JP2004103672A - Semiconductor light emitting element and semiconductor light emitting device - Google Patents

Semiconductor light emitting element and semiconductor light emitting device Download PDF

Info

Publication number
JP2004103672A
JP2004103672A JP2002260812A JP2002260812A JP2004103672A JP 2004103672 A JP2004103672 A JP 2004103672A JP 2002260812 A JP2002260812 A JP 2002260812A JP 2002260812 A JP2002260812 A JP 2002260812A JP 2004103672 A JP2004103672 A JP 2004103672A
Authority
JP
Japan
Prior art keywords
light emitting
transparent substrate
semiconductor light
emitting device
side surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002260812A
Other languages
Japanese (ja)
Inventor
Yasuhiko Akaike
赤池 康彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002260812A priority Critical patent/JP2004103672A/en
Publication of JP2004103672A publication Critical patent/JP2004103672A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

【課題】光出力が高く、かつ信頼性の高い光半導体素子を提供する。
【解決手段】発光波長に対して透光性を有する透明基板21の上面にpn接合を有する発光層22を形成し、透明基板21の上面25および下面26に上面電極23および下面電極24をそれぞれ形成している。そして、透明基板21の4つの側面のうち、対向する1対の側面27,28を、下面から上面に向かって、末広がりの傾斜面に形成し、他の1対の側面29,30を、上面から下面に向かって、末広がりの傾斜面に形成している。
【選択図】 図1
An optical semiconductor device having high light output and high reliability is provided.
A light emitting layer having a pn junction is formed on an upper surface of a transparent substrate having a light transmitting wavelength, and an upper electrode and a lower electrode are formed on an upper surface and a lower surface of the transparent substrate, respectively. Has formed. Then, of the four side surfaces of the transparent substrate 21, a pair of side surfaces 27 and 28 facing each other are formed on a sloping surface diverging from the lower surface to the upper surface, and the other pair of side surfaces 29 and 30 are formed as upper surfaces. From the bottom to the lower surface.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、透明基板を使用した半導体発光素子および半導体発光装置に係り、特に光出力を高めるのに好適な構造を備えた半導体発光素子および半導体発光装置に関する。
【0002】
【従来の技術】
近年、半導体発光素子、なかでも発光ダイオード(LED)は、フルカラーディスプレイ、交通・信号機器、車載用途などに幅広く用いられているが、この用途においては、特に光出力の高いものが要求されている。
【0003】
この種の従来の代表的なLEDの構造について図8を用いて説明する。図8に示すように、断面形状がほぼ矩形状で、発光波長に対して透光性を有する透明基板1の上面にpn接合を有する発光層2が形成されており、発光層2と電気的に接続を取るために、その上面側には上面電極3が、下面側には下面電極4が設けられている。
【0004】
上述のように構成されたLEDでは、pn接合から放出された光のうち、図中の実線で示した、入射角が臨界角以下の光線はLED外部に取り出されるが、図中の点線で示した、臨界角以上の光線は全反射され、LED内部で多重反射を繰り返しながら、やがて発光層2や透明基板1に吸収されて消滅してしまう。
【0005】
このため、LEDのサイズが大きくなるほど、光を取り出すのが極めて困難になり、高い光出力のものが得られないという問題がある。
【0006】
この問題を解決するLEDの一例が、特開平10−341035号公報に開示されている。このLEDは、上面側が長辺、下面側が短辺で、下面側から上面側に向けて末広がりとなるような、斜角をなす連続側部表面を備えた逆四角錘台形構造になっている。
【0007】
また、別の例が、特開平3−35568号公報に開示されている。このLEDでは、下面に垂直な複数の側面を持ち、この側面と下面に平行な上面との間に、下面側に向かって末広がりとなるような、垂直な側面と同数の複数の傾斜面を備えたほぼ四角錘台形構造になっている。
【0008】
しかしながら、上述の特許公開公報に開示されたLEDでは、断面が矩形状のLEDより光出力を向上させることはできるが、下記のような問題点があった。
【0009】
すなわち、末広がりの側面を有する台形構造のLEDをエポキシ等の樹脂でモールドした場合、LEDに応力が不均一にかかる。例えば、LEDの上面側へ向かって、末広がりの場合には、LEDには樹脂から上向きの力が加わり、逆にLEDの下面側へ向かって、末広がりの場合には、下向きの力が加わる。
【0010】
このようなLEDに加わる不均一な応力による歪は、LEDの長期信頼性を著しく損なうだけでなく、過度な応力により、LEDがマウント面から剥離したり、LEDにクラックが生じる、などの致命的な欠陥をもたらす恐れがある。
【0011】
【発明が解決しようとする課題】
しかしながら、上述した断面が矩形状のLEDにおいては、高い光出力が得られない、一方、特許公開公報に開示されたLEDでは、信頼性に問題がある。すなわち、従来のLEDにおいては、光出力と信頼性を同時に満足することは、困難であった。
【0012】
本発明は、上記問題点を解決するためになされたもので、光出力が高く、かつ信頼性の高い半導体発光素子および半導体発光装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明の半導体発光素子では、発光波長に対して透光性を有する透明基板と、前記透明基板に形成されたpn接合を有する発光層と、前記発光層に電気的に接続を取るための電極とを具備し、前記透明基板の側面が透明基板の一方の主面から他方の主面に向かって、末広がりの傾斜面である第1の側面と、前記他方の主面から一方の主面に向かって、末広がりの傾斜面である第2の側面とを有することを特徴とする。
【0014】
また、上記目的を達成するために、本発明の半導体発光素子では、発光波長に対して透光性を有し、且つ4以上の複数の側面を有する透明基板と、前記透明基板の一方の主面に接続された第1の電極と、前記透明基板の他方の主面に接続された第2の電極と、前記主面間の透明基板に設けられたpn接合を有する発光層とを具備し、前記複数の側面のうちの2以上の側面が、一方の主面から他方の主面に向かって、末広がりの傾斜面である第1の側面を有し、前記複数の側面のうちの残りの2以上の側面が、他方の主面から一方の主面に向かって、末広がりの傾斜面である第2の側面を有し、且つ、第1及び第2の側面が、線対称に設けられていることを特徴とする。
【0015】
さらに、上記目的を達成するために、本発明の半導体発光装置では、発光波長に対して透光性を有する透明基板と、前記透明基板に形成されたpn接合を有する発光層と、前記発光層に電気的に接続を取るための電極とを有する半導体発光素子と、前記半導体発光素子の電極に一端部が電気的に接続されたリードフレームと、前記リードフレームの他端部を除いて、その一端部および前記半導体発光素子を封止する透明樹脂とを具備し、前記透明基板の側面が、透明基板の一方の主面から他方の主面に向かって、末広がりの傾斜面である第1の側面と、前記他方の主面から一方の主面に向かって、末広がりの傾斜面である第2の側面とを
有することを特徴とする。
【0016】
本発明によれば、側面を傾斜面に形成しているので、光出力が高く、また第1の側面と第2の側面とを互に逆向きの斜面に形成して透明樹脂の応力を互に打ち消すようにしているので、信頼性の高い半導体発光素子および半導体発光装置が得られる。
【0017】
【発明の実施の形態】
以下本発明の実施の形態について、図面を参照しながら説明する。
【0018】
(第1の実施の形態)
図1は、本発明による半導体発光素子の第1の実施の形態を示す図で、図1(a)は、半導体発光素子の平面図、図1(b)は、図1(a)のA−A線に沿って切断し、矢印方向に眺めた断面図、図1(c)は、図1(b)のB−B線に沿って切断し、矢印方向に眺めた断面図である。
【0019】
本実施の形態の半導体発光素子(LED)では、発光波長に対して透光性を有する透明基板21は、例えば、GaP、GaAs、InP、SiC、または、Al、などからなり、この透明基板21には、例えば、GaP、GaAs、GaAsP、GaAlAs、InGaAlP、InGaAsP、または、InGaAlN、などからなるpn接合を有する発光層22が設けられている。以下、発光層22も含めて透明基板21と称する。
【0020】
さらに、透明基板21の上面(一方の主面)25および下面(他方の主面)26には、ワイヤ・ボンディング接続のための上面電極(第1の電極)23およびリードフレームに取り付けるための下面電極(第2の電極)24が、それぞれ設けられている。
【0021】
また、本実施の形態のLEDにおいては、透明基板21の4つの側面のうち、対向する1対の第1の側面27,28は、図1(c)に示すように、透明基板21の下面26から上面25に向かって、末広がりの台形状をなす傾斜面に形成され、他の1対の第2の側面29,30は、図1(b)に示すように、上面25から下面26に向かって、末広がりの台形状をなす傾斜面に形成されている。つまり、第1および第2の側面は、上面25の中心線に対して線対称の関係に設けられている。
【0022】
すなわち、透明基板21の上面25は、第1の側面27、28の台形の長辺と、第2の側面29、30の台形の短辺を4辺とする長方形をなし、下面26は、第1の側面27、28の台形の短辺と、第2の側面29、30の台形の長辺を4辺とする長方形をなしている。つまり、透明基板21の上面25と下面26は、90度ねじった関係でもって対面している。
【0023】
そして、透明基板21の上面25と第2の側面29、30の間には、垂直な側面31、32が設けられている。
【0024】
第1の側面27、28および第2の側面29、30と透明基板21の鉛直方向とのなす角度は、モールドする透明樹脂(図示せず)の屈折率を考慮して定める。
【0025】
例えば、透明基板21がGaPで、エポキシ樹脂からなる透明樹脂でモールドする場合は、赤色に対する屈折率がそれぞれ、3.3および1.5であることから、約27度(臨界角度)近辺を選択するのが良く、一般的に20乃至40度程度の範囲が適当である。
【0026】
上述のように構成されたLEDでは、図1(c)中の実線で示した、入射角が臨界角以下の光線だけでなく、図中の点線で示した、臨界角以上の光線も、素子の外部に取り出すことができる。
【0027】
図2は、図1に示すLEDを用いた半導体発光装置の断面図である。
【0028】
図に示すように、上面電極23が発光観測面側になるように、透明基板21がリードフレーム33aの一端部に形成された反射カップ34の中に載置され、下部電極24が導電性ペースト(図示せず)を介してリードフレーム33aに固着されている。そして、上面電極23と別のリードフレーム33bの一端部とをAu線35にて接続した後、リードフレーム33a、33bの他端部およびLED部分を透明樹脂36にてレンズ状にモールドすることにより、半導体発光装置37が得られる。
【0029】
次に、上記LEDを製造する方法について、図3を参照して説明する。図3は、LEDを多数形成して成るウェーハを、カッティングする工程を説明するための断面図で、図3(a)は、ウェーハの裏面からダイシングする工程の断面図、図3(b)は、ウェーハの表面からダイシングする工程の断面図である。
【0030】
まず、LEDを形成したウェーハ41を下面を上向きにして、ダイシングシート(図示せず)に貼付け、ウェーハ下面42から断面がV字型をしたダイシングブレード43により、所定のピッチで一方向へダイシングする。
【0031】
この際、ウェーハ41を完全にカッティングせず、切り残し部分をLEDの上面25と第2の側面29、30との間の垂直な側面31、32として残している。これは、ウェーハ41をダイシングシートから取り外す時に、短冊状にバラバラになるのを防ぐためである。
【0032】
次に、ウェーハ41を反転して上面を上向きにして、再度ダイシングシートに貼付ける。ウェーハ下面42のダイシング溝と直行する方向にウェーハ上面44から所定のピッチでダイシングし、ウェーハ41をカッティングする。
【0033】
ここで、最終的にLEDに分離できるならば、完全にカッティングしなくても良い場合もあり、切り残し部分は、垂直な側面31、32と同様に、素子の下面26と第1の側面27、28との間の垂直な側面として残される。
【0034】
図4は、上述のようにしてカッティングされ、V字状溝の並びを持つウェーハ41の一部分を示す平面図である。
【0035】
その後、ウェーハ41をブレーキングして、個々のLEDに分離した後、ダイシング面の加工損傷を、エッチングして除去し、図1に示すようなLEDを得る。
【0036】
この加工損傷除去のエッチングは、ウェーハ下面42のダイシングが終了した時点にも、実施することが望ましく、加工損傷歪によりウェーハ41が反り、不用意に割れるのを防止できる利点がある。
【0037】
上述のブレードのダイヤモンド砥粒サイズや、ブレードの回転数、ウェーハの送り速度などのダイシング条件は、用いる半導体材料により、それぞれ適切なものを選択すれば良く、ここでは特に限定しない。また、ダイシングの順序もとくに限定されるものではなく、ウェーハ上面44から始めても良い。加工損傷除去のエッチング条件等についても、同様である。
【0038】
以上説明したように、本発明の第1の実施の形態のLEDおよび半導体発光装置によれば、全側面を傾斜面としているので、入射角が臨界角以下の光線だけでなく、臨界角以上の光線も外部に取り出すことができ、高い光出力が得られる。また、第1および第2の側面を互いに逆向きの斜面とし、かつ線対称に設けているので、第1の側面と第2の側面に加わる透明樹脂の応力は、互いに打ち消し合うため、透明樹脂応力が低減され、信頼性の向上を図ることができる。
【0039】
(実施例)
次に、GaP基板にInGaAlP発光層を備えた、LEDおよびこのLEDを用いた半導体発光装置を製造する場合の具体例について説明する。
【0040】
150μm厚のウェーハ41を用いて、先端角度60度のV字型ブレード43により、300μmピッチでウェーハ下面42から120μmの深さまでカッティングした後、ウェーハ41を上下面を反転して90度回転させ、ウェーハ表面44から300μmピッチでカッティングした。
【0041】
次に、カッティングされたウェーハ41をブレーキングして、LEDに分離した後、塩酸と過酸化水素水の混合液でダイシング面の加工損傷をエッチングして除去した。これにより、側面の傾斜角度30度、表面サイズ290μm×150μm、裏面サイズ290μm×120μm、高さ150μmのLEDを得た。
【0042】
図5は、このようにして得られたLEDの外観を示すSEM写真である。但し、LEDの形状を示すためのものであり、ここでは電極等は設けていない。
【0043】
次に、このLEDを、上面電極23が発光観測面側になるように、リードフレーム33aの一端部に金型一体加工で形成された反射カップ34の中に、導電性ペーストにて取り付け、上面電極23とリードフレーム33bの一端部にAu線35を超音波接合した後、リードフレーム33a、33bの一端部およびLED部分をエポキシからなる透明樹脂36にてレンズ状にモールドすることにより、砲弾型の半導体発光装置37を得た。
【0044】
その後、光出力と信頼性を測定した。LEDの光出力は、従来の断面が矩形状のLEDに比べて1.6倍以上の高い値を示した。−40℃、50mAの加速条件での信頼性は、1万時間後の光出力の残存率が92%と、従来の断面が矩形状の素子の残存率95%と比べても遜色がなかった。その際、LEDのリードフレーム33からの剥離や、クラック等の致命的な欠陥の発生も見られなかった。
【0045】
さらに、側面の傾斜角度が20乃至40度の範囲内であれば、ほぼ同様の結果を得たが、この範囲を逸脱するにつれて光出力は低下するので、20乃至40度が適当であり、好ましい。
【0046】
また、上記半導体発光装置は、砲弾型のランプの場合を示したが、これに限定されるものではなく、表面実装型やアレイ型の半導体発光装置としても構わない。
【0047】
(第2の実施の形態)
本発明の第2の実施の形態に係わる、LEDは、その外観形状については、第1の実施の形態に係わる図1と同様であり、図面およびその詳しい説明は省略する。
【0048】
この第2の実施の形態のLEDが、第1の実施の形態のLEDと異なる点は、第1の側面27、28と、第2の側面29、30を、側面の全領域にわたって粗面化したことにある。
【0049】
この粗面化の方法、条件は、さまざまなものが利用でき、使用する半導体材料により、それぞれ適切なものを選択すれば良く、ここでは特に限定しない。例えば、GaP系では塩酸、GaAs、GaAlAs系では硝酸による結晶の異方性エッチングを施すことができる。また、半導体材料に依存しない機械的な方法、例えば、サンドブラスト、イオン衝撃などによることもできる。
【0050】
以上説明したように、第2の実施の形態のLEDおよびこのLEDを用いた半導体発光装置によれば、粗面の凹凸により、光の全反射が抑えられ、光の取り出し効率が増大する。その結果、第1の実施の形態のLEDおよび半導体発光装置より、さらに高い光出力が得られる。
【0051】
(実施例)
次に、GaP基板を用いたLEDの傾斜した側面を粗面化する場合の具体例について詳細に説明する。
【0052】
GaP基板では、塩酸エッチングを用いるのがコストの点でも有利である。この場合、発光層22が、InGaAlPのように塩酸エッチングに耐性のない材料では、あらかじめレジスト等で保護しておく必要がある。GaP、GaAsPのようにエッチングに耐性のある材料であれば、とくに保護を必要としない。
【0053】
第1の実施の形態によるLEDをシートに取り付け、塩酸の温度とエッチング時間を変えて種々のエッチングを施し、4つの傾斜した側面が共に粗面化されていることを確認した。図6は、粗面化された領域の凹凸を示すSEM写真である。
【0054】
この一連のLEDを樹脂モールドして光出力を測定したところ、断面が矩形状のLEDに比べて、2倍以上の高い光出力が得られた。4つの傾斜した側面を粗面化したことにより、光出力が、さらに50%増したことが分かる。
【0055】
ここで、粗面化された領域の凹凸の谷と山の高さの差が、0.1乃至5μm程度の範囲にあれば、上記効果を得ることができる。この範囲を逸脱するにつれて光出力は低下するので、0.1乃至5μm程度の範囲が適当であり、好ましい。
【0056】
これは、光は凹凸面で乱反射され、素子からの光の取り出し効率が増大するが、凡そ、光の波長の数分の1以下の凹凸面では、鏡面と変わらなくなり、光の波長の数倍以上の凹凸面では、光が乱反射しずらくなるからである。これから、エッチング条件としては、凡そ70℃で10分程度が適当であった。
【0057】
同時に試験した、従来の断面が矩形状のLEDでは、垂直な側面は粗面化されなかった。また、逆四角錐台形状のLEDでは、対向する2側面のみが粗面化された。
【0058】
この違いは、以下のように説明される。加熱した塩酸でエッチングした場合、最も粗面化の進む面は[111]P面であり、[111]Ga面および、(100)面や(110)面、もしくはこれらと等価な面は粗面化しない。
【0059】
図7は、本発明のLEDの形状と結晶方位の関係を示す模式図である。図に示すように、第1の実施の形態によるLEDでは、(100)面、もしくはそれから若干傾いた面方位のウェーハを用い、傾斜した側面を[111]P面である4つの等価な結晶面、すなわち、(−1−1−1)、(11―1)、(1−11)、(−111)面、もしくはそれから若干傾いた面で構成しているので、全面が粗面化される。
【0060】
一方、上述の逆四角錐台形状のLEDでは、4つの傾斜した側面のうち、[111]P面である(11―1)、(1−11)に近い面は粗面化されるが、[111]Ga面である(111)、(1−1−1)に近い面は粗面化されなかった。
【0061】
本発明は、上述の実施の形態に限定されるものではない。すなわち、上述の第1の実施の形態では、4つの側面を有するLEDで説明したが、4つ以上で偶数の側面を有するLEDにも適用できる。この場合にも、傾斜面をもつ第1および第2の側面は、線対称に、しかも同数設ければよい。
【0062】
また、上述の第1の実施の形態では、透明基板21の上に発光層22が設けられ、4つの側面27、28、29、30を有するLEDについて、V字型のダイシングブレード43で加工する方法を示したが、LEDの形状および加工方法は、これに限定されるものではない。
【0063】
例えば、発光層22の位置は、透明基板21の上面または下面、あるいはその間のいずれかにあっても良い。さらに、透明基板21の厚さや、ブレードの先端角度、ダイシングピッチ、切り残し量を種々設定することにより、種々の大きさ、形状のLEDを実現することができることは言うまでもない。
【0064】
また、第2の実施の形態では、4つの側面27、28、29、30を粗面化する場合を示したが、部分的な粗面でも特に差し支えない。
【0065】
ここでは、GaP基板を例に説明したが、その他の半導体材料を用いたLEDにも、同様に適用できることは言うまでもない。
【0066】
例えば、用いる半導体材料の種類や面方位によっては、さらに多数の側面を備えても良いし、メサエッチング、ヘキ開、斜め研磨、ミリング、ワイヤーソーなどの技術を組み合わせて加工しても良い。
【0067】
【発明の効果】
以上説明したように、本発明の半導体発光素子および半導体発光装置によれば、高光出力と高信頼性を同時に達成することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係わる半導体発光素子を示す図で、図1(a)は平面図、図1(b)は、図1(a)のA−A線に沿う断面図、図1(c)は、図1(a)のB−B線に沿う断面図。
【図2】本発明の第1の実施の形態に係わる半導体発光装置を示す断面図。
【図3】本発明の第1の実施の形態に係わる半導体発光素子の製造工程におけるウェーハのダイシング工程図。
【図4】本発明の第1の実施の形態に係わる半導体素子の製造工程におけるダイシングしたウェーハの一部を示す平面図。
【図5】本発明の第1の実施の形態に係わる半導体発光素子の外観を示すSEM写真。
【図6】本発明の第2の実施の形態に係わる半導体発光素子における粗面化した領域の凸凹を示すSEM写真。
【図7】本発明の第2の実施の形態に係わる半導体発光素子における傾斜した側面の結晶方位を示す図。
【図8】従来の半導体発光素子を示す断面図。
【符号の説明】
1、21 透明基板
2、22 発光層
3、23 上面電極
4、24 下面電極
25 透明基板の上面
26 透明基板の下面
27、28 第1の側面
29、30 第2の側面
31、32 垂直な側面
33a、33b リードフレーム
34 反射カップ
35 金線
36 透明樹脂
37 半導体発光装置
41 半導体発光素子を形成したウェーハ
42 ウェーハ下面
43 ダイシングブレード
44 ウェーハ上面
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor light emitting device and a semiconductor light emitting device using a transparent substrate, and more particularly to a semiconductor light emitting device and a semiconductor light emitting device having a structure suitable for increasing light output.
[0002]
[Prior art]
2. Description of the Related Art In recent years, semiconductor light emitting devices, especially light emitting diodes (LEDs), have been widely used for full-color displays, traffic / signal devices, in-vehicle applications, and the like. .
[0003]
The structure of this type of conventional typical LED will be described with reference to FIG. As shown in FIG. 8, a light emitting layer 2 having a pn junction is formed on an upper surface of a transparent substrate 1 having a substantially rectangular cross-sectional shape and having a light-transmitting property with respect to a light emission wavelength. In order to establish a connection, an upper surface electrode 3 is provided on the upper surface side, and a lower surface electrode 4 is provided on the lower surface side.
[0004]
In the LED configured as described above, of the light emitted from the pn junction, a light ray whose incident angle is equal to or less than the critical angle shown by a solid line in the figure is extracted outside the LED, but is shown by a dotted line in the figure. Light rays having a critical angle or more are totally reflected, and are repeatedly absorbed by the light-emitting layer 2 and the transparent substrate 1 while being repeatedly reflected inside the LED.
[0005]
For this reason, as the size of the LED increases, it becomes extremely difficult to extract light, and there is a problem that a high light output cannot be obtained.
[0006]
An example of an LED that solves this problem is disclosed in Japanese Patent Application Laid-Open No. H10-34135. The LED has an inverted quadrangular truncated pyramid structure having a continuous side surface forming an oblique angle such that the upper side is a long side and the lower side is a short side, and diverges from the lower side toward the upper side.
[0007]
Another example is disclosed in JP-A-3-35568. This LED has a plurality of side surfaces perpendicular to the lower surface, and between the side surface and the upper surface parallel to the lower surface, a plurality of inclined surfaces having the same number as the vertical side surfaces so as to diverge toward the lower surface side. It has a substantially quadrangular truncated pyramid structure.
[0008]
However, the LED disclosed in the above-mentioned patent publication can improve the light output more than the LED having a rectangular cross section, but has the following problems.
[0009]
That is, when an LED having a trapezoidal structure having flared sides is molded with a resin such as epoxy, stress is unevenly applied to the LED. For example, when the LED spreads toward the upper surface of the LED, an upward force is applied to the LED from the resin, and conversely, when the LED spreads toward the lower surface of the LED, a downward force is applied.
[0010]
Such distortion due to uneven stress applied to the LED not only seriously impairs the long-term reliability of the LED, but also causes fatal effects such as peeling of the LED from the mounting surface and cracking of the LED due to excessive stress. May cause serious defects.
[0011]
[Problems to be solved by the invention]
However, a high light output cannot be obtained in the above-described LED having a rectangular cross section, while the LED disclosed in the patent publication has a problem in reliability. That is, it has been difficult for conventional LEDs to simultaneously satisfy the light output and reliability.
[0012]
The present invention has been made to solve the above problems, and an object of the present invention is to provide a semiconductor light emitting element and a semiconductor light emitting device having high light output and high reliability.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, in the semiconductor light emitting device of the present invention, a transparent substrate having a light transmitting wavelength, a light emitting layer having a pn junction formed on the transparent substrate, A first side surface that is a splayed sloping surface from one main surface of the transparent substrate toward the other main surface; It has a second side surface that is a splayed sloping surface from the main surface toward one main surface.
[0014]
In order to achieve the above object, in the semiconductor light emitting device of the present invention, a transparent substrate having a light-transmitting property with respect to an emission wavelength and having a plurality of four or more side surfaces is provided. A first electrode connected to the surface, a second electrode connected to the other main surface of the transparent substrate, and a light emitting layer having a pn junction provided on the transparent substrate between the main surfaces. Two or more side surfaces of the plurality of side surfaces have a first side surface that is a divergent sloping surface from one main surface toward the other main surface, and the remaining side surface of the plurality of side surfaces Two or more side surfaces have a second side surface that is a divergent inclined surface from the other main surface toward the one main surface, and the first and second side surfaces are provided in line symmetry. It is characterized by having.
[0015]
Further, in order to achieve the above object, in the semiconductor light emitting device of the present invention, a transparent substrate having a light transmitting wavelength with respect to an emission wavelength, a light emitting layer having a pn junction formed on the transparent substrate, A semiconductor light-emitting element having an electrode for electrically connecting to a lead frame, one end of which is electrically connected to the electrode of the semiconductor light-emitting element, and the other end of the lead frame except for the other end thereof. A first resin having one end and a transparent resin sealing the semiconductor light emitting element, wherein a side surface of the transparent substrate is a sloping inclined surface diverging from one main surface to the other main surface of the transparent substrate. It is characterized by having a side surface and a second side surface that is a sloping surface diverging from the other main surface toward the one main surface.
[0016]
According to the present invention, since the side surface is formed as an inclined surface, the light output is high, and the first side surface and the second side surface are formed as mutually opposite inclined surfaces to reduce the stress of the transparent resin. Therefore, a highly reliable semiconductor light emitting device and semiconductor light emitting device can be obtained.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018]
(First Embodiment)
FIG. 1 is a view showing a first embodiment of a semiconductor light emitting device according to the present invention. FIG. 1 (a) is a plan view of the semiconductor light emitting device, and FIG. 1 (b) is A in FIG. 1 (a). 1C is a cross-sectional view taken along the line A and viewed in the direction of the arrow, and FIG. 1C is a cross-sectional view cut along the line BB of FIG. 1B and viewed in the direction of the arrow.
[0019]
In the semiconductor light emitting device (LED) of the present embodiment, the transparent substrate 21 having a light-transmitting property with respect to the emission wavelength is made of, for example, GaP, GaAs, InP, SiC, or Al 2 O 3 . The transparent substrate 21 is provided with a light emitting layer 22 having a pn junction made of, for example, GaP, GaAs, GaAsP, GaAlAs, InGaAlP, InGaAsP, or InGaAlN. Hereinafter, the transparent substrate 21 including the light emitting layer 22 will be referred to.
[0020]
Further, an upper surface (one main surface) 25 and a lower surface (the other main surface) 26 of the transparent substrate 21 are provided with an upper surface electrode (first electrode) 23 for wire bonding connection and a lower surface for attaching to a lead frame. Electrodes (second electrodes) 24 are provided, respectively.
[0021]
Further, in the LED of the present embodiment, of the four side surfaces of the transparent substrate 21, a pair of opposing first side surfaces 27 and 28 are, as shown in FIG. From the upper surface 25 to the upper surface 25, a flared trapezoidal inclined surface is formed, and the other pair of second side surfaces 29 and 30 are formed from the upper surface 25 to the lower surface 26 as shown in FIG. Towards the end, it is formed on an inclined surface having a flared trapezoidal shape. That is, the first and second side surfaces are provided in line symmetry with respect to the center line of the upper surface 25.
[0022]
That is, the upper surface 25 of the transparent substrate 21 forms a rectangle having the long sides of the trapezoid of the first side surfaces 27 and 28 and the short sides of the trapezoid of the second side surfaces 29 and 30 as four sides, and the lower surface 26 has the Each of the first side surfaces 27 and 28 has a trapezoidal short side, and the second side surfaces 29 and 30 have a trapezoidal long side having four sides. That is, the upper surface 25 and the lower surface 26 of the transparent substrate 21 face each other in a 90-degree twisted relationship.
[0023]
Vertical side surfaces 31 and 32 are provided between the upper surface 25 of the transparent substrate 21 and the second side surfaces 29 and 30.
[0024]
The angle between the first side surfaces 27 and 28 and the second side surfaces 29 and 30 and the vertical direction of the transparent substrate 21 is determined in consideration of the refractive index of the transparent resin (not shown) to be molded.
[0025]
For example, when the transparent substrate 21 is GaP and is molded with a transparent resin made of an epoxy resin, since the refractive index for red is 3.3 and 1.5, respectively, a vicinity of about 27 degrees (critical angle) is selected. In general, a range of about 20 to 40 degrees is appropriate.
[0026]
In the LED configured as described above, not only the light beam whose incident angle is less than the critical angle shown by the solid line in FIG. 1C, but also the light beam whose critical angle is more than the critical angle shown by the dotted line in the figure. Can be taken out.
[0027]
FIG. 2 is a sectional view of a semiconductor light emitting device using the LED shown in FIG.
[0028]
As shown in the figure, the transparent substrate 21 is placed in a reflection cup 34 formed at one end of a lead frame 33a such that the upper electrode 23 is on the emission observation surface side, and the lower electrode 24 is made of a conductive paste. (Not shown) and is fixed to the lead frame 33a. Then, after the upper electrode 23 and one end of another lead frame 33b are connected by an Au wire 35, the other ends of the lead frames 33a and 33b and the LED portion are molded into a lens shape with a transparent resin 36. Thus, the semiconductor light emitting device 37 is obtained.
[0029]
Next, a method of manufacturing the LED will be described with reference to FIG. FIG. 3 is a cross-sectional view for explaining a step of cutting a wafer formed with a large number of LEDs, FIG. 3A is a cross-sectional view of a step of dicing from the back surface of the wafer, and FIG. FIG. 9 is a sectional view of a step of dicing from the surface of the wafer.
[0030]
First, a wafer 41 on which LEDs are formed is attached to a dicing sheet (not shown) with the lower surface facing upward, and dicing is performed in one direction at a predetermined pitch from a lower surface 42 of the wafer by a dicing blade 43 having a V-shaped cross section. .
[0031]
At this time, the wafer 41 is not completely cut, and the uncut portions are left as vertical side surfaces 31 and 32 between the upper surface 25 of the LED and the second side surfaces 29 and 30. This is to prevent the wafer 41 from being broken into strips when detached from the dicing sheet.
[0032]
Next, the wafer 41 is turned over so that the upper surface faces upward, and the wafer 41 is again attached to the dicing sheet. Dicing is performed at a predetermined pitch from the upper surface 44 of the wafer in a direction perpendicular to the dicing groove of the lower surface 42 of the wafer, and the wafer 41 is cut.
[0033]
Here, if it is possible to finally separate the LED, it may not be necessary to completely cut the LED, and the uncut portion may be formed by the lower surface 26 of the element and the first side surface 27 as in the case of the vertical side surfaces 31 and 32. , 28 as vertical sides.
[0034]
FIG. 4 is a plan view showing a part of the wafer 41 which has been cut as described above and has an array of V-shaped grooves.
[0035]
Then, after breaking the wafer 41 to separate the individual LEDs, the processing damage on the dicing surface is removed by etching to obtain the LEDs as shown in FIG.
[0036]
It is desirable to perform the etching for removing the processing damage even at the time when the dicing of the lower surface 42 of the wafer is completed, and there is an advantage that the wafer 41 can be prevented from being warped and carelessly broken due to the processing damage distortion.
[0037]
Dicing conditions such as the diamond abrasive grain size of the blade, the number of rotations of the blade, and the feed speed of the wafer may be appropriately selected depending on the semiconductor material used, and are not particularly limited here. The order of dicing is not particularly limited, and the dicing may be started from the upper surface 44 of the wafer. The same applies to the etching conditions for removing the processing damage.
[0038]
As described above, according to the LED and the semiconductor light emitting device of the first embodiment of the present invention, since all the side surfaces are inclined surfaces, not only the light beam whose incident angle is less than the critical angle, but also the light beam whose incident angle is less than the critical angle. Light rays can also be extracted outside, and a high light output can be obtained. Further, since the first and second side surfaces are inclined surfaces that are opposite to each other and are provided line-symmetrically, the stress of the transparent resin applied to the first side surface and the second side surface cancels each other, so that the transparent resin Stress is reduced, and reliability can be improved.
[0039]
(Example)
Next, a specific example in the case of manufacturing an LED having a GaP substrate and an InGaAlP light emitting layer and a semiconductor light emitting device using the LED will be described.
[0040]
Using a 150 μm thick wafer 41, with a V-shaped blade 43 having a tip angle of 60 °, after cutting to a depth of 120 μm from the lower surface 42 of the wafer at a pitch of 300 μm, the wafer 41 is turned upside down and rotated 90 °, Cutting was performed from the wafer surface 44 at a pitch of 300 μm.
[0041]
Next, the cut wafer 41 was broken and separated into LEDs, and the processing damage on the dicing surface was removed by etching with a mixed solution of hydrochloric acid and hydrogen peroxide solution. Thus, an LED having a side surface inclination angle of 30 degrees, a front surface size of 290 μm × 150 μm, a back surface size of 290 μm × 120 μm, and a height of 150 μm was obtained.
[0042]
FIG. 5 is an SEM photograph showing the appearance of the LED thus obtained. However, this is only for indicating the shape of the LED, and no electrodes or the like are provided here.
[0043]
Next, this LED is mounted with a conductive paste in a reflection cup 34 formed by one-piece molding of one end of a lead frame 33a so that the upper electrode 23 is on the emission observation surface side. After the Au wire 35 is ultrasonically bonded to the electrode 23 and one end of the lead frame 33b, one end of the lead frames 33a and 33b and the LED portion are molded into a lens shape with a transparent resin 36 made of epoxy, thereby forming a shell type. Of the semiconductor light emitting device 37 was obtained.
[0044]
Thereafter, the light output and reliability were measured. The light output of the LED showed a value 1.6 times or more higher than that of a conventional LED having a rectangular cross section. The reliability under the acceleration conditions of −40 ° C. and 50 mA was as good as the residual ratio of the light output after 10,000 hours of 92%, which is comparable to the residual ratio of a conventional element having a rectangular cross section of 95%. . At that time, no fatal defects such as peeling of the LED from the lead frame 33 and cracks were observed.
[0045]
Further, when the inclination angle of the side surface is in the range of 20 to 40 degrees, almost the same result is obtained. However, since the light output decreases as the side surface deviates from this range, 20 to 40 degrees is appropriate and preferable. .
[0046]
Further, the semiconductor light emitting device has been described as being a shell-type lamp, but is not limited to this, and may be a surface mount type or array type semiconductor light emitting device.
[0047]
(Second embodiment)
The external shape of the LED according to the second embodiment of the present invention is the same as that of FIG. 1 according to the first embodiment, and the drawings and detailed description thereof are omitted.
[0048]
The LED of the second embodiment is different from the LED of the first embodiment in that the first side surfaces 27 and 28 and the second side surfaces 29 and 30 are roughened over the entire area of the side surfaces. I did it.
[0049]
Various methods and conditions for the surface roughening can be used, and appropriate ones may be selected depending on the semiconductor material to be used, and are not particularly limited here. For example, anisotropic etching of a crystal can be performed using hydrochloric acid in a GaP system and nitric acid in a GaAs or GaAlAs system. In addition, a mechanical method that does not depend on a semiconductor material, such as sandblasting or ion bombardment, can be used.
[0050]
As described above, according to the LED of the second embodiment and the semiconductor light emitting device using the LED, total reflection of light is suppressed due to unevenness of the rough surface, and light extraction efficiency is increased. As a result, a higher light output can be obtained than in the LED and the semiconductor light emitting device of the first embodiment.
[0051]
(Example)
Next, a specific example in which the inclined side surface of the LED using the GaP substrate is roughened will be described in detail.
[0052]
For a GaP substrate, the use of hydrochloric acid etching is advantageous in terms of cost. In this case, if the light emitting layer 22 is made of a material that is not resistant to hydrochloric acid etching, such as InGaAlP, it is necessary to protect the material with a resist or the like in advance. A material that is resistant to etching, such as GaP or GaAsP, does not particularly require protection.
[0053]
The LED according to the first embodiment was mounted on a sheet, and various etchings were performed while changing the temperature of hydrochloric acid and the etching time, and it was confirmed that all the four inclined side surfaces were roughened. FIG. 6 is an SEM photograph showing irregularities in a roughened region.
[0054]
When a light output was measured by resin-molding this series of LEDs, a light output twice or more as high as that of an LED having a rectangular cross section was obtained. It can be seen that the roughening of the four inclined side surfaces further increased the light output by 50%.
[0055]
Here, if the difference between the heights of the valleys and peaks of the unevenness in the roughened region is in the range of about 0.1 to 5 μm, the above-described effect can be obtained. Since the light output decreases as the ratio deviates from this range, the range of about 0.1 to 5 μm is appropriate and preferable.
[0056]
This is because light is irregularly reflected by the uneven surface, and the light extraction efficiency from the element increases. However, the uneven surface having a fraction of the wavelength of light is almost the same as a mirror surface and several times the wavelength of light. This is because light is difficult to diffusely reflect on the uneven surface. From this, it is appropriate that the etching condition is about 70 ° C. for about 10 minutes.
[0057]
In a conventional LED having a rectangular cross section, which was tested at the same time, the vertical side surface was not roughened. In the inverted quadrangular pyramid-shaped LED, only two opposing side surfaces were roughened.
[0058]
This difference is explained as follows. In the case of etching with heated hydrochloric acid, the most roughened surface is the [111] P surface, and the [111] Ga surface, the (100) surface, the (110) surface, or a surface equivalent thereto is a rough surface. Does not change.
[0059]
FIG. 7 is a schematic diagram showing the relationship between the shape and the crystal orientation of the LED of the present invention. As shown in the figure, in the LED according to the first embodiment, a wafer having a (100) plane or a plane direction slightly inclined from the (100) plane is used, and four equivalent crystal planes whose inclined side surfaces are [111] P planes are used. That is, since it is composed of the (-1-1-1), (11-1), (1-11), and (-111) planes, or a plane slightly inclined therefrom, the entire surface is roughened. .
[0060]
On the other hand, in the above-mentioned inverted truncated pyramid-shaped LED, of the four inclined side surfaces, the surface close to (11-1) or (1-11), which is the [111] P surface, is roughened. The [111] Ga plane, which is near (111) and (1-1-1), was not roughened.
[0061]
The present invention is not limited to the above embodiment. That is, in the above-described first embodiment, an LED having four side surfaces has been described, but the present invention is also applicable to an LED having four or more even side surfaces. Also in this case, the first and second side surfaces having the inclined surfaces may be provided in line symmetry and the same number.
[0062]
In the first embodiment, the light emitting layer 22 is provided on the transparent substrate 21, and the LED having the four side surfaces 27, 28, 29, and 30 is processed by the V-shaped dicing blade 43. Although the method has been described, the shape and processing method of the LED are not limited thereto.
[0063]
For example, the position of the light emitting layer 22 may be on the upper surface or the lower surface of the transparent substrate 21 or any one of the positions between them. Further, it is needless to say that LEDs of various sizes and shapes can be realized by variously setting the thickness of the transparent substrate 21, the tip angle of the blade, the dicing pitch, and the uncut amount.
[0064]
Further, in the second embodiment, the case where the four side surfaces 27, 28, 29, and 30 are roughened has been described, but a partially rough surface may be used.
[0065]
Here, a GaP substrate has been described as an example, but it goes without saying that the present invention can be similarly applied to an LED using another semiconductor material.
[0066]
For example, depending on the type and plane orientation of the semiconductor material to be used, more side surfaces may be provided, or processing may be performed by combining techniques such as mesa etching, cleaving, oblique polishing, milling, and wire saw.
[0067]
【The invention's effect】
As described above, according to the semiconductor light emitting device and the semiconductor light emitting device of the present invention, high light output and high reliability can be achieved at the same time.
[Brief description of the drawings]
FIGS. 1A and 1B are views showing a semiconductor light emitting device according to a first embodiment of the present invention, wherein FIG. 1A is a plan view and FIG. 1B is along the line AA in FIG. FIG. 1C is a cross-sectional view taken along line BB of FIG. 1A.
FIG. 2 is a sectional view showing a semiconductor light emitting device according to the first embodiment of the present invention.
FIG. 3 is a view showing a dicing process of a wafer in a manufacturing process of the semiconductor light emitting device according to the first embodiment of the present invention.
FIG. 4 is a plan view showing a part of a diced wafer in a semiconductor device manufacturing process according to the first embodiment of the present invention.
FIG. 5 is an SEM photograph showing the appearance of the semiconductor light emitting device according to the first embodiment of the present invention.
FIG. 6 is an SEM photograph showing unevenness of a roughened region in the semiconductor light emitting device according to the second embodiment of the present invention.
FIG. 7 is a view showing a crystal orientation of an inclined side surface in a semiconductor light emitting device according to a second embodiment of the present invention.
FIG. 8 is a sectional view showing a conventional semiconductor light emitting device.
[Explanation of symbols]
1, 21 Transparent substrate 2, 22 Light emitting layer 3, 23 Upper electrode 4, 24 Lower electrode 25 Upper surface of transparent substrate 26 Lower surface of transparent substrate 27, 28 First side surface 29, 30 Second side surface 31, 32 Vertical side surface 33a, 33b Lead frame 34 Reflection cup 35 Gold wire 36 Transparent resin 37 Semiconductor light emitting device 41 Wafer on which semiconductor light emitting element is formed 42 Lower surface of wafer 43 Dicing blade 44 Upper surface of wafer

Claims (15)

発光波長に対して透光性を有する透明基板と、
前記透明基板に形成されたpn接合を有する発光層と、
前記発光層に電気的に接続を取るための電極と、
を具備し、
前記透明基板の側面が、透明基板の一方の主面から他方の主面に向かって、末広がりの傾斜面である第1の側面と、
前記他方の主面から一方の主面に向かって、末広がりの傾斜面である第2の側面とを有することを特徴とする半導体発光素子。
A transparent substrate having translucency with respect to the emission wavelength,
A light emitting layer having a pn junction formed on the transparent substrate;
An electrode for electrically connecting to the light emitting layer;
With
A first side surface, wherein the side surface of the transparent substrate is a flared inclined surface from one main surface of the transparent substrate toward the other main surface;
A semiconductor light-emitting device comprising: a second side surface that is a splayed sloping surface from the other main surface toward the one main surface.
前記透明基板は相対向する4つの側面を有し、相対向する2つの側面が前記第1の側面からなり、他の相対向する2つの側面が前記第2の側面からなることを特徴とする請求項1記載の半導体発光素子。The transparent substrate has four opposing side surfaces, two opposing side surfaces comprise the first side surface, and the other two opposing side surfaces comprise the second side surface. The semiconductor light emitting device according to claim 1. 前記一方の主面と前記第1の側面との間、または、前記他方の主面と前記第2の側面との間の、少なくともどちらか一方に、垂直な側面を備えたことを特徴とする請求項1または請求項2記載の半導体発光素子。A vertical side surface is provided between at least one of the one main surface and the first side surface or between the other main surface and the second side surface. The semiconductor light emitting device according to claim 1. 前記透明基板の鉛直方向と前記第1の側面および前記第2の側面との角度が、20乃至40度であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の半導体発光素子。4. The semiconductor according to claim 1, wherein an angle between a vertical direction of the transparent substrate and the first side surface and the second side surface is 20 to 40 degrees. 5. Light emitting element. 前記第1の側面および前記第2の側面の、少なくとも1つの側面に、粗面化された領域を備えたことを特徴とする請求項1乃至請求項4のいずれか1項に記載の半導体発光素子。5. The semiconductor light emitting device according to claim 1, wherein a roughened region is provided on at least one of the first side surface and the second side surface. 6. element. 前記粗面化された領域の凹凸の谷と山の高さの差が、0.1乃至5μmの間にあることを特徴とする請求項5記載の半導体発光素子。6. The semiconductor light emitting device according to claim 5, wherein the difference between the heights of the valleys and peaks of the irregularities in the roughened region is between 0.1 and 5 μm. 発光波長に対して透光性を有し、且つ4以上の複数の側面を有する透明基板と、
前記透明基板の一方の主面に接続された第1の電極と、
前記透明基板の他方の主面に接続された第2の電極と、
前記主面間の透明基板に設けられたpn接合を有する発光層と、
を具備し、
前記複数の側面のうちの2以上の側面が、一方の主面から他方の主面に向かって、末広がりの傾斜面である第1の側面を有し、
前記複数の側面のうちの残りの2以上の側面が、他方の主面から一方の主面に向かって、末広がりの傾斜面である第2の側面を有し、
且つ、前記第1の側面および前記第2の側面が、線対称に設けられていることを特徴とする半導体発光素子。
A transparent substrate having a light-transmitting property with respect to the emission wavelength, and having four or more side faces,
A first electrode connected to one main surface of the transparent substrate;
A second electrode connected to the other main surface of the transparent substrate;
A light-emitting layer having a pn junction provided on the transparent substrate between the main surfaces;
With
Two or more side surfaces of the plurality of side surfaces have a first side surface that is a divergent inclined surface from one main surface toward the other main surface,
The remaining two or more side surfaces of the plurality of side surfaces have a second side surface that is a flared inclined surface from the other main surface toward the one main surface,
A semiconductor light emitting device, wherein the first side surface and the second side surface are provided in line symmetry.
前記第1の側面および前記第2の側面は、同数であることを特徴とする請求項7記載の半導体発光素子。8. The semiconductor light emitting device according to claim 7, wherein the first side surface and the second side surface have the same number. 前記透明基板の鉛直方向と前記第1の側面および前記第2の側面との角度が、20乃至40度であることを特徴とする請求項8記載の半導体発光素子。9. The semiconductor light emitting device according to claim 8, wherein an angle between a vertical direction of the transparent substrate and the first side surface and the second side surface is 20 to 40 degrees. 発光波長に対して透光性を有する透明基板と、
前記透明基板に形成されたpn接合を有する発光層と、
前記発光層に電気的に接続を取るための電極と、
を有する半導体発光素子と、
前記半導体発光素子の電極に一端部が電気的に接続されたリードフレームと、
前記リードフレームの他端部を除いて、その一端部および前記半導体発光素子を封止する透明樹脂と、
を具備し、
前記透明基板の側面が、透明基板の一方の主面から他方の主面に向かって、末広がりの傾斜面である第1の側面と、
前記他方の主面から一方の主面に向かって、末広がりの傾斜面である第2の側面とを
有することを特徴とする半導体発光装置。
A transparent substrate having translucency with respect to the emission wavelength,
A light emitting layer having a pn junction formed on the transparent substrate;
An electrode for electrically connecting to the light emitting layer;
A semiconductor light emitting device having
A lead frame having one end electrically connected to the electrode of the semiconductor light emitting element;
Except for the other end of the lead frame, a transparent resin sealing the one end and the semiconductor light emitting element,
With
A first side surface, wherein the side surface of the transparent substrate is a flared inclined surface from one main surface of the transparent substrate toward the other main surface;
A semiconductor light emitting device comprising: a second side surface that is a splayed sloping surface from the other main surface toward the one main surface.
前記透明基板は相対向する4つの側面を有し、相対向する2つの側面が前記第1の側面からなり、他の相対向する2つの側面が前記第2の側面からなることを特徴とする請求項10記載の半導体発光装置。The transparent substrate has four opposing side surfaces, two opposing side surfaces comprise the first side surface, and the other two opposing side surfaces comprise the second side surface. The semiconductor light emitting device according to claim 10. 前記一方の主面と前記第1の側面との間、または、前記他方の主面と前記第2の側面との間の、少なくともどちらか一方に、垂直な側面を備えたことを特徴とする請求項10記載の半導体発光装置。A vertical side surface is provided between at least one of the one main surface and the first side surface or between the other main surface and the second side surface. The semiconductor light emitting device according to claim 10. 前記透明基板の鉛直方向と前記第1の側面および前記第2の側面との角度が、20乃至40度であることを特徴とする請求項10乃至請求項12のいずれか1項に記載の半導体発光装置。The semiconductor according to any one of claims 10 to 12, wherein an angle between a vertical direction of the transparent substrate and the first and second side surfaces is 20 to 40 degrees. Light emitting device. 前記第1の側面および前記第2の側面の、少なくとも1つの側面に、粗面化された領域を備えたことを特徴とする請求項10乃至請求項13のいずれか1項に記載の半導体発光装置。14. The semiconductor light emitting device according to claim 10, wherein a roughened region is provided on at least one of the first side surface and the second side surface. apparatus. 前記粗面化された領域の凹凸の谷と山の高さの差が、0.1乃至5μmの間にあることを特徴とする請求項14記載の半導体発光装置。15. The semiconductor light emitting device according to claim 14, wherein the difference between the heights of the valleys and peaks of the irregularities in the roughened region is between 0.1 and 5 [mu] m.
JP2002260812A 2002-09-06 2002-09-06 Semiconductor light emitting element and semiconductor light emitting device Pending JP2004103672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002260812A JP2004103672A (en) 2002-09-06 2002-09-06 Semiconductor light emitting element and semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002260812A JP2004103672A (en) 2002-09-06 2002-09-06 Semiconductor light emitting element and semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JP2004103672A true JP2004103672A (en) 2004-04-02

Family

ID=32261345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002260812A Pending JP2004103672A (en) 2002-09-06 2002-09-06 Semiconductor light emitting element and semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2004103672A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310394A (en) * 2005-04-26 2006-11-09 Sumitomo Electric Ind Ltd Light emitting device, method for manufacturing light emitting device, and nitride semiconductor substrate
JP2006339551A (en) * 2005-06-06 2006-12-14 Sony Corp Chip-like electronic component, manufacturing method thereof, and mounting method thereof
JP2007335529A (en) * 2006-06-13 2007-12-27 Showa Denko Kk Gallium nitride compound semiconductor light emitting device
JP2008130721A (en) * 2006-11-20 2008-06-05 Matsushita Electric Ind Co Ltd Light emitting device, semiconductor light emitting element, and method for manufacturing semiconductor light emitting element
WO2008152945A1 (en) * 2007-06-15 2008-12-18 Rohm Co., Ltd. Semiconductor light-emitting device and method for manufacturing the same
JP2012119481A (en) * 2010-11-30 2012-06-21 Mitsubishi Chemicals Corp Semiconductor light-emitting device and manufacturing method thereof
JPWO2011129246A1 (en) * 2010-04-13 2013-07-18 並木精密宝石株式会社 Single crystal substrate, single crystal substrate with crystalline film, crystalline film, method for manufacturing single crystal substrate with crystalline film, method for manufacturing crystalline substrate, and element manufacturing method
JP2017017110A (en) * 2015-06-29 2017-01-19 国立研究開発法人情報通信研究機構 Semiconductor light emitting element emitting deep ultraviolet light, light emitting module including semiconductor light emitting element, and manufacturing method of semiconductor light emitting element
JP2017157593A (en) * 2016-02-29 2017-09-07 三星電子株式会社Samsung Electronics Co.,Ltd. Light-emitting diode, manufacturing method for light-emitting diode, light-emitting diode display device, and manufacturing method for light-emitting diode display device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310394A (en) * 2005-04-26 2006-11-09 Sumitomo Electric Ind Ltd Light emitting device, method for manufacturing light emitting device, and nitride semiconductor substrate
US7560740B2 (en) 2005-04-26 2009-07-14 Sumitomo Electric Industries, Ltd. Light-emitting device
JP2006339551A (en) * 2005-06-06 2006-12-14 Sony Corp Chip-like electronic component, manufacturing method thereof, and mounting method thereof
JP2007335529A (en) * 2006-06-13 2007-12-27 Showa Denko Kk Gallium nitride compound semiconductor light emitting device
US8188495B2 (en) 2006-06-13 2012-05-29 Showa Denko K.K. Gallium nitride-based compound semiconductor light emitting device
JP2008130721A (en) * 2006-11-20 2008-06-05 Matsushita Electric Ind Co Ltd Light emitting device, semiconductor light emitting element, and method for manufacturing semiconductor light emitting element
JPWO2008152945A1 (en) * 2007-06-15 2010-08-26 ローム株式会社 Semiconductor light emitting device and manufacturing method thereof
WO2008152945A1 (en) * 2007-06-15 2008-12-18 Rohm Co., Ltd. Semiconductor light-emitting device and method for manufacturing the same
JPWO2011129246A1 (en) * 2010-04-13 2013-07-18 並木精密宝石株式会社 Single crystal substrate, single crystal substrate with crystalline film, crystalline film, method for manufacturing single crystal substrate with crystalline film, method for manufacturing crystalline substrate, and element manufacturing method
US9105472B2 (en) 2010-04-13 2015-08-11 Namiki Seimitsu Houseki Kabushiki Kaisha Single-crystal substrate,single-crystal substrate having crystalline film,crystalline film,method for producing single-crystal substrate having crystalline film,method for producing crystalline substrate,and method for producing element
JP2016052984A (en) * 2010-04-13 2016-04-14 並木精密宝石株式会社 Single crystal substrate, single crystal substrate with crystalline film, crystalline film, method of manufacturing single crystal substrate with crystalline film, method of manufacturing crystalline substrate, and element manufacturing method
JP2012119481A (en) * 2010-11-30 2012-06-21 Mitsubishi Chemicals Corp Semiconductor light-emitting device and manufacturing method thereof
JP2017017110A (en) * 2015-06-29 2017-01-19 国立研究開発法人情報通信研究機構 Semiconductor light emitting element emitting deep ultraviolet light, light emitting module including semiconductor light emitting element, and manufacturing method of semiconductor light emitting element
JP2017157593A (en) * 2016-02-29 2017-09-07 三星電子株式会社Samsung Electronics Co.,Ltd. Light-emitting diode, manufacturing method for light-emitting diode, light-emitting diode display device, and manufacturing method for light-emitting diode display device

Similar Documents

Publication Publication Date Title
US5087949A (en) Light-emitting diode with diagonal faces
KR100284235B1 (en) Semiconductor light emitting device using semiconductor light emitting device and manufacturing method of semiconductor light emitting device
US6924513B2 (en) Light emitting element and manufacturing method for the same
EP0405757A2 (en) High efficiency light-emitting diode
US7169632B2 (en) Radiation-emitting semiconductor component and method for producing the semiconductor component
JP4529319B2 (en) Semiconductor chip and manufacturing method thereof
US6746889B1 (en) Optoelectronic device with improved light extraction
US7462869B2 (en) Semiconductor light emitting device and semiconductor light emitting apparatus
US6995032B2 (en) Trench cut light emitting diodes and methods of fabricating same
JP2964822B2 (en) Manufacturing method of light emitting diode
CN103354955B (en) Semiconductor light-emitting apparatus
JP2006253298A (en) Semiconductor light emitting device and semiconductor light emitting device
TW201507037A (en) Light emitting device and method of manufacturing same
JPH033374A (en) electronic device package
JP2004289047A (en) Semiconductor light emitting element and its manufacturing method
JP2004503094A (en) Beam-emitting semiconductor chip and method of manufacturing the same
JPH1197742A (en) Nitride semiconductor device
JP2004103672A (en) Semiconductor light emitting element and semiconductor light emitting device
US9412899B2 (en) Method of stress induced cleaving of semiconductor devices
JP2011171327A (en) Light emitting element, method for manufacturing the same, and light emitting device
JP2004031655A (en) Semiconductor light emitting device
US11646392B2 (en) Method of manufacturing light-emitting device
JP2011066453A (en) Semiconductor light emitting element, and semiconductor light emitting device
JP3534647B2 (en) Method for manufacturing semiconductor light emitting device
KR100752348B1 (en) Vertical structure light emitting diode manufacturing method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606