気泡でも中心部に集まり合体し、浮力増大により円筒状部内へ戻る。
図3は水泡と水泡の薄い表面液体に、水泡内の圧力気体が瞬間に溶解するパターンを示す模式図であり、水泡径は約3mm〜10mm程度で、連続的に外部から供給される気体と、円筒状部内部の最上部からエジェクター自吸パイプによって、多量に自吸する還流気体とで作られた水泡中の気体は、圧力気体なので水泡と水泡の薄い表面液体に、その圧力に比例して瞬間に溶解する。
【0014】
実施の形態1の気体溶解調整器は以上のように構成されているので、以下の作用が得られる。
(a)加圧気液混合液を、圧力流量調整弁で所望の減圧に調整された気体溶解調整器内へ、エジェクターノズルによって噴射する事で、加圧気液混合液中の気体と液体は水泡になり、又、同時に還流自吸気体によって多量の水泡を発生する事ができ、水泡と水泡の薄い表面液体に、水泡内の気体の圧力に比例して、瞬間に効率よく溶解することでができる。
(b)エジェクターノズルの噴射による旋回渦流で破壊された、水泡内の未溶解気体が、円筒状部の最上部に集められ、エジェクター自吸パイプによって気体を溶解するまで、エジェクターノズルで繰り返し自吸させる事で、連続的に多量の水泡の塊を作れる事で、未溶解気体の処理サイクルを早くでき、溶解能力を上げる事ができる。又、安定溶解縮径部によって、円筒状部内の液体量を維持できるので、エジェクターノズルは常時液体中にあり、よってエジェクター効果は維持されるので、安定して未溶解気体を自吸し、連続して安定溶解させる事ができる。
(c)円筒状通水部は、安定溶解縮径部から広径されているので、円筒状通水部内の旋回液の下降速度を遅くする事ができる事によって、旋回液に向心力の働く時間を長くできる。更に、円筒状気体止め部の上部液体は停滞旋回しているので、外周の旋回液から向心力によって停滞旋回域に集められた未溶解気泡を逃すことなく、円筒状通水部の中心に集める事ができ、連続的に集まる未溶解気泡と合体して大きくなり、浮力増大によって上昇し円筒状部内へ戻す事ができる。よって排液部から気体を出さないので、特にコストの掛かる気体(純酸素ガス等)を使用する場合、無駄がないので有効に利用できる。
(d)簡単に超過飽和溶解液を作ることもできるので、圧力流量調整弁から出る減圧発泡した過飽和溶解液と、気体溶存量の低い液体とを混合させる事で、気泡の膨張を止め微細気泡を作ることができる。又、圧力流量調整弁から距離を変えて混合させれば、例えば近くで混合すると気泡は小さく、離れて混合すれば大きくなるので、所望の径を求める事ができ微細気泡発生器としても使用できる。
(e)圧力流量調整弁を除き、排出流量調整ポンプ(インバータなどで制御しても良い)を取り付けても、気体溶解調整器内の圧力調整ができるので、汚水などの異物混入液等でも閉塞部分がないので詰まらなく、安定して連続稼動できる。(f)圧力流量調整弁を除き、出力の大きなポンプの吸引口を取り付け稼動させる事で、気体溶解調整器内を大気圧より強力に減圧にする事ができることによって、気液混合供給管にパイプを接続し、パイプの端から処理液を吸引させて、エジェクターノズルから減圧空間に噴射する事ができるので、水泡内が大気圧より減圧になった水泡を作る事ができる。この水泡内の気体は減圧によって膨張し、水泡と水泡の表面液体に溶存している余分な気体を、水泡内の減圧空間へ放出させる事ができる。又、その水泡を旋回渦流で破壊し、その膨張気体をエジェクター自吸パイプによって還流自吸させる事で、多量に水泡を作り出す事ができるので、更に余分な気体が放出され、所望に合わせて気体溶存量を調整する事ができる。
【0015】
(実施の形態2)
本発明の実施の形態2における気体溶解調整器について、以下図面を参照しながら説明する。
図4(a)は実施の形態2の気体溶解調整器の平面図であり、図4(b)加圧ポンプによって加圧された液体を、接線方向から液体導入管で中空器体に供給し、その中空器体端に穿設された噴出口とエジェクターノズルを、直角パイプで接続させ円筒状内へ噴射させると、中空器体内部に偏心して形成される負圧軸が直角パイプによって止まり、中空器体の後壁側からの負圧軸の真中心に設けられた細孔部から、強力に気体を自吸している様子を示す模式図である。
図4(a)において、11は実施の形態2の中空器体、12は中空器体内の後部側周壁の接線方向から加圧液体を供給する液体導入管、13は中空器体の前部端に穿設された噴出口、14は中空器体の中心付近に偏心して形成された負圧軸Xを、後壁側から見た真中心に、細孔を設けた気体自吸細孔部、15は中空器体の噴出口13と、エジェクターノズル3bを直角に接続する為の、直角パイプである。
気体溶解調整器は実施の形態1で説明したものと、ほぼ同様の構成を有しているので、図4(a,b)では気体溶解調整器内のエジェクターノズル3bに、直角パイプ15を介して中空器体11を取り付けた平面図で、本体正面図部分を省略して表示している。
【0016】
以上のように構成された気体溶解調整器について説明する。
加圧液体を中空器体11の後部側周壁の接線方向から、液体導入管12によって供給する事で、中空器体11内の液体は旋回流体になり、縮径された噴出口13では高速旋回流体になる。その噴出口13とエジェクターノズル3bを直角パイプ15で接続し、気体溶解調整器内へ噴出させる事で、中空器体11内の中心付近に偏心して負圧軸Xが形成される。この直角パイプ15は、気体溶解調整器内からの圧力の影響を妨げ、中空器体11内の負圧力の低下を最小限にすることができる。従って、中空器体11の後壁側からの負圧軸Xの真中心に、気体自吸細孔部14を設ける事で、強力に気体を自吸する事ができる。例え気体溶解調整器内が圧力状態でも、大気圧の気体を気体自吸細孔部14より自吸し、加圧気液混合液を作り出し溶解させる事ができる。又、気体自吸量は気体容器調整器内の圧力で決まり、圧力流量調整弁6で所望に合わせて調整できる。
例えば、屋外にこの気体溶解調整器を設置し、給湯器から加圧された適温の湯を、液体導入管12から供給するだけで、大気の気体を自吸し過飽和の湯を屋外で作る事ができ、その排出口5aから所望の長さのパイプで屋内の浴槽まで繋ぎ、端に圧力流量調整弁6を取り付ける事によって、気体溶解調整器内の圧力と、圧力流量調整弁6手前のパイプ内の圧力を同じにできるので、圧力流量調整弁6から湯を浴槽内へ放出させる事で、過飽和の湯の為、減圧発泡し簡単に微細気泡の白濁湯を作る事ができる。
【0017】
実施の形態2の気体溶解調整器は以上のように構成されているので実施の形態1で得られる作用に加え、以下の作用を有する。
(1)加圧液(水道水など)さえあれば、大気圧の気体を気体自給細孔部から自吸し加圧気液混合液を作る事ができ、又、その加圧気液混合液をエジェクターノズルより円筒状内へ噴射し溶解させる事ができる。
【0018】
(実施の形態3)
本発明の実施の形態3における気体溶解調整器について以下、図面を参照しながら説明する。
図5(a)は実施の形態3の気体溶解調整器の平面図であり、図5(b)はその正面図である。
図5において、22は実施の形態3の気体溶解調整器、22eは安定溶解縮径部3Dの内部から処理液を取り出す還流口、22dは還流口22eから処理液を吸引する為の取液管、22Aは取液管22dを介して処理液を吸引し加圧する還流用ポンプ、22aは還流用ポンプ22Aによって加圧された処理液を送る吐出し管、22bは吐出し管22aを介して送られた加圧処理液を円筒状内へ噴射する還流用エジェクターノズル、22cは還流用エジェクターノズル22bに取り付けられ円筒状部の最上部から、気体を自吸する還流用エジェクター自吸パイプである。尚、円筒状通水部4と排液部5は実施の形態1とほぼ同様である。
【0019】
以上のように構成された気体溶解調整器について説明する。
エジェクターノズル3bによって旋回流体になっている処理液を、安定溶解縮径部3Dに開口された還流口22eから、取液管22dを介して還流用ポンプ22Aで吸引し、吐出し管22aを介して円筒状側周壁の中部又は下部の接線方向から、同旋回流体になるように取り付けられた、還流用エジェクターノズル22bより噴射させる事で、円筒状部3内の最上部から未溶解気体を、還流用エジェクター自吸パイプ22cで自吸させる事ができるので、更に多量の水泡を作る事ができる。
【0020】
実施の形態3の気体溶解調整器は以上のように構成されているので、実施の形態1及び2で得られる作用に加え、以下の作用を有する。
(1)還流用ポンプを稼動させても溶解液排出量は変わらない為、旋回流速が速くなるので、円筒状内に発生した水泡を、速い旋回渦流で早く破壊し、溶解液と未溶解気体を早く分け自吸させる事で、水泡発生サイクルを早くする事ができ、気体混入量を増やす事ができる。よって気体溶解性の悪い液体でも溶解率を上げる事ができる。更に円筒状通水部内の旋回流速も速くなる事によって向心力も強くなり、例え粘性の液体中に有る微細な気泡でも旋回流中心部に集める事ができ、円筒状部内へ戻すことができる。
(2)安定溶解縮径部内の処理液は圧力液体なので、還流用ポンプで再び円筒状内に噴射できる圧力をプラスすれば稼動できるので、ポンプ出力が小さくてもエジェクターノズルと同じ噴射力を持たせる事ができ、円筒状部内への水泡の発生量を倍増させる事で、溶解濃度を上げる事ができる。
【0021】
【発明の効果】
本発明の請求項1に記載の気体溶解調整器によれば、以下の効果を有する。
(1)適量の気体を混入した加圧気液混合液を、圧力流量調整弁によって所望の減圧に調整された円筒状内へ、エジェクターノズルより噴射させる事で、気液混合液中の気体と液体とを、水泡にする事ができる。その水泡内は圧力気体なので、その圧力に比例して水泡と水泡の薄い表面液体に瞬間に溶解させ、高濃度溶解液を作る事ができるので、効率性及び制御性に優れている。
(2)加圧気液混合液は連続的に噴射供給されるので、発生した水泡を旋回渦流で破壊し、その未溶解気体を円筒状部最上部のエジェクター自吸パイプから、溶解するまで繰り返し自吸させ、多量に水泡を作る事で溶解率を上げる事ができる。又、旋回流の向心力を利用して円筒状通水部や円筒状気体止め部によって、未溶解気泡を排液部へ流れないようにできるので、気体を高効率に利用でき経済性に優れている。
(3)溶解安定縮径部を有するので、円筒状部内の旋回液体量を遠心力によって維持する事ができるので、エジェクターノズルは常時液体中に有り、よってエジェクター効果は維持されるので、未溶解気体を安定して自吸し水泡を作る事ができ、維持管理が容易であり、メンテナンス性に優れている。
(4)超過飽和溶解液を作る事ができるので、圧力流量調整弁から出る超過飽和溶解液と、気体溶存量の低い液体を混合させる距離を調整する事で、所望の径の微細気泡を作れるので、微細気泡発生器としても利用でき、汎用性に優れている。
(5)圧力流量調整弁を除き、排出流量の調整できるポンプを取り付ける事もできるので、異物混入液(汚水等)でも閉塞部分がないので詰まる事がなく使用性に優れている。
【0022】
本発明の請求項2に記載の気体溶解調整器によれば、以下の効果を有する。
(1)加圧液(水道水等)があれば、気体を自吸し溶解液を手軽に作れるので、使用性や汎用性に優れている。
【0023】
本発明の請求項3に記載の気体溶解調整器によれば、以下の効果を有する。
(1)気体溶解性の悪い液体でも容易に気体を溶解させ、溶解濃度を上げる事ができ、使用性に優れている。
【図面の簡単な説明】
【図1】(a)実施の形態1における気体溶解調整器の平面図
(b)その正面図
(c)圧力流量調整弁を除き排出流量調整ポンプ(インバーター等で制御)を取り付けた正面図
【図2】水泡が旋回して水泡渦形成を示す模式図
【図3】水泡と水泡の表面液に瞬間的に水泡内気体が溶解する模式図
【図4】(a)実施の形態2における気体溶解調整器の平面図
(b)その中空器体内に偏心して形成される負圧軸等を示す模式図
【図5】(a)実施の形態3における気体溶解調整器の平面図
(b)その正面図
【符号の説明】
1   実施の形態1の気体溶解調整器
2   加圧ポンプ部
2A  排出流量調整ポンプ
2a  自吸気体供給孔
2b  圧力気体供給孔
3   円筒状部
3a  気液混合供給管
3b  エジェクターノズル
3c  エジェクター自吸パイプ
3D  安定溶解縮径部
4   円筒状通水部
5   排液部
5a  排出口
5b  円筒状気体止め部
6   圧力流量調整弁
7   圧力計
11  実施の形態2の中空器体
12  液体導入管
13  噴出口
14  気体自吸細孔部
15  直角パイプ
22  実施の形態の3の気体溶解調整器
22a 吐出し管
22b 還流用エジェクターノズル
22c 還流用エジェクター自吸パイプ
22d 取液管
22e 還流口
22A 還流用ポンプ
X   負圧軸[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gas dissolution regulator such as a gas dissolution reaction tank for dissolving a gas in a gas-liquid mixture into a liquid with high efficiency, for supplying oxygen to microorganisms, animals and plants in water, and in a chemical factory or the like.
[0002]
[Prior art]
As a gas dissolution regulator for dissolving gas in liquid, there are methods of dissolving in water droplets by spraying from the gas in the upper part of the pressure tank with a nozzle, and making the water droplets collide with surface water to generate bubbles and dissolve. A method is known in which a gas and a liquid are mixed and dissolved in a pressure tank. Further, a method of directly generating fine bubbles in a liquid to increase a contact area between a gas and a liquid and dissolve the gas has been researched and developed.
[0003]
[Problems to be solved by the invention]
However, the above-mentioned conventional technology has the following problems.
(1) In the method of injecting a liquid from a gas in the upper part of a pressure tank by a nozzle, since the liquid becomes a liquid droplet, the liquid has a thickness, and only a surface liquid in contact with the gas dissolves in proportion to the gas pressure. Therefore, the dissolving efficiency is deteriorated. In addition, it is difficult to inject an appropriate amount of additional gas into the pressure tank, and there is a problem that controllability for maintaining the dissolved concentration at a predetermined value is lacking and processing efficiency is poor.
(2) The method of mixing liquid and gas in a pressure tank requires a large amount of gas and cannot be operated continuously unless the undissolved gas is discharged outside the dissolver. However, there is a problem that the processing cost is high and the efficiency is low due to lack of economy.
(3) The method of generating microbubbles in a liquid has a problem that it is difficult to produce a high-concentration dissolved liquid because the liquid is dissolved by increasing the contact area between the liquid and the gas in the liquid.
[0004]
The present invention solves the above-mentioned problems, and has excellent controllability in enrichment of an active gas such as oxygen gas, maintains a concentration of a gas to be dissolved in a processing solution at a predetermined value, and eliminates costly gas without waste. An object of the present invention is to provide a highly efficient gas dissolution regulator which can be dissolved and has excellent energy saving.
[0005]
[Means for Solving the Problems]
The gas dissolution regulator according to claim 1 of the present invention is a gas dissolution regulator for dissolving a gas in a pressurized gas-liquid mixture mixed and adjusted to an appropriate gas amount into a liquid, wherein the cylindrical side wall is provided. Ejector nozzle attached from the middle or lower part of the tangential direction, and a pipe for self-priming gas attached to the ejector nozzle, and connected to the top of the cylinder and opened, the ejector self-priming pipe A cylindrical portion configured; a melt-stabilized diameter-reduced portion that is reduced to about 1/3 diameter from the diameter of the cylindrical portion that is continuously provided below the cylindrical portion; A cylindrical water-passing portion which is connected to the cylindrical water-passing portion, the diameter of which is increased to about 1/2 of the diameter of the cylindrical portion; And a drainage section configured with a flow control valve.
This configuration has the following operation.
(1) Since it has a cylindrical portion, the pressurized gas-liquid mixture mixed with a desired amount of gas is injected from the ejector nozzle into the gas dissolution regulator, which is regulated by the pressure flow regulating valve or the like and reduced in pressure. Thus, the gas and the liquid in the gas-liquid mixture form water bubbles of about 3 mm to 10 mm. (Hereinafter, the state in which the water bubbles are agglomerated, and the state in which the water bubbles and the water bubbles are separated and in the liquid is called a bubble.) Since the inside of the water bubbles is a pressure gas, the water bubbles and the thin surface liquid of the water bubbles are subjected to the pressure. It can be dissolved instantaneously in proportion to gas.
(2) Since the ejector has a self-priming pipe, the water bubbles in the cylindrical portion are broken by the swirling vortex generated by the ejector nozzle, and the gas in the broken water bubbles is collected at the upper portion of the cylindrical portion until dissolved. By the ejector self-priming pipe, reflux self-priming (about 6 to 12 times the supply gas amount) can be performed. For example, in a state in which a gas of 600 cc per minute is supplied to a fixed amount of liquid, a pressurized gas-liquid mixture is made and completely dissolved in continuous operation, and the recirculated gas is self-primed from the ejector self-priming pipe by 10 times, and each time, A gas of 6000 cc per minute and a gas supply amount of 600 cc per minute, that is, a total of 6600 cc per minute of gas is ejected from the ejector nozzle together with the liquid to form water bubbles. As a result, the dissolved amount of the gas is 600 cc per minute of the gas supply amount, which is particularly suitable for dissolving the expensive gas because there is no waste.
(3) Since it has a stable dissolution reduced diameter portion, the amount of swirling liquid in the cylindrical portion can be maintained by centrifugal force, so that the ejector nozzle is always in the liquid and the ejector effect can be maintained. Therefore, the gas can be stably dissolved by the self-priming pipe of the ejector that allows the gas to self-prime in a large amount in a stable manner.
(4) Since it has a cylindrical water passage part and a cylindrical gas stopper part of a drainage part, bubbles not broken in the cylindrical part and fine bubbles with small buoyancy gather at the center by centripetal force due to the swirling flow and coalesce. However, it can be raised by the increase in buoyancy and returned into the cylindrical portion. In addition, the dissolved liquid can be discharged from the liquid discharge part by rotating the outer periphery of the cylindrical water passage part downward and downward, so that the undissolved gas and the dissolved liquid can be separated.
(5) A pressure flow control valve at the drainage section (a pump capable of adjusting the discharge flow rate by inverter control, a monoflex pump having a low output of 1/2 to 1/4 of the output of the pressurizing pump, etc. may also be used as the control valve. ) Can be adjusted as desired. Therefore, the gas pressure in the water bubbles generated in the cylindrical shape is adjusted, and the water bubbles and the surface liquid of the water bubbles are dissolved in proportion to the gas pressure, so that a desired dissolved concentration can be obtained.
[0006]
According to a second aspect of the present invention, in the gas dissolution regulator according to the first aspect, the pressurized liquid is supplied from a tangential direction of a rear side peripheral wall of the hollow container through a liquid introduction pipe, and the diameter of the front end is reduced. By discharging from a spout provided in the hollow container, a strong swirling flow can be created in the hollow container, and at the center of the negative pressure axis from the rear wall side of the hollow container. It has a gas self-priming pore portion provided, and a right-angled pipe connecting the ejection port of the hollow container and the ejector nozzle.
This configuration has the following operation in addition to the operation of the first aspect.
(1) Since a hollow container is provided, by supplying a pressurized liquid (tap water or the like) from a liquid introduction pipe, the liquid turns in the hollow container, and becomes a high-speed swirling flow in the reduced-diameter outlet portion. . By connecting the jet port and the ejector nozzle with a right angle pipe and jetting it into the gas dissolution regulator, the negative pressure drop of the negative pressure shaft eccentrically formed near the center of the hollow container can be minimized. If the gas self-priming pore portion is provided at the true center of the negative pressure axis from the rear wall side of the hollow body, the maximum gas self-priming force can be obtained. Further, the amount of self-priming of the gas is determined by the pressure in the gas dissolution regulator, and can be adjusted by a pressure flow regulating valve as desired. Therefore, as long as there is a pressurized liquid (such as tap water), the gas can be absorbed by itself and dissolved.
[0007]
According to a third aspect of the present invention, in the gas dissolution controller according to the first or second aspect, the processing solution is provided to the stable dissolution reduced-diameter portion through a return port through which a processing liquid is taken out, and the reflux port through a liquid collection pipe. A reflux pump for sucking a liquid, and a reflux ejector mounted from the middle or lower part of the side wall of the cylindrical portion so as to be swirled with the swirling flow via a discharge pipe from the reflux pump. It comprises a nozzle and a self-priming pipe for reflux ejector.
This configuration has the following operation in addition to the operation of the first or second aspect.
(1) By operating the reflux pump and injecting the processing liquid from the reflux ejector nozzle into the cylinder, the amount of water bubbles can be doubled, so that the amount of mixed gas can be increased. Further, the dissolution rate and the dissolution concentration can be increased even for liquids having poor gas solubility, such as sewage, in which viscous and fine foreign substances are mixed.
(2) Although the inside of the stable dissolution reduced diameter section is reduced in pressure from the pressure of the pressurized gas-liquid mixture, the pressure liquid is sucked because it is in a pressure state. By being able to inject into the cylinder from the ejector nozzle, undissolved gas can be self-primed to form water bubbles.
(3) Since the amount of dissolved liquid discharged does not change, the swirling flow velocity is increased, and water bubbles generated in the cylindrical portion are quickly destroyed by the increased swirling vortex, and the undissolved gas is used quickly to improve the dissolving efficiency. Can be raised. In addition, the swirling flow in the cylindrical water passage part and the upper part of the cylindrical gas stopper is also fast. For example, even fine bubbles in a viscous liquid can obtain a strong centripetal force. Can be returned to the inside of the cylinder by the ascending and dissolved.
[0008]
(Embodiment 1)
Embodiment 1 A gas dissolution regulator according to Embodiment 1 of the present invention will be described with reference to the following drawings.
FIG. 1A is a plan view of a gas dissolution regulator according to Embodiment 1 of the present invention, FIG. 1B is a front view thereof, and FIG. 1 is a front view in which a pump (such as an inverter control pump) capable of adjusting a discharge flow rate is attached. In FIG. 1, reference numeral 1 denotes a gas dissolution controller of the first embodiment, 2 denotes a pressurizing pump unit for supplying a pressurized gas-liquid mixture, and 3 denotes a pressurized gas-liquid pressurized via a pressurizing pump unit 2. The mixed liquid is supplied from a gas-liquid mixing supply pipe 3a to an ejector nozzle 3b arranged in a tangential direction in the middle or lower part of the peripheral wall and is injected into a cylinder, and is opened from the ejector nozzle 3b to the top of the cylindrical part. The attached ejector self-priming pipe 3c self-absorbs undissolved gas and generates a water bubble and a swirling vortex. A melt-stable reduced diameter portion connected to the lower portion and reduced in diameter, 4 is a cylindrical water passage portion having an inner diameter d and a height of 1 connected and expanded to a lower portion of the melt stable reduced-diameter portion 3D, 5 Is a discharge port 5 provided at the lower part of the cylindrical water passage section 4 and disposed on the side wall thereof. And a drainage part having a cylindrical gas stopper part 5b protruding from the bottom and a pressure flow control valve 6 for controlling the flow rate of the processing liquid and the internal pressure of the gas dissolution regulator. Is a discharge flow rate adjusting pump (may be an inverter control pump) attached in place of the pressure flow rate adjusting valve 6.
For example, a gas-liquid mixture obtained by pressurizing a gas-liquid mixture containing a predetermined amount of gas to a gauge pressure of 0.21 MPa by the pressurizing pump unit 2 is adjusted to a pressure in the gas dissolution controller of 0.15 MPa and a pressure flow control valve 6. The gas in the pressurized gas-liquid mixture is expanded by depressurization by ejecting the ejector nozzle 3b into the gas adjusted in the above, and the liquid and the gas are a large amount of water bubbles (the gas pressure in the water bubbles becomes 0.15 MPa). And can be instantaneously dissolved in the water bubbles and the surface liquid of the water bubbles in proportion to the gas pressure in the water bubbles. In addition, the jet of the ejector nozzle 3b generates a swirling flow in the cylindrical portion 3 and the cylindrical water passing portion 4, and breaks down the water bubbles generated in the cylindrical shape by the swirling vortex and separates the water bubbles into a solution and a gas. From the top of the cylindrical portion 3 by the ejector self-priming pipe 3c to the ejector nozzle 3b in a large amount (6 to 12 times the gas supply amount) to form water bubbles, thereby further increasing the solubility. In addition, the amount of swirling liquid in the cylindrical portion 3 can be maintained by the centrifugal force by the dissolution-stable reduced diameter portion 3D, so that the ejector nozzle can be always placed in the liquid, so that the ejector effect can be maintained and stabilized. Can be dissolved. In addition, the swirling flow in the cylindrical water passage 4 allows the solution to flow down the outer peripheral portion in the cylindrical water passage 4 and to the drain 5, and breaks in the cylindrical part 3. The gas that has not been removed or the fine bubbles with small buoyancy is circulated through the centrifugal force of the swirling flow and the liquid above the liquid is stagnantly swirled by the cylindrical gas stopper 5b of the drainage unit 5 so that the gas flows through the cylinder. It is gathered at the center of the part 4 and the buoyancy increases and rises by merging, so that it can be returned into the cylindrical part 3 again. Since the gas pressure in the water bubbles generated in the cylindrical portion 3 can be adjusted by the pressure flow control valve 6, a desired dissolved concentration can be obtained. Further, the pressure in the gas dissolution regulator can be adjusted to a desired pressure by inverter control by attaching the discharge flow regulating pump 2A except for the pressure flow regulating valve 6, so that there is no clogged portion and no clogging occurs. Also, it can be operated with a foreign substance mixed liquid (sewage and the like).
[0009]
Gas such as air or oxygen to be supplied to the liquid can be supplied by adjusting the amount of gas from the suction side 2a or the discharge side 2b of the pressurizing pump unit 2. When a pump into which gas cannot be mixed or a pressurized liquid (such as tap water) is used, a pressurized gas is supplied to form a pressurized gas-liquid mixture.
In addition, a pressure gauge 7 (which may be a pressure sensor) for detecting an internal pressure is provided near the ceiling of the cylindrical portion 3 or in the drainage portion 5 and the like, whereby the pressure pump portion 2 and the pressure flow regulating valve 6 (inverter) are provided. The pressure inside the gas dissolution regulator may be maintained at a predetermined level by controlling a flow rate of the gas dissolution regulator.
[0010]
Here, Table 1 shows that the dissolved oxygen concentration (DO) of the treated water obtained under the experimental conditions in which the pressure in the gas dissolution regulator was varied with a monoflex pump 400 W (the maximum supply pressure was a gauge pressure of 0.3 MPa). : Unit ppm) and the amount of treated water (liters per minute) are shown, and an experimental example using oxygen and air as gases to be mixed with a liquid (tap water) is shown. In this experimental example, the ejector nozzle 3b used was a nozzle widened from 8 mm to 15 mm in diameter, the gas self-supply hole diameter was 2 mm, the inner diameter of the cylindrical portion (D) was 100 mm, the height (L) was 180 mm, and the diameter of the melt was stable and reduced. The reduced diameter portion of the portion is 30 mm, the inner diameter of the cylindrical water passage portion (d) is 45 mm, the height (l) is 450 mm, and the inner diameter of the cylindrical gas stopper portion (E) is 25 mm. The cylindrical portion 3, the cylindrical water passing portion 4 and the discharge port 5a are made of a transparent tube for the purpose of confirming the dissolution. It is a result of observation. The temperature of tap water used as the liquid component of the gas-liquid mixture is 12.3 ° C., and the dissolved oxygen concentration (DO) is 9.8 ppm.
[0011]
[Table 1]
Figure 2004105938
[0012]
From the data in Table 1 and the like, in order to obtain highly efficient dissolved oxygen water under atmospheric pressure, the internal pressure of the gas dissolution controller is around 0.1 to 0.15 MPa, and the difference from the supply pressure of the pressure pump is at least 0.06 MPa or more. It is desirable to have. Also, when the internal pressure of the gas dissolution controller reaches 0.2 MPa, once it passes through the transparent tube outlet 5a, it is a transparent liquid, and complete dissolution can be confirmed. Foamed under reduced pressure and clouded due to saturation. As a result, when the solution immediately after the decompression and foaming after passing through the pressure flow control valve 6 and the liquid having a low gas dissolved amount are mixed, the surrounding liquid is not supersaturated, and the gas release into the defoamed and foamed bubbles is stopped. Stops the expansion of bubbles. Therefore, it can also be used as a fine bubble generator. In addition, the bubble diameter is smaller as the mixture approaches the pressure flow control valve 6, and the time increases as the distance from the valve 6 increases, so that the distance can be adjusted according to a desired fine bubble diameter and mixed for use.
[0013]
FIG. 2 shows that in the processing of the pressurized gas-liquid mixture, water bubbles are formed in the cylindrical portion in the gas dissolution controller, the amount of swirling liquid is maintained by the stable diameter-reducing portion, and the water bubbles are swirled as a lump. It is a schematic diagram showing a pattern in which undissolved bubbles are gathered at the center by centrifugal force due to the swirling flow of the cylindrical water passing part, coalesce and rise, and the dissolved liquid at the outer peripheral part in the cylindrical water passing part is The liquid is downwardly swirled and sent to the drainage unit. However, since the liquid above the cylindrical gas stopper is stagnantly swirled, even fine bubbles gather at the center and coalesce, and return to the cylindrical part due to an increase in buoyancy.
FIG. 3 is a schematic diagram showing a pattern in which the pressure gas in the water bubble dissolves instantaneously in the water bubble and the thin surface liquid of the water bubble. The water bubble diameter is about 3 mm to 10 mm, and the gas supplied from the outside is continuously. The gas in the water bubble, which is made up of a large amount of reflux gas that self-primes by the ejector self-priming pipe from the top inside the cylindrical part, is a pressure gas, so it is proportional to the pressure of the water bubble and the thin surface liquid of the water bubble. Dissolve instantly.
[0014]
Since the gas dissolution regulator of Embodiment 1 is configured as described above, the following operations can be obtained.
(A) The gas and liquid in the pressurized gas-liquid mixture are turned into water bubbles by injecting the pressurized gas-liquid mixture into the gas dissolution regulator adjusted to the desired reduced pressure by the pressure flow control valve by the ejector nozzle. In addition, a large amount of water bubbles can be generated by the recirculating self-intake body at the same time, and can be efficiently dissolved instantaneously in the water bubbles and the thin surface liquid of the water bubbles in proportion to the gas pressure in the water bubbles. .
(B) Undissolved gas in the water bubbles destroyed by the swirling vortex generated by the ejection of the ejector nozzle is collected at the top of the cylindrical portion and repeatedly self-primed by the ejector nozzle until the gas is dissolved by the ejector self-priming pipe. By doing so, a large amount of blisters can be continuously formed, whereby the processing cycle for undissolved gas can be accelerated, and the dissolving ability can be increased. In addition, the liquid amount in the cylindrical portion can be maintained by the stable dissolving reduced diameter portion, so that the ejector nozzle is always in the liquid, and therefore the ejector effect is maintained, so that the undissolved gas is stably self-primed and continuously discharged. To stably dissolve.
(C) Since the diameter of the cylindrical water passage portion is widened from the diameter of the stable dissolution reduced diameter portion, the descent speed of the swirl fluid in the cylindrical water passage portion can be slowed down, so that the centrifugal force acts on the swirl fluid. Can be lengthened. Furthermore, since the upper liquid of the cylindrical gas stopper is stagnant swirling, the undissolved bubbles collected in the stagnant swirling region by the centripetal force from the outer swirling liquid should be collected at the center of the cylindrical water passage part. Can be combined with undissolved air bubbles that are continuously collected, become larger, increase by buoyancy and return to the inside of the cylindrical portion. Therefore, since gas is not discharged from the drainage part, there is no waste when using a gas (pure oxygen gas or the like) which is particularly expensive, so that it can be used effectively.
(D) Since a supersaturated solution can be easily prepared, the supersaturated solution, which has been reduced in pressure and bubbled out of the pressure flow control valve, is mixed with a liquid having a low gas dissolved amount to stop the expansion of bubbles and to produce fine bubbles. Can be made. In addition, if mixing is performed by changing the distance from the pressure flow control valve, for example, bubbles are small when mixed near, and large when mixed away, so that a desired diameter can be obtained and it can be used as a fine bubble generator. .
(E) Except for the pressure flow control valve, even if a discharge flow control pump (which may be controlled by an inverter, etc.) is attached, the pressure inside the gas dissolution controller can be adjusted, so even foreign matter mixed liquid such as sewage is blocked. Because there are no parts, it can be stably and continuously operated without clogging. (F) Except for the pressure flow rate control valve, the suction port of a pump with a large output is installed and operated, so that the inside of the gas dissolution regulator can be depressurized more strongly than the atmospheric pressure. Can be connected, and the processing liquid can be sucked from the end of the pipe and ejected from the ejector nozzle into the depressurized space, so that the water bubbles in the water bubbles can be made lower in pressure than the atmospheric pressure. The gas in the water bubble expands due to the reduced pressure, and the excess gas dissolved in the water bubble and the surface liquid of the water bubble can be released to the reduced pressure space in the water bubble. In addition, a large amount of water bubbles can be created by destroying the water bubbles by a swirling vortex and allowing the expanding gas to self-prime by the ejector self-priming pipe, so that excess gas is released, and the gas is released as desired. The dissolved amount can be adjusted.
[0015]
(Embodiment 2)
A gas dissolution regulator according to Embodiment 2 of the present invention will be described below with reference to the drawings.
FIG. 4 (a) is a plan view of a gas dissolution regulator according to Embodiment 2, and FIG. 4 (b) supplies a liquid pressurized by a pressure pump to a hollow container from a tangential direction by a liquid introduction pipe. When the ejection port and the ejector nozzle drilled at the end of the hollow container are connected by a right-angle pipe and injected into the cylinder, the negative pressure shaft formed eccentrically inside the hollow container is stopped by the right-angle pipe, It is a schematic diagram which shows a mode that the gas is strongly self-absorbing from the pore part provided in the center of the negative pressure axis from the back wall side of the hollow container body.
In FIG. 4 (a), 11 is a hollow container of the second embodiment, 12 is a liquid introduction pipe for supplying a pressurized liquid from a tangential direction of a rear peripheral wall of the hollow container, and 13 is a front end of the hollow container. A gas self-priming pore portion having pores formed at the center of the negative pressure axis X formed eccentrically near the center of the hollow container, as viewed from the rear wall side; Reference numeral 15 denotes a right-angled pipe for connecting the ejection port 13 of the hollow body and the ejector nozzle 3b at a right angle.
Since the gas dissolution regulator has substantially the same configuration as that described in the first embodiment, the ejector nozzle 3b in the gas dissolution regulator is connected to the ejector nozzle 3b in FIG. In the plan view in which the hollow body 11 is attached, the front view of the main body is omitted.
[0016]
The gas dissolution regulator configured as described above will be described.
By supplying the pressurized liquid from the tangential direction of the rear peripheral wall of the hollow container 11 through the liquid introduction pipe 12, the liquid in the hollow container 11 becomes a swirling fluid, and high-speed swirling is performed at the reduced-diameter jet port 13. Become fluid. The jet port 13 and the ejector nozzle 3b are connected by a right-angled pipe 15 and jetted into the gas dissolution regulator, whereby the negative pressure axis X is formed eccentrically near the center of the hollow container body 11. The right-angled pipe 15 can prevent the influence of the pressure from inside the gas dissolution regulator and minimize the decrease in the negative pressure in the hollow vessel body 11. Therefore, by providing the gas self-poring pore portion 14 at the true center of the negative pressure axis X from the rear wall side of the hollow body 11, gas can be strongly self-primed. For example, even if the inside of the gas dissolution controller is in a pressure state, it is possible to self-suck the gas at the atmospheric pressure from the gas self-sucking pores 14 and to create and dissolve a pressurized gas-liquid mixture. Further, the amount of self-priming of the gas is determined by the pressure in the gas container adjuster, and can be adjusted as desired by the pressure flow control valve 6.
For example, by installing this gas dissolution controller outdoors and supplying the appropriate temperature hot water pressurized from the water heater from the liquid introduction pipe 12, the air in the atmosphere is self-primed and supersaturated hot water is produced outdoors. By connecting the outlet 5a to the indoor bathtub with a pipe of a desired length and attaching a pressure flow control valve 6 to the end, the pressure in the gas dissolution regulator and the pipe in front of the pressure flow control valve 6 can be obtained. Since the internal pressure can be made the same, the hot water is discharged from the pressure flow control valve 6 into the bath tub, so that the supersaturated hot water can be easily foamed under reduced pressure and bubbled to produce finely turbid hot water.
[0017]
Since the gas dissolution regulator of the second embodiment is configured as described above, it has the following operation in addition to the operation obtained in the first embodiment.
(1) As long as there is a pressurized liquid (tap water, etc.), a gas at atmospheric pressure can be self-primed from the gas self-supply pores to form a pressurized gas-liquid mixture, and the pressurized gas-liquid mixture can be ejected by an ejector. It can be injected into the cylinder from the nozzle and dissolved.
[0018]
(Embodiment 3)
Hereinafter, a gas dissolution regulator according to Embodiment 3 of the present invention will be described with reference to the drawings.
FIG. 5A is a plan view of a gas dissolution regulator according to Embodiment 3, and FIG. 5B is a front view thereof.
In FIG. 5, reference numeral 22 denotes a gas dissolution controller of the third embodiment, 22e denotes a reflux port for taking out a processing liquid from the inside of the stable dissolution reduced diameter portion 3D, and 22d denotes a liquid intake pipe for sucking the processing liquid from the reflux port 22e. , 22A is a recirculation pump for sucking and pressurizing the processing liquid via a liquid collection pipe 22d, 22a is a discharge pipe for sending the processing liquid pressurized by the recirculation pump 22A, and 22b is a transmission pipe for discharging the processing liquid via the discharge pipe 22a. A recirculation ejector nozzle 22c for injecting the pressurized treatment liquid into the cylinder is a recirculation ejector self-priming pipe 22c attached to the recirculation ejector nozzle 22b and self-absorbing gas from the top of the cylindrical portion. The cylindrical water passage 4 and the drain 5 are almost the same as in the first embodiment.
[0019]
The gas dissolution regulator configured as described above will be described.
The processing liquid, which has been turned into a swirling fluid by the ejector nozzle 3b, is sucked from the recirculation port 22e opened in the stable dissolution reduced diameter portion 3D by the recirculation pump 22A via the liquid collection pipe 22d, and is discharged via the discharge pipe 22a. By injecting from the tangential direction of the middle or lower part of the cylindrical peripheral wall from the recirculation ejector nozzle 22b attached so as to be the same swirling fluid, undissolved gas from the uppermost part in the cylindrical part 3 is removed. Since self-priming can be performed by the self-priming pipe 22c for reflux, a larger amount of water bubbles can be produced.
[0020]
Since the gas dissolution regulator of the third embodiment is configured as described above, it has the following operation in addition to the operation obtained in the first and second embodiments.
(1) Since the amount of dissolved solution discharged does not change even when the reflux pump is operated, the swirling flow rate is increased, so that water bubbles generated in the cylinder are rapidly destroyed by a fast swirling vortex, and the dissolved solution and undissolved gas are destroyed. By rapidly dividing and self-priming, the blister generation cycle can be accelerated, and the amount of mixed gas can be increased. Therefore, the dissolution rate can be increased even for a liquid having poor gas solubility. Further, the centrifugal force is increased by increasing the swirling flow velocity in the cylindrical water passage, and even fine bubbles in the viscous liquid can be collected at the center of the swirling flow and returned to the cylindrical part.
(2) Since the processing liquid in the stable dissolution reduced diameter portion is a pressure liquid, it can be operated by increasing the pressure that can be injected again into the cylinder by the reflux pump, so that it has the same injection power as the ejector nozzle even if the pump output is small. It is possible to increase the dissolution concentration by doubling the amount of water bubbles generated in the cylindrical portion.
[0021]
【The invention's effect】
The gas dissolution regulator according to the first aspect of the present invention has the following effects.
(1) The gas and liquid in the gas-liquid mixture are injected by ejecting the pressurized gas-liquid mixture mixed with an appropriate amount of gas into the cylinder, which has been adjusted to a desired reduced pressure by the pressure flow control valve, from the ejector nozzle. And can be made into blisters. Since the inside of the water bubbles is a pressurized gas, the water bubbles can be instantaneously dissolved in the water bubbles and a thin surface liquid of the water bubbles in proportion to the pressure to produce a high-concentration solution, so that the efficiency and controllability are excellent.
(2) Since the pressurized gas-liquid mixture is continuously injected and supplied, the generated water bubbles are broken by a swirling vortex, and the undissolved gas is repeatedly self-discharged through the ejector self-priming pipe at the top of the cylindrical portion until it is dissolved. It is possible to increase the dissolution rate by sucking and making a large amount of water bubbles. In addition, since undissolved bubbles can be prevented from flowing to the drainage part by the cylindrical water passage part and the cylindrical gas stopper part utilizing the centripetal force of the swirling flow, the gas can be used with high efficiency and the economy is excellent. I have.
(3) Since it has a dissolution-stable reduced-diameter portion, the amount of swirling liquid in the cylindrical portion can be maintained by centrifugal force, so that the ejector nozzle is always in the liquid, and the ejector effect is maintained, so that the undissolved portion Water bubbles can be created by self-priming gas stably, maintenance is easy, and maintenance is excellent.
(4) Since a supersaturated solution can be produced, fine bubbles with a desired diameter can be produced by adjusting the distance at which the supersaturated solution exiting from the pressure flow control valve and the liquid having a low gas dissolved amount are mixed. Therefore, it can be used as a fine bubble generator, and is excellent in versatility.
(5) Except for the pressure flow control valve, a pump capable of adjusting the discharge flow rate can be attached, so that there is no clogging part even with foreign matter mixed liquid (sewage, etc.), so that it is excellent in usability without clogging.
[0022]
The gas dissolution regulator according to the second aspect of the present invention has the following effects.
(1) If a pressurized liquid (tap water or the like) is used, a gas can self-prime and a dissolved liquid can be easily prepared, so that it is excellent in usability and versatility.
[0023]
According to the gas dissolution regulator of the third aspect of the present invention, the following effects are obtained.
(1) Gas can be easily dissolved even in a liquid having poor gas solubility, and the concentration of dissolved gas can be increased, resulting in excellent usability.
[Brief description of the drawings]
FIG. 1A is a plan view of a gas dissolution regulator according to Embodiment 1. FIG.
(B) Front view
(C) Front view with a discharge flow control pump (controlled by an inverter, etc.) except for the pressure flow control valve
FIG. 2 is a schematic diagram showing a water bubble swirling to form a water bubble vortex;
FIG. 3 is a schematic diagram in which gas in water bubbles dissolves instantaneously in the water bubbles and the surface liquid of the water bubbles.
FIG. 4A is a plan view of a gas dissolution regulator according to a second embodiment.
(B) A schematic diagram showing a negative pressure shaft and the like formed eccentrically in the hollow container.
FIG. 5 (a) is a plan view of a gas dissolution regulator according to Embodiment 3.
(B) Front view
[Explanation of symbols]
1 Gas dissolution regulator of Embodiment 1
2 Pressurizing pump section
2A discharge flow adjustment pump
2a Self-intake body supply hole
2b Pressure gas supply hole
3 cylindrical part
3a Gas-liquid mixing supply pipe
3b ejector nozzle
3c Ejector self-priming pipe
3D stable melting reduced diameter section
4 Cylindrical water passage
5 Drainage section
5a outlet
5b Cylindrical gas stopper
6 Pressure flow control valve
7 Pressure gauge
11. Hollow container of Embodiment 2
12 Liquid inlet tube
13 spout
14 Gas self-priming pore
15 Right angle pipe
22. Gas dissolution controller according to embodiment 3
22a Discharge pipe
22b Ejector nozzle for reflux
22c Ejector self-priming pipe for reflux
22d Suction tube
22e return port
22A reflux pump
X negative pressure axis

Claims (3)

加圧ポンプ吸引側から適量の気体を自吸させるか、又は加圧ポンプ吐出側から適量の気体を圧入して加圧気液混合液を作り、前記加圧気液混合液を、円筒状側壁の中部又は下部の接線方向からエジェクターノズル(単数及び複数)を通して加圧気液混合液より減圧に調整された円筒状内へ、噴射供給する事で気液混合液は液泡になり(例えば水泡、以下水泡と言う)、その水泡を前記エジェクターノズルからの噴射力による旋回渦流で破壊し、溶解液体と未溶解気体に分離させ、その未溶解気体を円筒状最上部からエジェクター自吸パイプで還流自吸させる事で、前記エジェクターノズルから更に多量の水泡の塊を発生させ、水泡と水泡の薄い表面液体に、水泡内の気体を瞬間的に溶解させることの出来る円筒状部と、更にその機能を安定維持する為に前記円筒状部の下部に連設された前記円筒状部径より1/3位に縮径する安定溶解縮径部と、前記安定溶解縮径部の下部から前記円筒状部径1/2位の径に拡径され連設された円筒は、溶解液を下降旋回させて排液部へ、未溶解気泡を前記円筒状内へ分離させる円筒状通水部と、前記排液部に前記円筒状通水部内の旋回流中心付近を停滞旋回させる円筒状気体止め部と、前記気体溶解調整器内を所望の減圧に調整し、溶解濃度及び排出流量を調整できる圧力流量調整弁(インバーターで排出流量調整できるポンプも含む)と、を有することを特徴とする気体溶解調整器。An appropriate amount of gas is self-primed from the suction side of the pressure pump, or a suitable amount of gas is injected from the discharge side of the pressure pump to form a pressurized gas-liquid mixture. Alternatively, the gas-liquid mixture becomes a liquid bubble by being injected from the lower tangential direction through the ejector nozzle (s) into the cylinder adjusted to a reduced pressure from the pressurized gas-liquid mixture and becomes a liquid bubble (for example, a water bubble, hereinafter referred to as a water bubble). ), The water bubbles are destroyed by a swirling vortex generated by the ejecting force from the ejector nozzle, separated into a dissolved liquid and an undissolved gas, and the undissolved gas is self-primed from the top of the cylindrical shape by a self-priming pipe of the ejector. Thus, a large amount of blisters are generated from the ejector nozzle, and a cylindrical portion capable of instantaneously dissolving the gas in the blisters in the blisters and the thin surface liquid of the blisters, and further stabilizing its function. In order to reduce the diameter of the cylindrical portion, the diameter of the cylindrical portion is reduced to about 1/3 from the diameter of the cylindrical portion. A cylindrical cylinder having a diameter enlarged to a diameter of about / 2, and a cylindrical water-passing part for rotating the solution downward and separating undissolved air bubbles into the cylindrical part; A cylindrical gas stopper for stagnant swirling around the center of the swirling flow in the cylindrical water flow part, and a pressure flow adjusting valve (adjustable to adjust the inside of the gas dissolution regulator to a desired reduced pressure to adjust the dissolution concentration and the discharge flow rate) (Including a pump whose discharge flow rate can be adjusted by an inverter). 加圧液を、後部側から前部側に向かって縮径する形状の中空部を有する中空器体の、後部側周壁の接線方向から液体導入管で供給し、前部端に穿設された噴出口と前記エジェクターノズルとを、直角のパイプで接続し稼動させる事で、前記中空器体内に強い旋回流が発生し、中心部付近に偏心して負圧の軸(以下負圧軸と言う)が形成される。その前記中空器体の後壁側からの負圧軸の真中心に気体自吸細孔部を設ける事で、前記中空器体内に気体を自吸させて、前記加圧気液混合液を作りだし、前記エジェクターノズルより前記円筒状内へ噴射させる事ができることを特徴とする請求項1に記載の気体溶解調整器。The pressurized liquid is supplied from the tangential direction of the rear side peripheral wall of the hollow container having a hollow portion whose diameter is reduced from the rear side toward the front side by a liquid introduction pipe, and is provided at the front end. By connecting the jet port and the ejector nozzle with a right-angled pipe and operating it, a strong swirling flow is generated in the hollow container, and it is eccentric near the center and a negative pressure axis (hereinafter referred to as a negative pressure axis). Is formed. By providing a gas self-poring pore portion at the true center of the negative pressure axis from the rear wall side of the hollow container, the gas is self-primed into the hollow container, and the pressurized gas-liquid mixture is created, The gas dissolution regulator according to claim 1, wherein the gas can be injected from the ejector nozzle into the cylindrical shape. 前記気体溶解調整器の前記安定溶解縮径部に還流口を設けて、還流用ポンプの吸引部を取り付け、前記旋回渦流と同旋回になるように前記円筒状部側壁の中部又は下部の接線方向から、還流用エジェクターノズル(単数及び複数)で再び前記円筒状内へ噴射させる事で、溶解濃度を上げる事ができることを特徴とする請求項1又は2に記載の気体溶解調整器。A reflux port is provided in the stable dissolution reduced diameter portion of the gas dissolution regulator, a suction portion of a reflux pump is attached, and a tangential direction of a middle or lower portion of the side wall of the cylindrical portion so as to be swirled with the swirling vortex flow. 3. The gas dissolution controller according to claim 1, wherein the dissolution concentration can be increased by injecting the liquid into the cylindrical shape again with a reflux ejector nozzle (single or plural).
JP2002310293A 2002-09-18 2002-09-18 Gas dissolution regulator Pending JP2004105938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002310293A JP2004105938A (en) 2002-09-18 2002-09-18 Gas dissolution regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002310293A JP2004105938A (en) 2002-09-18 2002-09-18 Gas dissolution regulator

Publications (1)

Publication Number Publication Date
JP2004105938A true JP2004105938A (en) 2004-04-08

Family

ID=32289484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002310293A Pending JP2004105938A (en) 2002-09-18 2002-09-18 Gas dissolution regulator

Country Status (1)

Country Link
JP (1) JP2004105938A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021341A (en) * 2005-07-14 2007-02-01 Lwj Kk Oxygen enriched water production device, and water quality improvement device
JP2010017692A (en) * 2008-07-14 2010-01-28 Panasonic Electric Works Co Ltd Portable bubble generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021341A (en) * 2005-07-14 2007-02-01 Lwj Kk Oxygen enriched water production device, and water quality improvement device
JP2010017692A (en) * 2008-07-14 2010-01-28 Panasonic Electric Works Co Ltd Portable bubble generator

Similar Documents

Publication Publication Date Title
JP3197149U (en) Generator for dissolving gas in liquid and fluid spray nozzle
KR0173996B1 (en) Apparatus for dissolving a gas into and mixing the same with a liquid
JP3929472B2 (en) Gas dissolution amount adjusting device and system
JP2007289903A (en) Micro-bubble generating device and bath system
JP2006334556A (en) Fine bubble generation nozzle and fine bubble generation bath
JP2003181260A (en) Process and device for aerating liquid with gas
JP2008237956A (en) Microbubble-carbonate spring generator and gas-liquid mixing tank
JP2002210326A (en) Wet flue gas desulfurization apparatus and wet desulfurization method
JP2007117799A (en) Microbubble generator and microbubble generating apparatus using the same
KR20100039128A (en) Ozonized water generator
JP2004298840A (en) Vessel for adjusting amount of gas to be dissolved
JP3819732B2 (en) Gas dissolving device
JP4470936B2 (en) Chemical-mixed water discharge device and flush toilet device
JP2002059186A (en) Water-jet type fine bubble generator
US20070040288A1 (en) Method and apparatus for mixing of two fluids.
JP2004105938A (en) Gas dissolution regulator
WO2014050521A1 (en) Gas dissolving device
JP2001259395A (en) Aerator
JP3582036B2 (en) Gas-liquid contact device
JP4133045B2 (en) Gas dissolver and water treatment apparatus equipped with them
JP2002191949A (en) Fine air bubble generator
JP2005288052A (en) Carbonic acid bath apparatus
JP2008178780A (en) Microbubble generating apparatus
JPH10230150A (en) Aerator
JP2005161174A (en) Gas dissolving method and gas dissolving device