JP2004105877A - Defective detection apparatus and separation apparatus using it - Google Patents

Defective detection apparatus and separation apparatus using it Download PDF

Info

Publication number
JP2004105877A
JP2004105877A JP2002273304A JP2002273304A JP2004105877A JP 2004105877 A JP2004105877 A JP 2004105877A JP 2002273304 A JP2002273304 A JP 2002273304A JP 2002273304 A JP2002273304 A JP 2002273304A JP 2004105877 A JP2004105877 A JP 2004105877A
Authority
JP
Japan
Prior art keywords
light
amount
light amount
appropriate
defective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002273304A
Other languages
Japanese (ja)
Other versions
JP4052911B2 (en
Inventor
Hideji Sonoda
園田 秀二
Takahiro Mizoguchi
溝口 高宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2002273304A priority Critical patent/JP4052911B2/en
Publication of JP2004105877A publication Critical patent/JP2004105877A/en
Application granted granted Critical
Publication of JP4052911B2 publication Critical patent/JP4052911B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sorting Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To widen a light quantity alteration and regulation range of a projection member by reducing troublesome works such as replacement of a light emitting member and reduce size of an apparatus by miniaturizing the projection member. <P>SOLUTION: A defective detection apparatus has a light receiving means 5 for receiving light from a presence scheduled part where a group of particles are scheduled to be present, a projection member 8 arranged at a back-part side portion and projecting light toward the light receiving means 5, and a discrimination means for discriminating the presence of a defective when a light quantity value of a light accepting quantity is beyond an appropriate light quantity range with respect to detected light from a normal article. The projection member 8 has a plurality of LED light emitting elements arranged along the direction of the lateral width of the presence scheduled part and a diffuser plate for diffusing the light emitted by the plurality of LED light emitting elements so as to freely alter and adjust the light emitting quantity of the plurality of LED light emitting elements. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、一層状態で且つ横方向に広幅の状態で通過する粒状体群を検査対象物として、その検査対象物の存在予定箇所を照明する照明手段と、前記存在予定箇所からの光を受光する受光手段と、前記受光手段の受光方向であって前記存在予定箇所の背部側箇所に配置されて前記受光手段に向けて光を投射する投射部材と、前記受光手段の受光量が前記粒状体群における正常物からの検出光に対する適正光量範囲を外れた場合に不良物の存在を判別する判別手段とが設けられている不良物検出装置、及び、それを用いた分離装置に関する。
【0002】
【従来の技術】
前記不良物検出装置では、検査対象物として、一層状態で且つ横方向に広幅の状態で通過する例えば米粒群のような粒状体群が存在予定箇所にて蛍光灯等の照明手段にて照明され、前記存在予定箇所にて照明光が粒状体群で反射された反射光や粒状体群を透過した透過光、及び、存在予定箇所の背部側箇所に設けた投射部材から投射される光をCCDセンサ等の受光手段にて受光し、その受光量が粒状体群における正常物からの検出光に対する適正光量範囲を外れている否かを判別するようにしている。又、このような不良物検出装置を用いた分離装置においては、上記したような判別によって適正光量範囲を外れているとして存在が検出された不良物は、上記存在予定箇所よりも下手側に搬送されて、分離手段として例えばエアー噴出装置によるエアー吹き付け作動等によって正常物とは異なる経路に分離される構成となっている。
【0003】
そして、従来では、前記投射部材に発光出力を変更可能な1個のランプを備えさせて、その投射部材から受光手段に向けて投射する光の光量を変更調整可能なように構成したものがあった(特許文献1参照。)。
【0004】
【特許文献1】
特公平6−10635号公報(第1頁―第3頁、第3図)
【0005】
【発明が解決しようとする課題】
ところで、上記公知文献には具体的な構成について言及していないが上記ランプとしては蛍光灯が用いられるのが一般的である。つまり、一層状態で且つ横方向に広幅の状態で通過する粒状体群を1個のランプで出来るだけ均一に照明するためには長尺状の蛍光灯が適しているからである。
そして、このように蛍光灯を用いて投射部材から受光手段に向けて投射する光の光量を変更調整する場合には、蛍光灯は調光可能な光量の範囲が狭いものであるから、投射部材から受光手段に向けて投射する光の光量を変更調整する調整範囲が狭い範囲に限られてしまい、例えば、反射光が透過光の光量が大きく異なるような別の種類の粒状体群を検査対象物とする場合には対応できないものとなっていた。
【0006】
そして、蛍光灯の場合には、その発光部分の長手方向の両側端部には所定幅の電極形成部分が存在し、この電極形成部分からは光が投射されないので、一層状態で且つ横方向に広幅の状態で通過する粒状体群を全幅にわたって照明するために、粒状体群の横方向の幅と蛍光灯の発光部分の長手方向の幅とを同じにしても、前記電極形成部分が存在することから投射部材の横方向の寸法が粒状体群の横幅よりも大きくなり、しかも、円筒形状の蛍光灯は長手方向だけでなく径方向においても比較的大きな幅を有するものであり、このような蛍光灯を備える投射部材が大型の部材となり、結果として装置全体が大型化するといった不利がある。
【0007】
又、蛍光灯の場合、経年変化による光量劣化が大きく、短期間の使用で新しいものと交換する必要があり煩わしい手間がかかるといった不利な面もある。
【0008】
本発明はかかる点に着目してなされたものであり、その目的は、発光用の部材の交換などの煩わしい手間を少なくして、投射部材の光量変更調整範囲を広くすることを可能にするとともに、投射部材を小型にして装置をコンパクト化させることを可能にする点にある。
【0009】
【課題を解決するための手段】
請求項1に記載の不良物検出装置は、一層状態で且つ横方向に広幅の状態で通過する粒状体群を検査対象物として、その検査対象物の存在予定箇所を照明する照明手段と、前記存在予定箇所からの光を受光する受光手段と、前記受光手段の受光方向であって前記存在予定箇所の背部側箇所に配置されて前記受光手段に光を投射する投射部材と、前記受光手段の受光量が前記粒状体群における正常物からの検出光に対する適正光量範囲を外れた場合に不良物の存在を判別する判別手段とが設けられているものであって、前記投射部材が、前記存在予定箇所の横幅方向に沿って並べて設置される複数のLED発光素子と、それらの複数のLED発光素子が設置される領域の光投射側に配置されて複数のLED発光素子が発光した光を拡散させる拡散板とを備えて構成され、前記複数のLED発光素子の発光量を変更調整自在な発光出力調整手段が備えられていることを特徴とする。
【0010】
前記投射部材が、複数のLED発光素子を発光させてその発光した光を拡散板にて拡散させて略均一な光にさせて受光手段に向けて背部側からの光を投射するのである。そして、複数のLED発光素子の発光量を発光出力調整手段によって変更調整することで、受光手段に向けて投射する光の光量を変更させることができる。
【0011】
LED発光素子は電流供給量を調整することにより発光出力が零から最大出力まで任意に変更調整することができるので、投射部材から受光手段に向けて投射する光の光量を広範囲にわたり変更調整することが可能となる。しかも、LED発光素子は小型の部材であるから、存在予定箇所の横幅方向に沿って並べて設置させるようにしても、存在予定箇所の横幅方向とほぼ同じ寸法に収めることが可能であり、しかも、並び方向と交差する方向に沿う寸法も小さい寸法に収めることが可能となる。つまり、投射部材を小型の部材として構成することが可能となり、投射部材を設置するための設置スペースを小さくして装置全体を小型化させることが可能となる。
更に、LED発光素子は、経年変化による光量劣化が少ないので、長期間使用しても光量が低下してしまうおそれが少なく、短期間の使用で部品を取替えるといった煩わしい作業は不要である。
【0012】
従って、発光用の部材の交換などの煩わしい手間を少なくして、投射部材の光量変更調整範囲を広くすることを可能にするとともに、投射部材を小型にして装置をコンパクト化させることが可能になった。
【0013】
請求項2に記載の不良物検出装置は、請求項1において、前記拡散板が、前記複数のLED発光素子の並び方向の中央部において各LED発光素子との間の離間距離が大であり、前記並び方向の両端側では各LED発光素子との間の離間距離が小となるように湾曲する状態で設けられていることを特徴とする。
【0014】
例えば、前記拡散板と各LED発光素子との間の離間距離が前記並び方向の全域にわたり同一距離であれば、複数のLED発光素子から夫々出力される光量が同じであっても、存在予定箇所の横幅方向中央付近で光の投射量が最も大きくなり、存在予定箇所の横幅方向両端側ほど光の投射量が小さくなり、光の投射量が均一にならない。そこで、複数のLED発光素子が発光した光を拡散させる拡散板が、前記並び方向の中央部において各LED発光素子との間の離間距離が大であり、前記並び方向の両端側では各LED発光素子との間の離間距離が小となるように湾曲させることで、存在予定箇所の横幅方向中央付近に光が集中するのを抑制して存在予定箇所の横幅方向の全域にわたり略均一な投射量にて光を投射することが可能となる。
【0015】
請求項3記載の不良物検出装置は、請求項1又は2において、前記発光出力調整手段が、前記複数のLED発光素子を、その並び方向において設定個数のブロックに区分けして、各ブロック毎に前記発光出力を変更調整するように構成されていることを特徴とする。
【0016】
すなわち、前記複数のLED発光素子をその並び方向において設定個数のブロックに区分けして、各ブロック毎に発光出力を変更調整する構成とすることで、前記各ブロックのLED発光素子群が光を投射する各領域つまり存在予定箇所の横幅方向に沿って分割した複数領域の夫々に対して各別に発光出力を変更させることができるものとなり、各領域の間で光量のバラツキ等を存在していても、各ブロック毎に各別に光量調整することで存在予定箇所の横幅方向の全域にわたり略均一な投射量にて投射することが可能となる。
【0017】
前記存在予定箇所の横幅方向の全域にわたり均一な投射量にて投射するために、上述したように複数のブロック毎に区分けすることなく、全てのLED発光素子夫々を各別に光量調整する構成とすることも考えられるが、このように構成すると回路構成が非常に複雑となりコスト高となる不利があるが、各ブロック毎に光量調整することにより、構成の大幅な複雑化によるコスト高を回避しながら、極力均一な投射量にて投射することが可能となるのである。
【0018】
請求項4記載の不良物検出装置は、請求項1〜3のいずれかにおいて、前記判別手段が、前記受光手段の受光量を設定時間間隔でサンプリングするように構成され、且つ、前記適正光量範囲を設定するために、そのサンプリングにより得られた設定個数の受光量データについて、暗側から明側にわたる間を複数段階に区分けした各光量値に対する度数分布を求めるように構成され、前記発光出力調整手段が、前記判別手段の前記度数分布の情報に基づいて、その度数分布において最も頻度の高い光量値が前記適正光量範囲内における適正位置に位置するように、前記各LED発光素子の発光光量を変更調整するよう構成されていることを特徴とする。
【0019】
すなわち、受光手段の受光量が設定時間間隔でサンプリングされ、そのサンプリングにより得られた設定個数の受光量データについて、暗側から明側にわたる間を複数段階に区分けした各光量値に対する度数分布が求められる。この度数分布は前記適正光量範囲を設定するために求められることになる。例えば、この度数分布に基づいて適正光量範囲の上限値や下限値が適宜設定されることになる。そして、その求められた度数分布の情報に基づいて、その度数分布において最も頻度の高い光量値が適正光量範囲内における適正位置に位置するように、各LED発光素子の発光光量を変更調整するのである。因みに、度数分布において最も頻度の高い光量値というのは投射部材から受光手段に投射される光の光量値である。説明を加えると、存在予定箇所に粒状体群が存在しない場合には常に投射部材から投射される光が受光手段にて受光されることになるので、投射部材から投射される光の光量値が常に度数分布において最も頻度の高い光量値となる。そこで、求められた度数分布において最も頻度の高い光量値がそのときに投射部材から投射される光の光量値として、その光量値が適正光量範囲内における適正位置に位置するように光量を変更調整するのである。
前記適正光量範囲内における適正位置としては、例えば適正光量範囲の中央値とする場合や、その中央値よりも少し明側に設定したり、あるいは、中央値よりも少し暗側に設定するような場合等がある。
【0020】
従って、粒状体群で反射された反射光や粒状体群を透過した透過光にバラツキが生じて、それらの光量がバラついて分布する光量の範囲つまり分布領域も種々変化するようなことがあっても、実際に検査される粒状体群の検出光量の分布状況に適合させて投射部材から投射される光の光量値を適正光量範囲内の適正な位置になるように変更調整することにより、不良物を判別するときの精度を向上させることが可能となった。
【0021】
請求項5記載の不良物検出装置は、請求項4において、前記発光出力調整手段が、前記適正光量範囲内における適正位置として、前記投射部材から前記受光手段に向けて投射する光の光量が前記適正光量範囲における中央位置に対応する光量と同じか又はほぼ同じになるように変更調整するように構成されていることを特徴とする。
【0022】
すなわち、投射部材から受光手段に向けて投射する光の光量が適正光量範囲における中央位置に対応する光量と同じか又はほぼ同じになるように変更調整されることになる。前記適正光量範囲は、粒状体群からの反射光や透過光についての光量のバラツキにおける分布領域に基づいて設定されるものであり、適正光量範囲における中央位置に対応する光量は前記分布領域のほぼ中央位置に対応しており、粒状体群からの反射光や透過光の光量の平均的な値になるものであるから、投射部材から投射する光の光量と粒状体群における正常物からの反射光や透過光の光量との差が極力小さいものとなり、正常物と不良物とを判別する場合の判別精度を向上させることが可能となる。
【0023】
請求項6記載の不良物検出装置は、請求項4又は5において、前記受光手段からの受光量を増減させる補正係数を変更設定して、前記適正光量範囲に対する受光量の感度を補正する感度補正手段が設けられ、前記発光出力調整手段が、前記感度補正手段による感度補正に対応させて、前記受光量が減少するように感度補正されると、前記適正光量範囲内における適正位置として、前記投射部材から前記受光手段に向けて投射する光の光量が前記適正光量範囲の中央値よりも小側の光量になるように変更調整し、前記受光量が増加するように感度補正されると、前記適正光量範囲内における適正位置として、前記投射部材から前記受光手段に向けて投射する光の光量が前記適正光量範囲の中央値よりも大側の光量になるように変更調整するよう構成されていることを特徴とする。
【0024】
すなわち、受光手段からの受光量が補正係数の変更設定により増加されるように感度の補正が行われると、投射部材から投射する光の光量が適正光量範囲の中央値よりも大側の光量になるように変更調整されることになる。一方、受光手段からの受光量が補正係数の変更設定により減少されるように感度の補正が行われると、投射部材から投射する光の光量が適正光量範囲の中央値よりも小側の光量になるように変更調整される。
【0025】
つまり、受光手段からの受光量が増加されるように感度の補正が行われた場合には、投射部材から投射する光の光量が適正光量範囲の中央値よりも大側の光量になるので、適正光量範囲を暗側に外れる不良物の光量と投射部材から投射する光の光量との光量差が大となり、このとき適正光量範囲の暗側の下限値を標準的な値よりも少し高めの値に変更設定することにより適正光量範囲を暗側に外れる不良物の誤検出を回避させ易い状態にすることが可能となる。一方、受光手段からの受光量が減少されるように感度の補正が行われた場合には、投射部材から投射する光の光量が適正光量範囲の中央値よりも大側の光量になるので、適正光量範囲を明側に外れる不良物の光量と投射部材から投射する光の光量との光量差が大となり、このとき適正光量範囲の明側の上限値を標準的な値よりも少し高めの値に変更設定することにより適正光量範囲を明側に外れる不良物の誤検出を回避させ易い状態にすることが可能となる。
【0026】
請求項7記載の分離装置は、請求項1〜6のいずれか1項に記載の不良物検出装置を備えた分離装置であって、検査対象物としての粒状体群を、予定移送経路に沿って一層状態で且つ横方向に広幅の状態で通過するように前記存在予定箇所とその存在予定箇所の位置よりも経路下手側の分離箇所とに移送する移送手段と、前記分離箇所に移送された粒状体群のうちの正常物と不良物とを異なる経路に分離させる分離手段とを備えて構成されていることを特徴とする。
【0027】
すなわち、移送手段によって粒状体群が予定移送経路に沿って存在予定箇所とその存在予定箇所の位置よりも経路下手側の分離箇所とにわたって移送される。そして、存在予定箇所においては上記したような不良物検出装置によって不良物の判別処理が行われ、経路下手側の分離箇所においては、不良物検出装置の判別結果に基づいて分離手段を作動させて、粒状体群のうちの正常物と不良物とを異なる経路に分離させるのである。
【0028】
そして、このような分離装置においては、前記存在予定箇所と前記分離箇所との間の離間距離はできるだけ短い方が分離精度を向上させる上では好ましいが、上記したように光源として複数のLED発光素子を備えて構成される投射部材を小型にすることができるから、分離手段の設置場所を前記存在予定箇所に近づけることができて前記離間距離を極力短くさせることが可能となる。従って、前記存在予定箇所と前記分離箇所との間の離間距離を短くして分離精度を向上させることが可能となる。
【0029】
【発明の実施の形態】
以下、本発明に係る不良物検出装置及びそれを用いた分離装置の実施形態を、粒状体群の一例として玄米や精米等の米粒群を検査対象物として流下案内させながら、不良検出及び不良物除去を行う不良物除去装置に適用する場合について図面に基づいて説明する。以下、前記不良物除去装置について説明する。
【0030】
図1及び図2に示すように、広幅の板状のシュータ1が、水平面に対して所定角度(例えば60度)に傾斜されて設置され、このシュータ1の上部側に設けた貯溜タンク7からフィーダ9によって搬送されて供給された米粒群kが、シュータ1の上面を一層状態で横方向に広がった状態で流下案内される(図3参照)。尚、図3は動作説明図であるため、図1、図2とは装置構成の配置が異なる箇所がある。ここで、上記シュータ1は、幅方向全幅に亘って平坦な案内面に形成された平面シュータである。尚、ここでは、一層状態で移送させることを目的としているので、流れ状態により部分的に粒が重なって2層状態等になっても、一層状態の概念に含まれる。
【0031】
貯溜タンク7には、外部の精米機等から供給される米粒群kや、その外部からの米粒群kを1次選別処理した後再選別される正常物又は不良物が貯溜される。タンク7は下端側ほど先細筒状に形成され、貯溜タンク7からフィーダ9上に落下した米粒群kのシュータ1への供給量は、フィーダ9の振動による米粒群kの搬送速度を変化させて調節される。
【0032】
図2に示すように、米粒群kがシュータ1の下端部から移動落下する予定移送経路IK中に、米粒群kの存在が予定されている存在予定箇所(以下、検出箇所Jという)が設定されている。尚、米粒群kは横幅方向に広がった状態でその横幅方向に沿って幅広に形成された上記検出箇所Jを通過するように搬送される構成となっている。
【0033】
予定移送経路IKの前面側(図2において左側)を照明する前面側ライン状光源4Bと、予定移送経路IKの後面側(図2において右側)を照明する後面側ライン状光源4Aとが設けられている。各ライン状光源4A,4Bと前記検出箇所Jとを結ぶ照明光の経路には夫々拡散透過板18A,18Bが配置され、各ライン状光源4A,4Bの背部側及び一部側方箇所を覆う状態で、内面につや消しの白色塗装を施した曲面状の拡散反射板20A,20Bが配置されている。この両ライン状光源4A,4Bにて米粒群の存在予定箇所としての検出箇所Jを照明する照明手段4が構成されている。
【0034】
上記前面側ライン状光源4Bからの照明光が上記検出箇所Jの前面側で反射した反射光を受光する前面側ラインセンサ5Bと、後面側ライン状光源4Aからの照明光が上記検出箇所Jの後面側で反射した反射光を受光する後面側ラインセンサ5Aとが設けられ、この両ラインセンサ5A,5Bにて、上記検出箇所Jからの光を受光する受光手段5が構成されている。
前記各ライン状光源4A,4Bは、各ラインセンサ5A,5Bの受光方向に対して傾いた複数の方向から米粒群kを照明するように、検出箇所Jを斜め下方から照明する下側光源と、検出箇所Jを斜め上方から照明する上側光源とを備えている。そして、このように検出箇所Jを照明光の照明角度を変えて異なる方向から照明して、米粒群kが正常な検出箇所Jから横方向にずれた場合でも、極力均一な状態で良好に照明できるようにしている。
【0035】
図6に示すように、前記両ラインセンサ5A,5Bは、前記幅広の検出箇所Jからの光を受光する複数個の受光部としての複数個の受光素子5aを検出箇所Jの幅方向に沿って並置させるように構成されている。つまり、前記米粒群の各米粒の大きさよりも小さい範囲p(例えば米粒の大きさの10分の1程度)を夫々の受光対象範囲とする複数個の受光素子5aを前記幅広の検出箇所Jに対応させてライン状に並ぶ状態で備えている。
そして、各ラインセンサ5A,5Bは、受光素子5aが直線状に並置されたモノクロタイプのCCDセンサ部50と、検出箇所Jでの米粒群kの像を上記CCDセンサの各受光素子5a上に結像させる光学系51とから構成され、例えば図3において検出箇所Jの右端側から左端側に向けて、各受光素子5aから各受光情報が順次取り出されるように構成されている。
【0036】
前記各ラインセンサ5A,5Bの受光方向であって前記検出箇所Jの背部側箇所に配置されて、前記各ラインセンサ5A,5Bに向けて光を投射する投射部材8が設けられている。この投射部材8は、前記検出箇所Jの横幅方向に沿って密状態で並べて設置される複数のLED発光素子80と、それらの複数のLED発光素子80が設置される領域の光投射側に配置されて複数のLED発光素子80が発光した光を拡散させる拡散板81とを備えて構成されている。
【0037】
詳述すると、図4に示すように、検出箇所Jの横幅方向に沿って長尺状に構成され、且つ、断面形状が略矩形状であって前方側部分が開口しているケーシング83の内部に、複数のLED発光素子80が設置されたLED基板82が設けられている。このLED基板82は、図4(ロ)に示すように前記横幅方向に沿って密状態で複数のLED発光素子80を並べる状態で設置されている。そして、このLED基板82は、ケーシング83にビス止めされたアルミニューム板からなる放熱板84に対してシリコン放熱樹脂を介して貼り付けて取り付けられている。一方、このLED基板82の前方側には、LED発光素子80が発光した光を拡散させる拡散板81が、複数のLED発光素子80の並び方向の中央部において各LED発光素子80との間の離間距離が大であり、前記並び方向の両端側では各LED発光素子80との間の離間距離が小となるように湾曲する状態で設けられている。このように拡散板81を湾曲させることで、前記検出箇所Jにおける光の強さが横幅方向中央にて大になり端部部分にて小になるというような偏りが生じないように、光の強さが横幅方向において極力均一になるようにしている。
【0038】
そして、図7に示すように、複数のLED発光素子80をその並び方向において設定個数(数個〜10個程度)のブロックBKに区分けして、各ブロックBK毎に一括してLED発光素子80の発光出力を変更調整自在な発光出力調整手段としての調光装置85が備えられている。この調光装置85は、後述する制御装置10からの制御指令に基づいて各ブロックBK毎のLED発光素子80の発光出力を変更調整するように構成されている。
【0039】
図2に示すように、前面側ライン状光源4B、前面側ラインセンサ5B及び後面側反射板8Aが一方の収納部13Bに収納され、後面側ライン状光源4A、後面側ラインセンサ5A及び前面側反射板8Bが他方の収納部13Aに収納され、両収納部13A,13Bは側板が共通の一体の箱体に形成され、各収納部13A,13Bは、検出箇所Jに面する側に板状の透明なガラスからなる透過窓14A,14Bを備えている。つまり、各ライン状光源4A,4B及び各ラインセンサ5A,5Bが、前記検出箇所Jに面する側に透過窓14A,14Bを備えた収納部13A,13Bに収納されて、各ライン状光源4A,4Bが前記透過窓14A,14Bを通して前記検出箇所Jを照明し、且つ、各ラインセンサ5A,5Bが前記透過窓14A,14Bを通して前記検出箇所Jからの光を受光するように構成されている。
【0040】
予定移送経路IKの前記検出箇所Jから経路下手側の分離箇所において、検出箇所Jでの受光情報に基づいて不良と判定された米粒や異物等の不良物に対してエアーを吹き付けて正常な米粒群kの移動方向から分離させるためのエアー吹き付け装置6が設けられ、このエアー吹き付け装置6は、噴射ノズル6aの複数個を、上記予定移送経路IKの全幅を所定幅で複数個の区画に分割形成した各区画に対応する状態で並置させ、不良物が存在する区画の噴射ノズル6aが作動されるように構成されている。
【0041】
つまり、シュータ1が、米粒群kを一層状態で横幅方向に広げた状態でその横幅方向に沿って幅広に形成された検出箇所Jを通過するように搬送させる搬送手段として機能するとともに、米粒群kを予定移送経路IKに沿って検出箇所Jとその検出箇所Jの位置よりも経路下手側の分離箇所とに移送する移送手段として機能する構成となっており、前記エアー吹き付け装置6が、前記分離箇所に移送された粒状体群のうちの正常物と不良物とを異なる経路に分離させる分離手段を構成することになる。
【0042】
そして、シュータ1の下端部から所定経路に沿って流下する米粒群kのうちで、前記噴射ノズル6aからのエアーの吹き付けを受けずにそのまま進行してくる正常な米粒kを回収する良米用の受口部2Bと、エアーの吹き付けを受けて正常な米粒kの流れから横方向に分離した着色米や胴割れ米等の不良米又は石やガラス片等の異物を回収する不良物用の受口部3Bとが設けられ、良米用の受口部2Bが横幅方向に細長い筒状に形成され、その良米用の受口部2Bの周囲を囲むように、不良物用の受口部3Bが形成されている。尚、良米用の受口部2Bにて回収された米粒k、及び、不良物用の受口部3Bにて回収された不良物は、再選別等のために、本検査装置のタンク7へ又は他の検査装置に搬送される。
【0043】
図1に示すように、脚部F0を備えた底板F1上に立設された縦枠F2,F3,F4が、横枠F5,F6,F7によって連結されて機枠が構成されている。表側の縦枠F4の上部斜め部分に、情報の表示及び入力用の操作卓21が設置され、前記フィーダ9に対する振動発生器9Aが横枠F5上に設置され、前記エアー吹き付け装置6に対するエアー供給用のエアタンク15が底板F1上に設置されている。又、箱状の収納部13A,13Bが前部側で縦枠F4に後部側で縦枠F3に支持され、シュート1が上部側で横枠F6に下部側で収納部13Bに支持されている。装置外面を覆うカバーKが機枠に取り付けられている。
【0044】
次に制御構成について説明する。図5に示すように、マイクロコンピュータ利用の制御装置10が設けられ、この制御装置10に、両ラインセンサ5A,5Bからの各画像信号と、前記操作卓21からの操作情報とが入力されている。一方、制御装置10からは、前記ライン状光源4A,4Bを点灯させる点灯回路19に対する駆動信号と、各噴射ノズル6aへの各エアー供給をオンオフする複数個の電磁弁11に対する駆動信号と、前記フィーダ用振動発生器9Aに対する駆動信号と、前記調光装置85への制御指令用の信号とが出力されている。
【0045】
上記制御装置10を利用して、前記透過用及び反射用ラインセンサ5A,5Bの受光情報に基づいて、米粒群kにおける不良物の存否を判別する判別手段100が構成され、この判別手段100は、米粒群kからの検出光(透過光及び反射光)つまり透過用及び反射用ラインセンサ5A,5Bの受光量がその適正光量範囲(透過光の場合はΔEt、反射光の場合はΔEh)を外れた場合に、不良物の存在を判別するように構成されている。又、この判別手段100は、前記適正光量範囲を設定するために、透過用及び反射用ラインセンサ5A,5Bの受光量を設定時間間隔でサンプリングして得られた設定個数の受光量データについて、暗側から明側にわたる間を複数段階に区分けした各受光量に対する度数分布を求めるように構成され、且つ、前記度数分布に基づいて前記適正光量範囲の上限値及び下限値を自動設定するように構成されている。しかも、前記受光量が前記適正光量範囲を外れているか否かについての判別処理及び前記度数分布を求める処理を前記各受光部毎に実行するように構成されている。
【0046】
更に、前記制御装置10を利用して、前記判別手段100の前記度数分布の情報に基づいて、その度数分布において最も頻度の高い投射部材8から投射される光の光量値が適正光量範囲内における適正位置に位置するように、投射部材8から透過用及び反射用ラインセンサ5A,5Bに向けて投射する光の光量を変更調整すべく調光装置85に制御用指令情報を指令する光量指令手段101が構成されている。従って、この光量指令手段101と前記調光装置85とにより、投射部材8から透過用及び反射用ラインセンサ5A,5Bに向けて投射する光の光量を変更調整する光量調整手段KTが構成される。
【0047】
次に、上記適正光量範囲の設定のための受光データの各種補正処理について説明する。
先ず、前記米粒群kにおける正常物と透過率及び反射率が同一の検査基準物Kjを前記検出位置Jに位置させて、図8に示すように、前記透過用及び反射用ラインセンサ5A,5Bが受光する各受光情報を基準受光量情報として求める。つまり、各センサ5A,5Bの各受光部5a毎に、透過光の基準受光量Siと反射光の基準受光量Si’(i=0〜〔受光部の数−1〕)を記憶し、同時に、その基準受光量Si,Si’についての平均値Sm,Sm’を求めておく(この処理を「リファレンス作成」と呼ぶ)。ここで、検査基準物Kjは、長手状の検出位置Jに合わせて長尺状の白色系の樹脂板等にて構成される。尚、透過光用と反射光用に、別々の検査基準物Kjを用いてもよい。
【0048】
又、照明光源5A,5Bからの照明光量の変動を検出する。具体的には、照明光量が十分に安定な状態で、図9に示すように、投射部材8の光量を検査用基準値に設定しておき、反射用ラインセンサ5Bの各受光素子5aの出力電圧r〔i〕(i=0〜〔受光素子の数−1〕)を基準の照明光量値として計測し、その全受光部についての平均値rmを求めておく(この処理を「照明光補正データ作成」と呼ぶ)。一方、実際の検査を行う最新の時点で、反射用ラインセンサ5Bの各受光部5aの出力電圧r’〔i〕を計測し、その全受光部についての平均値rm’を求め、基準の照明光量値の平均値rmと最新の照明光量値の平均値rm’との比(rm’/rm)を照明光量の変化率とする。尚、上記反射用反射板8Bに代えて、透過用反射板8Aからの反射光を受光する透過用ラインセンサ5Aの受光情報によって、上記照明光量の変化率を求めてもよい。
【0049】
尚、上記照明光量の安定状態を得るために、出荷調整時等において、点灯後充分な時間が経過してから上記基準光量の測定を行う。又、実際の検査運転時には、所定時間(例えば30分)の検査を行うと、図示しない清掃手段にて窓部14A,14Bが清掃されるので、その清掃後に、前記照明光量の測定を行う。
【0050】
そして、透過光及び反射光の各センサ出力電圧jについて、基準受光量の平均値Sm,Sm’に対する各受光素子5aの基準受光量Si,Si’の偏差を打ち消すために、基準受光量の平均値Sm,Sm’と各受光素子5aの基準受光量Si,Si’の比を掛け、さらに、照明光量の変動の影響を打ち消すために、前記照明光量の変化率(rm’/rm)で割るように、下式に基づいて補正処理して、透過光及び反射光の各センサ5A,5Bの補正後の出力電圧jt,jh(センサ補正出力)を得る。
【0051】
【数1】
センサ補正出力jt=j×(Sm/Si)×(rm/rm’)
センサ補正出力jh=j×(Sm’/Si’)×(rm/rm’)
【0052】
次に、上記各センサ補正出力jt,jhについての感度補正処理を行う。ここでは、感度値を標準値(100)に設定する。尚、実際の検査運転時において、感度値を「100」より大に(例えば、110)に設定すると、基準受光量の平均値Sm,Sm’からのセンサ補正出力jt,jhの偏差(jt−Sm),(jh−Sm’)が大きくなるように検出受光量が増加補正され、感度値を「100」より小に(例えば、90)に設定すると、上記偏差(jt−Sm),(jh−Sm’)が小さくなるように検出受光量が減少補正された透過光及び反射光の各感度補正出力jk,jk’が得られる。
【0053】
【数2】
感度補正出力jk=(感度値/100)×(jt−Sm)+(Sm)
感度補正出力jk’=(感度値/100)×(jh−Sm’)+(Sm’)
【0054】
つまり、前記制御装置10を利用して、前記透過用及び反射用ラインセンサ5A,5Bからの受光量(上式のjt及びjh)を増減させるための補正係数(感度値)を変更設定して、前記適正光量範囲に対する受光量の感度を補正する感度補正手段102が構成されている。そして、感度値を「100」より大きく例えば「110」等のように変更して上記受光量を増加させると、増加補正された受光量が適正光量範囲から外れ易くなって不良判別の感度が高くなり、一方、感度値を「100」より小さく例えば「90」等のように変更して上記受光量を減少させると、減少補正された受光量が適正光量範囲から外れ難くなって不良判別の感度が低くなるように、透過光及び反射光の適正光量範囲に対する受光量の感度が補正される。この感度調整は操作卓21を用いて作業者が手動で行うことになる。
【0055】
次に、判別手段100による適正光量範囲設定処理について説明する。尚、この適正光量範囲設定処理は装置の出荷調整時に実行するようになっている。
各ラインセンサ5A,5Bの各受光素子5a毎に、設定時間間隔でサンプリングして得られた設定個数の受光量データについて、暗側から明側に亘る間を複数段階に区分けした各光量値に対する度数分布(ヒストグラムともいう)を求めて、その度数分布に基づいて前記適正光量範囲を設定するのである。
【0056】
具体的には、図13に示すように、照明光源5A,5Bからの照明光量が十分に安定した状態で、米粒群kを流しながら、各ラインセンサ5A,5Bの各受光素子5a毎に設定時間間隔で受光量データつまり出力電圧をサンプリングし、その出力電圧を256段階のデジタル値に変換する。尚、この場合において、前記エアー吹き付け装置6は作動させない。その後米粒群kの供給を停止して、例えば、図18に示すように、各受光素子5a毎に、サンプリングされた設定個数の出力電圧について、暗側から明側に亘る間を複数段階に区分けした各受光量に対する度数分布hgを求める。そして、その度数分布hgにおいて暗側から明側に亘って各受光量に対する度数値が連続して存在する連続領域の上端部の近傍位置に対応させて上側光量値TH1を設定するとともに、その上側光量値TH1から明側に設定光量K1離れた位置に前記適正光量範囲ΔEt,ΔEhの上限値T1を設定し、且つ、前記連続領域の下端部の近傍位置に対応させて下側光量値TH2を設定するとともに、その下側光量値TH2から暗側に設定光量K2離れた位置に前記適正光量範囲ΔEt,ΔEhの下限値T2を設定するように構成されている。上記各設定光量K1,K2は制御定数として予め設定されている。そして、上記のように各ラインセンサ5A,5Bの各受光素子5a毎に、設定及び補正される前面側及び後面側の適正光量範囲ΔE1,ΔE2の上限値T1及び下限値T2の値は、後述するような前記制御装置10内のメモリLUT(前面側用及び後面側用のLUT)に、不良検出処理用のルックアップテーブルとして記憶される。
このようにして各受光素子5a毎に設定された適正光量範囲を受光素子5aの並び方向に沿って連続して表すと図19(イ)に示すようになる。
【0057】
次に、光量指令手段101による光量指令処理について説明する。この光量指令処理は、出荷調整時だけでなく通常の運転状態においても繰り返し実行することになる。上述したようにして求められた度数分布の情報に基づいて、例えば、図18のピーク値piのように度数分布において最も頻度の高い箇所は、投射部材8から投射される光の光量値に対応するものである。そこで、この度数分布において最も頻度の高い光量値が適正光量範囲内における適正位置に位置するように、投射部材8から受光手段に向けて投射する光の光量を変更調整するように調光装置85に制御情報を指令する。
【0058】
つまり、図15に示すように、出荷調整時に実行するときは感度補正手段102による感度値が標準の感度値「100」に設定されている状態であるから、図20(イ)に示すように、前記適正光量範囲内における適正位置として、前記投射部材8から前記受光手段に向けて投射する光の光量BGが前記適正光量範囲における中央位置に対応する光量と同じか又はほぼ同じになるように変更調整するように構成されている。
又、通常運転を実行するときのように感度補正手段102による感度補正が行われると、それに対応させて、感度値が標準値「100」より大に設定され前記受光量が増加少するように感度補正されると、適正光量範囲内における適正位置として、例えば図20(ロ)に示すように、投射部材8から投射する光の光量が適正光量範囲の中央値よりもすこし大側の光量の位置になるように変更調整し、感度値が標準値「100」より小に設定され受光量が減少するように感度補正されると、適正光量範囲内における適正位置として、例えば図20(ハ)に示すように、投射部材8から投射する光の光量が適正光量範囲の中央値よりも小側の光量の位置になるように変更調整するよう構成されている。
【0059】
そして、このとき、複数個の受光素子5aに対して投射する光の光量を上述したように受光素子5aの並び方向において複数のブロックBK毎に区分けされた複数個づつの受光素子5a毎に変更調整する構成となっている。説明を加えると、装置の初期設置状態では、例えば、図19(イ)に示すように、各受光素子5aでの並び方向での投射部材8の光量のバラツキは少ないが、検査を長期にわたり実行するに伴って図19(ロ)に示すように左右両端側部分において光量が大きく変動してしまうことがある。例えば、ライン状光源として蛍光灯を用いると長手方向両端側部分の光度が減少して、米粒群kの光量の分布状態と投射部材8の光量との相関関係が中央位置と左右両端側部分とで異なってしまうことがある。又、長期の使用で投射部材8の表面に塵埃が付着して光量が低下することもある。そこで、このような場合には、前記並び方向の中央部分では投射部材8の光量を変化させず、左右両端側に対応するブロックBKの部分だけを投射部材8の光量を明側に変更させることで図19(イ)に示すような初期状態に近い適正な状態に戻すことができるのである。
【0060】
次に、通常運転を実行するときにおける適正光量範囲に対する適正光量範囲補正処理について説明する。この適正光量範囲補正処理は、通常の運転状態を継続して実行しているときに、受光量データが検出されるに伴って適正光量範囲そのものを適宜補正するようにしている。すなわち、図14に示すように、設定時間毎に設定個数の受光量データをサンプリングして、そのデータの中に上側光量値TH1よりも明るい光量値が含まれているときは、前記上側光量値TH1を明側に1段階移動させる一方、前記設定個数の受光量データの中に前記上側光量値TH1よりも明るい光量値が含まれていないときは前記上側光量値TH1を暗側に1段階移動させ、且つ、前記設定個数の受光量データの中に前記下側光量値TH2よりも暗い光量値が含まれているときは前記下側光量値TH2を暗側に1段階移動させる一方、前記設定個数の受光量データの中に前記下側光量値TH2よりも暗い光量値が含まれていないときは前記下側光量値TH2を明側に1段階移動させるのである。
【0061】
そして、上記のように各ラインセンサ5A,5Bの各受光素子5a毎に設定されるとともに、その後補正される前面側及び後面側の適正光量範囲ΔEt,ΔEhの上限値T1及び下限値T2の値は、図10に示すように、前記制御装置10内のメモリLUT(前面側用及び後面側用のLUT)に、不良検出処理用のルックアップテーブルとして記憶される。
このルックアップテーブルについて説明を加えると、位置データi(i=0〜〔受光素子の数−1〕)で表した各受光素子5a毎に、センサ出力電圧をとり得る全ての光量値j(前記256段階の光量値)の範囲で変化させながら、その各値jが前記適正光量範囲ΔEt,ΔEH内であれば、メモリLUTの該当番地(i,j)に判定出力として「0」を記憶させ、適正光量範囲ΔEt,ΔEHを外れていれば、メモリLUTの該当番地(i,j)に判定出力として「1」を記憶させる。そして、前記判別を行うときは、上記作成したメモリLUTに対して、各ラインセンサ5A,5Bの受光素子5aの位置データi(i=0〜〔受光素子の数−1〕)と、その位置iでの各受光素子5aの光量値jとを入力すると、その各受光素子5aについて、正常物のときは判定出力「0」が、不良物のときは判定出力「1」が夫々出力されるので、それに基づいて前記判別手段100が判別を行うのである。
【0062】
以下、具体的に、透過光用及び反射光用の各ラインセンサ5A,5Bの受光出力について説明する。
透過光の場合は、図11の透過光用ラインセンサ5Aの出力波形に示すように、各受光部5aの受光量に対応する出力電圧が米粒群kに対する適正光量範囲ΔEt内にある場合に正常な米粒の存在を判別し、設定適正範囲ΔEtを外れた場合に米粒の不良又は異物の存在を判別する。図中、e0は、正常米粒からの標準的な透過光に対する出力電圧レベルである。そして、適正光量範囲ΔEtよりも小さい場合に、正常な米粒よりも透過率が小さい不良の米粒や異物等(例えば、黒色の石粒)の存在を判別し、適正光量範囲ΔEtよりも大きい場合に、正常な米粒kよりも透過率が大きい明側の不良の米粒k又は前記異物の存在を判別する。この明側の不良の米粒k又は異物の例としては、薄い色付の透明なガラス片等が正常な米粒kよりも透過率が大きい異物になり、又、正常な米粒kを「もち米」としたときの「うるち米」が正常な米粒kよりも透過率が大きい不良の米粒kになる。
【0063】
図11には、受光素子5aの出力電圧(受光量)が、米粒kに一部着色部分が存在する位置や黒色の石等の位置(e1で示す)、及び、胴割れ部分が存在する位置(e2で示す)では、上記適正光量範囲ΔEtよりも下側に位置し、又、正常な米粒よりも透過率が大きい異物等が存在する場合には、位置e3に示すように適正光量範囲ΔEtよりも上側に位置している状態を例示している。
【0064】
一方、反射光の場合には、図12の反射光用のラインセンサ5Bの補正後の出力波形に示すように、各受光部5aの受光量に対応する補正後の出力電圧が適正光量範囲ΔEh内にある場合に正常な米粒の存在を判別し、適正光量範囲ΔEhを外れた場合に前記米粒の不良又は前記異物の存在を判別する。図中、e0’は、正常米粒からの標準的な反射光に対する出力電圧レベルである。図には、米粒kに一部着色部分が存在する位置(e1’で示す)や胴割れ部分が存在する位置(e2’で示す)では、上記適正光量範囲ΔEhから下側に外れている状態を例示し、又、ガラス片等の異物が存在する場合には、異物からの強い直接反射光によって位置e3’に示すように適正光量範囲ΔEhから上側に外れている状態を例示している。又、図示しないが、黒色の石等では、反射率が非常に小さいので、波形において適正光量範囲ΔEhから下側に大きく外れることになる。
【0065】
前記制御装置10は、上記不良の判別情報に基づいて、前記両ラインセンサ5A,5Bの検出位置Jに移送した米粒群kのうちで、米粒の不良又は異物の存在が判別された場合には、検出位置Jから前記噴射ノズル6aによるエアー噴射位置までの移送時間が経過するに伴って、流下している不良の米粒又は異物に対して、その位置に対応する区画の各噴射ノズル6aからエアーを吹き付けて正常な米粒の経路から分離させる。
【0066】
そして、図16に示すように、出荷調整時においては、装置の電源をオンして所定のウオームアップ運転をして、照明光量の安定状態等を十分に確認してから、先ず、前記「リファレンス作成」と、最初の「照明光補正データ作成」の各処理を行う。次に、センサ出力補正と感度補正(但し、標準の感度値)を行い、前記適正光量範囲設定処理及び初回の光量指令処理を実行し、設定された適正光量範囲ΔEt,ΔEhに基づいてメモリLUTを作成する。最後に、エアー吹き付け装置6の各ノズルの作動時間等の排除調整を行う。
【0067】
そして、図17に示すように、通常の検査運転時には、先ず、装置の電源をオンして所定のウオームアップ運転をしてから、そのときの最新の「照明光補正データ作成」を行って照明光量の変化率のデータを算出し、その照明光量の変化率のデータと、前記適正光量範囲ΔEt,ΔEhとを使って、メモリ内のデータを書き換えてメモリLUTを作成する。さらに、感度値の設定が行われると、その感度値の設定に対応させて前記光量調整処理を実行する。又、上記修正後のメモリLUTを用いて、シュート1に米粒群kを供給して検査を開始する。
そして、清掃用の所定時間(30分)が経過すると、米粒群kの供給を止めて検査を停止し、図示しない清掃手段を作動させて窓部14A,14Bの清掃を行うとともに、前記光量範囲補正処理を実行するとともに、その補正結果に対応させて前記光量指令処理を実行して、それらの処理結果を反映させてメモリ内のデータを書き換えてメモリLUTを作成する。そして、以後は、この修正後のメモリLUTを用いて、再び、シュート1に米粒群kを供給して検査を開始する。
【0068】
〔別実施形態〕
以下、別実施形態を列記する。
【0069】
(1)上記実施形態では、前記拡散板81の湾曲形状が予め定めた一定の湾曲形状で固定される構成としたが、このような構成に代えて、その曲率半径が変化するようにこの拡散板81の湾曲形状を変更調整可能なように支持する構成としてもよい。例えば、拡散板81の長手方向両端部を夫々支点として拡散板81の中央部をLED発光素子群との間の距離が接近離間方向に変更可能なようにケーシング83に支持する構成としてもよい。
【0070】
(2)上記実施形態では、複数のLED発光素子を設定個数のブロックBKに区分けして、各ブロック毎に発光出力を変更調整するように構成されるものを例示したが、ブロックに区分けすることなく複数のLED発光素子の夫々を各別に発光出力を変更調整するようにして、小さい範囲内で光量を細かく変更調整できるような構成としてもよい。
そして、このように小さい範囲内で光量を細かく変更調整できるような構成とした場合には、前記拡散板を湾曲させる構成でなく、平坦な形状の拡散板にて構成することができる。
【0071】
(3)上記実施形態では、前記適正光量範囲に対する受光量の感度を補正する感度補正手段が設けられ、その感度設定に対応させて前記投射部材から投射される光の光量値の前記適正光量範囲内における位置を変更調整する構成としたが、このような構成に限らず、常に、一定の位置、例えば、適正光量範囲の中央位置の光量と同じか又はほぼ同じになるように変更調整する構成としてもよい。
【0072】
(4)上記実施形態では、通常運転を実行しているときに、清掃用の所定時間が経過する毎に、前記光量範囲補正処理及び光量指令処理を繰り返し実行する構成としたが、このような構成に限らず、作業を開始するときにだけ前記光量範囲補正処理と光量指令処理を実行する構成としてもよい。
【0073】
(5)上記実施形態では、前記度数分布に基づいて自動的に適正光量範囲の上限値及び下限値を設定するようにしたが、このような構成に限らず、手動操作によって適正光量範囲の上限値及び下限値を設定する構成としてもよい。
【0074】
(6)上記実施形態では、受光手段として、透過光及び反射光用の各ラインセンサ5A,5Bを用いたが、透過光又は反射光用のいずれかのラインセンサ5A,5Bで受光手段を構成してもよい。尚、ラインセンサも、モノクロタイプのCCDラインセンサ以外に、撮像管式のテレビカメラでもよい。又、モノクロタイプではなく、カラータイプのCCDセンサにて構成して、例えば、色情報R,G,B毎の受光量から不良米や異物の存否をさらに精度良く判別してもよい。
【0075】
(7)上記実施形態では、分離手段が、不良物に対してエアーを吹き付けて、正常物と異なる経路に分離させるようにしたが、これに限るものではなく、例えば不良物をエアーで吸引して分離させるようにしたり、機械的な接当作用により分離させる構成としてもよい。
【0076】
(8)上記実施形態では、検査対象物としての粒状体群が米粒群である場合について例示したが、これに限るものではなく、例えば、プラスチック粒等における不良物や異物の存否を検査する場合にも適用できる。
【図面の簡単な説明】
【図1】不良物除去装置の全体側面図
【図2】同要部側面図
【図3】動作状態を示す要部の斜視図
【図4】投射部材を示す図
【図5】制御構成のブロック図
【図6】ラインセンサの受光範囲を示す図
【図7】投射部材の回路構成図
【図8】基準受光量の記憶時の出力波形図
【図9】照明光量の変化状態を示す出力波形図
【図10】不良判別用のメモリのブロック図
【図11】透過光用ラインセンサの出力波形図
【図12】反射光用ラインセンサの出力波形図
【図13】適正光量範囲設定処理を示すフローチャート
【図14】適正光量範囲補正処理を示すフローチャート
【図15】光量指令処理を示すフローチャート
【図16】出荷調整時の制御作動のフローチャート
【図17】通常運転時の制御作動のフローチャート
【図18】度数分布を示すグラフ
【図19】各受光素子の適正光量範囲を示す図
【図20】度数分布を示すグラフ
【符号の説明】
4       照明手段
5       受光手段
6       分離手段
8       投射部材
80      LED発光素子
81      拡散板
85      発光出力調整手段
100     判別手段
102     感度補正手段
H       移送手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is directed to a lighting unit that illuminates an expected location of an inspection target with a group of particulates passing in a single layer state and a wide state in a lateral direction as an inspection target, and receives light from the expected location. A light receiving means, a light receiving direction of the light receiving means, a projecting member arranged at a position on the back side of the expected location and projecting light toward the light receiving means, and a light receiving amount of the light receiving means being the granular material The present invention relates to a defective object detection device provided with a discriminating means for judging the presence of a defective object when a detection light amount from a normal object in a group is out of a proper light amount range, and a separation device using the same.
[0002]
[Prior art]
In the defective object detection device, a particle group such as a rice particle group that passes in a single-layer state and a wide state in a lateral direction as an inspection target is illuminated by a lighting unit such as a fluorescent lamp at a place where the particle group is expected to exist. The illumination light is reflected by the granular material group at the expected existence position, the transmitted light transmitted through the granular object group, and the light projected from the projection member provided on the back side of the expected existence position is CCD. Light is received by a light receiving means such as a sensor, and it is determined whether or not the amount of received light is out of an appropriate light amount range for detection light from a normal object in the group of granular materials. Further, in the separation apparatus using such a defective object detection device, the defective object whose presence is detected as being out of the appropriate light amount range by the above-described determination is conveyed to a lower side than the above-mentioned expected existence position. Then, as a separating means, for example, it is configured to be separated into a path different from a normal one by an air blowing operation or the like by an air blowing device.
[0003]
Conventionally, there has been a configuration in which the projection member is provided with a single lamp capable of changing the light emission output so that the amount of light projected from the projection member toward the light receiving means can be changed and adjusted. (See Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Publication No. 6-10635 (pages 1 to 3, Fig. 3)
[0005]
[Problems to be solved by the invention]
By the way, although no specific configuration is mentioned in the above-mentioned known document, a fluorescent lamp is generally used as the lamp. In other words, a long fluorescent lamp is suitable for illuminating the granular material group that passes in a single state and wide in the horizontal direction as uniformly as possible with one lamp.
When the amount of light projected from the projection member toward the light receiving unit is changed and adjusted using the fluorescent lamp, the range of the dimmable light amount of the fluorescent lamp is small. The adjustment range for changing and adjusting the amount of light projected from the light source to the light receiving means is limited to a narrow range.For example, another kind of granular material group in which reflected light has a significantly different amount of transmitted light is to be inspected. In the case of a product, it could not be handled.
[0006]
In the case of a fluorescent lamp, there is an electrode forming portion having a predetermined width at both ends in the longitudinal direction of the light emitting portion, and light is not projected from this electrode forming portion. In order to illuminate the entire width of the granular material group passing in a wide state, the electrode forming portion exists even if the horizontal width of the granular material group and the longitudinal width of the light emitting portion of the fluorescent lamp are the same. Therefore, the lateral dimension of the projection member is larger than the lateral width of the granular material group, and the cylindrical fluorescent lamp has a relatively large width not only in the longitudinal direction but also in the radial direction. There is a disadvantage that the projection member provided with the fluorescent lamp becomes a large member, and as a result, the entire device becomes large.
[0007]
Further, in the case of a fluorescent lamp, there is a disadvantage in that the light quantity is greatly deteriorated due to aging, and it is necessary to replace the fluorescent lamp with a new one after a short period of use, which is troublesome.
[0008]
The present invention has been made by paying attention to such a point, and its object is to reduce a troublesome labor such as replacement of a light emitting member and to make it possible to widen a light amount change adjustment range of a projection member. Another advantage is that the size of the projection member can be reduced and the apparatus can be made more compact.
[0009]
[Means for Solving the Problems]
The defective object detection device according to claim 1, wherein the particle group that passes in a single-layer state and a wide state in a lateral direction is set as an inspection target, and an illuminating unit that illuminates an expected location of the inspection target, and Light-receiving means for receiving light from the expected location; a light-receiving direction of the light-receiving means; a projection member disposed at a location on the back side of the expected location to project light to the light-receiving means; and Determining means for determining the presence of a defective object when the amount of received light is out of an appropriate light amount range for detection light from a normal object in the particulate group, wherein the projecting member includes A plurality of LED light-emitting elements arranged side by side along the lateral width direction of the planned location, and a light diffused by the plurality of LED light-emitting elements arranged on the light projection side of an area where the plurality of LED light-emitting elements are installed Expand It is constituted by a plate, characterized in that is provided with a change adjustable luminous output adjusting means the light emission amount of the plurality of LED devices.
[0010]
The projection member emits light from the plurality of LED light emitting elements, diffuses the emitted light with a diffusion plate to make the light substantially uniform, and projects the light from the back side toward the light receiving means. Then, by changing and adjusting the light emission amount of the plurality of LED light emitting elements by the light emission output adjusting means, it is possible to change the light amount of the light projected toward the light receiving means.
[0011]
Since the light emitting output of the LED light emitting element can be arbitrarily changed and adjusted from zero to the maximum output by adjusting the current supply amount, it is necessary to change and adjust the light amount of the light projected from the projecting member toward the light receiving means over a wide range. Becomes possible. Moreover, since the LED light emitting element is a small member, even if the LED light emitting element is arranged along the lateral width direction of the expected location, it can be accommodated in substantially the same width as the expected location. The dimension along the direction intersecting the arrangement direction can be reduced to a small dimension. That is, the projection member can be configured as a small member, and the installation space for installing the projection member can be reduced, and the entire apparatus can be reduced in size.
Further, since the LED light emitting element is hardly deteriorated in light amount due to aging, there is little possibility that the light amount will be reduced even if it is used for a long period of time.
[0012]
Therefore, it is possible to reduce the troublesome work such as replacement of the light emitting member, to increase the adjustment range for changing the light amount of the projection member, and to reduce the size of the projection member to make the apparatus compact. Was.
[0013]
In the defective object detection device according to claim 2, in claim 1, the diffusion plate has a large separation distance between each of the LED light-emitting elements in a central portion in a direction in which the plurality of LED light-emitting elements are arranged, At both ends in the arrangement direction, the light emitting device is characterized by being provided in a curved state so that the distance between each LED light emitting element is small.
[0014]
For example, if the distance between the diffusion plate and each LED light emitting element is the same over the entire area in the arrangement direction, even if the amount of light output from each of the plurality of LED light emitting elements is the same, the expected location In the vicinity of the center in the width direction, the light projection amount becomes the largest, and the light projection amount becomes smaller toward both ends in the width direction of the expected location, and the light projection amount is not uniform. Therefore, a diffusion plate for diffusing the light emitted by the plurality of LED light emitting elements has a large separation distance from each LED light emitting element in the center in the arrangement direction, and each LED light emission light is located at both ends in the arrangement direction. By curving so that the separation distance from the element is small, it is possible to suppress the concentration of light in the vicinity of the center of the planned location in the width direction and to achieve a substantially uniform projection amount over the entire width of the planned location. It is possible to project light.
[0015]
According to a third aspect of the present invention, in the defect detection device according to the first or second aspect, the light-emission output adjusting unit divides the plurality of LED light-emitting elements into a set number of blocks in a direction in which the plurality of LED light-emitting elements are arranged. The light emitting output is configured to be changed and adjusted.
[0016]
That is, the plurality of LED light emitting elements are divided into a set number of blocks in the arrangement direction, and the light emission output is changed and adjusted for each block, so that the LED light emitting element group of each block projects light. It is possible to change the light emission output for each of the plurality of regions divided along the width direction of the region where the existence is expected, that is, even if there is a variation in the amount of light between the regions. By adjusting the light amount separately for each block, it is possible to project with a substantially uniform projection amount over the entire area in the lateral width direction of the location where the existence is expected.
[0017]
In order to project with a uniform projection amount over the entire area in the lateral width direction of the expected location, all the LED light emitting elements are individually adjusted in light amount without being divided into a plurality of blocks as described above. Although it is conceivable, this configuration has a disadvantage that the circuit configuration becomes very complicated and the cost increases.However, by adjusting the amount of light for each block, it is possible to avoid the cost increase due to the significant complexity of the configuration. Therefore, it is possible to perform projection with a uniform projection amount as much as possible.
[0018]
The defective object detection device according to claim 4, wherein the determination unit is configured to sample the light receiving amount of the light receiving unit at a set time interval, and the appropriate light amount range is set. Is set to obtain a frequency distribution for each light amount value obtained by dividing the range from the dark side to the light side into a plurality of stages, for the set number of received light amount data obtained by the sampling. Means, based on the information on the frequency distribution of the discriminating means, adjusts the amount of light emitted from each of the LED light emitting elements so that the most frequent light amount value in the frequency distribution is located at an appropriate position within the appropriate amount of light range. It is characterized in that it is configured to change and adjust.
[0019]
That is, the light receiving amount of the light receiving means is sampled at a set time interval, and a frequency distribution for each light amount value obtained by dividing the range from the dark side to the light side into a plurality of steps is obtained for the set number of received light amount data obtained by the sampling. Can be This frequency distribution is obtained to set the appropriate light amount range. For example, the upper limit and the lower limit of the appropriate light amount range are appropriately set based on the frequency distribution. Then, based on the obtained information on the frequency distribution, the light emission amounts of the respective LED light emitting elements are changed and adjusted so that the light amount having the highest frequency in the frequency distribution is located at an appropriate position within the appropriate light amount range. is there. Incidentally, the most frequent light amount value in the frequency distribution is the light amount value of the light projected from the projection member to the light receiving means. In addition, if the particulate group does not exist at the expected location, the light projected from the projection member is always received by the light receiving means, so the light amount value of the light projected from the projection member is It is always the most frequent light quantity value in the frequency distribution. Therefore, the most frequent light amount value in the obtained frequency distribution is set as the light amount value of the light projected from the projection member at that time, and the light amount is changed and adjusted so that the light amount value is located at an appropriate position within the appropriate light amount range. You do it.
The appropriate position in the appropriate light amount range may be, for example, a central value of the appropriate light amount range, a value slightly higher than the median value, or a value slightly darker than the median value. There are cases.
[0020]
Therefore, the reflected light reflected by the granular body group or the transmitted light transmitted through the granular body group varies, and the range of the light amount in which the light amount is distributed, that is, the distribution area may be variously changed. By adjusting the light quantity value of the light projected from the projection member so as to be at an appropriate position within the appropriate light quantity range in accordance with the distribution state of the detected light quantity of the granular body group to be actually inspected, It has become possible to improve the accuracy when discriminating an object.
[0021]
According to a fifth aspect of the present invention, in the defective object detection device according to the fourth aspect, the light emission output adjusting unit determines a light amount of light projected from the projection member toward the light receiving unit as a proper position within the proper light amount range. It is characterized in that the light amount is changed and adjusted to be equal to or substantially equal to the light amount corresponding to the center position in the appropriate light amount range.
[0022]
That is, the light quantity projected from the projection member toward the light receiving means is changed and adjusted so as to be equal to or substantially equal to the light quantity corresponding to the center position in the appropriate light quantity range. The appropriate light amount range is set based on the distribution area in the variation in the light amount of the reflected light and the transmitted light from the granular material group, and the light amount corresponding to the central position in the appropriate light amount range is substantially equal to the distribution area. It corresponds to the center position, which is the average value of the amount of reflected light and transmitted light from the granular material group, so that the amount of light projected from the projection member and the reflection from the normal object in the granular material group The difference between the amount of light and the amount of transmitted light is as small as possible, and the accuracy of discrimination between a normal object and a defective object can be improved.
[0023]
According to a sixth aspect of the present invention, there is provided the defective object detection apparatus according to the fourth or fifth aspect, wherein a correction coefficient for increasing or decreasing the amount of light received from the light receiving means is changed and set to correct the sensitivity of the amount of light received in the appropriate light amount range. Means is provided, and when the light emission output adjusting means corrects the sensitivity so as to reduce the amount of received light in response to the sensitivity correction by the sensitivity correcting means, the light emission output adjusting means sets the projection position as an appropriate position within the appropriate light amount range. When the amount of light projected from the member toward the light receiving means is changed and adjusted so that the amount of light is smaller than the central value of the appropriate light amount range, and the sensitivity is corrected so that the amount of received light increases, As an appropriate position within the appropriate light amount range, the light amount of the light projected from the projection member toward the light receiving unit is changed and adjusted so as to be a light amount on the larger side than the central value of the appropriate light amount range. Made is characterized in that is.
[0024]
That is, when the sensitivity is corrected so that the amount of light received from the light receiving unit is increased by the change setting of the correction coefficient, the light amount of light projected from the projection member is reduced to a light amount larger than the central value of the appropriate light amount range. It will be adjusted and adjusted so that On the other hand, when the sensitivity is corrected so that the amount of light received from the light receiving means is reduced by the change setting of the correction coefficient, the amount of light projected from the projection member is reduced to the amount of light smaller than the central value of the appropriate amount of light range. It is changed and adjusted to become.
[0025]
That is, when the sensitivity is corrected so that the amount of light received from the light receiving unit is increased, the light amount of light projected from the projection member becomes a light amount on the larger side than the central value of the appropriate light amount range. The light amount difference between the light amount of the defective object that deviates from the appropriate light amount range on the dark side and the light amount of the light projected from the projection member becomes large. At this time, the lower limit of the dark side of the appropriate light amount range is slightly higher than the standard value. By changing the setting to a value, it becomes possible to make it easy to avoid erroneous detection of a defective object that deviates from the appropriate light amount range to the dark side. On the other hand, if the sensitivity is corrected so that the amount of light received from the light receiving unit is reduced, the amount of light projected from the projection member becomes larger than the median of the appropriate light amount range, The light amount difference between the light amount of the defective object that deviates from the appropriate light amount range to the light side and the light amount of the light projected from the projection member becomes large, and at this time, the upper limit of the light amount of the appropriate light amount range is slightly higher than the standard value. By changing the value to a value, it becomes possible to make it easy to avoid erroneous detection of a defective object that deviates from the appropriate light amount range to the bright side.
[0026]
A separation device according to a seventh aspect is a separation device provided with the defective object detection device according to any one of the first to sixth aspects, wherein the granular material group as an inspection target is moved along a predetermined transfer path. Transfer means for transferring to the expected location and a separation point on the lower side of the route than the location of the expected location so as to pass in a wide state in the horizontal direction in a single layer state, and transported to the separation point It is characterized by comprising a separation means for separating a normal substance and a defective substance in the group of granular materials into different paths.
[0027]
In other words, the group of particulates is transported along the planned transfer path by the transfer means over the planned existing location and the separation location located on the lower side of the route from the position of the planned existing location. At the expected existence location, the defective object determination processing is performed by the above-described defective object detection device, and at the separation point on the lower side of the route, the separation unit is operated based on the determination result of the defective object detection device. That is, the normal object and the defective object in the group of granular materials are separated into different paths.
[0028]
In such a separation device, it is preferable that the separation distance between the expected existence location and the separation location be as short as possible in order to improve the separation accuracy. However, as described above, a plurality of LED light emitting elements are used as the light source. Since the projection member having the above structure can be reduced in size, the installation location of the separation means can be made closer to the expected location, and the separation distance can be made as short as possible. Therefore, the separation distance between the expected location and the separation location can be shortened to improve the separation accuracy.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the defect detection device according to the present invention and the embodiment of the separation device using the same will be described as an example of a granular material group, while detecting and detecting a defective particle such as a rice grain group such as brown rice or polished rice as an inspection target. A case where the present invention is applied to a defective object removing device for removing will be described with reference to the drawings. Hereinafter, the defective object removing apparatus will be described.
[0030]
As shown in FIGS. 1 and 2, a wide plate-like shooter 1 is installed at a predetermined angle (for example, 60 degrees) with respect to a horizontal plane, and a storage tank 7 provided on the upper side of the shooter 1. The rice grain group k conveyed and supplied by the feeder 9 is guided downward while the upper surface of the chute 1 is spread in a horizontal direction in a single state (see FIG. 3). Since FIG. 3 is an explanatory diagram of the operation, the arrangement of the device configuration is different from FIGS. 1 and 2 in some places. Here, the shooter 1 is a plane shooter formed on a flat guide surface over the entire width in the width direction. Here, since the purpose is to transfer the particles in a single layer state, even if the particles partially overlap depending on the flow state to form a two-layer state or the like, the concept of the single layer state is included.
[0031]
The storage tank 7 stores a rice grain group k supplied from an external rice mill or the like, and a normal or defective product that is re-sorted after the primary sorting process of the rice grain group k from the outside. The tank 7 is formed in a tapered cylindrical shape toward the lower end, and the supply amount of the rice grains k dropped from the storage tank 7 onto the feeder 9 to the shooter 1 is changed by changing the transport speed of the rice grains k by the vibration of the feeder 9. Adjusted.
[0032]
As shown in FIG. 2, an expected location (hereinafter, referred to as a detection location J) where the presence of the rice grain group k is set is set in the scheduled transport path IK in which the rice grain group k moves and falls from the lower end of the chute 1. Have been. Note that the rice grain group k is configured to be conveyed so as to pass through the detection portion J formed wide along the width direction in a state of being spread in the width direction.
[0033]
A front side linear light source 4B that illuminates the front side (left side in FIG. 2) of the planned transfer path IK and a rear side linear light source 4A that illuminates the rear side (right side in FIG. 2) of the planned transfer path IK are provided. ing. Diffusion transmission plates 18A and 18B are disposed on the path of the illumination light connecting the linear light sources 4A and 4B and the detection point J, respectively, and cover the back side and part of the side of the linear light sources 4A and 4B. In this state, the curved diffuse reflection plates 20A and 20B having matte white paint on the inner surface are arranged. The two linear light sources 4A and 4B constitute an illuminating means 4 for illuminating a detection location J as a location where rice grains are expected to exist.
[0034]
A front-side line sensor 5B that receives reflected light from the front-side linear light source 4B reflected on the front side of the detection location J, and illumination light from the rear-side linear light source 4A detects the detection location J. A rear-side line sensor 5A for receiving the light reflected on the rear side is provided, and the light-receiving means 5 for receiving the light from the detection point J is constituted by the two line sensors 5A and 5B.
Each of the linear light sources 4A and 4B includes a lower light source that illuminates the detection location J from obliquely below so as to illuminate the rice grain group k from a plurality of directions inclined with respect to the light receiving direction of each of the line sensors 5A and 5B. And an upper light source that illuminates the detection location J from obliquely above. The detection location J is thus illuminated from different directions by changing the illumination angle of the illumination light, and even if the rice grain group k is shifted laterally from the normal detection location J, the illumination is preferably performed in a uniform state as much as possible. I can do it.
[0035]
As shown in FIG. 6, the two line sensors 5A and 5B include a plurality of light receiving elements 5a as a plurality of light receiving sections for receiving light from the wide detection point J along the width direction of the detection point J. It is configured to be juxtaposed. In other words, a plurality of light receiving elements 5a having a range p smaller than the size of each rice grain of the rice grain group (for example, about one-tenth of the size of the rice grain) as a light receiving target range is set at the wide detection point J. It is provided in a state of being lined up correspondingly.
Each of the line sensors 5A and 5B includes a monochrome CCD sensor unit 50 in which the light receiving elements 5a are arranged in a straight line, and an image of the rice grain group k at the detection location J on each of the light receiving elements 5a of the CCD sensor. The optical system 51 forms an image. For example, in FIG. 3, each light receiving information is sequentially extracted from each light receiving element 5a from the right end side to the left end side of the detection point J.
[0036]
A projection member 8 is disposed in the light receiving direction of each of the line sensors 5A and 5B and at a position on the back side of the detection point J and projects light toward each of the line sensors 5A and 5B. The projection member 8 includes a plurality of LED light-emitting elements 80 arranged in a dense state along the width direction of the detection location J, and a light-projecting side of an area where the plurality of LED light-emitting elements 80 are installed. And a diffusion plate 81 for diffusing the light emitted by the plurality of LED light emitting elements 80.
[0037]
More specifically, as shown in FIG. 4, the inside of a casing 83 which is configured to be long along the width direction of the detection portion J, has a substantially rectangular cross-sectional shape, and has an open front side portion. In addition, an LED substrate 82 on which a plurality of LED light emitting elements 80 are installed is provided. As shown in FIG. 4B, the LED board 82 is installed in a state where a plurality of LED light emitting elements 80 are arranged in a dense state along the horizontal width direction. The LED board 82 is attached to a heat radiating plate 84 made of an aluminum plate screwed to a casing 83 via a silicon heat radiating resin. On the other hand, on the front side of the LED substrate 82, a diffusion plate 81 for diffusing the light emitted by the LED light emitting elements 80 is provided between the LED light emitting elements 80 at the center in the direction in which the plurality of LED light emitting elements 80 are arranged. The separation distance is large, and it is provided in a curved state so that the separation distance from each LED light emitting element 80 is small at both ends in the arrangement direction. By curving the diffusion plate 81 in this way, the light intensity at the detection point J is prevented from being biased such that the light intensity at the center in the width direction becomes large and the light intensity at the end portion becomes small. The strength is made as uniform as possible in the width direction.
[0038]
Then, as shown in FIG. 7, the plurality of LED light emitting elements 80 are divided into a set number (about several to about 10) of blocks BK in the arrangement direction, and the LED light emitting elements 80 are collectively arranged for each block BK. A light adjusting device 85 is provided as light emitting output adjusting means capable of changing and adjusting the light emitting output of the light emitting device. The light control device 85 is configured to change and adjust the light output of the LED light emitting element 80 for each block BK based on a control command from the control device 10 described later.
[0039]
As shown in FIG. 2, the front-side linear light source 4B, the front-side line sensor 5B, and the rear-side reflection plate 8A are stored in one storage portion 13B, and the rear-side linear light source 4A, the rear-side line sensor 5A, and the front-side The reflection plate 8B is stored in the other storage portion 13A, and both storage portions 13A and 13B are formed as a unitary box having a common side plate. Each storage portion 13A and 13B has a plate-like shape on the side facing the detection location J. The transmission windows 14A and 14B made of transparent glass are provided. That is, the linear light sources 4A and 4B and the line sensors 5A and 5B are accommodated in the accommodating portions 13A and 13B provided with the transmission windows 14A and 14B on the side facing the detection point J, respectively. , 4B illuminate the detection location J through the transmission windows 14A, 14B, and each line sensor 5A, 5B is configured to receive light from the detection location J through the transmission windows 14A, 14B. .
[0040]
At a separation point on the lower side of the planned transfer path IK from the detection point J, air is blown to defective rice grains and foreign matters determined to be defective based on the received light information at the detection point J, and normal rice grains are blown. An air blowing device 6 for separating the group k from the moving direction is provided. The air blowing device 6 divides a plurality of the injection nozzles 6a into a plurality of sections with a predetermined width over the entire width of the planned transfer path IK. It is arranged so that it is juxtaposed in a state corresponding to each formed section, and the ejection nozzle 6a of the section in which a defective exists is operated.
[0041]
In other words, the shooter 1 functions as a transport unit that transports the rice grain group k in a state where the rice grain group k is spread in the horizontal direction in a single layer state and passes through the detection point J that is formed wide along the lateral width direction. k is transferred to the detection point J along the scheduled transfer path IK and to the separation point on the lower side of the path from the position of the detection point J, and the air blowing device 6 is configured to This constitutes a separating means for separating the normal and defective ones of the group of granular materials transferred to the separation location into different paths.
[0042]
Then, of the rice grains k flowing down from the lower end of the shooter 1 along a predetermined path, for recovering the normal rice grains k that have progressed without being blown by the air from the injection nozzle 6a. Receiving portion 2B and a defective product for collecting defective rice such as colored rice and cracked rice, which are laterally separated from a normal flow of rice grains k by blowing air, and foreign matter such as stone and glass fragments. A receiving portion 3B is provided, and a receiving portion 2B for good rice is formed in a tubular shape elongated in the width direction, and a receiving port for defective products is formed so as to surround the receiving portion 2B for good rice. A portion 3B is formed. The rice grains k collected at the good rice receiving portion 2B and the defectives collected at the defective product receiving portion 3B are collected by the tank 7 of the inspection apparatus for re-sorting and the like. Or to another inspection device.
[0043]
As shown in FIG. 1, a vertical frame F2, F3, F4 erected on a bottom plate F1 having a leg F0 is connected by horizontal frames F5, F6, F7 to form a machine frame. An operation console 21 for displaying and inputting information is installed on the upper oblique portion of the front vertical frame F4, a vibration generator 9A for the feeder 9 is installed on the horizontal frame F5, and air supply to the air blowing device 6 is performed. Air tank 15 is installed on the bottom plate F1. The box-shaped storage portions 13A and 13B are supported by the vertical frame F4 on the front side and the vertical frame F3 on the rear side, and the chute 1 is supported by the horizontal frame F6 on the upper side and the storage portion 13B on the lower side. . A cover K covering the outer surface of the apparatus is attached to the machine frame.
[0044]
Next, the control configuration will be described. As shown in FIG. 5, a control device 10 using a microcomputer is provided, and the control device 10 receives image signals from both line sensors 5A and 5B and operation information from the console 21 as input. I have. On the other hand, from the control device 10, a drive signal to a lighting circuit 19 for lighting the linear light sources 4A and 4B, a drive signal to a plurality of solenoid valves 11 for turning on and off each air supply to each injection nozzle 6a, A drive signal for the feeder vibration generator 9A and a control command signal to the dimmer 85 are output.
[0045]
Utilizing the control device 10, a discriminating means 100 for discriminating the presence or absence of a defective substance in the rice grain group k based on the light reception information of the transmission and reflection line sensors 5A and 5B is configured. The detection light (transmitted light and reflected light) from the rice grain group k, that is, the amount of light received by the transmission and reflection line sensors 5A and 5B indicates the appropriate light amount range (ΔEt for transmitted light, ΔEh for reflected light). When it comes off, it is configured to determine the presence of a defective object. Further, in order to set the appropriate light amount range, the determination means 100 determines the set number of received light amount data obtained by sampling the received light amounts of the transmission and reflection line sensors 5A and 5B at set time intervals. It is configured to obtain a frequency distribution for each received light amount divided into a plurality of stages from the dark side to the light side, and to automatically set an upper limit value and a lower limit value of the appropriate light amount range based on the power distribution. It is configured. In addition, the light receiving unit is configured to execute a process of determining whether the received light amount is outside the appropriate light amount range and a process of obtaining the frequency distribution for each of the light receiving units.
[0046]
Further, using the control device 10, based on the information on the frequency distribution of the determination means 100, the light amount value of the light projected from the projection member 8 having the highest frequency in the frequency distribution is within the appropriate light amount range. Light amount command means for instructing the dimming device 85 with control command information to change and adjust the light amounts of light projected from the projection member 8 to the transmission and reflection line sensors 5A and 5B so as to be located at appropriate positions. 101 is configured. Therefore, the light quantity commanding means 101 and the dimmer 85 constitute light quantity adjusting means KT for changing and adjusting the light quantity of light projected from the projection member 8 to the transmission and reflection line sensors 5A and 5B. .
[0047]
Next, various correction processes of the received light data for setting the appropriate light amount range will be described.
First, an inspection reference material Kj having the same transmittance and reflectance as the normal material in the rice grain group k is located at the detection position J, and as shown in FIG. 8, the transmission and reflection line sensors 5A and 5B. The respective light receiving information received by is obtained as reference light receiving amount information. That is, the reference light receiving amount Si of the transmitted light and the reference light receiving amount Si ′ of the reflected light (i = 0 to [the number of light receiving units−1]) are stored for each light receiving unit 5a of each of the sensors 5A and 5B, and at the same time, Then, average values Sm and Sm 'of the reference light receiving amounts Si and Si' are obtained (this process is referred to as "reference creation"). Here, the inspection reference object Kj is formed of a long white resin plate or the like corresponding to the long detection position J. Note that separate inspection reference objects Kj may be used for transmitted light and reflected light.
[0048]
In addition, a change in the amount of illumination light from the illumination light sources 5A and 5B is detected. Specifically, when the illumination light amount is sufficiently stable, as shown in FIG. 9, the light amount of the projection member 8 is set to the inspection reference value, and the output of each light receiving element 5a of the reflection line sensor 5B is set. The voltage r [i] (i = 0 to [number of light receiving elements−1]) is measured as a reference illumination light value, and an average value rm of all the light receiving portions is obtained (this process is referred to as “illumination light correction”). Data creation ”). On the other hand, at the latest time when the actual inspection is performed, the output voltage r '[i] of each light receiving section 5a of the reflection line sensor 5B is measured, the average value rm' of all the light receiving sections is obtained, and the reference illumination is obtained. The ratio (rm '/ rm) between the average value rm of the light amount value and the average value rm' of the latest illumination light value is defined as the change rate of the illumination light amount. Note that, instead of the reflection reflector 8B, the change rate of the illumination light amount may be obtained from light reception information of the transmission line sensor 5A that receives the reflected light from the transmission reflection plate 8A.
[0049]
Note that, in order to obtain a stable state of the illumination light amount, the measurement of the reference light amount is performed after a sufficient time has elapsed after lighting, for example, during shipping adjustment. Further, during the actual inspection operation, if inspection is performed for a predetermined time (for example, 30 minutes), the windows 14A and 14B are cleaned by a cleaning unit (not shown). After the cleaning, the illumination light amount is measured.
[0050]
Then, for each sensor output voltage j of the transmitted light and the reflected light, in order to cancel the deviation of the reference light receiving amounts Si, Si 'of the respective light receiving elements 5a from the average values Sm, Sm' of the reference light receiving amounts, the average of the reference light receiving amounts is calculated. The value Sm, Sm 'is multiplied by the ratio of the reference light receiving amount Si, Si' of each light receiving element 5a, and further divided by the change rate (rm '/ rm) of the illumination light amount in order to cancel the influence of the fluctuation of the illumination light amount. As described above, the corrected output voltages jt and jh (sensor correction outputs) of the transmitted light and reflected light sensors 5A and 5B are obtained by performing the correction processing based on the following equation.
[0051]
(Equation 1)
Sensor correction output jt = j × (Sm / Si) × (rm / rm ′)
Sensor correction output jh = j × (Sm ′ / Si ′) × (rm / rm ′)
[0052]
Next, a sensitivity correction process is performed on the sensor correction outputs jt and jh. Here, the sensitivity value is set to a standard value (100). When the sensitivity value is set to be larger than “100” (for example, 110) during the actual inspection operation, the deviation (jt−j) of the sensor correction outputs jt and jh from the average values Sm and Sm ′ of the reference light receiving amounts. Sm) and (jh-Sm ') are increased and the detected light reception amount is corrected to increase. When the sensitivity value is set to a value smaller than "100" (for example, 90), the deviations (jt-Sm) and (jh) are set. −Sm ′) are obtained, and the sensitivity correction outputs jk and jk ′ of the transmitted light and the reflected light, in which the detected light reception amount is reduced and corrected so as to be smaller, are obtained.
[0053]
(Equation 2)
Sensitivity correction output jk = (sensitivity value / 100) × (jt−Sm) + (Sm)
Sensitivity correction output jk ′ = (sensitivity value / 100) × (jh−Sm ′) + (Sm ′)
[0054]
That is, the control device 10 is used to change and set a correction coefficient (sensitivity value) for increasing or decreasing the amount of light received from the transmission and reflection line sensors 5A and 5B (jt and jh in the above formula). And a sensitivity correcting means 102 for correcting the sensitivity of the amount of received light to the appropriate light amount range. When the sensitivity value is changed to a value greater than “100”, for example, “110”, and the amount of received light is increased, the increased amount of received light is likely to be out of the appropriate light amount range, and the sensitivity of defect determination is increased. On the other hand, if the sensitivity value is changed to a value smaller than "100", for example, "90" to reduce the amount of received light, it is difficult for the reduced amount of received light to fall outside the appropriate light amount range, and the sensitivity of the defect determination is reduced. , The sensitivity of the received light amount in the appropriate light amount range of the transmitted light and the reflected light is corrected. This sensitivity adjustment is manually performed by an operator using the console 21.
[0055]
Next, an appropriate light amount range setting process by the determination unit 100 will be described. Note that this proper light amount range setting processing is executed at the time of shipment adjustment of the apparatus.
For a set number of received light amount data obtained by sampling at set time intervals for each light receiving element 5a of each of the line sensors 5A and 5B, the light amount value divided into a plurality of stages from the dark side to the bright side is obtained. A frequency distribution (also called a histogram) is obtained, and the appropriate light amount range is set based on the frequency distribution.
[0056]
Specifically, as shown in FIG. 13, in a state where the illumination light amounts from the illumination light sources 5A and 5B are sufficiently stable, the rice grains k are flown, and the setting is performed for each light receiving element 5a of each of the line sensors 5A and 5B. The received light amount data, that is, the output voltage is sampled at time intervals, and the output voltage is converted into 256 digital values. In this case, the air blowing device 6 is not operated. Thereafter, the supply of the rice grain group k is stopped, and, for example, as shown in FIG. 18, for each light receiving element 5a, a set number of sampled output voltages is divided into a plurality of stages from the dark side to the light side. A frequency distribution hg is obtained for each of the received light amounts. Then, in the frequency distribution hg, an upper light amount value TH1 is set corresponding to a position near the upper end of a continuous area in which frequency values for each light reception amount continuously exist from the dark side to the bright side, and The upper limit value T1 of the appropriate light amount range ΔEt, ΔEh is set at a position away from the light amount value TH1 by the set light amount K1 on the bright side, and the lower light amount value TH2 is set corresponding to a position near the lower end of the continuous area. At the same time, the lower limit value T2 of the appropriate light amount ranges ΔEt and ΔEh is set at a position away from the lower light amount value TH2 by a set light amount K2 toward the dark side. The respective set light amounts K1 and K2 are set in advance as control constants. The upper limit value T1 and the lower limit value T2 of the appropriate front and rear side light amount ranges ΔE1 and ΔE2 to be set and corrected for each light receiving element 5a of each of the line sensors 5A and 5B as described above are described later. This is stored in a memory LUT (front side and rear side LUTs) in the controller 10 as a lookup table for a failure detection process.
FIG. 19A shows the proper light amount range set for each light receiving element 5a in this manner continuously along the direction in which the light receiving elements 5a are arranged.
[0057]
Next, the light intensity command processing by the light intensity instruction means 101 will be described. This light amount command processing is repeatedly executed not only at the time of shipment adjustment but also in a normal operation state. Based on the information on the frequency distribution obtained as described above, for example, the most frequent portion in the frequency distribution such as the peak value pi in FIG. 18 corresponds to the light amount value of the light projected from the projection member 8. Is what you do. Therefore, the dimming device 85 is configured to change and adjust the light amount of the light projected from the projection member 8 toward the light receiving unit so that the most frequent light amount value in the frequency distribution is located at an appropriate position within the appropriate light amount range. To the control information.
[0058]
That is, as shown in FIG. 15, when the adjustment is performed at the time of shipment adjustment, the sensitivity value by the sensitivity correction unit 102 is set to the standard sensitivity value “100”. As an appropriate position in the appropriate light amount range, the light amount BG of light projected from the projection member 8 toward the light receiving unit is equal to or substantially equal to the light amount corresponding to the central position in the appropriate light amount range. It is configured to adjust for changes.
Further, when the sensitivity correction is performed by the sensitivity correction means 102 as in the case of performing the normal operation, the sensitivity value is set to be larger than the standard value “100” and the amount of received light increases and decreases accordingly. After the sensitivity is corrected, as shown in FIG. 20 (b), for example, as shown in FIG. 20 (b), the light quantity of the light projected from the projection member 8 is set to a proper position within the proper light quantity range. When the sensitivity is set to be smaller than the standard value “100” and the sensitivity is corrected so that the amount of received light is reduced, the position is adjusted to an appropriate position within the appropriate light amount range, for example, as shown in FIG. As shown in (2), the light quantity of the light projected from the projection member 8 is changed and adjusted so as to be at a position of the light quantity smaller than the central value of the appropriate light quantity range.
[0059]
At this time, the amount of light projected onto the plurality of light receiving elements 5a is changed for each of the plurality of light receiving elements 5a divided into a plurality of blocks BK in the arrangement direction of the light receiving elements 5a as described above. It is configured to adjust. In addition, in the initial installation state of the apparatus, for example, as shown in FIG. 19A, the light amount of the projection member 8 in the arrangement direction of each light receiving element 5a is small, but the inspection is performed for a long time. Accordingly, as shown in FIG. 19B, the light amount may fluctuate significantly at both left and right end portions. For example, when a fluorescent lamp is used as the linear light source, the luminous intensity at both ends in the longitudinal direction decreases, and the correlation between the distribution of the amount of light of the rice grain group k and the amount of light of the projection member 8 is different between the central position and the left and right end portions. May be different. In addition, dust may adhere to the surface of the projection member 8 over a long period of time, and the amount of light may decrease. Therefore, in such a case, the light amount of the projection member 8 is not changed in the central portion in the arrangement direction, and the light amount of the projection member 8 is changed to the bright side only in the blocks BK corresponding to the left and right ends. Thus, it is possible to return to an appropriate state close to the initial state as shown in FIG.
[0060]
Next, a description will be given of an appropriate light amount range correction process for the appropriate light amount range when performing the normal operation. In the appropriate light amount range correction process, when the normal operation state is continuously performed, the appropriate light amount range itself is appropriately corrected as the received light amount data is detected. That is, as shown in FIG. 14, a set number of received light amount data is sampled for each set time, and when the data includes a light amount value brighter than the upper light amount value TH1, the upper light amount value While moving TH1 one step to the bright side, if the set number of received light amount data does not include a light amount value brighter than the upper light amount value TH1, the upper light amount value TH1 is moved one step to the dark side. When the set number of received light amount data includes a light amount value darker than the lower light amount value TH2, the lower light amount value TH2 is moved to the dark side by one step, and If the number of received light amount data does not include a light amount value darker than the lower light amount value TH2, the lower light amount value TH2 is moved one step toward the bright side.
[0061]
The upper limit value T1 and the lower limit value T2 of the appropriate light amount ranges ΔEt and ΔEh on the front and rear sides, which are set for each light receiving element 5a of each of the line sensors 5A and 5B as described above, and corrected thereafter. Are stored in a memory LUT (front side LUT and rear side LUT) in the control device 10 as a lookup table for defect detection processing, as shown in FIG.
The look-up table will be described in more detail. For each light-receiving element 5a represented by position data i (i = 0 to [number of light-receiving elements -1]), all the light quantity values j (the above If the respective values j are within the appropriate light amount ranges ΔEt and ΔEH while changing within the range of 256 light amount values, “0” is stored as a judgment output in the corresponding address (i, j) of the memory LUT. If it is out of the appropriate light amount range ΔEt, ΔEH, “1” is stored as a judgment output at the corresponding address (i, j) of the memory LUT. When the determination is made, the position data i (i = 0 to [the number of light receiving elements -1]) of the light receiving elements 5a of the line sensors 5A and 5B and the positions thereof are stored in the memory LUT created above. When the light amount value j of each light receiving element 5a at i is input, the judgment output "0" is output for each light receiving element 5a when the object is normal and the judgment output "1" is output when it is defective. Therefore, the determination means 100 performs the determination based on the determination.
[0062]
Hereinafter, the light receiving outputs of the line sensors 5A and 5B for transmitted light and reflected light will be specifically described.
In the case of the transmitted light, as shown in the output waveform of the transmitted light line sensor 5A in FIG. 11, the normal state occurs when the output voltage corresponding to the amount of light received by each light receiving unit 5a is within the appropriate light amount range ΔEt for the rice grain group k. The presence of a good rice grain is determined, and if it is out of the proper setting range ΔEt, it is determined whether the rice grain is defective or a foreign substance is present. In the figure, e0 is an output voltage level for standard transmitted light from normal rice grains. Then, when the light amount is smaller than the appropriate light amount range ΔEt, it is determined whether there is a defective rice grain or a foreign substance (for example, black stone) having a transmittance lower than that of normal rice particles. The presence of the defective defective rice grain k on the light side having a higher transmittance than the normal rice grain k or the presence of the foreign matter is determined. As an example of the defective rice grain k or foreign matter on the light side, a thin colored transparent glass piece becomes a foreign matter having a higher transmittance than the normal rice grain k, and the normal rice grain k is "sticky rice". In this case, the "rice glutinous rice" becomes a defective rice grain k having a higher transmittance than the normal rice grain k.
[0063]
In FIG. 11, the output voltage (light reception amount) of the light receiving element 5a is changed at the position where a part of the rice grain k is partially colored, the position of a black stone or the like (indicated by e1), and the position where a cracked portion is present. (Indicated by e2), if there is a foreign substance or the like located below the appropriate light amount range ΔEt and has a transmittance higher than that of normal rice grains, the appropriate light amount range ΔEt is indicated as position e3. 2 illustrates an example of a state in which the position is higher than the position.
[0064]
On the other hand, in the case of reflected light, as shown in the corrected output waveform of the line sensor 5B for reflected light in FIG. 12, the corrected output voltage corresponding to the amount of light received by each light receiving unit 5a is within the appropriate light amount range ΔEh. When it is within the range, the presence of a normal rice grain is determined, and when it is out of the appropriate light amount range ΔEh, the defect of the rice grain or the presence of the foreign matter is determined. In the figure, e0 ′ is an output voltage level for standard reflected light from normal rice grains. In the figure, at a position where a part of the rice grain k has a colored portion (indicated by e1 ') and a position where a cracked portion exists (indicated by e2'), the rice grain k is deviated downward from the appropriate light amount range ΔEh. Further, when a foreign substance such as a glass piece is present, a state is shown in which the direct light from the foreign substance deviates upward from the appropriate light amount range ΔEh as shown at a position e3 ′. Although not shown, the reflectance of a black stone or the like is very small, and therefore, the waveform greatly deviates downward from the appropriate light amount range ΔEh in the waveform.
[0065]
When the controller 10 determines, based on the defect determination information, that a defective rice grain or the presence of a foreign substance has been determined in the rice grain group k transferred to the detection position J of the line sensors 5A and 5B. As the transfer time from the detection position J to the air injection position by the injection nozzle 6a elapses, defective rice grains or foreign substances flowing down are discharged from each injection nozzle 6a in the section corresponding to the position. To separate it from the path of normal rice grains.
[0066]
Then, as shown in FIG. 16, at the time of shipping adjustment, the power of the apparatus is turned on, a predetermined warm-up operation is performed, and a stable state of the illumination light amount is sufficiently checked. Creation "and the first" illumination light correction data creation ". Next, the sensor output correction and the sensitivity correction (however, a standard sensitivity value) are performed, the appropriate light amount range setting process and the first light amount command process are executed, and the memory LUT is set based on the set appropriate light amount ranges ΔEt and ΔEh. Create Finally, exclusion adjustment of the operation time of each nozzle of the air blowing device 6 is performed.
[0067]
Then, as shown in FIG. 17, during a normal inspection operation, first, the power of the apparatus is turned on to perform a predetermined warm-up operation, and then the latest “illumination light correction data creation” is performed to perform lighting. The data of the change rate of the light quantity is calculated, and the data in the memory is rewritten using the data of the change rate of the illumination light quantity and the appropriate light quantity ranges ΔEt and ΔEh to create a memory LUT. Further, when the sensitivity value is set, the light amount adjustment processing is executed in accordance with the setting of the sensitivity value. Further, the inspection is started by supplying the rice grain group k to the chute 1 using the memory LUT after the correction.
Then, after a predetermined time (30 minutes) for cleaning has elapsed, the supply of the rice grain group k is stopped to stop the inspection, and a cleaning means (not shown) is operated to clean the windows 14A and 14B, and the light amount range The correction process is executed, the light amount command process is executed in accordance with the correction result, and the data in the memory is rewritten by reflecting the processing result to create the memory LUT. Thereafter, using the corrected memory LUT, the rice grain group k is supplied to the shoot 1 again, and the inspection is started.
[0068]
[Another embodiment]
Hereinafter, other embodiments will be listed.
[0069]
(1) In the above-described embodiment, the configuration is such that the curved shape of the diffusion plate 81 is fixed at a predetermined constant curved shape. However, instead of such a configuration, the diffusing plate 81 is configured such that the radius of curvature changes. The configuration may be such that the curved shape of the plate 81 is supported so as to be changeable and adjustable. For example, a configuration may be adopted in which the central portion of the diffusion plate 81 is supported by the casing 83 such that the distance between the diffusion plate 81 and the LED light emitting element group can be changed in the approaching / separating direction with the longitudinal ends of the diffusion plate 81 as fulcrums.
[0070]
(2) In the above-described embodiment, an example is described in which a plurality of LED light emitting elements are divided into a set number of blocks BK, and the light emission output is changed and adjusted for each block. Instead, the light emission output may be changed and adjusted for each of the plurality of LED light emitting elements, so that the light amount can be changed and adjusted finely within a small range.
In the case where the light amount can be finely changed and adjusted within such a small range, the light diffusing plate can be formed of a flat diffusing plate instead of being curved.
[0071]
(3) In the above embodiment, sensitivity correction means for correcting the sensitivity of the amount of received light to the appropriate light amount range is provided, and the appropriate light amount range of the light amount value of the light projected from the projection member corresponding to the sensitivity setting is provided. Although the configuration for changing and adjusting the position within the range is not limited to such a configuration, the configuration for changing and adjusting the position so as to be always the same or substantially the same as the light amount at a fixed position, for example, the center position of the appropriate light amount range. It may be.
[0072]
(4) In the above-described embodiment, the light amount range correction process and the light amount command process are repeatedly executed each time the predetermined time for cleaning elapses during the normal operation. The present invention is not limited to the configuration, and the configuration may be such that the light quantity range correction processing and the light quantity command processing are executed only when the work is started.
[0073]
(5) In the above embodiment, the upper limit and the lower limit of the appropriate light amount range are automatically set based on the frequency distribution. However, the present invention is not limited to such a configuration, and the upper limit of the appropriate light amount range is manually operated. A configuration for setting the value and the lower limit may be adopted.
[0074]
(6) In the above embodiment, each of the line sensors 5A and 5B for transmitted light and reflected light is used as the light receiving means, but the light receiving means is constituted by either the line sensor 5A or 5B for transmitted light or reflected light. May be. The line sensor may be an image pickup tube type television camera other than the monochrome type CCD line sensor. Instead of a monochrome type CCD sensor, a color type CCD sensor may be used, and the presence or absence of defective rice or foreign matter may be more accurately determined from the amount of light received for each of the color information R, G, and B.
[0075]
(7) In the above embodiment, the separating means blows air to the defective object to separate the defective object into a different path from the normal object. However, the present invention is not limited to this. For example, the defective object is sucked by air. And may be separated by a mechanical contact action.
[0076]
(8) In the above embodiment, the case where the granular material group as the inspection object is the rice particle group has been exemplified. However, the present invention is not limited to this. For example, when inspecting for the presence or absence of a defective or foreign matter in plastic particles or the like. Also applicable to
[Brief description of the drawings]
FIG. 1 is an overall side view of a defective object removing device.
FIG. 2 is a side view of the main part.
FIG. 3 is a perspective view of a main part showing an operation state.
FIG. 4 is a view showing a projection member.
FIG. 5 is a block diagram of a control configuration.
FIG. 6 is a diagram showing a light receiving range of a line sensor.
FIG. 7 is a circuit configuration diagram of a projection member.
FIG. 8 is an output waveform diagram when a reference light reception amount is stored.
FIG. 9 is an output waveform diagram showing a change state of the illumination light amount.
FIG. 10 is a block diagram of a memory for determining a defect;
FIG. 11 is an output waveform diagram of a transmitted light line sensor.
FIG. 12 is an output waveform diagram of a line sensor for reflected light.
FIG. 13 is a flowchart illustrating an appropriate light amount range setting process.
FIG. 14 is a flowchart showing an appropriate light amount range correction process.
FIG. 15 is a flowchart showing a light amount command process.
FIG. 16 is a flowchart of a control operation at the time of shipment adjustment.
FIG. 17 is a flowchart of a control operation during normal operation.
FIG. 18 is a graph showing a frequency distribution.
FIG. 19 is a diagram showing an appropriate light amount range of each light receiving element.
FIG. 20 is a graph showing a frequency distribution.
[Explanation of symbols]
4 Lighting means
5 Light receiving means
6 Separation means
8 Projection member
80 LED light emitting device
81 Diffuser
85 Light emission output adjusting means
100 determination means
102 Sensitivity correction means
H transport means

Claims (7)

一層状態で且つ横方向に広幅の状態で通過する粒状体群を検査対象物として、その検査対象物の存在予定箇所を照明する照明手段と、
前記存在予定箇所からの光を受光する受光手段と、
前記受光手段の受光方向であって前記存在予定箇所の背部側箇所に配置されて前記受光手段に向けて光を投射する投射部材と、
前記受光手段の受光量が前記粒状体群における正常物からの検出光に対する適正光量範囲を外れた場合に不良物の存在を判別する判別手段とが設けられている不良物検出装置であって、
前記投射部材が、前記存在予定箇所の横幅方向に沿って並べて設置される複数のLED発光素子と、それらの複数のLED発光素子が設置される領域の光投射側に配置されて複数のLED発光素子が発光した光を拡散させる拡散板とを備えて構成され、
前記複数のLED発光素子の発光量を変更調整自在な発光出力調整手段が備えられている不良物検出装置。
An illumination unit that illuminates a portion where the inspection object is expected to be present, with the group of granular materials passing in a single layer state and in a wide state in the lateral direction as the inspection object,
Light receiving means for receiving light from the expected location;
A projection member that is arranged in a light receiving direction of the light receiving unit and is located at a position on the back side of the expected existence position and projects light toward the light receiving unit,
A defect detection device provided with a determination unit configured to determine the presence of a defective object when the amount of light received by the light receiving unit is out of an appropriate light amount range for detection light from a normal object in the particulate group;
A plurality of LED light emitting elements, wherein the projecting member is arranged side by side along the lateral width direction of the expected location; and a plurality of LED light emitting elements are arranged on a light projection side of an area where the plurality of LED light emitting elements are arranged. A diffusion plate for diffusing the light emitted by the element,
A defective object detection device provided with a light emission output adjusting means capable of changing and adjusting a light emission amount of the plurality of LED light emitting elements.
前記拡散板が、前記複数のLED発光素子の並び方向の中央部において各LED発光素子との間の離間距離が大であり、前記並び方向の両端側では各LED発光素子との間の離間距離が小となるように湾曲する状態で設けられている請求項1記載の不良物検出装置。The distance between the diffusion plate and each LED light emitting element is large at the center in the direction in which the plurality of LED light emitting elements are arranged, and the distance between each LED light emitting element at both ends in the arrangement direction. The defective object detecting device according to claim 1, wherein the defective object detecting device is provided in a state of being curved so as to be small. 前記発光出力調整手段が、
前記複数のLED発光素子を、その並び方向において設定個数のブロックに区分けして、各ブロック毎に前記発光出力を変更調整するように構成されている請求項1又は2記載の不良物検出装置。
The light emission output adjusting means,
The defective object detection device according to claim 1, wherein the plurality of LED light emitting elements are divided into a set number of blocks in the arrangement direction, and the light emission output is changed and adjusted for each block.
前記判別手段が、前記受光手段の受光量を設定時間間隔でサンプリングするように構成され、且つ、前記適正光量範囲を設定するために、そのサンプリングにより得られた設定個数の受光量データについて、暗側から明側にわたる間を複数段階に区分けした各光量値に対する度数分布を求めるように構成され、
前記発光出力調整手段が、前記判別手段の前記度数分布の情報に基づいて、その度数分布において最も頻度の高い光量値が前記適正光量範囲内における適正位置に位置するように、前記各LED発光素子の発光光量を変更調整するよう構成されている請求項1〜3のうちのいずれか1項に記載の不良物検出装置。
The discriminating means is configured to sample the amount of light received by the light receiving means at a set time interval. In order to set the appropriate light amount range, the light receiving amount data of a set number obtained by the sampling is set to be dark. Is configured to obtain a frequency distribution for each light amount value divided into a plurality of stages from the side to the bright side,
The light emitting output adjusting means is configured to determine the most frequent light amount value in the frequency distribution based on the information on the frequency distribution of the determining means so as to be located at an appropriate position within the appropriate light amount range. The defective object detection device according to any one of claims 1 to 3, wherein the defective light amount is changed and adjusted.
前記発光出力調整手段が、
前記適正光量範囲内における適正位置として、前記投射部材から前記受光手段に向けて投射する光の光量が前記適正光量範囲における中央位置に対応する光量と同じか又はほぼ同じになるように変更調整するように構成されている請求項4記載の不良物検出装置。
The light emission output adjusting means,
The appropriate position in the appropriate light amount range is changed and adjusted so that the light amount of the light projected from the projection member toward the light receiving unit is equal to or substantially equal to the light amount corresponding to the central position in the appropriate light amount range. The defective object detecting device according to claim 4, wherein the defective object detecting device is configured as follows.
前記受光手段からの受光量を増減させる補正係数を変更設定して、前記適正光量範囲に対する受光量の感度を補正する感度補正手段が設けられ、
前記発光出力調整手段が、
前記感度補正手段による感度補正に対応させて、前記受光量が減少するように感度補正されると、前記適正光量範囲内における適正位置として、前記投射部材から前記受光手段に向けて投射する光の光量が前記適正光量範囲の中央値よりも小側の光量になるように変更調整し、
前記受光量が増加するように感度補正されると、前記適正光量範囲内における適正位置として、前記投射部材から前記受光手段に向けて投射する光の光量が前記適正光量範囲の中央値よりも大側の光量になるように変更調整するよう構成されている請求項4又は5に記載の不良物検出装置。
A sensitivity correction unit that changes and sets a correction coefficient for increasing or decreasing the amount of light received from the light receiving unit and corrects the sensitivity of the amount of received light to the appropriate light amount range is provided.
The light emission output adjusting means,
Corresponding to the sensitivity correction by the sensitivity correction means, when the sensitivity is corrected so that the received light amount is reduced, the light projected from the projection member toward the light receiving means as an appropriate position within the appropriate light amount range. Change and adjust the light amount to be smaller than the median value of the appropriate light amount range,
When the sensitivity is corrected so that the received light amount increases, the light amount of the light projected from the projection member toward the light receiving unit is larger than the central value of the appropriate light amount range as a proper position within the proper light amount range. The defective object detection device according to claim 4, wherein the defect detection device is configured to change and adjust the light amount to be the side light amount.
請求項1〜6のいずれか1項に記載の不良物検出装置を備えた分離装置であって、
検査対象物としての粒状体群を、予定移送経路に沿って一層状態で且つ横方向に広幅の状態で通過するように前記存在予定箇所とその存在予定箇所の位置よりも経路下手側の分離箇所とに移送する移送手段と、
前記分離箇所に移送された粒状体群のうちの正常物と不良物とを異なる経路に分離させる分離手段とを備えて構成されている分離装置。
It is a separation device provided with the defective object detection device according to any one of claims 1 to 6,
The expected location and a separation location on the lower side of the location relative to the location of the expected location so as to pass through the granular object group as the inspection object in a further state and in a laterally wide state along the expected transport path. Transfer means for transferring to
A separating device configured to include a separating unit configured to separate a normal substance and a defective substance in the group of granular materials transferred to the separation location into different paths.
JP2002273304A 2002-09-19 2002-09-19 Defective object detection device and separation device using the same Expired - Lifetime JP4052911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002273304A JP4052911B2 (en) 2002-09-19 2002-09-19 Defective object detection device and separation device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002273304A JP4052911B2 (en) 2002-09-19 2002-09-19 Defective object detection device and separation device using the same

Publications (2)

Publication Number Publication Date
JP2004105877A true JP2004105877A (en) 2004-04-08
JP4052911B2 JP4052911B2 (en) 2008-02-27

Family

ID=32270091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002273304A Expired - Lifetime JP4052911B2 (en) 2002-09-19 2002-09-19 Defective object detection device and separation device using the same

Country Status (1)

Country Link
JP (1) JP4052911B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069736A1 (en) * 2011-11-09 2013-05-16 株式会社クボタ Granule inspection device
JP2013101082A (en) * 2011-11-09 2013-05-23 Kubota Corp Granular material inspection device
JP2014089120A (en) * 2012-10-30 2014-05-15 Kubota Corp Granular material inspection device
JP2014089119A (en) * 2012-10-30 2014-05-15 Kubota Corp Granular material inspection device
KR20220055593A (en) * 2020-10-27 2022-05-04 주식회사 대원지에스아이 High-efficiency sorting device for grain seeds using image information inside the husk

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069736A1 (en) * 2011-11-09 2013-05-16 株式会社クボタ Granule inspection device
JP2013101082A (en) * 2011-11-09 2013-05-23 Kubota Corp Granular material inspection device
CN103907013A (en) * 2011-11-09 2014-07-02 株式会社久保田 Granule inspection device
KR20140083057A (en) * 2011-11-09 2014-07-03 가부시끼 가이샤 구보다 Granule inspection device
KR101683065B1 (en) * 2011-11-09 2016-12-07 가부시끼 가이샤 구보다 Granule inspection device
CN103907013B (en) * 2011-11-09 2016-12-28 株式会社久保田 Coccoid checks device
JP2014089120A (en) * 2012-10-30 2014-05-15 Kubota Corp Granular material inspection device
JP2014089119A (en) * 2012-10-30 2014-05-15 Kubota Corp Granular material inspection device
KR20220055593A (en) * 2020-10-27 2022-05-04 주식회사 대원지에스아이 High-efficiency sorting device for grain seeds using image information inside the husk
KR102413403B1 (en) * 2020-10-27 2022-06-27 주식회사 대원지에스아이 High-efficiency sorting device for grain seeds using image information inside the husk

Also Published As

Publication number Publication date
JP4052911B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
JP5795498B2 (en) Granule sorter
JP5676369B2 (en) Granule sorter
KR101249472B1 (en) Grain color sorting apparatus for using full color led
JPH07155702A (en) Grain color sorting device
JP4076414B2 (en) Defective object detection device and separation device using the same
JP4675120B2 (en) Granule sorter
JP5792519B2 (en) Granule sorter
JP2011078922A (en) Plastic pellet sorter
JP6241190B2 (en) Lighting device for color sorter
JP4338284B2 (en) Powder inspection equipment
JP4052911B2 (en) Defective object detection device and separation device using the same
JP4851856B2 (en) Granule sorter
JP2000097866A (en) Detector for defective, and separator using same
JP3288613B2 (en) Defect detection device and defect removal device
JP3318223B2 (en) Defect detection device and defect removal device
JP2006231233A (en) Apparatus for sorting particulate material
JP2001264256A (en) Powder and grain inspecting device
JPH1190345A (en) Inspection apparatus of granular bodies
JP6241191B2 (en) Lighting device for color sorter
KR101173206B1 (en) Grain color sorting apparatus for using near infrared ray
JP4454086B2 (en) Powder inspection equipment
JP2000210626A (en) Defective article detector, and adjusting jig and adjusting method therefor
JPH1190346A (en) Defect detector and defective article remover
JP3146149B2 (en) Defect detection device and defect removal device
JPH10109071A (en) Defective detector and defective article remover

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4052911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

EXPY Cancellation because of completion of term