JP2004105864A - Method, catalyst and equipment for decomposing halogenated aromatic hydrocarbon - Google Patents

Method, catalyst and equipment for decomposing halogenated aromatic hydrocarbon Download PDF

Info

Publication number
JP2004105864A
JP2004105864A JP2002272436A JP2002272436A JP2004105864A JP 2004105864 A JP2004105864 A JP 2004105864A JP 2002272436 A JP2002272436 A JP 2002272436A JP 2002272436 A JP2002272436 A JP 2002272436A JP 2004105864 A JP2004105864 A JP 2004105864A
Authority
JP
Japan
Prior art keywords
catalyst
halogenated aromatic
aromatic hydrocarbon
alumina
decomposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002272436A
Other languages
Japanese (ja)
Inventor
Shuichi Sugano
菅野 周一
Shinji Tanaka
田中 真二
Masaaki Mukaide
向出 正明
Masanori Chinen
知念 正紀
Akio Honchi
本地 章夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002272436A priority Critical patent/JP2004105864A/en
Publication of JP2004105864A publication Critical patent/JP2004105864A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To decompose a halogenated aromatic hydrocarbon at one step without producing harmful by-products. <P>SOLUTION: A gaseous halogenated aromatic hydrocarbon is decomposed and converted into a hydrogen halide, carbon monoxide and/or carbon dioxide by adding hydrogen and steam to the gaseous halogenated aromatic hydrocarbon and bringing the hydrogen/steam-added hydrocarbon at a temperature of 300-600°C into contact with a catalyst obtained by depositing at least one active component selected from among Mo, W, Cr, Fe, Co, Ni, V, Pt, Pd, Rh and Ru on a carrier consisting of any of alumina, alumina-silica and mordenite. The gaseous halogenated aromatic hydrocarbon can be converted at one step into a hydrogen halide, carbon monoxide and/or carbon dioxide by adding hydrogen and steam to the gaseous halogenated aromatic hydrocarbon. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ハロゲン化芳香族炭化水素を触媒と接触させて分解する方法と触媒及び分解装置に関する。
【0002】
【従来の技術】
ハロゲン化芳香族炭化水素は、環境汚染物質として種々の方法でその処理が検討されている。現在まで、金属ナトリウム分散体法,化学抽出分解法,有機アルカリ金属分解法,触媒水素還元法などが知られている。
【0003】
特開平6−226046号には、揮発性有機ハロゲン化合物を吸着剤に一旦吸着させ、飽和した吸着剤を水蒸気で再生し、次いで凝縮して得た再生廃液をそのまま又は曝気ガスを金属触媒存在下に室温で還元剤と接触させる方法が記載されている。この方法は、ハロゲン化芳香族炭化水素からハロゲンのみを除去する脱ハロゲン化分解である。
【0004】
このほかに特開平9−880号公報には、触媒を用いて有機ハロゲン化合物を分解する方法が記載されている。
【0005】
【発明が解決しようとする課題】
特開平6−226046号公報に記載の方法では、脱ハロゲン化した芳香族炭化水素の処理が必要になる。
【0006】
本発明の目的は、ハロゲン化芳香族炭化水素を、有害副生物を生成することなく、分解処理する方法,触媒及び分解装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明の方法は、ガス状のハロゲン化芳香族炭化水素に水素及び水蒸気を添加し、このガス流を触媒と接触させてハロゲン化芳香族炭化水素をハロゲン化水素と、一酸化炭素と二酸化炭素の少なくとも1つとに分解することにある。
【0008】
本発明の触媒は、アルミナ,アルミナ−シリカ,モルデナイトから選ばれた一種を担体とし、この上に、Mo,W,Cr,Fe,Co,Ni,V,Pt,Pd,Rh及びRuから選ばれた少なくとも一種を金属または酸化物として、Mo,W,Cr,Fe,Co,Ni及びVの少なくとも1つは合計で0.5〜50wt%含み、Pt,Pd,Rh及びRuの少なくとも1つは合計で0.1 〜3wt%含むことにある。また、アルミナ,アルミナ−シリカ,モルデナイトから選ばれた一種を担体とし、この上に、Mo,W,Cr,Fe,Co,Ni及びVからなるグループから選ばれた少なくとも一種を金属または酸化物として合計で0.5 〜50wt%(重量%)含み、かつPt,Pd,Rh及びRuからなるグループから選ばれた少なくとも一種を金属または酸化物として合計で0.1 〜3wt%含むことにある。
【0009】
本発明の分解装置は、ガス状のハロゲン化芳香族炭化水素に水素を添加する水素供給器と、水蒸気を添加する水蒸気供給器と、前記水素と水蒸気が添加されたハロゲン化芳香族炭化水素を触媒に接触させて分解する触媒反応器と、前記触媒反応器にて生成した分解生成物を水あるいはアルカリ水溶液で洗浄する排ガス洗浄装置を具備したことにある。
【0010】
当初、我々は、常圧、反応温度500℃,H をハロゲン化芳香族炭化水素中のハロゲン量の18〜22倍、水蒸気をクロロベンゼン中の炭素量の1〜3倍でハロゲン化芳香族炭化水素の分解を検討した。この場合、ハロゲン化芳香族炭化水素の脱ハロゲン化は起こるものの、芳香族炭化水素の分解率は低いことが判った。種々の触媒を評価したが、脱ハロゲン化は容易であるが、芳香族炭化水素はほとんど分解しなかった。ところが、分解反応の際に水素とともに水蒸気を所定量供給することで、ハロゲン化芳香族炭化水素分解反応の中間生成物であるベンゼンなどを同時に分解できることを見出した。添加する水蒸気量は極めて重要であり、添加量が少ないと、分解率は低下してしまう。
【0011】
水蒸気添加による効果は次のように考えられる。下記はクロロベンゼン分解反応の例である。H のみだと(1)式しか進行せず、またHO 量が少ないと
(2)式が十分に進行せずに生成したCがクラッキングなどを起こす。しかし、HO を最適量で添加することで(1)〜(3)式が起こり、完全分解が達成されると考えられる。反応条件によっては、(4)式に示すように副生物として一部CHなどの炭化水素が生成する場合もある。
【0012】
Cl + H → C + HCl            …(1)
 + 6HO → 6CO + 9H            …(2)
CO + HO → CO + H                …(3)
CO + 2H → CH + O               …(4)
本発明では、触媒と反応ガスを300〜600℃で接触させることが望ましい。300℃以下の場合、分解性能が十分に得られない。また、600℃以上だと、クラッキングが起こりやすくなり、カーボン等が析出する。
【0013】
 量は、ハロゲン化芳香族炭化水素中のハロゲン量に対し、10mol% 以上30mol% 以下であることが望ましく、特に15mol% 以上25mol% 以下がよい。水蒸気量は、ハロゲン化芳香族炭化水素中の炭素量に対し、S/C(水蒸気/炭素)比が5mol%以上50mol%以下が望ましく、特に7mol%以上15mol%以下がよい。水蒸気が多くても分解には影響を与えないが、反応温度まで昇温するためのエネルギーが必要になる。
【0014】
本発明で対象となるハロゲン化芳香族炭化水素は、クロロベンゼン,ジクロロベンゼン,トリクロロベンゼン,塩化ビフェニル,ポリ塩化ビフェニル類,ダイオキシン類,フラン類等である。また、トランスや、コンデンサなどからの電気絶縁油として使用されたハロゲン化芳香族炭化水素も対象となる。
【0015】
本発明の触媒において、担体上に担持される触媒活性成分は金属であることが望ましい。担持成分と担体成分とが反応して化合物を作らないようにするために、担体成分を結晶化させておくことが望ましい。担体成分の結晶化は、高温で焼成することで行うことができる。触媒活性成分としてはIr,Os等も多少効果はあるが、Pt,Pd,Rh及びRuに比べると劣る。
【0016】
触媒活性成分としてのMo,W,Cr,Fe,Co,Ni及びVの少なくとも1つは合計で0.5 〜50wt%含むことが望ましく、特に10〜40wt%がよい。また、Pt,Pd,Rh及びRuの少なくとも1つは合計で5wt%から50wt%の範囲が好ましく、特に0.5 〜2wt%がよい。
【0017】
好適な触媒は、アルミナ担体にNiを担持したもの、アルミナ担体にNiと
Coを担持したもの、アルミナ担体にNiとVを担持したもの、アルミナ担体にNiとPt,Pd,Rh及びRuの少なくとも1つとを担持したものである。
【0018】
本発明の触媒を調製するためのAl原料としては、γ−アルミナ,γ−アルミナとδ−アルミナの混合物などを使用することができる。特にベーマイトなどをAl原料として用い、最終的な焼成によりαAlを形成するのも好ましい方法である。
【0019】
本発明の触媒を調製するための各種金属成分の原料としては、硝酸塩,硫酸塩,アンモニウム塩,塩化物などを用いることができる。
【0020】
本発明の触媒の製造法は通常触媒の製造に用いられる沈殿法,含浸法、等いずれも使用できるが、触媒活性成分と担体が複合化しないよう調製することが望ましい。
【0021】
また、本発明における触媒は、そのまま粒状,ハニカム状などに成形して使用することができる。成形法としては、押し出し成形法,打錠成形法,転動造粒法など目的に応じ任意の方法を採用できる。また、セラミックスや金属製のハニカム,パイプまたは板にコーティングして使用することもできる。特に内径が1mm以下のセラミックスパイプの内側に触媒をコートして使用すると、装置を小型化できる上に反応温度コントロールが容易になるので好ましい。これは触媒表面の化学反応促進に寄与している層(数百Å)を並べることができるためである。また、縦,横,高さが1mm以下の溝をエッチングなどで作成し、その内壁に触媒をコートして、溝にハロゲン化芳香族炭化水素を含むガス流を流すようにするのも好ましい。粒状触媒として使用する場合は、2〜4mmの粒径が望ましいが、この粒径は処理量,条件によって変えるとよい。
【0022】
Al原料の焼成温度は900〜1100℃が望ましい。焼成の目的は、
αAlを生成させることであり、使用する原料によって焼成温度を変えてよい。
【0023】
反応を行うための空間速度(SV)は、500〜10,000h−1が好ましく、特に望ましくは1,000〜5,000h−1である。
【0024】
【発明の実施の形態】
図1に示す実験装置にて分解フローを詳細に説明する。本装置の最小構成は、反応ガスの加熱器5,触媒反応器6,分解ガス吸収槽9である。加熱器5にはハロゲン化芳香族炭化水素1,純水2,水素3を供給し、所定温度に加熱する。加熱されたガスは、電気炉8にて加熱された触媒反応器6に導入され、触媒7と接触する。分解後のガスは、分解ガス吸収槽9で水中にバブリングすることで、
HCl等の酸成分を除去し、さらにミストキャッチャ10で水分を除去した後、活性炭槽11を通過させて排気する。なお、分解試験を行う前に触媒反応器6及び反応器に通じる配管を窒素4等の不活性ガスで置換する。
【0025】
図2は、小型触媒反応器(マイクロリアクタ)を示す。大きさは約40mm角の立方体構造である。上面図の反応ガス入口12から反応ガスが流入し、分解ガス出口13から流出する。ここで、反応ガスは、ハロゲン化芳香族炭化水素,水素,水蒸気である。冷却媒体入口14からは冷却媒体を流入させ、反応時の温度上昇を制御する。冷却媒体は、冷却媒体出口15から流出する。側面図に外径1.2mmφの円で示したものが触媒をコートしたアルミナ棒16である。アルミナ棒を設置する部分は高さ1.5mm の溝である(触媒層17)。これを3段並べてある。この部分に反応ガスが流れる。反応ガスは、上面図のバッファスペース18に入り、ここで一旦ガスの線速度を落とした後、触媒層を通過させる。こうすることによって、3段の触媒層に均一にガスを流すことができる。
【0026】
図3は、図2に示す小型反応器を用いた分解装置を示す。本装置は、水供給ライン,ハロゲン化芳香族炭化水素供給ライン,水素ガス供給ライン,窒素等の不活性ガス供給ライン,加熱器5,触媒反応器6,分解ガス吸収槽9,ミストキャッチャ10,活性炭槽11から構成される。まず、反応ガスを流す前に、窒素などの不活性ガスで系内を置換する。その後、水素をH ボンベから減圧弁を通しマスフローコントローラ流量計で流量をコントロールして供給する。また、純水をタンクからマイクロチューブポンプで吸引して加熱器5に導入し、水蒸気に気化させる。水素,水蒸気の流量が安定したところでハロゲン化芳香族炭化水素1をマイクロチューブポンプで吸引し、供給する。加熱器5で所定温度に加熱されたガスは、外側から加熱装置19で加熱された小型の触媒反応器6に導入される。触媒反応器内では図2にて示したように、反応ガスが触媒と接触する。分解ガスは、分解ガス吸収槽9でHClなどの酸成分を除去した後、ミストキャッチャ10,活性炭槽11を通過させて排気する。なお、これらの分解装置は、筐体に収納し、筐体内を吸引排気する。また、筐体内ガス排気口に、H やベンゼン等のガスセンサを設置する。各種定量ポンプやガス流量計,加熱器,触媒反応器などの温度等は制御器にて一括コントロールする。
【0027】
HClの除去工程としては、水またはアルカリ水溶液をスプレーして洗浄するものが効率が高く、結晶析出などによる配管の閉塞が起こりにくいので好ましい。水またはアルカリ水溶液中に分解生成ガスをバブリングする方法あるいは充填塔を用いて洗浄する方法でもよい。また、アルカリ性の固体を用いてもよい。
【0028】
本発明の処理方法を実施するために使用される反応器は、通常の固定床,移動床あるいは流動床型のものでよいが、分解生成ガスとしてHClなどの腐食性のガスが発生するので、これらの腐食性のガスによって損傷しにくい材料で反応器を構成すべきである。
【0029】
本発明の処理装置は、トランス,コンデンサ等からハロゲン化芳香族炭化水素を抜き取る除去装置につなげても良い。トランス,コンデンサ等から抜きとられたハロゲン化芳香族炭化水素は油または触媒に析出する固形物等の不純物を含んでいるため、一旦精製工程で不純物を除き、不純物を除去した後のハロゲン化芳香族炭化水素を本分解装置に供給するのがよい。この際、ハロゲン化芳香族炭化水素を抜き取る除去装置と分解装置をつなぐ配管は、リボンヒータなどで保温する。保温することで途中のハロゲン化芳香族炭化水素の凝縮を抑制することができる。
【0030】
[実施例1]
本実施例では、触媒担体の影響を調べた。図1に示す試験装置にて、原料としてクロロベンゼンを用い、クロロベンゼン量を0.11〜0.15(mol/h)、
 /クロロベンゼンモル比を19〜20、HO /クロロベンゼンモル比を8〜12、空間速度(SV)を2860〜3050h−1とし、この条件で各種反応温度での生成CH 量を測定し、原料分解時の理論CH 量に対する生成CH 量の割合(wt%)を算出した。触媒は次のようにして調製した。
【0031】
<触媒1> Pd/Al触媒
活性アルミナ(住友科学製,NKHD−24,粒径2−4mm)を120℃で1h乾燥させた。乾燥後のアルミナ50.02gに対し、4.422wt%Pd硝酸溶液(田中貴金属製)11.31gを純水で希釈して34.99gとしたPd水溶液を含浸した。含浸後、120℃で2h乾燥させ、650℃で2h焼成した。
【0032】
<触媒2> Pd/シリカ−アルミナ触媒
SiO/Al(日揮化学製,N632L,3φ×3L)を120℃で1h乾燥させた。乾燥後のSiO /Al50.35gに対し、4.422wt%Pd硝酸溶液(田中貴金属製)11.33gを純水で希釈して28.00gとしたPd水溶液を含浸した。含浸後、120℃で2h乾燥させ、650℃で2h焼成した。
【0033】
<触媒3> Pd/モルデナイト触媒
モルデナイト(東ソー製,640HOA,1.5mmペレット)を120℃で1h乾燥させた。乾燥後のモルデナイト50.42gに対し、4.422wt%Pd硝酸溶液(田中貴金属製)11.32gを純水で希釈して29.89gとしたPd水溶液を含浸した。含浸後、120℃で2h乾燥させ、650℃で2h焼成した。
【0034】
結果を図4に示す。反応温度400℃位からCH の生成が始まった。400℃では触媒による差は小さいが、550℃ではPd/AlのCH 生成量が最も多く、これら3種の担体の中ではAlが最も好ましいことが判明した。
【0035】
[実施例2]
本実施例では、触媒活性成分としてNiをAlに添加した触媒を調製し、クロロベンゼンの分解を行った。実施例1と同様に、図1に示す試験装置を用いた。原料としてクロロベンゼンを用い、表1に示す条件で、各種反応温度でのクロロベンゼン及びベンゼン分解率を測定した。クロロベンゼン(CB)分解率,ベンゼン(B)分解率は以下の式で算出した。
【0036】
クロロベンゼン(CB)分解率(%)=(1−出口CB量(mol/h)/入口CB量(mol/h))×100
出口CB量(mol/h)=排ガス中のCB量+第一吸収槽及び第二吸収槽のCB量
ベンゼン(B)分解率(%)=(1−出口B量(mol/h)/入口B量(mol/h))×100
出口B量(mol/h)=排ガス中のB量+第一吸収槽及び第二吸収槽のB量
【0037】
【表1】

Figure 2004105864
【0038】
触媒は次のようにして調製した。
【0039】
<触媒4> Ni/Al触媒
活性アルミナ(住友科学製,NKHD−24,粒径2−4mm)を1100℃で5h焼成し、αAl化させた。このアルミナ100.00g に対し、仕込み量としてNiが10wt%となるように、硝酸ニッケル6水和物(和光純薬)49.55g を純水に溶かして含浸した。含浸後、120℃で2h乾燥させ、650℃で2h焼成した。焼成後の触媒中のNiは酸化物となっているため、H 気流中で還元処理を行い、Ni酸化物をNi金属に還元した。
【0040】
結果を図5に示す。クロロベンゼン分解率に示される脱塩素反応については、反応温度425℃でほぼ100%反応を達成することができた。ベンゼン分解については、反応温度425℃以下では分解率が低いが、500℃で完全に分解することが判った。なお、分解生成物としては、HCl,CO,CH ,H ,CO が検出された。
【0041】
[実施例3]
本実施例では、Ni以外の触媒活性成分の性能を調べた。実施例1と同様に、図1に示す試験装置を用いた。原料としてクロロベンゼンを用い、クロロベンゼン量を0.11〜0.15(mol/h)、H /クロロベンゼンモル比を19〜20、HO /クロロベンゼンモル比を8〜12、空間速度(SV)を2860〜3050h−1とし、この条件で反応温度410℃でのクロロベンゼン分解率を測定した。クロロベンゼン分解率は前述の算出式で求めた。触媒は次のようにして調製した。
【0042】
<触媒5> Pt/Al触媒
活性アルミナ(住友科学製,NKHD−24,粒径2−4mm)を120℃で1h乾燥させた。乾燥後のアルミナ50.00g に対し、仕込み量としてPtがAl重量に対し1wt%となるよう1.459wt% 四価−アンミン溶液(田中貴金属製)34.27g を純水で希釈して35gとしたPt水溶液を含浸した。含浸後、120℃で2h乾燥させ、650℃で2h焼成した。
【0043】
<触媒6> Rh/シリカ−アルミナ触媒
SiO/Al(日揮化学製,N632L,3φ×3L)を120℃で1h乾燥させた。乾燥後のSiO/Al50.00gに対し、仕込み量としてRhがSiO/Al重量に対し1wt%となるよう4.485wt%Rh硝酸溶液(田中貴金属製)11.15gを純水で希釈して28.00gとしたRh水溶液を含浸した。含浸後、120℃で2h乾燥させ、650℃で2h焼成した。
【0044】
<触媒7> Ru/シリカ−アルミナ触媒
SiO/Al(日揮化学製,N632L,3φ×3L)を120℃で1h乾燥させた。乾燥後のSiO/Al50.00gに対し、仕込み量としてRuがSiO/Al重量に対し2wt%となるよう3.889wt%Ru硝酸溶液(田中貴金属製)12.86gを純水で希釈して28.00gとしたRu水溶液を含浸した。含浸後、120℃で2h乾燥させ、650℃で2h焼成した。
【0045】
<触媒8> Mo/Al触媒
活性アルミナ(住友科学製,NKHD−24,粒径2−4mm)を120℃で1h乾燥させた。乾燥後のアルミナ50.00g に対し、仕込み量としてMoがAl重量に対し10wt%となるようモリブデン酸アンモニウム(和光純薬)9.18g を純水で溶解して35gとしたMo水溶液を含浸した。含浸後、120℃で2h乾燥させ、650℃で2h焼成した。
【0046】
<触媒9> W/Al触媒
活性アルミナ(住友科学製,NKHD−24,粒径2−4mm)を120℃で1h乾燥させた。乾燥後のアルミナ50.00g に対し、仕込み量としてWがAl重量に対し10wt%となるようタングステン酸アンモニウムパラ5水和物(和光純薬)7.05g を純水で溶解して35gとしたW水溶液を含浸した。含浸後、120℃で2h乾燥させ、650℃で2h焼成した。
【0047】
<触媒10> Cr/Al触媒
活性アルミナ(住友科学製,NKHD−24,粒径2−4mm)を120℃で1h乾燥させた。乾燥後のアルミナ50.00g に対し、仕込み量としてFeがAl重量に対し5wt%となるよう硝酸クロム9水和物(和光純薬)19.21gを純水で溶解して35gとしたCr水溶液を含浸した。含浸後、120℃で2h乾燥させ、650℃で2h焼成した。
【0048】
<触媒11> Fe/モルデナイト触媒
モルデナイト(東ソー製,640HOA,1.5mmペレット)を120℃で1h乾燥させた。乾燥後のモルデナイト50.00g に対し、仕込み量としてFeがモルデナイト重量に対し5wt%となるよう硝酸鉄9水和物(和光純薬)18.10gを純水で溶解して35gとしたFe水溶液を含浸した。含浸後、120℃で2h乾燥させ、650℃で2h焼成した。
【0049】
<触媒12> Co/モルデナイト触媒
モルデナイト(東ソー製,640HOA,1.5mmペレット)を120℃で1h乾燥させた。乾燥後のモルデナイト50.00g に対し、仕込み量としてFeがモルデナイト重量に対し5wt%となるよう硝酸コバルト6水和物(和光純薬)12.34g を純水で溶解して35gとしたCo水溶液を含浸した。含浸後、120℃で2h乾燥させ、650℃で2h焼成した。
【0050】
結果を表2に示す。
【0051】
【表2】
Figure 2004105864
【0052】
[実施例4]
本実施例では、Ni量の影響を調べた。触媒は触媒4,触媒4−1,触媒4−2のNi/Al触媒を用いた。実施例1と同様に、図1に示す試験装置を用いた。原料としてクロロベンゼンを用い、表3に示す条件で、クロロベンゼン及びベンゼン分解率を測定した。分解率算出式は前述のとおりである。結果を図6に示す。触媒4−2では、反応温度410℃でクロロベンゼン分解率が99.9%以上、ベンゼン分解率が89.4% となった。また、反応温度を450℃で、これらの触媒を用いると、クロロベンゼン分解率,ベンゼン分解率とも向上し、触媒4−2では、いずれも99.9% 分解した。
【0053】
【表3】
Figure 2004105864
【0054】
使用した触媒は次のようにして調製した。
【0055】
<触媒4−1>
活性アルミナ(住友科学製,NKHD−24,粒径2−4mm)を1100℃で5h焼成し、αAl化させた。このアルミナ65.05g に対し、仕込み量としてNiが20wt%となるように、硝酸ニッケル6水和物(和光純薬)64.41gを純水21.62gに溶かして含浸した。含浸後、120℃で1h乾燥させ、650℃で2h焼成した。焼成後の触媒中のNiは酸化物となっているため、H 気流中で還元処理を行い、Ni酸化物をNi金属に還元した。
【0056】
<触媒4−2>
活性アルミナ(住友科学製,NKHD−24,粒径2−4mm)を1100℃で5h焼成し、αAl化させた。このアルミナ65.08g に対し、仕込み量としてNiが40wt%となるように、硝酸ニッケル6水和物(和光純薬)128.80gを純水43.20gに溶かして含浸した。含浸は、数回に分けて行った。まず、ニッケル溶液55mlを含浸し、120℃で1h乾燥した。その後、ニッケル溶液28mlを含浸、120℃で3h乾燥して650℃で1h焼成した。焼成後、残りのニッケル溶液27mlを含浸し、120℃で1h乾燥して650℃で2h焼成した。この触媒中のNiは酸化物となっているため、H 気流中で還元処理を行い、Ni酸化物をNi金属に還元した。
【0057】
[実施例5]
本実施例では、3成分系触媒の影響を調べた。実施例1と同様に、図1に示す試験装置を用いた。原料としてクロロベンゼンを用い、表4に示す条件でクロロベンゼン及びベンゼン分解率を測定した。クロロベンゼン及びベンゼン分解率は前述の算出式で求めた。分解率の結果を表5に示す。
【0058】
【表4】
Figure 2004105864
【0059】
【表5】
Figure 2004105864
【0060】
Ni/Al触媒にPt,Pd,V,Co,La,Kをそれぞれ添加した触媒も高い分解率を示した。ただし、触媒24のLa添加触媒,触媒25のK添加触媒は、試験後の触媒中にClが検出された。
【0061】
触媒20−25は次のようにして調製した。
【0062】
<触媒20> Pt/Ni/Al
活性アルミナ(住友科学製,NKHD−24,粒径2−4mm)を1100℃で5h焼成し、αAl化させた。このアルミナ65.00g に対し、仕込み量としてNiが20wt%となるように、硝酸ニッケル6水和物(和光純薬)64.41g を純水21.58g に溶かして含浸した。含浸後、120℃で1h乾燥させ、650℃で2h焼成した。焼成後の触媒65.00g に308mg/g塩化白金酸2.097g を純水を添加して29.26g とした。これを含浸し、120℃で1h乾燥し、650℃で2h焼成した。焼成後の触媒中のNiは酸化物となっているため、H 気流中で還元処理を行い、Ni酸化物をNi金属に還元した。
【0063】
<触媒21> Pd/Ni/Al
活性アルミナ(住友科学製,NKHD−24,粒径2−4mm)を1100℃で5h焼成し、αAl化させた。このアルミナ65.00g に対し、仕込み量としてNiが20wt%となるように、硝酸ニッケル6水和物(和光純薬)64.41gを純水21.58gに溶かして含浸した。含浸後、120℃で1h乾燥させ、650℃で2h焼成した。焼成後の触媒65.02gに4.422wt%Pd硝酸溶液14.699gを純水を添加して29.26gとした。これを含浸し、120℃で1h乾燥し、650℃で2h焼成した。焼成後の触媒中のNiは酸化物となっているため、H 気流中で還元処理を行い、Ni酸化物をNi金属に還元した。
【0064】
<触媒22> V/Ni/Al
活性アルミナ(住友科学製,NKHD−24,粒径2−4mm)を1100℃で5h焼成し、αAl化させた。このアルミナ65.05gに対し、仕込み量としてNiが20wt%となるように、硝酸ニッケル6水和物(和光純薬)64.41gを純水21.62gに溶かして含浸した。含浸後、120℃で1h乾燥させ、650℃で2h焼成した。焼成後の触媒65.75g に対し、仕込み量としてVが1wt%となるように、バナジン酸アンモニウム(和光純薬)1.49gを30%過酸化水素水5mlに溶かし、さらに30gの純水を添加した後に含浸した。含浸後、120℃で1h乾燥させ、500で2h焼成した。焼成後の触媒中のNiは酸化物となっているため、H 気流中で還元処理を行い、Ni酸化物をNi金属に還元した。
【0065】
<触媒23> Co/Ni/Al
活性アルミナ(住友科学製,NKHD−24,粒径2−4mm)を1100℃で5h焼成し、αAl化させた。このアルミナ65.05g に対し、仕込み量としてNiが20wt%となるように、硝酸ニッケル6水和物(和光純薬)64.41gを純水21.62gに溶かして含浸した。含浸後、120℃で1h乾燥させ、650℃で2h焼成した。焼成後の触媒65.13g に対し、仕込み量としてCoが5wt%となるように、硝酸コバルト6水和物(和光純薬)16.04gを純水29.95g に溶かして含浸した。含浸後、120℃で1h乾燥させ、650℃で2h焼成した。焼成後の触媒中のNiは酸化物となっているため、H 気流中で還元処理を行い、Ni酸化物をNi金属に還元した。
【0066】
<触媒24> La/Ni/Al
活性アルミナ(住友科学製,NKHD−24,粒径2−4mm)を1100℃で5h焼成し、αAl化させた。このアルミナ65.00g に対し、仕込み量としてNiが20wt%、Laが6wt%となるように、硝酸ニッケル6水和物(和光純薬)64.55gと硝酸ランタン6水和物12.17gを純水27.95gに溶かして含浸した。なお、含浸は2回に分けて行い、1回目の含浸後、120℃で1h乾燥し、再度含浸した。含浸後、120℃で1.5h 乾燥させ、650℃で2h焼成した。焼成後の触媒中のNiは酸化物となっているため、H 気流中で還元処理を行い、Ni酸化物をNi金属に還元した。
【0067】
<触媒25> K/Ni/Al
活性アルミナ(住友科学製,NKHD−24,粒径2−4mm)を1100℃で5h焼成し、αAl化させた。このアルミナ64.55g に対し、仕込み量としてNiが20wt%、Kが6wt%となるように、硝酸ニッケル6水和物
(和光純薬)64.55gと硝酸カリウム10.08gを純水27.95gに溶かして含浸した。なお、含浸は2回に分けて行い、1回目の含浸後、120℃で1h乾燥し、再度含浸した。含浸後、120℃で1.5h 乾燥させ、650℃で2h焼成した。焼成後の触媒中のNiは酸化物となっているため、H 気流中で還元処理を行い、Ni酸化物をNi金属に還元した。
【0068】
[実施例6]
本実施例は、Pd/Al触媒を外径1.2mmφのアルミナ棒にコートし、図2に示す反応器内に設置し、図3に示す試験装置で分解を行った結果である。触媒は次のようにして調製した。
【0069】
<触媒13> Pd/Al触媒
アルミナゾル(日産化学製,アルミナゾル−520)をマイクロチューブポンプで吸引し、外径1.2mmφ,内径1.0mmφのAl棒内部を通過させ、内表面をアルミナゾルコートした。120℃で0.5h 乾燥し、650℃で1h焼成した。AlゾルをコートしたAl棒に、Alスラリをコートした。Alスラリは、前述のAlゾル10gにベーマイト(CONDEA製 PURALSB1)1.5gを攪拌しながら混合して調製した。このスラリをマイクロチューブポンプを用いてAl棒内表面にコートした。コート後、120℃で0.5h乾燥させ、650℃で1h焼成した。このAl棒に4.422wt%Pd硝酸溶液(田中貴金属製)をマイクロチューブポンプで通過させて、内表面にコートされたAl層に含浸した。Pd硝酸溶液をコートしたAl棒を120℃で0.5h乾燥させ、650℃で2h焼成した。
【0070】
<触媒14> Ni/Al触媒
アルミナゾル(日産化学製,アルミナゾル−520)をマイクロチューブポンプで吸引し、外径1.2mmφ,内径1.0mmφのAl棒内部を通過させ、内表面をコートした。さらに、外表面にもアルミナゾルをコートし、120℃で0.5h乾燥し、650℃で1h焼成した。AlゾルをコートしたAl棒に、次にAlスラリをコートした。Alスラリは、前述のAlゾル10gにベーマイト(CONDEA製 PURALSB1)1.5gを攪拌しながら混合して調製した。このスラリをマイクロチューブポンプを用いてAl棒内表面にコートした。ゾルコートと同様に、外表面にもアルミナスラリをコートした。コート後、120℃で0.5h 乾燥させ、1100℃で1h焼成した。このAl棒に4.422wt%Pd硝酸溶液(田中貴金属製)をマイクロチューブポンプで通過させて、内表面にコートされたAl層に含浸した。外表面にもコートした。Pd硝酸溶液をコートしたAl棒を120℃で0.5h 乾燥させ、650℃で2h焼成した。
【0071】
分解率はクロロベンゼン(CB)量,ベンゼン(B)量から算出した。
【0072】
分解率(%)=(1−(出口CB+出口B量(mol/h))/入口CB量(mol/h))×100
出口CB量(mol/h)=排ガス中のCB量+第一吸収槽及び第二吸収槽のCB量出口B量(mol/h)=排ガス中のB量+第一吸収槽及び第二吸収槽のB量
結果を表6に示す。
【0073】
【表6】
Figure 2004105864
【0074】
触媒13は分解率56.24%、触媒14では約70%分解できることが判った。これは、図2に示す反応器の触媒充填部分が直方体であるため、触媒5では触媒がコートされていない外表面部分を反応ガスの一部が通過してしまうためと考えられた。外表面にも触媒をコートした触媒14では分解率が向上したことから、反応器の触媒充填部分の構造を改良すればさらに高い分解率が得られると考えられる。
【0075】
[実施例7]
本実施例では、Ni/Al触媒を外径1.2mmφ のアルミナ棒にコートし、図2に示す反応器内に設置し、図3に示す試験装置で分解を行った。触媒は次のようにして調製した。分解率はクロロベンゼン(CB)量,ベンゼン(B)量から算出した。
【0076】
分解率(%)=(1−(出口CB+出口B量(mol/h))/入口CB量(mol/h))×100
出口CB量(mol/h)=排ガス中のCB量+第一吸収槽及び第二吸収槽のCB量
出口B量(mol/h)=排ガス中のB量+第一吸収槽及び第二吸収槽のB量
<触媒15> Ni/Al触媒
アルミナゾル(日産化学製,アルミナゾル−520)をマイクロチューブポンプで吸引し、外径1.2mmφ,内径1.0mmφのAl棒内部を通過させ、内表面をアルミナゾルコートした。120℃で0.5h 乾燥し、650℃で1h焼成した。AlゾルをコートしたAl棒に、Alスラリをコートした。Alスラリは、前述のAlゾル10gにベーマイト(CONDEA製 PURALSB1)1.5gを攪拌しながら混合して調製した。このスラリをマイクロチューブポンプを用いてAl棒内表面にコートした。コート後、120℃で0.5h 乾燥させ、1100℃で1h焼成した。このAl棒に硝酸ニッケル水溶液をマイクロチューブポンプで通過させて、内表面にコートされたAl層に含浸した。硝酸ニッケル水溶液は、硝酸ニッケル6水和物63.39gを純水50mlに溶かして調製した。仕込み量から算出したNi量はNi/Al触媒中11.3wt% となる。Ni水溶液をコートしたAl棒を120℃で0.5h 乾燥させ、650℃で2h焼成した。
【0077】
<触媒16> Ni/Al触媒
アルミナゾル(日産化学製,アルミナゾル−520)をマイクロチューブポンプで吸引し、外径1.2mmφ ,内径1.0mmφのAl棒内部を通過させ、内表面をコートした。さらに、外表面にもアルミナゾルをコートし、120℃で0.5h 乾燥し、650℃で1h焼成した。AlゾルをコートしたAl棒に、次にAlスラリをコートした。Alスラリは、前述のAlゾル10gにベーマイト(CONDEA製 PURALSB1)1.5gを攪拌しながら混合して調製した。このスラリをマイクロチューブポンプを用いてAl棒内表面にコートした。ゾルコートと同様に、外表面にもアルミナスラリをコートした。コート後、120℃で0.5h 乾燥させ、1100℃で1h焼成した。このAl棒に硝酸ニッケル水溶液をマイクロチューブポンプで通過させて、内表面にコートされたAl層に含浸した。外表面にもコートした。硝酸ニッケル水溶液は、硝酸ニッケル6水和物63.39g を純水50mlに溶かして調製した。仕込み量から算出したNi量はNi/Al触媒中11.3wt% となる。Ni水溶液をコートしたAl棒を120℃で0.5h乾燥させ、650℃で2h焼成した。
【0078】
触媒15は分解率60%、触媒16は90%分解できることが判った。これは、実施例5と同様に触媒15では触媒がコートされていない外表面部分を反応ガスの一部が通過してしまうためと考えられた。外表面にも触媒をコートした触媒16では分解率が向上したことから、反応器の触媒充填部分の構造を改良すればさらに高い分解率が得られると考えられる。
【0079】
【発明の効果】
本発明によれば、PCB等のハロゲン化芳香族炭化水素を一段の処理にて有害な副生物を生ずることなく分解することができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す処理装置のシステム構成図。
【図2】本発明で使用されるマイクロリアクタの一実施例を示す上面図と側面図。
【図3】本発明の他の実施例を示す処理装置のシステム構成図。
【図4】本発明の触媒の性能を示す図。
【図5】本発明の触媒の性能を示す図。
【図6】本発明の触媒の性能を示す図。
【符号の説明】
1…ハロゲン化芳香族炭化水素、2…純水、3…水素、4…窒素、5…加熱器、6…触媒反応器、7…触媒、8…電気炉、9…分解ガス吸収槽、10…ミストキャッチャ、11…活性炭槽、12…反応ガス入口、13…分解ガス出口、14…冷却媒体入口、15…冷却媒体出口、16…アルミナ棒、17…触媒層、18…バッファスペース、19…加熱装置。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method, a catalyst and a cracking device for cracking a halogenated aromatic hydrocarbon by contacting the catalyst with a catalyst.
[0002]
[Prior art]
The treatment of halogenated aromatic hydrocarbons as an environmental pollutant has been studied in various ways. To date, a sodium metal dispersion method, a chemical extraction decomposition method, an organic alkali metal decomposition method, a catalytic hydrogen reduction method, and the like have been known.
[0003]
JP-A-6-226046 discloses that a volatile organic halogen compound is once adsorbed on an adsorbent, a saturated adsorbent is regenerated with steam, and then a regenerated waste liquid obtained by condensation is directly used or an aerated gas is used in the presence of a metal catalyst. Describes a method of contacting with a reducing agent at room temperature. This method is a dehalogenation cracking that removes only halogen from a halogenated aromatic hydrocarbon.
[0004]
In addition, JP-A-9-880 discloses a method for decomposing an organic halogen compound using a catalyst.
[0005]
[Problems to be solved by the invention]
In the method described in JP-A-6-226046, it is necessary to treat a dehalogenated aromatic hydrocarbon.
[0006]
An object of the present invention is to provide a method, a catalyst and a decomposition apparatus for decomposing halogenated aromatic hydrocarbons without generating harmful by-products.
[0007]
[Means for Solving the Problems]
The process of the present invention comprises adding hydrogen and steam to a gaseous halogenated aromatic hydrocarbon and contacting the gas stream with a catalyst to convert the halogenated aromatic hydrocarbon to hydrogen halide, carbon monoxide and carbon dioxide. At least one of the following.
[0008]
The catalyst of the present invention uses a carrier selected from alumina, alumina-silica, and mordenite as a support, and further comprises a carrier selected from Mo, W, Cr, Fe, Co, Ni, V, Pt, Pd, Rh, and Ru. At least one of a metal or an oxide containing at least one of Mo, W, Cr, Fe, Co, Ni and V in a total amount of 0.5 to 50 wt%, and at least one of Pt, Pd, Rh and Ru The total content is 0.1 to 3 wt%. A carrier selected from the group consisting of alumina, alumina-silica, and mordenite is used as a carrier, and at least one selected from the group consisting of Mo, W, Cr, Fe, Co, Ni, and V is used as a metal or oxide. The total content is 0.5% to 50% by weight (% by weight), and at least one selected from the group consisting of Pt, Pd, Rh and Ru is 0.1% to 3% by weight as a metal or oxide.
[0009]
The cracking device of the present invention includes a hydrogen supplier for adding hydrogen to a gaseous halogenated aromatic hydrocarbon, a steam supplier for adding steam, and a halogenated aromatic hydrocarbon to which the hydrogen and steam are added. The present invention has a catalyst reactor for decomposing by contacting with a catalyst, and an exhaust gas cleaning device for cleaning decomposition products generated in the catalyst reactor with water or an alkaline aqueous solution.
[0010]
Initially, we will use normal pressure, reaction temperature 500 ° C, H2The decomposition of halogenated aromatic hydrocarbons was examined using with 18 to 22 times the amount of halogen in the halogenated aromatic hydrocarbon and steam with 1 to 3 times the carbon amount in chlorobenzene. In this case, although the halogenated aromatic hydrocarbon was dehalogenated, the decomposition rate of the aromatic hydrocarbon was found to be low. Various catalysts were evaluated. Dehalogenation was easy, but aromatic hydrocarbons hardly decomposed. However, it has been found that by supplying a predetermined amount of steam together with hydrogen during the decomposition reaction, benzene and the like, which are intermediate products of the halogenated aromatic hydrocarbon decomposition reaction, can be simultaneously decomposed. The amount of water vapor to be added is extremely important, and if the amount is small, the decomposition rate decreases.
[0011]
The effect of adding steam is considered as follows. The following is an example of a chlorobenzene decomposition reaction. H2If only, only equation (1) proceeds and H2When the amount of O is small
C generated without sufficiently progressing the equation (2)6H6Causes cracking. But H2It is considered that by adding O in an optimal amount, the equations (1) to (3) occur, and complete decomposition is achieved. Depending on the reaction conditions, as shown in equation (4), some CH4In some cases, such hydrocarbons are generated.
[0012]
C6H5Cl + H2→ C6H6{+} HCl} ... (1)
C6H6+ 6H2O →→ 6CO + 9H2… (2)
CO + H2O → CO2+ H2… (3)
CO2+ 2H2→ CH4+ O2… (4)
In the present invention, it is desirable that the catalyst and the reaction gas be brought into contact at 300 to 600 ° C. When the temperature is lower than 300 ° C., sufficient decomposition performance cannot be obtained. If the temperature is 600 ° C. or higher, cracking is likely to occur, and carbon and the like are deposited.
[0013]
H2The amount is preferably from 10 mol% to 30 mol%, more preferably from 15 mol% to 25 mol%, based on the halogen amount in the halogenated aromatic hydrocarbon. As for the amount of water vapor, the S / C (water vapor / carbon) ratio is desirably 5 mol% or more and 50 mol% or less, preferably 7 mol% or more and 15 mol% or less, based on the carbon amount in the halogenated aromatic hydrocarbon. A large amount of water vapor does not affect the decomposition, but requires energy to raise the temperature to the reaction temperature.
[0014]
Halogenated aromatic hydrocarbons that are targeted in the present invention include chlorobenzene, dichlorobenzene, trichlorobenzene, biphenyl chloride, polychlorinated biphenyls, dioxins, furans, and the like. In addition, halogenated aromatic hydrocarbons used as electrical insulating oil from transformers, capacitors, and the like are also targeted.
[0015]
In the catalyst of the present invention, the catalytically active component supported on the carrier is desirably a metal. It is desirable that the carrier component be crystallized so that the carrier component and the carrier component do not react to form a compound. The crystallization of the carrier component can be performed by firing at a high temperature. Ir, Os, etc., as catalytically active components, also have some effects, but are inferior to Pt, Pd, Rh and Ru.
[0016]
At least one of Mo, W, Cr, Fe, Co, Ni and V as a catalytically active component is desirably contained in a total amount of 0.5 to 50 wt%, and particularly preferably 10 to 40 wt%. Further, at least one of Pt, Pd, Rh and Ru is preferably in the range of 5 wt% to 50 wt% in total, and more preferably 0.5% to 2 wt%.
[0017]
A preferred catalyst is one in which Ni is supported on an alumina carrier, and Ni is supported on an alumina carrier.
A carrier carrying Co, a carrier carrying Ni and V on an alumina carrier, and a carrier carrying Ni and at least one of Pt, Pd, Rh and Ru on a alumina carrier.
[0018]
As the Al raw material for preparing the catalyst of the present invention, γ-alumina, a mixture of γ-alumina and δ-alumina, and the like can be used. In particular, using boehmite or the like as an Al material,2O3Is also a preferred method.
[0019]
As raw materials of various metal components for preparing the catalyst of the present invention, nitrates, sulfates, ammonium salts, chlorides and the like can be used.
[0020]
As the method for producing the catalyst of the present invention, any of a precipitation method, an impregnation method, and the like, which are usually used for producing a catalyst, can be used.
[0021]
Further, the catalyst in the present invention can be used as it is formed into granules, honeycombs or the like. As the molding method, any method such as an extrusion molding method, a tablet molding method, and a tumbling granulation method can be adopted according to the purpose. Further, it can be used after being coated on a ceramic, metal honeycomb, pipe or plate. In particular, it is preferable to use a catalyst coated on the inside of a ceramic pipe having an inner diameter of 1 mm or less, because the apparatus can be reduced in size and the reaction temperature can be easily controlled. This is because layers (several hundred square meters) contributing to the promotion of the chemical reaction on the catalyst surface can be arranged. It is also preferable that a groove having a length, width, and height of 1 mm or less is formed by etching or the like, a catalyst is coated on the inner wall, and a gas flow containing a halogenated aromatic hydrocarbon is caused to flow through the groove. When used as a granular catalyst, a particle size of 2 to 4 mm is desirable, but this particle size may be changed depending on the treatment amount and conditions.
[0022]
Al2O3The firing temperature of the raw material is desirably 900 to 1100 ° C. The purpose of firing is
αAl2O3The firing temperature may be changed depending on the raw material used.
[0023]
The space velocity (SV) for performing the reaction is 500 to 10,000 hours.-1Is preferred, and particularly preferably 1,000 to 5,000 h-1It is.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
The disassembly flow will be described in detail using the experimental apparatus shown in FIG. The minimum configuration of the present apparatus is a reaction gas heater 5, a catalyst reactor 6, and a decomposition gas absorption tank 9. A halogenated aromatic hydrocarbon 1, pure water 2, and hydrogen 3 are supplied to the heater 5, and heated to a predetermined temperature. The heated gas is introduced into the catalyst reactor 6 heated in the electric furnace 8 and comes into contact with the catalyst 7. The decomposed gas is bubbled into water in the decomposed gas absorption tank 9 to
After removing acid components such as HCl and further removing water with a mist catcher 10, the gas is exhausted through an activated carbon tank 11. Before performing the decomposition test, the catalytic reactor 6 and the piping leading to the reactor are replaced with an inert gas such as nitrogen 4.
[0025]
FIG. 2 shows a small catalytic reactor (microreactor). The size is a cubic structure of about 40 mm square. The reaction gas flows in from the reaction gas inlet 12 in the top view and flows out from the decomposition gas outlet 13. Here, the reaction gas is a halogenated aromatic hydrocarbon, hydrogen, or steam. A cooling medium flows from the cooling medium inlet 14 to control a rise in temperature during the reaction. The cooling medium flows out of the cooling medium outlet 15. A circle having an outer diameter of 1.2 mmφ in the side view is an alumina rod 16 coated with a catalyst. The portion where the alumina rod is placed is a groove having a height of 1.5 mm (catalyst layer 17). These are arranged in three rows. The reaction gas flows through this part. The reaction gas enters the buffer space 18 in the top view, where the gas is once reduced in linear velocity and then passed through the catalyst layer. This allows the gas to flow uniformly through the three catalyst layers.
[0026]
FIG. 3 shows a decomposition apparatus using the small reactor shown in FIG. The apparatus includes a water supply line, a halogenated aromatic hydrocarbon supply line, a hydrogen gas supply line, an inert gas supply line such as nitrogen, a heater 5, a catalyst reactor 6, a cracked gas absorption tank 9, a mist catcher 10, It is composed of an activated carbon tank 11. First, before flowing the reaction gas, the inside of the system is replaced with an inert gas such as nitrogen. After that, hydrogen is replaced with H2。 From the cylinder, supply through a pressure reducing valve with a mass flow controller to control the flow rate. Further, pure water is sucked from a tank by a micro tube pump, introduced into the heater 5, and vaporized into steam. When the flow rates of hydrogen and water vapor are stabilized, the halogenated aromatic hydrocarbon 1 is sucked by a micro tube pump and supplied. The gas heated to a predetermined temperature by the heater 5 is introduced from outside into the small catalytic reactor 6 heated by the heating device 19. In the catalytic reactor, the reaction gas comes into contact with the catalyst as shown in FIG. The decomposed gas is exhausted after passing through a mist catcher 10 and an activated carbon tank 11 after removing acid components such as HCl in a decomposed gas absorption tank 9. These disassembly devices are housed in a housing, and the inside of the housing is sucked and evacuated. In addition, H2Install gas sensors such as and benzene. The temperature of various metering pumps, gas flow meters, heaters, catalytic reactors, etc. are controlled collectively by a controller.
[0027]
As the step of removing HCl, washing by spraying water or an alkaline aqueous solution is preferable because it is highly efficient and blockage of the pipe due to crystal precipitation or the like hardly occurs. A method of bubbling the decomposition product gas in water or an aqueous alkaline solution or a method of washing using a packed tower may be used. Further, an alkaline solid may be used.
[0028]
The reactor used for carrying out the treatment method of the present invention may be of a usual fixed bed, moving bed or fluidized bed type, but corrosive gas such as HCl is generated as a decomposition product gas. The reactor should be made of materials that are not easily damaged by these corrosive gases.
[0029]
The processing apparatus of the present invention may be connected to a removing apparatus for extracting halogenated aromatic hydrocarbons from a transformer, a condenser, or the like. Halogenated aromatic hydrocarbons extracted from transformers, condensers, etc. contain impurities such as solids precipitated in oil or catalyst. Therefore, once the impurities are removed in the refining process, the halogenated aromatics after removing the impurities are removed. Preferably, the aromatic hydrocarbon is supplied to the cracking device. At this time, the piping connecting the removal device for extracting the halogenated aromatic hydrocarbon and the decomposition device is kept warm by a ribbon heater or the like. By keeping the temperature, condensation of halogenated aromatic hydrocarbons on the way can be suppressed.
[0030]
[Example 1]
In this example, the influence of the catalyst carrier was examined. In the test device shown in FIG. 1, chlorobenzene was used as a raw material, and the amount of chlorobenzene was 0.11 to 0.15 (mol / h).
H2/ Chlorobenzene molar ratio of 19 to 20, H2O / chlorobenzene molar ratio 8-12, space velocity (SV) 2860-3050h-1Under these conditions, the generated CH at various reaction temperatures4Measure the amount of CH4Generated CH per volume4The ratio of the amount (wt%) was calculated. The catalyst was prepared as follows.
[0031]
<Catalyst 1> @ Pd / Al2O3catalyst
Activated alumina (manufactured by Sumitomo Kagaku, NKHD-24, particle size: 2-4 mm) was dried at 120 ° C. for 1 hour. To 50.02 g of the dried alumina, 11.31 g of a 4.422 wt% Pd nitric acid solution (manufactured by Tanaka Kikinzoku) was diluted with pure water to make 34.99 g of a Pd aqueous solution, which was then impregnated. After impregnation, it was dried at 120 ° C. for 2 hours and calcined at 650 ° C. for 2 hours.
[0032]
<Catalyst 2> Pd / silica-alumina catalyst
SiO2/ Al2O3(Manufactured by JGC Chemicals, N632L, 3φ × 3L) was dried at 120 ° C. for 1 hour. SiO after drying2/ Al2O3To 50.35 g, 11.33 g of a 4.422 wt% Pd nitric acid solution (manufactured by Tanaka Kikinzoku) was diluted with pure water to make a 28.00 g Pd aqueous solution, and the resultant was impregnated. After impregnation, it was dried at 120 ° C. for 2 hours and calcined at 650 ° C. for 2 hours.
[0033]
<Catalyst 3> Pd / mordenite catalyst
Mordenite (Tosoh, 640HOA, 1.5 mm pellet) was dried at 120 ° C. for 1 h. To 50.42 g of the dried mordenite, 11.32 g of a 4.422 wt% Pd nitric acid solution (manufactured by Tanaka Kikinzoku) was diluted with pure water to make a 29.89 g Pd aqueous solution, and impregnated. After impregnation, it was dried at 120 ° C. for 2 hours and calcined at 650 ° C. for 2 hours.
[0034]
FIG. 4 shows the results. CH from reaction temperature around 400 ° C4The generation of has begun. At 400 ° C., the difference between the catalysts is small, but at 550 ° C., Pd / Al2O3CH4The amount of production is the largest, and among these three types of carriers, Al2O3Was found to be most preferred.
[0035]
[Example 2]
In this embodiment, Ni is used as the catalytically active component.2O3Was prepared to decompose chlorobenzene. As in Example 1, the test apparatus shown in FIG. 1 was used. Using chlorobenzene as a raw material, the decomposition rates of chlorobenzene and benzene at various reaction temperatures were measured under the conditions shown in Table 1. The chlorobenzene (CB) decomposition rate and the benzene (B) decomposition rate were calculated by the following equations.
[0036]
Chlorobenzene (CB) decomposition rate (%) = (1-outlet CB amount (mol / h) / inlet CB amount (mol / h)) × 100
Outlet CB amount (mol / h) = CB amount in exhaust gas + CB amount in first absorption tank and second absorption tank
Benzene (B) decomposition rate (%) = (1-outlet B amount (mol / h) / inlet B amount (mol / h)) × 100
Outlet B amount (mol / h) = B amount in exhaust gas + B amount in first and second absorption tanks
[0037]
[Table 1]
Figure 2004105864
[0038]
The catalyst was prepared as follows.
[0039]
<Catalyst 4> @ Ni / Al2O3catalyst
Activated alumina (manufactured by Sumitomo Kagaku, NKHD-24, particle size 2-4 mm) is calcined at 1100 ° C. for 5 hours, and αAl2O3It was made. To 100.00 g of this alumina, 49.55 g of nickel nitrate hexahydrate (Wako Pure Chemical Industries, Ltd.) was dissolved in pure water and impregnated so that the charged amount of Ni was 10 wt%. After impregnation, it was dried at 120 ° C. for 2 hours and calcined at 650 ° C. for 2 hours. Since Ni in the catalyst after calcination is an oxide, H2還 元 Reduction treatment was performed in an air stream to reduce Ni oxide to Ni metal.
[0040]
FIG. 5 shows the results. As for the dechlorination reaction indicated by the chlorobenzene decomposition rate, almost 100% reaction could be achieved at a reaction temperature of 425 ° C. Regarding benzene decomposition, it was found that the decomposition rate was low at a reaction temperature of 425 ° C or lower, but it was completely decomposed at 500 ° C. The decomposition products include HCl, CO, CH4, H2CO, CO2Was detected.
[0041]
[Example 3]
In this example, the performance of catalytically active components other than Ni was examined. As in Example 1, the test apparatus shown in FIG. 1 was used. Using chlorobenzene as a raw material, the amount of chlorobenzene is 0.11 to 0.15 (mol / h),2/ Chlorobenzene molar ratio of 19 to 20, H2O / chlorobenzene molar ratio 8-12, space velocity (SV) 2860-3050h-1Under these conditions, the decomposition rate of chlorobenzene at a reaction temperature of 410 ° C. was measured. The chlorobenzene decomposition rate was determined by the above-mentioned calculation formula. The catalyst was prepared as follows.
[0042]
<Catalyst 5> @ Pt / Al2O3catalyst
Activated alumina (manufactured by Sumitomo Kagaku, NKHD-24, particle size: 2-4 mm) was dried at 120 ° C. for 1 hour. 50.00 g of alumina after drying, Pt was added as Al2O3A 1.459 wt% {34.27 g of tetravalent-ammine solution (manufactured by Tanaka Kikinzoku)} was diluted with pure water to 35 g so as to be 1 wt% to the weight to impregnate with a Pt aqueous solution. After impregnation, it was dried at 120 ° C. for 2 hours and calcined at 650 ° C. for 2 hours.
[0043]
<Catalyst 6> @ Rh / silica-alumina catalyst
SiO2/ Al2O3(Manufactured by JGC Chemicals, N632L, 3φ × 3L) was dried at 120 ° C. for 1 hour. SiO after drying2/ Al2O3For 50.00 g, Rh was SiO2/ Al2O311.15 g of a 4.485 wt% Rh nitric acid solution (manufactured by Tanaka Kikinzoku) was diluted with pure water to 28 wt. After impregnation, it was dried at 120 ° C. for 2 hours and calcined at 650 ° C. for 2 hours.
[0044]
<Catalyst 7> @ Ru / silica-alumina catalyst
SiO2/ Al2O3(Manufactured by JGC Chemicals, N632L, 3φ × 3L) was dried at 120 ° C. for 1 hour. SiO after drying2/ Al2O3For 50.00 g, the charged amount of Ru is SiO2/ Al2O312.86 g of a 3.889 wt% Ru nitric acid solution (manufactured by Tanaka Kikinzoku) was diluted with pure water to 28 wt. After impregnation, it was dried at 120 ° C. for 2 hours and calcined at 650 ° C. for 2 hours.
[0045]
<Catalyst 8> Mo / Al2O3catalyst
Activated alumina (manufactured by Sumitomo Kagaku, NKHD-24, particle size: 2-4 mm) was dried at 120 ° C. for 1 hour. 50.00 g of alumina after drying, Mo was added to Al2O39.18 g of ammonium molybdate (Wako Pure Chemical Industries, Ltd.) was dissolved in pure water to make 10 wt% with respect to the weight, and the resultant was impregnated with a 35 g of Mo aqueous solution. After impregnation, it was dried at 120 ° C. for 2 hours and calcined at 650 ° C. for 2 hours.
[0046]
<Catalyst 9> @ W / Al2O3catalyst
Activated alumina (manufactured by Sumitomo Kagaku, NKHD-24, particle size: 2-4 mm) was dried at 120 ° C. for 1 hour. 50.00 g of alumina after drying, W was charged as Al2O37.05 g of ammonium tungstate para-pentahydrate (Wako Pure Chemical Industries, Ltd.) was dissolved in pure water to make the amount 35 wt. After impregnation, it was dried at 120 ° C. for 2 hours and calcined at 650 ° C. for 2 hours.
[0047]
<Catalyst 10> Cr / Al2O3catalyst
Activated alumina (manufactured by Sumitomo Kagaku, NKHD-24, particle size: 2-4 mm) was dried at 120 ° C. for 1 hour. 50.00 g of alumina after drying, Fe2O3A Cr aqueous solution was prepared by dissolving 19.21 g of chromium nitrate nonahydrate (Wako Pure Chemical Industries, Ltd.) with pure water to 35 g so as to be 5 wt% based on the weight. After impregnation, it was dried at 120 ° C. for 2 hours and calcined at 650 ° C. for 2 hours.
[0048]
<Catalyst 11> @ Fe / mordenite catalyst
Mordenite (Tosoh, 640HOA, 1.5 mm pellet) was dried at 120 ° C. for 1 h. With respect to 50.00 g of mordenite after drying, 18.10 g of iron nitrate nonahydrate (Wako Pure Chemical) was dissolved in pure water to 35 g so that the amount of Fe was 5 wt% based on the weight of mordenite. Was impregnated. After impregnation, it was dried at 120 ° C. for 2 hours and calcined at 650 ° C. for 2 hours.
[0049]
<Catalyst 12> Co / mordenite catalyst
Mordenite (Tosoh, 640HOA, 1.5 mm pellet) was dried at 120 ° C. for 1 h. To 50.00 g of the mordenite after drying, 12.34 g of cobalt nitrate hexahydrate (Wako Pure Chemical Industries, Ltd.) was dissolved in pure water to make 35 g so that the charged amount of Fe was 5 wt% based on the weight of the mordenite. Was impregnated. After impregnation, it was dried at 120 ° C. for 2 hours and calcined at 650 ° C. for 2 hours.
[0050]
Table 2 shows the results.
[0051]
[Table 2]
Figure 2004105864
[0052]
[Example 4]
In this example, the effect of the amount of Ni was examined. The catalyst was Ni / Al of catalyst 4, catalyst 4-1, and catalyst 4-2.2O3A catalyst was used. As in Example 1, the test apparatus shown in FIG. 1 was used. Using chlorobenzene as a raw material, the decomposition rate of chlorobenzene and benzene was measured under the conditions shown in Table 3. The decomposition rate calculation formula is as described above. FIG. 6 shows the results. With the catalyst 4-2, the chlorobenzene decomposition rate was 99.9% or more and the benzene decomposition rate was 89.4% 89 at a reaction temperature of 410 ° C. When these catalysts were used at a reaction temperature of 450 ° C., both the chlorobenzene decomposition rate and the benzene decomposition rate were improved, and the catalyst 4-2 decomposed 99.9%.
[0053]
[Table 3]
Figure 2004105864
[0054]
The catalyst used was prepared as follows.
[0055]
<Catalyst 4-1>
Activated alumina (manufactured by Sumitomo Kagaku, NKHD-24, particle size 2-4 mm) is calcined at 1100 ° C. for 5 hours, and αAl2O3It was made. With respect to 65.05 g of this alumina, 64.41 g of nickel nitrate hexahydrate (Wako Pure Chemical Industries) was dissolved in 21.62 g of pure water and impregnated so that the charged amount of Ni was 20 wt%. After impregnation, it was dried at 120 ° C. for 1 hour and calcined at 650 ° C. for 2 hours. Since Ni in the catalyst after calcination is an oxide, H2還 元 Reduction treatment was performed in an air stream to reduce Ni oxide to Ni metal.
[0056]
<Catalyst 4-2>
Activated alumina (manufactured by Sumitomo Kagaku, NKHD-24, particle size 2-4 mm) is calcined at 1100 ° C. for 5 hours, and αAl2O3It was made. With respect to 65.08 g of this alumina, 128.80 g of nickel nitrate hexahydrate (Wako Pure Chemical) was dissolved in 43.20 g of pure water and impregnated so that the charged amount of Ni was 40 wt%. The impregnation was performed several times. First, 55 ml of a nickel solution was impregnated and dried at 120 ° C. for 1 hour. Then, it was impregnated with 28 ml of a nickel solution, dried at 120 ° C. for 3 hours, and fired at 650 ° C. for 1 hour. After firing, the remaining nickel solution (27 ml) was impregnated, dried at 120 ° C. for 1 hour, and fired at 650 ° C. for 2 hours. Since Ni in this catalyst is an oxide, H2還 元 Reduction treatment was performed in an air stream to reduce Ni oxide to Ni metal.
[0057]
[Example 5]
In this example, the influence of a three-component catalyst was examined. As in Example 1, the test apparatus shown in FIG. 1 was used. Using chlorobenzene as a raw material, the decomposition rate of chlorobenzene and benzene was measured under the conditions shown in Table 4. Chlorobenzene and benzene decomposition rates were determined by the above-mentioned calculation formula. Table 5 shows the results of the decomposition rates.
[0058]
[Table 4]
Figure 2004105864
[0059]
[Table 5]
Figure 2004105864
[0060]
The catalyst in which Pt, Pd, V, Co, La, and K were respectively added to the Ni / Al catalyst also showed a high decomposition rate. However, for the La-added catalyst of the catalyst 24 and the K-added catalyst of the catalyst 25, Cl was detected in the catalyst after the test.
[0061]
Catalysts 20-25 were prepared as follows.
[0062]
<Catalyst 20> @ Pt / Ni / Al2O3
Activated alumina (manufactured by Sumitomo Kagaku, NKHD-24, particle size 2-4 mm) is calcined at 1100 ° C. for 5 hours, and αAl2O3It was made. To 65.00 g of this alumina, 64.41 g of nickel nitrate hexahydrate (Wako Pure Chemical Industries, Ltd.) was dissolved and impregnated in 21.58 g of pure water so that the charged amount of Ni was 20 wt%. After impregnation, it was dried at 120 ° C. for 1 hour and calcined at 650 ° C. for 2 hours. To 65.00 g of the calcined catalyst, 298 mg / g of chloroplatinic acid 2.097 g of pure water was added to make 29.26 g of pure catalyst. This was impregnated, dried at 120 ° C. for 1 hour, and fired at 650 ° C. for 2 hours. Since Ni in the catalyst after calcination is an oxide, H2還 元 Reduction treatment was performed in an air stream to reduce Ni oxide to Ni metal.
[0063]
<Catalyst 21> @ Pd / Ni / Al2O3
Activated alumina (manufactured by Sumitomo Kagaku, NKHD-24, particle size 2-4 mm) is calcined at 1100 ° C. for 5 hours, and αAl2O3It was made. To 65.00 g of this alumina, 64.41 g of nickel nitrate hexahydrate (Wako Pure Chemical) was dissolved in 21.58 g of pure water and impregnated so that the amount of Ni to be charged was 20 wt%. After impregnation, it was dried at 120 ° C. for 1 hour and calcined at 650 ° C. for 2 hours. 14.699 g of a 4.422 wt% Pd nitric acid solution was added to 65.02 g of the calcined catalyst to give 29.26 g by adding pure water. This was impregnated, dried at 120 ° C. for 1 hour, and fired at 650 ° C. for 2 hours. Since Ni in the catalyst after calcination is an oxide, H2還 元 Reduction treatment was performed in an air stream to reduce Ni oxide to Ni metal.
[0064]
<Catalyst 22> @ V / Ni / Al2O3
Activated alumina (manufactured by Sumitomo Kagaku, NKHD-24, particle size 2-4 mm) is calcined at 1100 ° C. for 5 hours, and αAl2O3It was made. To 65.05 g of this alumina, 64.41 g of nickel nitrate hexahydrate (Wako Pure Chemical Industries, Ltd.) was dissolved in 21.62 g of pure water and impregnated so that the charged amount of Ni was 20 wt%. After impregnation, it was dried at 120 ° C. for 1 hour and calcined at 650 ° C. for 2 hours. With respect to 65.75 g of the calcined catalyst, 1.49 g of ammonium vanadate (Wako Pure Chemical Industries) was dissolved in 5 ml of 30% hydrogen peroxide solution so that the charged amount would be 1 wt%, and 30 g of pure water was further added. Impregnation was performed after the addition. After impregnation, it was dried at 120 ° C. for 1 hour and calcined at 500 for 2 hours. Since Ni in the catalyst after calcination is an oxide, H2還 元 Reduction treatment was performed in an air stream to reduce Ni oxide to Ni metal.
[0065]
<Catalyst 23> @ Co / Ni / Al2O3
Activated alumina (manufactured by Sumitomo Kagaku, NKHD-24, particle size 2-4 mm) is calcined at 1100 ° C. for 5 hours, and αAl2O3It was made. With respect to 65.05 g of this alumina, 64.41 g of nickel nitrate hexahydrate (Wako Pure Chemical Industries) was dissolved in 21.62 g of pure water and impregnated so that the charged amount of Ni was 20 wt%. After impregnation, it was dried at 120 ° C. for 1 hour and calcined at 650 ° C. for 2 hours. With respect to 65.13 g of the calcined catalyst, 16.04 g of cobalt nitrate hexahydrate (Wako Pure Chemical Industries) was dissolved in 29.95 g of pure water and impregnated so that the charged amount of Co became 5 wt%. After impregnation, it was dried at 120 ° C. for 1 hour and calcined at 650 ° C. for 2 hours. Since Ni in the catalyst after calcination is an oxide, H2還 元 Reduction treatment was performed in an air stream to reduce Ni oxide to Ni metal.
[0066]
<Catalyst 24> @ La / Ni / Al2O3
Activated alumina (manufactured by Sumitomo Kagaku, NKHD-24, particle size 2-4 mm) is calcined at 1100 ° C. for 5 hours, and αAl2O3It was made. With respect to 65.00 g of this alumina, 64.55 g of nickel nitrate hexahydrate (Wako Pure Chemical Industries, Ltd.) and 12.17 g of lanthanum nitrate hexahydrate were prepared so that the charged amounts of Ni and La were 20 wt% and 6 wt%, respectively. It was dissolved in 27.95 g of pure water and impregnated. In addition, impregnation was divided into two times, and after the first impregnation, drying was performed at 120 ° C. for 1 hour, and impregnation was performed again. After impregnation, it was dried at 120 ° C. for 1.5 hours and calcined at 650 ° C. for 2 hours. Since Ni in the catalyst after calcination is an oxide, H2還 元 Reduction treatment was performed in an air stream to reduce Ni oxide to Ni metal.
[0067]
<Catalyst 25> @ K / Ni / Al2O3
Activated alumina (manufactured by Sumitomo Kagaku, NKHD-24, particle size 2-4 mm) is calcined at 1100 ° C. for 5 hours, and αAl2O3It was made. Nickel nitrate hexahydrate was added to 64.55 g of alumina so that Ni was 20 wt% and K was 6 wt%.
(Wako Pure Chemical Industries) 64.55 g and potassium nitrate (10.08 g) were dissolved in pure water (27.95 g) and impregnated. In addition, impregnation was divided into two times, and after the first impregnation, drying was performed at 120 ° C. for 1 hour, and impregnation was performed again. After impregnation, it was dried at 120 ° C. for 1.5 hours and calcined at 650 ° C. for 2 hours. Since Ni in the catalyst after calcination is an oxide, H2還 元 Reduction treatment was performed in an air stream to reduce Ni oxide to Ni metal.
[0068]
[Example 6]
In this embodiment, Pd / Al2O3This is the result of coating the catalyst on an alumina rod having an outer diameter of 1.2 mmφ, placing the catalyst in the reactor shown in FIG. 2, and decomposing it with the test device shown in FIG. The catalyst was prepared as follows.
[0069]
<Catalyst 13> Pd / Al2O3catalyst
Alumina sol (alumina sol-520, manufactured by Nissan Chemical Co., Ltd.) is sucked by a micro tube pump, and Al with an outer diameter of 1.2 mmφ and an inner diameter of 1.0 mmφ2O3After passing through the inside of the rod, the inner surface was coated with alumina sol. It was dried at 120 ° C. for 0.5 h and calcined at 650 ° C. for 1 h. Al2O3Al coated with sol2O3Al on the rod2O3The slurry was coated. Al2O3The slurry is Al2O31.5 g of boehmite (PURALSB1 manufactured by CONDEA) was mixed with 10 g of the sol while stirring. This slurry was converted to Al using a micro tube pump.2O3The inner surface of the bar was coated. After the coating, the coating was dried at 120 ° C. for 0.5 h and baked at 650 ° C. for 1 h. This Al2O34.422 wt% Pd nitric acid solution (manufactured by Tanaka Kikinzoku) was passed through a rod with a microtube pump, and the Al coated on the inner surface was2O3The layer was impregnated. Al coated with Pd nitric acid solution2O3The rod was dried at 120 ° C. for 0.5 h and calcined at 650 ° C. for 2 h.
[0070]
<Catalyst 14> @ Ni / Al2O3catalyst
Alumina sol (alumina sol-520, manufactured by Nissan Chemical Co., Ltd.) is sucked by a micro tube pump, and Al having an outer diameter of 1.2 mmφ and an inner diameter of 1.0 mmφ is drawn.2O3The rod was passed through the inside of the rod to coat the inner surface. Further, the outer surface was coated with alumina sol, dried at 120 ° C. for 0.5 hour, and fired at 650 ° C. for 1 hour. Al2O3Al coated with sol2O3To the rod, then Al2O3The slurry was coated. Al2O3The slurry is Al2O31.5 g of boehmite (PURALSB1 manufactured by CONDEA) was mixed with 10 g of the sol while stirring. This slurry was converted to Al using a micro tube pump.2O3The inner surface of the bar was coated. Similarly to the sol coat, the outer surface was coated with alumina slurry. After the coating, the coating was dried at 120 ° C. for 0.5 hours and baked at 1100 ° C. for 1 hour. This Al2O3A 4.422 wt% Pd nitric acid solution (manufactured by Tanaka Kikinzoku) was passed through a rod with a microtube pump, and Al coated on the inner surface was coated.2O3The layer was impregnated. The outer surface was also coated. Al coated with Pd nitric acid solution2O3The bar was dried at 120 ° C. for 0.5 h and calcined at 650 ° C. for 2 h.
[0071]
The decomposition rate was calculated from the amounts of chlorobenzene (CB) and benzene (B).
[0072]
Decomposition rate (%) = (1− (outlet CB + outlet B amount (mol / h)) / inlet CB amount (mol / h)) × 100
Outlet CB amount (mol / h) = CB amount in exhaust gas + CB amount in first and second absorption tanks Outlet B amount (mol / h) = B amount in exhaust gas + First absorption tank and second absorption B amount of tank
Table 6 shows the results.
[0073]
[Table 6]
Figure 2004105864
[0074]
It was found that the decomposition rate of catalyst 13 was 56.24%, and that of catalyst 14 was about 70%. It is considered that this is because the catalyst-filled portion of the reactor shown in FIG. 2 is a rectangular parallelepiped, so that a part of the reaction gas passes through the outer surface portion of the catalyst 5 where the catalyst is not coated. Since the decomposition rate of the catalyst 14 having the outer surface coated with the catalyst was improved, it is considered that a higher decomposition rate can be obtained by improving the structure of the catalyst-filled portion of the reactor.
[0075]
[Example 7]
In this embodiment, Ni / Al2O3The catalyst was coated on an alumina rod having an outer diameter of 1.2 mmφ, placed in a reactor shown in FIG. 2, and decomposed by a test apparatus shown in FIG. The catalyst was prepared as follows. The decomposition rate was calculated from the amounts of chlorobenzene (CB) and benzene (B).
[0076]
Decomposition rate (%) = (1− (outlet CB + outlet B amount (mol / h)) / inlet CB amount (mol / h)) × 100
Outlet CB amount (mol / h) = CB amount in exhaust gas + CB amount in first absorption tank and second absorption tank
Outlet B amount (mol / h) = B amount in exhaust gas + B amount in first and second absorption tanks
<Catalyst 15> @ Ni / Al2O3catalyst
Alumina sol (alumina sol-520, manufactured by Nissan Chemical Co., Ltd.) is sucked by a micro tube pump, and Al having an outer diameter of 1.2 mmφ and an inner diameter of 1.0 mmφ is drawn.2O3After passing through the inside of the rod, the inner surface was coated with alumina sol. It was dried at 120 ° C. for 0.5 h and calcined at 650 ° C. for 1 h. Al2O3Al coated with sol2O3Al on the rod2O3The slurry was coated. Al2O3The slurry is Al2O31.5 g of boehmite (PURALSB1 manufactured by CONDEA) was mixed with 10 g of the sol while stirring. This slurry was converted to Al using a micro tube pump.2O3The inner surface of the bar was coated. After the coating, the coating was dried at 120 ° C. for 0.5 hours and baked at 1100 ° C. for 1 hour. This Al2O3An aqueous solution of nickel nitrate was passed through a rod with a microtube pump, and the Al2O3The layer was impregnated. The nickel nitrate aqueous solution was prepared by dissolving 63.39 g of nickel nitrate hexahydrate in 50 ml of pure water. Ni amount calculated from the charged amount is Ni / Al2O311.3 wt%} in the catalyst. Al coated with Ni aqueous solution2O3The bar was dried at 120 ° C. for 0.5 h and calcined at 650 ° C. for 2 h.
[0077]
<Catalyst 16> @ Ni / Al2O3catalyst
Alumina sol (alumina sol-520, manufactured by Nissan Chemical Co., Ltd.) is sucked by a micro tube pump, and an Al with an outer diameter of 1.2 mmφ and an inner diameter of 1.0 mmφ is used.2O3The rod was passed through the inside of the rod to coat the inner surface. Further, the outer surface was coated with alumina sol, dried at 120 ° C. for 0.5 hours, and fired at 650 ° C. for 1 hour. Al2O3Al coated with sol2O3To the rod, then Al2O3The slurry was coated. Al2O3The slurry is Al2O31.5 g of boehmite (PURALSB1 manufactured by CONDEA) was mixed with 10 g of the sol while stirring. This slurry was converted to Al using a micro tube pump.2O3The inner surface of the bar was coated. Similarly to the sol coat, the outer surface was coated with alumina slurry. After the coating, the coating was dried at 120 ° C. for 0.5 hours and baked at 1100 ° C. for 1 hour. This Al2O3An aqueous solution of nickel nitrate was passed through a rod with a microtube pump, and the Al2O3The layer was impregnated. The outer surface was also coated. The aqueous nickel nitrate solution was prepared by dissolving 63.39 g of nickel nitrate hexahydrate in 50 ml of pure water. Ni amount calculated from the charged amount is Ni / Al2O311.3 wt%} in the catalyst. Al coated with Ni aqueous solution2O3The rod was dried at 120 ° C. for 0.5 h and calcined at 650 ° C. for 2 h.
[0078]
It was found that the catalyst 15 could decompose 60% and the catalyst 16 could decompose 90%. It is considered that this is because a part of the reaction gas passes through the outer surface portion of the catalyst 15 where the catalyst is not coated as in the case of the fifth embodiment. Since the decomposition rate of the catalyst 16 whose outer surface was coated with the catalyst was improved, it is considered that a higher decomposition rate can be obtained by improving the structure of the catalyst-filled portion of the reactor.
[0079]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, halogenated aromatic hydrocarbons, such as PCB, can be decomposed | disassembled without producing harmful by-products by one process.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of a processing apparatus according to an embodiment of the present invention.
FIG. 2 is a top view and a side view showing one embodiment of a microreactor used in the present invention.
FIG. 3 is a system configuration diagram of a processing apparatus showing another embodiment of the present invention.
FIG. 4 is a graph showing the performance of the catalyst of the present invention.
FIG. 5 is a graph showing the performance of the catalyst of the present invention.
FIG. 6 is a graph showing the performance of the catalyst of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Halogenated aromatic hydrocarbon, 2 ... pure water, 3 ... hydrogen, 4 ... nitrogen, 5 ... heater, 6 ... catalyst reactor, 7 ... catalyst, 8 ... electric furnace, 9 ... cracked gas absorption tank, 10 ... Mist catcher, 11 ... Activated carbon tank, 12 ... Reaction gas inlet, 13 ... Decomposition gas outlet, 14 ... Cooling medium inlet, 15 ... Cooling medium outlet, 16 ... Alumina rod, 17 ... Catalyst layer, 18 ... Buffer space, 19 ... Heating equipment.

Claims (18)

ハロゲン化芳香族炭化水素を触媒で分解する方法であって、ガス状の前記ハロゲン化芳香族炭化水素と水素及び水蒸気を含むガス流を触媒と接触させて前記ハロゲン化芳香族炭化水素をハロゲン化水素と、一酸化炭素と二酸化炭素の少なくとも1つとに分解することを特徴とするハロゲン化芳香族炭化水素の分解方法。A method for decomposing a halogenated aromatic hydrocarbon with a catalyst, comprising contacting a gaseous gas stream containing the halogenated aromatic hydrocarbon with hydrogen and water vapor with a catalyst to halogenate the halogenated aromatic hydrocarbon. A method for decomposing halogenated aromatic hydrocarbons, which decomposes into hydrogen, at least one of carbon monoxide and carbon dioxide. 請求項1において、前記ハロゲン化芳香族炭化水素を含むガス流を300〜
600℃の温度で触媒と接触させることを特徴とするハロゲン化芳香族炭化水素の分解方法。
The gas stream containing halogenated aromatic hydrocarbons according to claim 1,
A method for decomposing a halogenated aromatic hydrocarbon, which is brought into contact with a catalyst at a temperature of 600 ° C.
請求項1記載の触媒が、触媒担体上に、Mo,W,Cr,Fe,Co,Ni,V,Pt,Pd,Rh及びRuからなるグループから選ばれた少なくとも一種を含むことを特徴とするハロゲン化芳香族炭化水素の分解方法。2. The catalyst according to claim 1, wherein the catalyst support contains at least one selected from the group consisting of Mo, W, Cr, Fe, Co, Ni, V, Pt, Pd, Rh and Ru. A method for decomposing a halogenated aromatic hydrocarbon. 請求項3記載の触媒担体が、アルミナ,アルミナ−シリカ,モルデナイトから選ばれた少なくとも一種を含むことを特徴とするハロゲン化芳香族炭化水素の分解方法。4. A method for decomposing a halogenated aromatic hydrocarbon, wherein the catalyst carrier according to claim 3 contains at least one selected from alumina, alumina-silica, and mordenite. 請求項3において、Mo,W,Cr,Fe,Co,Ni,V,Pt,Pd,Rh及びRuから選ばれた少なくとも一種を、金属として含むことを特徴とするハロゲン化芳香族炭化水素の分解方法。4. The decomposition of a halogenated aromatic hydrocarbon according to claim 3, wherein at least one selected from Mo, W, Cr, Fe, Co, Ni, V, Pt, Pd, Rh and Ru is contained as a metal. Method. 請求項1において、ハロゲン化芳香族炭化水素中のハロゲン量に対して水素が15−25mol% 、ハロゲン化芳香族炭化水素中の炭素量に対して水蒸気が5−50mol% となるように水素と水蒸気を含むことを特徴とするハロゲン化芳香族炭化水素の分解方法。2. The method according to claim 1, wherein the amount of hydrogen is 15-25 mol% based on the amount of halogen in the halogenated aromatic hydrocarbon, and the amount of water vapor is 5-50 mol% based on the amount of carbon in the halogenated aromatic hydrocarbon. A method for decomposing halogenated aromatic hydrocarbons, comprising steam. 請求項1において、内径1mm以下の管状パイプの内側に触媒をコートしたものを使ってハロゲン化芳香族炭化水素を分解することを特徴とするハロゲン化芳香族炭化水素の分解方法。The method for cracking a halogenated aromatic hydrocarbon according to claim 1, wherein the catalyst is coated on the inside of a tubular pipe having an inner diameter of 1 mm or less to decompose the halogenated aromatic hydrocarbon. 請求項1において、幅及び深さが1mm以下の多数の溝を有するシートの前記溝に触媒をコートしたものを積層し、これを使ってハロゲン化芳香族炭化水素を分解することを特徴とするハロゲン化芳香族炭化水素の分解方法。2. The method according to claim 1, wherein a sheet having a large number of grooves having a width and a depth of 1 mm or less is coated with a catalyst coated in the grooves, and is used to decompose the halogenated aromatic hydrocarbon. A method for decomposing a halogenated aromatic hydrocarbon. ハロゲン化芳香族炭化水素を分解する触媒であって、アルミナ,アルミナ−シリカ,モルデナイトから選ばれた一種を担体とし、この上に、Mo,W,Cr,Fe,Co,Ni,V,Pt,Pd,Rh及びRuから選ばれた少なくとも一種を金属または酸化物として、Mo,W,Cr,Fe,Co,Ni及びVの少なくとも1つは合計で0.5 〜50wt%含み、Pt,Pd,Rh及びRuの少なくとも1つは合計で0.1 〜3wt%含むことを特徴とするハロゲン化芳香族炭化水素分解触媒。A catalyst for decomposing halogenated aromatic hydrocarbons, wherein a carrier selected from alumina, alumina-silica, and mordenite is used as a carrier, and Mo, W, Cr, Fe, Co, Ni, V, Pt, At least one selected from Pd, Rh, and Ru is used as a metal or an oxide, and at least one of Mo, W, Cr, Fe, Co, Ni, and V contains 0.5 to 50 wt% in total, and Pt, Pd, A halogenated aromatic hydrocarbon cracking catalyst characterized by containing at least one of Rh and Ru in a total amount of 0.1% to 3% by weight. ハロゲン化芳香族炭化水素を分解する触媒であって、アルミナ,アルミナ−シリカ,モルデナイトから選ばれた一種を担体とし、この上に、Mo,W,Cr,Fe,Co,Ni及びVからなるグループから選ばれた少なくとも一種を金属または酸化物として合計で0.5 〜50wt%含み、かつPt,Pd,Rh及び
Ruからなるグループから選ばれた少なくとも一種を金属または酸化物として合計で0.1 〜3wt%含むことを特徴とするハロゲン化芳香族炭化水素分解触媒。
A catalyst for decomposing halogenated aromatic hydrocarbons, comprising a carrier selected from the group consisting of alumina, alumina-silica and mordenite, and a group consisting of Mo, W, Cr, Fe, Co, Ni and V And at least one selected from the group consisting of Pt, Pd, Rh and Ru in a total amount of 0.1 to 50 wt% as a metal or oxide. A halogenated aromatic hydrocarbon cracking catalyst characterized by containing about 3% by weight.
請求項9または10において、アルミナの結晶形態としてαAlを主成分として含むことを特徴とするハロゲン化芳香族炭化水素分解触媒。The halogenated aromatic hydrocarbon cracking catalyst according to claim 9 or 10, wherein αAl 2 O 3 is contained as a main component as a crystal form of alumina. 請求項9において、アルミナ担体にNiが担持されていることを特徴とするハロゲン化芳香族炭化水素分解触媒。The halogenated aromatic hydrocarbon decomposition catalyst according to claim 9, wherein Ni is supported on an alumina carrier. 請求項9において、アルミナ担体にNiとCoが担持されていることを特徴とするハロゲン化芳香族炭化水素分解触媒。10. The halogenated aromatic hydrocarbon cracking catalyst according to claim 9, wherein Ni and Co are supported on an alumina carrier. 請求項9において、アルミナ担体にNiとVが担持されていることを特徴とするハロゲン化芳香族炭化水素分解触媒。10. The halogenated aromatic hydrocarbon cracking catalyst according to claim 9, wherein Ni and V are supported on an alumina carrier. 請求項10において、アルミナ担体にNiとPt,Pd,Rh及びRuから選ばれた少なくとも1つとが担持されていることを特徴とするハロゲン化芳香族炭化水素分解触媒。The halogenated aromatic hydrocarbon cracking catalyst according to claim 10, wherein Ni and at least one selected from Pt, Pd, Rh, and Ru are supported on the alumina carrier. ハロゲン化芳香族炭化水素を触媒で分解する装置であって、ガス状のハロゲン化芳香族炭化水素に水素を添加する水素供給器と、水蒸気を添加する水蒸気供給器と、前記水素と水蒸気が添加されたハロゲン化芳香族炭化水素を触媒に接触させて分解する触媒反応器と、前記触媒反応器にて生成した分解生成物を水あるいはアルカリ水溶液で洗浄する排ガス洗浄装置を具備したことを特徴とするハロゲン化芳香族炭化水素分解装置。An apparatus for decomposing a halogenated aromatic hydrocarbon with a catalyst, comprising: a hydrogen supplier for adding hydrogen to a gaseous halogenated aromatic hydrocarbon; a steam supplier for adding steam; and the hydrogen and steam being added. A catalyst reactor that decomposes the halogenated aromatic hydrocarbon by contact with the catalyst, and an exhaust gas cleaning device that cleans decomposition products generated in the catalyst reactor with water or an aqueous alkaline solution. Halogenated aromatic hydrocarbon cracking equipment. 請求項16において、前記触媒反応器は内径が1mm以下の管状のパイプからなり、その管の内面に触媒がコートされており、ハロゲン化芳香族炭化水素を含むガス流が管内を流れるように構成されていることを特徴とするハロゲン化芳香族炭化水素分解装置。17. The catalyst reactor according to claim 16, wherein the catalyst reactor comprises a tubular pipe having an inner diameter of 1 mm or less, a catalyst coated on an inner surface of the pipe, and a gas flow containing a halogenated aromatic hydrocarbon flows through the pipe. A halogenated aromatic hydrocarbon decomposer characterized by being performed. 請求項16において、前記触媒反応器が多数の溝を有し、溝の幅と深さが何れも1mm以下であり、その溝の内面に触媒がコートされているシートを複数枚積層したものからなることを特徴とするハロゲン化芳香族炭化水素分解装置。17. The catalyst reactor according to claim 16, wherein the catalytic reactor has a number of grooves, each of which has a width and depth of 1 mm or less, and a plurality of sheets in which the catalyst is coated on the inner surface of the grooves. A halogenated aromatic hydrocarbon decomposer characterized in that:
JP2002272436A 2002-09-19 2002-09-19 Method, catalyst and equipment for decomposing halogenated aromatic hydrocarbon Pending JP2004105864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002272436A JP2004105864A (en) 2002-09-19 2002-09-19 Method, catalyst and equipment for decomposing halogenated aromatic hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002272436A JP2004105864A (en) 2002-09-19 2002-09-19 Method, catalyst and equipment for decomposing halogenated aromatic hydrocarbon

Publications (1)

Publication Number Publication Date
JP2004105864A true JP2004105864A (en) 2004-04-08

Family

ID=32269450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002272436A Pending JP2004105864A (en) 2002-09-19 2002-09-19 Method, catalyst and equipment for decomposing halogenated aromatic hydrocarbon

Country Status (1)

Country Link
JP (1) JP2004105864A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007105603A (en) * 2005-10-12 2007-04-26 Sharp Corp Treating apparatus of harmful gas and its treating method
WO2009048141A1 (en) * 2007-10-12 2009-04-16 Nippon Soda Co., Ltd. Microreactor and liquid phase chemical reaction method using the microreactor
US8043574B1 (en) 2011-04-12 2011-10-25 Midwest Refrigerants, Llc Apparatus for the synthesis of anhydrous hydrogen halide and anhydrous carbon dioxide
US8128902B2 (en) 2011-04-12 2012-03-06 Midwest Refrigerants, Llc Method for the synthesis of anhydrous hydrogen halide and anhydrous carbon dioxide
US8834830B2 (en) 2012-09-07 2014-09-16 Midwest Inorganics LLC Method for the preparation of anhydrous hydrogen halides, inorganic substances and/or inorganic hydrides by using as reactants inorganic halides and reducing agents
JP2015021868A (en) * 2013-07-19 2015-02-02 三浦工業株式会社 Method for extracting polychlorinated biphenyl
CN109157977A (en) * 2018-09-26 2019-01-08 中国科学院大学 A kind of method and catalyst handling volatility chlorinated aromatic hydrocarbons pollutant
CN113976141A (en) * 2021-11-08 2022-01-28 万华化学集团股份有限公司 Resource utilization method of waste liquid containing 3, 3' -imino-dipropionitrile

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4680743B2 (en) * 2005-10-12 2011-05-11 シャープ株式会社 Toxic gas treatment equipment
JP2007105603A (en) * 2005-10-12 2007-04-26 Sharp Corp Treating apparatus of harmful gas and its treating method
US8609034B2 (en) 2007-10-12 2013-12-17 Nippon Soda Co., Ltd. Microreactor and liquid phase chemical reaction method using microreactor
WO2009048141A1 (en) * 2007-10-12 2009-04-16 Nippon Soda Co., Ltd. Microreactor and liquid phase chemical reaction method using the microreactor
CN101820995A (en) * 2007-10-12 2010-09-01 日本曹达株式会社 Microreactor and the liquid phase chemical reaction method that has utilized microreactor
CN101820995B (en) * 2007-10-12 2015-07-15 日本曹达株式会社 Microreactor and liquid phase chemical reaction method using the microreactor
JP5598952B2 (en) * 2007-10-12 2014-10-01 日本曹達株式会社 Microreactor and liquid phase chemical reaction method using microreactor
US8128902B2 (en) 2011-04-12 2012-03-06 Midwest Refrigerants, Llc Method for the synthesis of anhydrous hydrogen halide and anhydrous carbon dioxide
EP2697163A1 (en) * 2011-04-12 2014-02-19 Midwest Refrigerants, LLC Method for the synthesis of anhydrous hydrogen halide and anhydrous carbon dioxide
JP2014516902A (en) * 2011-04-12 2014-07-17 ミッドウェスト リフリジランツ,リミテッド ライアビリティー カンパニー Process for the synthesis of anhydrous hydrogen halide and anhydrous carbon dioxide
WO2012141918A1 (en) * 2011-04-12 2012-10-18 Midwest Refrigerants, Llc Method for the synthesis of anhydrous hydrogen halide and anhydrous carbon dioxide
RU2530357C1 (en) * 2011-04-12 2014-10-10 Мидуэст Рефриджерентс, ЭлЭлСи Method for synthesis of anhydrous hydrogen halide and anhydrous carbon dioxide
EP2697163A4 (en) * 2011-04-12 2014-10-15 Midwest Refrigerants Llc Method for the synthesis of anhydrous hydrogen halide and anhydrous carbon dioxide
US8043574B1 (en) 2011-04-12 2011-10-25 Midwest Refrigerants, Llc Apparatus for the synthesis of anhydrous hydrogen halide and anhydrous carbon dioxide
KR101563071B1 (en) 2011-04-12 2015-10-23 미드웨스트 리프리저런츠, 엘엘씨 Method for the synthesis of anhydrous hydrogen halide and anhydrous carbon dioxide
US8834830B2 (en) 2012-09-07 2014-09-16 Midwest Inorganics LLC Method for the preparation of anhydrous hydrogen halides, inorganic substances and/or inorganic hydrides by using as reactants inorganic halides and reducing agents
JP2015021868A (en) * 2013-07-19 2015-02-02 三浦工業株式会社 Method for extracting polychlorinated biphenyl
CN109157977A (en) * 2018-09-26 2019-01-08 中国科学院大学 A kind of method and catalyst handling volatility chlorinated aromatic hydrocarbons pollutant
CN113976141A (en) * 2021-11-08 2022-01-28 万华化学集团股份有限公司 Resource utilization method of waste liquid containing 3, 3' -imino-dipropionitrile
CN113976141B (en) * 2021-11-08 2024-02-27 万华化学集团股份有限公司 Resource utilization method of 3,3' -iminodipropionitrile-containing waste liquid

Similar Documents

Publication Publication Date Title
JP4565191B2 (en) Fine particle catalyst production method, fine particle catalyst, and reformer
CN105026041B (en) Base metal catalysts and its application method
EP1340533B1 (en) A method of treatment for decomposing fluorine compounds, and catalyst and apparatus therefor
WO2002038268A1 (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
CN108671917A (en) A kind of catalyst and preparation method thereof of efficient cryogenic catalysis VOCs exhaust gas decompositions
Kim et al. Oxidation of gaseous formaldehyde with ozone over MnOx/TiO2 catalysts at room temperature (25° C)
US20120129691A1 (en) Apparatus and method for manufacturing manganese oxide-titania catalyst
WO2020125609A1 (en) Catalyst having monolithic structure for reducing emission of nox in flue gas, preparation method therefor, and use method therefor
JP4713895B2 (en) Method for producing iodide
JP2004105864A (en) Method, catalyst and equipment for decomposing halogenated aromatic hydrocarbon
TWI498159B (en) Catalyst and process
Zhang et al. Fe promoted structured Pt/Fex/a-AlOOH catalyst for room temperature oxidation of low concentration HCHO
JP2007117911A (en) Catalyst for decomposing organic chlorine compound and method for removing organic chlorine compound using the same
JP5274802B2 (en) Oxygen removal method
JP2004082013A (en) Method and catalyst for decomposing perfluorocompound and apparatus for treating perfluorocompound
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
KR101839778B1 (en) A method for producing an metal aluminate oxidation catalyst having improved endotoxicity against organic chloro compounds and an oxidation catalyst
WO2023084825A1 (en) Method for regenerating catalyst for nitrous oxide decomposition and method for decomposing nitrous oxide
JP2001524376A (en) Method and catalyst for oxidizing gaseous and non-halogenated organic compounds
JP3604740B2 (en) Ozone decomposition catalyst and ozone decomposition method
JP5041848B2 (en) Method for treating halogenated aliphatic hydrocarbon-containing gas
JP2008207161A (en) Method of manufacturing air purification material, air purification material, and apparatus and method of purifying air
JP2018103103A (en) Method for producing low-temperature oxidation catalyst
JPH10286439A (en) Decomposing method of fluorine-containing compound
JP2021045726A (en) Catalyst for producing carbon monoxide, manufacturing method of the same, and production method of carbon monoxide using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016