JP2004101543A - Ultrasonic flow measuring instrument - Google Patents

Ultrasonic flow measuring instrument Download PDF

Info

Publication number
JP2004101543A
JP2004101543A JP2003422420A JP2003422420A JP2004101543A JP 2004101543 A JP2004101543 A JP 2004101543A JP 2003422420 A JP2003422420 A JP 2003422420A JP 2003422420 A JP2003422420 A JP 2003422420A JP 2004101543 A JP2004101543 A JP 2004101543A
Authority
JP
Japan
Prior art keywords
flow
ultrasonic
measurement
propagation path
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003422420A
Other languages
Japanese (ja)
Other versions
JP3781424B2 (en
Inventor
Shigeru Iwanaga
岩永 茂
Yasuhiro Umekage
梅景 康裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003422420A priority Critical patent/JP3781424B2/en
Publication of JP2004101543A publication Critical patent/JP2004101543A/en
Application granted granted Critical
Publication of JP3781424B2 publication Critical patent/JP3781424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve measuring accuracy by devising the flow form of a fluid reaching an ultrasonic propagation path in a flow measuring instrument using ultrasonic signals. <P>SOLUTION: Ultrasonic transmitter-receivers 8, 9 located upstream and downstream of a measuring passage 6 where a measured fluid flows, are arranged in open holes 11, 12, and a propagation path flow regulating body 43 having a regulating part 44 exposed into the flow is provided along the ultrasonic propagation path 13 between the upstream and downstream ultrasonic transmitter-receivers 8, 9. The turbulence of flow is thereby accelerated by the regulating part of the propagation path flow regulating body to make the flow state uniformly turbulent over the whole cross direction region of the ultrasonic propagation path 13. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、超音波により気体や液体の流量を計測するようにした超音波流量計測装置に関するものである。 The present invention relates to an ultrasonic flow rate measuring device that measures the flow rate of a gas or liquid by using ultrasonic waves.

 従来この種の超音波流量計測装置には、例えば、図44に示すように流体を一方から他方に流す測定管1を挟んで対向し、かつ中心線に対して所定角度を傾けて上流側の超音波送受信器2aと下流側の超音波送受信器2bとを対向して設け、これらの超音波送受信器2a、2bは測定管1に設けた凹部3a、3bに収納するとともに、測定管1の入口側4に流れ変動抑止部5を設けている。 Conventionally, as shown in FIG. 44, this type of ultrasonic flow rate measuring device is opposed to a measuring tube 1 through which a fluid flows from one side to the other side, and is inclined at a predetermined angle with respect to a center line on an upstream side. An ultrasonic transmitter / receiver 2a and a downstream ultrasonic transmitter / receiver 2b are provided to face each other. These ultrasonic transmitters / receivers 2a and 2b are housed in concave portions 3a and 3b provided in the measurement tube 1, A flow fluctuation suppressing unit 5 is provided on the inlet side 4.

 そして、測定管1に入る流れは流れ変動抑止部5により規制して、計測部での流線の傾きを低減したり渦の発生を抑制して、流れの乱れの境界面での超音波の反射や屈折による超音波の受信レベルの変動を低減して測定精度の悪化を防止している(例えば、特許文献1参照)。 The flow entering the measuring tube 1 is regulated by the flow fluctuation suppressing unit 5 to reduce the inclination of the streamline in the measuring unit and to suppress the generation of vortices. Fluctuations in the reception level of ultrasonic waves due to reflection or refraction are reduced to prevent deterioration in measurement accuracy (for example, see Patent Document 1).

 また、他の従来例として、図45に示すように、測定管1の側面の上流と下流に一対の超音波送受信器2a、2bを配置し、これら超音波送受信器2a、2bを測定管1に設けた凹部3a、3bに収納するとともに、凹部3a、3bの窪み空間にバルク状の超音波透過部材3cを設けて凹部3a、3bに進入する流れを防止し高精度の流量計測を行っていた(例えば、特許文献2参照)。
特開平11−351926号公報 特開昭63−26537号公報
As another conventional example, as shown in FIG. 45, a pair of ultrasonic transceivers 2a and 2b are arranged upstream and downstream of the side surface of the measurement tube 1, and these ultrasonic transceivers 2a and 2b are connected to the measurement tube 1 In addition to being accommodated in the concave portions 3a and 3b provided in the above, the bulk ultrasonic transmitting member 3c is provided in the concave space of the concave portions 3a and 3b to prevent the flow entering the concave portions 3a and 3b, and to measure the flow rate with high accuracy. (For example, see Patent Document 2).
JP-A-11-351926 JP-A-63-26537

 しかし、図44に示すような従来の構成では、流れ変動抑止部5により測定管1の計測部および凹部3a、3bでの流れの乱れが小さくなり計測精度の悪化は低減されるものの、測定管1を流れる流量が大きくなると凹部3a、3bへ流体が流れ込んで渦を生じるため、超音波送受信器2a、2b間の流れの乱れが増大し、この増大した渦により超音波が反射あるいは屈折されて超音波の受信レベルが低下するため、超音波送受信器2a、2bの駆動入力を低減し難いという課題があった。 However, in the conventional configuration as shown in FIG. 44, the flow fluctuation suppressing unit 5 reduces the turbulence of the flow in the measurement unit and the recesses 3a and 3b of the measurement tube 1 and reduces the deterioration of the measurement accuracy. When the flow rate flowing through 1 increases, the fluid flows into the concave portions 3a and 3b to generate a vortex, so that the turbulence of the flow between the ultrasonic transceivers 2a and 2b increases, and the ultrasonic wave is reflected or refracted by the increased vortex. Since the reception level of the ultrasonic wave is reduced, there is a problem that it is difficult to reduce the drive input of the ultrasonic transceivers 2a and 2b.

 また、凹部3a、3bにバルク状の超音波透過部材3cを設けた図45に示すような構成では、バルク状の超音波透過部材3cの内部を超音波が伝搬する時に伝搬損失が発生するため超音波の送信出力や受信感度が低下したり、またバルク状の超音波透過部材3cの内部を固体伝搬することによって、直進性が低下し対向する超音波振動子の方向に放射しにくいという課題があった。このため、都市ガスやLPGのような家庭用の燃料ガスを計量するガスメータのように僅かの電池容量で例えば10年という長期間にわたり使用し続けるには低電力化上の課題があった。 Further, in the configuration as shown in FIG. 45 in which the bulk ultrasonic transmission members 3c are provided in the concave portions 3a and 3b, propagation loss occurs when ultrasonic waves propagate inside the bulk ultrasonic transmission members 3c. The problem that the transmission output and the reception sensitivity of the ultrasonic wave are reduced, and the solid state propagation inside the bulk ultrasonic transmission member 3c lowers the straightness and makes it difficult to radiate in the direction of the opposed ultrasonic transducer. was there. For this reason, there is a problem in terms of reducing power consumption if the battery is to be used for a long period of, for example, 10 years with a small battery capacity, such as a gas meter for measuring household fuel gas such as city gas or LPG.

 本発明は上記課題を解決するもので、超音波送受信器間の流れの乱れや渦の発生を低減して超音波の受信レベルを高めて計測精度および流量計測の上限値を高めるとともに、超音波送受信器への駆動入力電力の低減化を図ったものである。 The present invention has been made to solve the above-described problems, and reduces the occurrence of turbulence and eddies between the ultrasonic transceivers to increase the reception level of the ultrasonic wave, thereby increasing the measurement accuracy and the upper limit value of the flow rate measurement, and increasing the ultrasonic wave. This is to reduce the drive input power to the transceiver.

 本発明の超音波流量計測装置は、上流側および下流側の超音波送受信器間の超音波伝搬路に沿って配置されるとともに流れの中に露出する規制部を有する伝搬路流れ規制体を配置したもので、超音波伝搬路の上流側において伝搬路流れ規制体の規制部により流れの乱流促進を行うようにしたものである。 The ultrasonic flow rate measuring device according to the present invention includes a propagation path flow restricting body that is disposed along the ultrasonic propagation path between the upstream and downstream ultrasonic transceivers and that has a restricting portion exposed in the flow. The turbulence of the flow is promoted by the restricting portion of the propagation path flow regulating member on the upstream side of the ultrasonic wave propagation path.

 本発明の超音波流量計測装置によれば、伝搬路流れ規制体の規制部により流れの乱流促進が行われて、超音波伝搬路の幅方向全域にわたり流れ状態が均等に乱流化され、補正係数による誤差の範囲拡大を防止して計測精度を著しく高めることができるものである。 According to the ultrasonic flow rate measuring device of the present invention, the turbulence of the flow is promoted by the regulating portion of the propagation path flow regulating body, and the flow state is uniformly turbulent throughout the width direction of the ultrasonic propagation path, It is possible to prevent the range of the error from being increased by the correction coefficient, thereby significantly improving the measurement accuracy.

 本発明の実施の形態は、被測定流体が流れる計測流路と、この計測流路の上流側および下流側に設けた超音波送受信器と、この超音波送受信器を前記計測流路に臨ませる開口穴と、上流側および下流側の超音波送受信器間の超音波伝搬路に沿って配置されるとともに流れの中に露出する規制部を有する伝搬路流れ規制体と、前記超音波送受信器間の超音波の伝搬時間を計測する計測制御部と、前記計測制御部からの信号に基づいて流量を算出する演算部とを備えたものである。従って、路流れ規制体の規制部により流れの乱流促進が行われて、超音波伝搬路の幅方向全域にわたり流れ状態が均等に乱流化される。 An embodiment of the present invention provides a measurement channel through which a fluid to be measured flows, an ultrasonic transceiver provided on the upstream side and the downstream side of the measurement channel, and the ultrasonic transceiver facing the measurement channel. An aperture hole, a propagation path flow regulating body having a regulating section disposed along an ultrasonic wave propagation path between the upstream and downstream ultrasonic transceivers and exposed in the flow, between the ultrasonic transceivers; A measurement control unit that measures the propagation time of the ultrasonic wave, and a calculation unit that calculates the flow rate based on a signal from the measurement control unit. Therefore, the turbulence of the flow is promoted by the restricting portion of the road flow restricting body, and the flow state is uniformly turbulent over the entire width direction of the ultrasonic wave propagation path.

 もちろん、超音波送受信器を計測流路に臨ませる開口穴に流入抑制体を設け、この開口穴への被測定流体の流れ込みを低減させるようにしておけば、より効果的である。開口穴に設けた流入抑制体は流れ偏向体としたり、或いは少なくとも1つの超音波透過口を有する開口穴封止部とすることが考えられる。 Of course, it is more effective if an inflow restrictor is provided in the opening that allows the ultrasonic transceiver to face the measurement flow path to reduce the flow of the fluid to be measured into the opening. It is conceivable that the inflow suppressing member provided in the opening hole is a flow deflector or an opening sealing portion having at least one ultrasonic transmission port.

 また伝搬路流れ規制体は超音波伝搬路の上流側および下流側に配置してもよく、この場合、上、下流側の伝搬路流れ規制体を連結部を介して一体化するようにしてもよい。 Further, the propagation path flow restricting body may be arranged on the upstream side and the downstream side of the ultrasonic wave propagation path. In this case, the upstream and downstream propagation path flow restricting bodies may be integrated via a connecting portion. Good.

 伝搬路流れ規制体は被測定流体の種類に応じて超音波伝搬路からの設置距離を変えるようにする。 The propagation path flow restrictor changes the installation distance from the ultrasonic propagation path according to the type of the fluid to be measured.

 以下、図面を参照して本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

 (実施例1)
 図1において、6は流路壁7に囲まれた計測流路であり、8および9は互いに対向するように流路壁7に振動伝達抑止体10を介して取付けた上流側および下流側の超音波送受信器であり、上流側の超音波送受信器8と下流側の超音波送受信器9は距離Lを隔てるとともに計測流路6の流動方向に対して角度θ傾けて設置されている。
(Example 1)
In FIG. 1, reference numeral 6 denotes a measurement flow path surrounded by a flow path wall 7, and reference numerals 8 and 9 denote upstream and downstream sides which are attached to the flow path wall 7 via a vibration transmission suppressor 10 so as to face each other. The ultrasonic transmitter / receiver 8 on the upstream side and the ultrasonic transmitter / receiver 9 on the downstream side are arranged at a distance L and at an angle θ with respect to the flow direction of the measurement flow path 6.

 11、12は超音波送受信器8、9を計測流路6に臨ませる上流側および下流側の開口穴であり、流路壁7内の窪みとして設けられている。13は対向する超音波送受信器8および9間で送信された超音波が壁面に反射すること無く直接相手側の超音波送受信器に伝搬する超音波伝搬路(二点鎖線で示す)である。 Nos. 11 and 12 are upstream and downstream opening holes that allow the ultrasonic transceivers 8 and 9 to face the measurement flow path 6, and are provided as depressions in the flow path wall 7. Reference numeral 13 denotes an ultrasonic wave propagation path (indicated by a two-dot chain line) in which ultrasonic waves transmitted between the opposing ultrasonic wave transmitters and receivers 8 and 9 propagate directly to the ultrasonic wave transmitter / receiver on the other side without being reflected on the wall surface.

 14は上流側の開口穴11部に設け上流側の開口穴11への被測定流体の流れ込みを低減させる第一の流入抑制体であり、15は下流側の開口穴12部に設け下流側の開口穴12への被測定流体の流れ込みを低減させる第一の流入抑制体15である。16は超音波伝搬路13の上流側に設け上流側および下流側の開口穴11、12への被測定流体の流れ込みを低減させる第二の流入抑制体であり、流路壁7に設けた窪み部7aに嵌め込むようにして設置している。 Reference numeral 14 denotes a first inflow suppressing member provided in the upstream opening 11 to reduce the flow of the fluid to be measured into the upstream opening 11, and 15 denotes a downstream inflow opening 12 provided in the downstream opening 12. The first inflow suppressing body 15 that reduces the flow of the fluid to be measured into the opening hole 12. Reference numeral 16 denotes a second inflow suppressor provided on the upstream side of the ultrasonic wave propagation path 13 to reduce the flow of the fluid to be measured into the opening holes 11 and 12 on the upstream and downstream sides. It is installed so as to fit into the part 7a.

 図2は下流側の開口穴12に設けた第一の流入抑制体15を示すもので、21は超音波が通過できる超音波通過口22を多数持つ開口穴封止部であり、この開口穴封止部21は超音波伝搬路13を横切り開口穴12を覆うように配置し、かつ計測流路面6aに面一になるように設けることにより開口穴12への被測定流体の流れ込みを防いでいる。 FIG. 2 shows the first inflow suppressing member 15 provided in the downstream opening hole 12, and reference numeral 21 denotes an opening sealing portion having a number of ultrasonic wave passage openings 22 through which ultrasonic waves can pass. The sealing portion 21 is disposed so as to cross the ultrasonic wave propagation path 13 so as to cover the opening hole 12 and is provided so as to be flush with the measurement flow path surface 6a, thereby preventing the fluid to be measured from flowing into the opening hole 12. I have.

 ここでは、開口穴封止部21として超音波が通過できる超音波通過口22を多数持つメッシュなどを開口穴12の計測流路6の計測流路面6aに直接配置し、かつ流れを乱さないように面一に設けている。 Here, a mesh or the like having a large number of ultrasonic wave passage openings 22 through which ultrasonic waves can pass as the opening hole sealing portion 21 is directly arranged on the measurement flow path surface 6a of the measurement flow path 6 of the opening hole 12 so as not to disturb the flow. Are provided flush with each other.

 図3は上流側の開口穴11に設けた第一の流入抑制体14を示すもので、流路壁7から突出されるとともに上流側の開口穴11の上流側近傍に設けた滑らかな突起状の流れ偏向体14aとこの流れ偏向体14aの上流側に滑らかに突出高さを増加させた案内面14bを設けている。 FIG. 3 shows a first inflow suppressing body 14 provided in the upstream opening hole 11, which is protruded from the flow path wall 7 and has a smooth protrusion provided near the upstream side of the upstream opening hole 11. A flow deflector 14a and a guide surface 14b having an increased protrusion height are provided upstream of the flow deflector 14a.

 第二の流入抑制体16は被測定流体の流れ方向を整える方向規制部16aと流速分布の均一化あるいは流れの脈動を低減する変動抑制部16bを有している。この方向規制部16aは計測流路6の横断面を細かく分割する仕切壁が設けられており、変動抑制部16bは流れ方向の長さが短く計測流路6の横断面に対して多数の微細形状の連通路を有している。 The second inflow suppressor 16 has a direction restricting portion 16a for adjusting the flow direction of the fluid to be measured and a fluctuation suppressing portion 16b for making the flow velocity distribution uniform or reducing flow pulsation. The direction restricting portion 16a is provided with a partition wall for finely dividing the cross section of the measurement flow channel 6, and the fluctuation suppressing portion 16b has a short flow direction length and a large number of fine It has a communication passage having a shape.

 17は計測流路6の上流側に設けた開閉弁(図示せず)に連通する上流側の屈曲部、18は計測流路6の下流側に設けた出口(図示せず)に連通する下流側の屈曲部であり、屈曲部17、18により流路がコンパクトに構成されている。19は超音波送受信器8,9に接続され超音波の送受信をさせる計測制御部であり、20は計測制御部19での信号を基に流速を計算し流量を算出する演算部である。 Reference numeral 17 denotes an upstream bent portion that communicates with an on-off valve (not shown) provided on the upstream side of the measurement flow channel 6, and reference numeral 18 denotes a downstream portion that communicates with an outlet (not shown) provided on the downstream side of the measurement flow channel 6. The flow path is formed compact by the bent parts 17 and 18. Reference numeral 19 denotes a measurement control unit connected to the ultrasonic transceivers 8 and 9 for transmitting and receiving ultrasonic waves. Reference numeral 20 denotes a calculation unit that calculates a flow rate based on a signal from the measurement control unit 19 and calculates a flow rate.

 次に超音波による流量計測動作を説明する。計測流路6の超音波伝搬路13では、計測制御部19の作用により超音波送受信器8,9間で計測流路6を横切るようにして超音波の送受が行われる。すなわち、上流側の超音波送受信器8から発せられた超音波が下流側の超音波送受信器9で受信されるまでの伝搬時間T1を計測する。また一方、下流側の超音波送受信器9から発せられた超音波が上流側の超音波送受信器8で受信されるまでの伝搬時間T2を計測する。 Next, the flow rate measurement operation using ultrasonic waves will be described. In the ultrasonic wave propagation path 13 of the measurement flow path 6, ultrasonic waves are transmitted and received between the ultrasonic transceivers 8 and 9 across the measurement flow path 6 by the operation of the measurement control unit 19. That is, the propagation time T1 until the ultrasonic wave emitted from the upstream ultrasonic transceiver 8 is received by the downstream ultrasonic transceiver 9 is measured. On the other hand, the propagation time T2 until the ultrasonic wave emitted from the downstream ultrasonic transceiver 9 is received by the upstream ultrasonic transceiver 8 is measured.

 このようにして測定された伝搬時間T1およびT2を基に、以下の演算式により演算部20で流量が算出される。 流量 Based on the propagation times T1 and T2 measured in this way, the flow rate is calculated by the calculation unit 20 by the following calculation formula.

 いま、計測流路6の長手方向の被計測流体の流速をVとし、流れの方向と超音波伝搬路13とのなす角度をθとし、超音波送受信器8,9間の距離をL、被測定流体の音速をCとすると、流速Vは以下の式にて算出される。 Now, it is assumed that the flow velocity of the fluid to be measured in the longitudinal direction of the measurement flow path 6 is V, the angle between the flow direction and the ultrasonic wave propagation path 13 is θ, the distance between the ultrasonic transceivers 8 and 9 is L, Assuming that the sound velocity of the measurement fluid is C, the flow velocity V is calculated by the following equation.

  T1=L/(C+Vcosθ)
  T2=L/(C−Vcosθ)
 T1の逆数からT2の逆数を引き算する式より音速Cを消去して
  V=(L/2cosθ)((1/T1)−(1/T2))
 θおよびLは既知なのでT1およびT2の値より流速Vが算出できる。いま、空気の流量を計ることを考え、角度θ=45度、距離L=70mm、音速C=340m/s、流速V=8m/sを想定すると、T1=2.0×10-4秒、T2=2.1×10-4秒であり、瞬時計測ができる。
T1 = L / (C + Vcosθ)
T2 = L / (C−Vcos θ)
V = (L / 2 cos θ) ((1 / T1) − (1 / T2))
Since θ and L are known, the flow velocity V can be calculated from the values of T1 and T2. Now, assuming that the flow rate of air is measured, assuming an angle θ = 45 degrees, a distance L = 70 mm, a sound velocity C = 340 m / s, and a flow velocity V = 8 m / s, T1 = 2.0 × 10 −4 seconds, T2 = 2.1 × 10 −4 seconds, and instantaneous measurement can be performed.

 次に、計測流路6の流れ方向に直交する横断面積Sより、流量Qは
  Q=KVS
 ここで、Kは横断面積Sにおける流速分布を考慮した補正係数である。このようにして演算部20で流量を求める。
Next, from the cross-sectional area S orthogonal to the flow direction of the measurement flow path 6, the flow rate Q is given by: Q = KVS
Here, K is a correction coefficient in consideration of the flow velocity distribution in the cross-sectional area S. In this way, the flow rate is obtained by the arithmetic unit 20.

 次に、この超音波流量計測装置の計測流路内の流れ状態と計測動作について説明する。被計測流体が計測流路6の上流側に設けた開閉弁(図示せず)での流路断面積の拡大縮小あるいは屈曲部17を流れることなどにより偏流あるいは流れの脈動を生じたまま計測流路6に入る。 Next, a description will be given of a flow state and a measurement operation in the measurement flow path of the ultrasonic flow measurement device. The measurement flow is generated while the drift or the pulsation of the flow is generated due to the flow of the fluid to be measured being enlarged / reduced in the cross-sectional area of the flow passage at an on-off valve (not shown) provided on the upstream side of the measurement flow passage 6 or flowing through the bent portion 17. Enter Road 6.

 そして、超音波伝搬路13の上流側に設けた第二の流入抑制体16の方向規制部16aにより計測流路6内の流れは開口穴11、12に流入しにくい方向に整流された流れにするとともに流れの乱れを低減させ、さらに変動抑制部16bにより脈動などの流れ変動による乱れを低減して開口穴11、12への流入をより一層抑える状態にして超音波伝搬路13に流入させる。 Then, the flow in the measurement flow path 6 is rectified by the direction restricting portion 16 a of the second inflow suppressing body 16 provided on the upstream side of the ultrasonic wave propagation path 13 in a direction hard to flow into the opening holes 11 and 12. At the same time, the turbulence of the flow is reduced, and the turbulence due to flow fluctuations such as pulsation is reduced by the fluctuation suppressing portion 16b so that the flow into the openings 11 and 12 is further suppressed.

 この変動抑制部16bは網状のメッシュ、発泡体、微細多孔板、不織布体などで開口率の高いものを流れ方向に薄くすることで変動抑制部16bによる圧力損失を小さくでき、圧力損失を高めずに計測流路での流れの変動を低減できるとともに、流速の速い領域においても流れの変動を緩和することで超音波の伝搬時間の変動を抑制して、計測可能な流速あるいは流量の上限値を拡大でき、さらに計測精度を高めることができる。 The fluctuation suppressing portion 16b can reduce the pressure loss due to the fluctuation suppressing portion 16b by reducing the mesh, foam, microporous plate, nonwoven fabric, or the like having a high aperture ratio in the flow direction, without increasing the pressure loss. In addition to reducing flow fluctuations in the measurement flow path, it also reduces fluctuations in flow even in areas with high flow velocities, thereby suppressing fluctuations in the propagation time of ultrasonic waves and increasing the upper limit of measurable flow velocity or flow rate. It can be enlarged and the measurement accuracy can be further improved.

 次に、計測流路に対して鋭角で交わるため強い渦が発生し易い下流側の超音波送受信器9の前に開口する開口穴12では、第二の流入抑制体16により整流された流れに対して、超音波が通過できる超音波通過口22を多数持つメッシュなどの開口穴封止部21をの計測流路6の計測流路面6aに配置し、かつ流れを乱さないように面一に設けているので、下流側の開口穴12への被測定流体の流入抑制効果を一層高めて超音波伝搬路13での渦や流れの乱れを大幅に低減できる。 Next, in the opening hole 12 opened in front of the ultrasonic transmitter / receiver 9 on the downstream side where a strong vortex is likely to be generated because it intersects the measurement flow path at an acute angle, the flow rectified by the second inflow suppressing body 16 is formed. On the other hand, an opening sealing portion 21 such as a mesh having a number of ultrasonic wave passage openings 22 through which ultrasonic waves can pass is arranged on the measurement flow path surface 6a of the measurement flow path 6 and is flush with each other so as not to disturb the flow. Since it is provided, the effect of suppressing the inflow of the fluid to be measured into the opening hole 12 on the downstream side can be further enhanced, and the vortex and the disturbance of the flow in the ultrasonic wave propagation path 13 can be greatly reduced.

 一方、上流側の開口穴11では、開口穴11の上流側の近傍に設けられた突起状の流れ偏向体14aで形成した第一の流入抑制体14により図3に矢印で示すように開口穴11内への流れの流入をより一層低減して渦などの流れの乱れを低減して安定化させる。上流側の開口穴11が計測流路6に対して鈍角で交わるため渦の強度は下流側の開口穴12の場合より小さくその悪影響は小さく必ずしも第一の流入抑制体14を設ける必要はないが、上流側の開口穴11に第一の流入抑制体14を設けることでより一層流れが安定化できる。また、第一の流入抑制体14は流路壁7に一体で成形することにより構成が簡略化されて低コスト化ができる。 On the other hand, in the upstream opening hole 11, as shown by the arrow in FIG. 3, the first inflow suppressing body 14 formed by the protruding flow deflector 14 a provided near the upstream side of the opening hole 11. 11 is further reduced, and turbulence such as eddies is reduced and stabilized. Since the upstream opening hole 11 intersects the measurement flow path 6 at an obtuse angle, the intensity of the vortex is smaller than that of the downstream opening hole 12 and its adverse effect is small, and it is not always necessary to provide the first inflow suppressing body 14. The flow can be further stabilized by providing the first inflow suppressing body 14 in the opening hole 11 on the upstream side. Further, the first inflow suppressing body 14 is formed integrally with the flow path wall 7 so that the configuration is simplified and the cost can be reduced.

 このように流れが安定化された超音波伝搬路13に対して超音波送受信器8、9間で超音波を送受信して超音波の受信レベルを高めて精度の高い流速計測が実現できるとともに、流れの変動による超音波の減衰を低減して計測できる流量の上限値を高めることができるものである。 Ultrasonic waves are transmitted and received between the ultrasonic transceivers 8 and 9 with respect to the ultrasonic wave propagation path 13 in which the flow is stabilized in this way, and the reception level of the ultrasonic waves is increased to realize highly accurate flow velocity measurement. It is possible to increase the upper limit of the flow rate that can be measured by reducing the attenuation of the ultrasonic wave due to the flow fluctuation.

 さらに、流れの安定化により超音波の受信レベルを向上できるので超音波の送信のための消費電力を低減できるだけでなく、下流側の開口穴12のみに開口穴封止部21を配置することで、開口穴封止部21を通過することによる超音波の減衰量を低減させ、超音波送受信器8、9への駆動電気入力の低減により低消費電力化ができ、家庭用のガスメータのように電池で駆動する場合では、少ない電池容量で長期間にわたって継続して利用できる。 Further, since the reception level of the ultrasonic wave can be improved by the stabilization of the flow, not only can the power consumption for transmitting the ultrasonic wave be reduced, but also by disposing the opening sealing portion 21 only in the opening 12 on the downstream side. The power consumption can be reduced by reducing the attenuation of the ultrasonic waves caused by passing through the opening hole sealing portion 21 and reducing the driving electric input to the ultrasonic transceivers 8 and 9, as in a home gas meter. When driven by a battery, the battery can be continuously used for a long time with a small battery capacity.

 図4は別の第一の流入抑制体を示す超音波流量計測装置の断面図であり、図1〜図3の実施の形態と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。下流側の開口穴12には図1の実施の形態と同様に超音波通過口22を有する開口穴封止部21aが第一の流入抑制体15として設けられ、上流側の開口穴11にも第一の流入抑制体14として超音波通過口22を有する開口穴封止部21bが設けられている。 FIG. 4 is a cross-sectional view of an ultrasonic flow rate measuring device showing another first inflow suppressing body. The same members and the same functions as those in the embodiment of FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description is omitted. The following description focuses on the differences. An opening sealing portion 21a having an ultrasonic wave passage 22 is provided in the downstream opening 12 as the first inflow suppressing body 15, similarly to the embodiment of FIG. An opening sealing portion 21b having an ultrasonic passage 22 is provided as the first inflow suppressor 14.

 いずれの開口穴封止部21a、21bも計測流路面と面一に設けられている。このように上流側の開口穴11と下流側の開口穴12の両方に開口穴封止部21a、21bを設けることにより、開口穴へ流体が流れ込むのが抑制されて渦や流れの乱れを防止して計測精
度を向上できるだけでなく、瞬時の逆流を伴うような脈動流に対しても精度を高めた計測ができる。
Both opening hole sealing portions 21a and 21b are provided flush with the measurement channel surface. By providing the opening sealing portions 21a and 21b in both the upstream opening 11 and the downstream opening 12, the flow of the fluid into the opening is suppressed and the vortex and the disturbance of the flow are prevented. As a result, not only can the measurement accuracy be improved, but also the measurement can be performed with improved accuracy even for a pulsating flow accompanied by instantaneous backflow.

 さらに、開口穴11、12内での流れの乱れが大幅に低減できるので、乱れによる超音波の屈折や反射を低減してS/N特性に優れた超音波の送受信が実現でき、送信出力の低減が可能となり駆動入力の低減による低消費電力化ができる。 Furthermore, since the disturbance of the flow in the opening holes 11 and 12 can be greatly reduced, the refraction and reflection of the ultrasonic wave due to the disturbance can be reduced, and the transmission and reception of the ultrasonic wave having excellent S / N characteristics can be realized, and the transmission output can be reduced. The power consumption can be reduced by reducing the drive input.

 また、開口穴封止部21a、21bの他の実施の形態を次に図を用いずに説明する。上流側の開口穴11では計測流路6に対して鈍角で交わるため渦の発生強度が小さいので、上流側の開口穴11に設けた開口穴封止部21bの開口率は下流側の開口穴12に設けた開口穴封止部21aの開口率よりも大きくしても流入抑制の効果は期待できる。 Further, another embodiment of the opening hole sealing portions 21a and 21b will be described without using the drawings. Since the upstream opening 11 intersects the measurement flow path 6 at an obtuse angle and the vortex generation intensity is low, the opening ratio of the opening sealing portion 21b provided in the upstream opening 11 is the downstream opening. Even if the opening ratio is larger than the opening ratio of the opening sealing portion 21a provided in the opening 12, the effect of suppressing the inflow can be expected.

 そこで、本実施形態では、上流側の開口穴封止部21bは下流側の開口穴封止部21aよりも開口率を大きくしている。このため、上流側の開口穴封止部21bは超音波の通過口の面積が大きいので超音波の伝搬損失が下流側の開口穴封止部21aよりも低減できるものである。 Therefore, in the present embodiment, the opening ratio of the upstream opening sealing portion 21b is larger than that of the downstream opening sealing portion 21a. For this reason, since the upstream opening sealing portion 21b has a large area of the ultrasonic wave passage opening, the propagation loss of the ultrasonic wave can be reduced as compared with the downstream opening sealing portion 21a.

 従って、上流側と下流側に同じ開口率の開口穴封止部を使用する場合よりも超音波の伝搬損失を低減でき、超音波送受信器への駆動入力の低減により低消費電力化できる。 Thus, the propagation loss of the ultrasonic wave can be reduced as compared with the case where the opening hole sealing portions having the same opening ratio are used on the upstream side and the downstream side, and the power consumption can be reduced by reducing the drive input to the ultrasonic transceiver.

 図5は下流側の開口穴12に設けた第一の流入抑制体15の他の実施の形態を示すもので、23は開口穴封止部21を備えた下流側の開口穴12の上流側近傍に設けた流れ偏向体であり、この流れ偏向体23は板状あるいは翼状のもので形成され開口穴12内に被測定流体が流れ込まないように流れ方向を規制している。このように、開口穴12は第一の流入抑制体15として開口穴封止部21と流れ偏向体23の両方を備えている。 FIG. 5 shows another embodiment of the first inflow suppressing body 15 provided in the downstream opening hole 12. Reference numeral 23 denotes an upstream side of the downstream opening hole 12 provided with the opening sealing portion 21. The flow deflector 23 is formed in a plate shape or a wing shape, and regulates the flow direction so that the fluid to be measured does not flow into the opening 12. As described above, the opening hole 12 includes both the opening hole sealing portion 21 and the flow deflector 23 as the first inflow suppressing member 15.

 ここで、開口穴12に対して流れ偏向体23で流れ方向を規制して開口穴12内に向かう流れを低減し、さらに僅かながらも向かってきた流れには開口穴封止部21により開口穴12内への流入を防止して開口穴12内での渦などの流れの乱れ発生を防ぎ、超音波伝搬路13での流れを安定させて計測精度を一層向上できる。 Here, the flow direction is regulated by the flow deflector 23 with respect to the opening hole 12 to reduce the flow toward the inside of the opening hole 12, and the flow which is going a little further is reduced by the opening hole sealing portion 21. The flow into the opening 12 is prevented to prevent turbulence such as a vortex in the opening 12, and the flow in the ultrasonic wave propagation path 13 is stabilized, so that the measurement accuracy can be further improved.

 また、流れ偏向体23により開口穴封止部21に衝突する流れが低減できるため、ダストなど微細な粉末状の異物が被測定流体に含まれている場合でも開口穴封止部21への異物の付着が低減できる。このため開口穴封止部21は超音波の通過性を第一に考えた仕様が可能となり、選定あるいは設定の自由度が向上するとともに超音波の通過性を一層高めて高感度化ができ、低消費電力化あるいは高精度化が実現できる。なお、上流側の開口穴11においても同様にすることにより一層の計測精度の向上ができる。 In addition, since the flow deflecting body 23 can reduce the flow colliding with the opening hole sealing portion 21, even if a fine powdery foreign substance such as dust is contained in the fluid to be measured, the foreign matter entering the opening hole sealing portion 21 can be reduced. Can be reduced. For this reason, the specification of the opening hole sealing portion 21 that allows the transmission of the ultrasonic wave is considered first, and the degree of freedom of selection or setting is improved, and the transmission of the ultrasonic wave is further increased, so that high sensitivity can be achieved. Low power consumption or high accuracy can be realized. The measurement accuracy can be further improved by making the same in the opening hole 11 on the upstream side.

 図6は開口穴封止部の他の実施の形態を示すもので、24は網目状の超音波通過口22を有する網状体であり、網状体24を開口穴封止部21として開口穴12上に計測流路面6aに沿って設けている。ここでは計測流路6の被測定流体の流動方向をほぼ水平とし、開口穴11、12が設けられる計測流路面6aをほぼ垂直方向になるように設置されている。この計測流路の設置姿勢に対して、この網状体24は水平に対して傾きαを有する傾斜網目部25で形成して水平に配置される網目の部分がないようにしている。 FIG. 6 shows another embodiment of the opening hole sealing portion. Reference numeral 24 denotes a mesh body having a mesh-like ultrasonic wave passing port 22. It is provided on the upper surface along the measurement flow path surface 6a. Here, the flow direction of the fluid to be measured in the measurement flow path 6 is set to be substantially horizontal, and the measurement flow path surface 6a provided with the opening holes 11 and 12 is set to be substantially vertical. With respect to the installation posture of the measurement flow path, the mesh body 24 is formed by an inclined mesh portion 25 having an inclination α with respect to the horizontal so that there is no mesh portion arranged horizontally.

 ここで、被測定流体がダストなど微細な粉末状の異物を含んだまま流動を続けると開口穴12に設けた網状体24に付着することが有る。しかし、網状体24は水平に対して傾いた傾斜網目部25で形成されているため、付着した微細な粉末状の異物は傾斜に沿って滑り落ちることが促進される。従って、付着した微細な粉末状の異物が堆積による網状体24の目詰まりが防止でき、超音波の通過が確保されて安定した流速、流量の計測を持続できる。ここでは下流側の開口穴12で説明したが、上流側の開口穴11に対しても同様である。 Here, if the fluid to be measured continues to flow while containing fine powdery foreign substances such as dust, the fluid may adhere to the net 24 provided in the opening hole 12. However, since the reticulated body 24 is formed of the inclined mesh portion 25 inclined with respect to the horizontal, the fine powdery foreign matter adhered to the sliding is promoted to slide down along the inclination. Therefore, clogging of the mesh body 24 due to the deposition of the fine powdery foreign matter adhered thereto can be prevented, and the passage of ultrasonic waves can be ensured, and stable measurement of the flow velocity and flow rate can be maintained. Here, the downstream side opening hole 12 has been described, but the same applies to the upstream side opening hole 11.

 図7は図1に示した計測流路のA−A断面図であり、計測流路6の流れに直交する方向の断面は超音波送受信器8、9が対向配置される面の幅がWで、断面の高さがHの矩形であり、凹部を持つ流路壁7bと凸部を持つ流路壁7cを嵌め合わせた流路壁7により計測流路6を形成している。この矩形断面により計測流路6内で二次元流れが可能となるとともに、矩形断面のコーナー部で発生し易い流れの変動は第二の流入抑制体16により変動が抑制されるため計測流路6内での二次元流れが促進できる。さらに、超音波送受信器間の計測流路6の高さHが一定のため、全流路断面積に対する超音波が伝搬する計測領域の割合を高めることで流体の平均流速を精度高く計測できる。 FIG. 7 is a sectional view taken along the line AA of the measurement flow channel shown in FIG. The measurement flow path 6 is formed by a flow path wall 7 in which a cross-section height is H and a flow path wall 7b having a concave portion and a flow path wall 7c having a convex portion are fitted. This rectangular cross section enables a two-dimensional flow in the measurement flow path 6, and the fluctuation of the flow which is likely to occur at the corner of the rectangular cross section is suppressed by the second inflow suppressing body 16, so that the measurement flow path 6 Two-dimensional flow in the inside can be promoted. Furthermore, since the height H of the measurement flow path 6 between the ultrasonic transceivers is constant, the average flow velocity of the fluid can be measured with high accuracy by increasing the ratio of the measurement area in which the ultrasonic wave propagates to the total cross-sectional area of the flow path.

 なお、ダイキャストなどで流路壁7を形成する場合のように金型などの生産設備の耐久性を確保するため、矩形断面の角に丸み(コーナーR)を設けた略矩形のものもここでいう矩形断面に含めるのは言うまでもない。 In addition, in order to ensure the durability of the production equipment such as a mold as in the case where the flow path wall 7 is formed by die casting or the like, a substantially rectangular shape having rounded corners (corners R) in a rectangular cross section is also used. Needless to say, it is included in the rectangular cross section.

 図8は図7に示した矩形断面の計測流路6の計測流路面6aでの開口穴12の開口形状であり、開口穴12の計測流路面6aでの開口形状は計測流路6の流れ方向(図中矢印で示す)に対してほぼ直交する方向を一辺12aとし、流れ方向にほぼ平行な方向を他辺12bとする矩形としている。 FIG. 8 shows the opening shape of the opening hole 12 on the measurement channel surface 6a of the measurement channel 6 having the rectangular cross section shown in FIG. A direction substantially perpendicular to the direction (indicated by an arrow in the figure) is defined as one side 12a, and a direction substantially parallel to the flow direction is defined as a rectangle having the other side 12b.

 このため、計測流路6において、開口穴12の流れ方向の開口長さはどの高さ位置Hでも図中Dで示すように同じとなり、高さH方向に対して均等に超音波を発信、受信することができ、計測流路6内を均等に計測することにより精度の高い計測ができる。また、開口部の流れ方向の長さDは同じ開口面積の丸穴や弧状部を持つ形状の場合よりも短くできるため計測流路6内での流れの乱れ発生や開口穴12内への流れ込みを一層低減して計測精度を向上できる。 For this reason, in the measurement flow path 6, the opening length of the opening hole 12 in the flow direction becomes the same at any height position H as shown by D in the figure, and ultrasonic waves are transmitted uniformly in the height H direction. The measurement can be performed with high accuracy by uniformly measuring the inside of the measurement channel 6. Further, the length D in the flow direction of the opening can be made shorter than in the case of a shape having a round hole or an arc-shaped portion having the same opening area, so that the flow disturbance occurs in the measurement flow path 6 and the flow into the opening hole 12. And the measurement accuracy can be improved.

 なお、ここでは下流側の開口穴12の場合を示したが、上流側の開口穴11の計測流路面6aでの開口形状を矩形とすることでさらに計測精度を向上できるのは言うまでもないものである。 Here, the case of the downstream opening hole 12 is shown, but it goes without saying that the measurement accuracy can be further improved by making the opening shape of the upstream opening hole 11 on the measurement flow path surface 6a rectangular. .

 このように、本実施例の超音波流量計測装置によれば、少なくとも下流側の開口穴に設けた第一の流入抑制体15により開口穴12への被測定流体の流れ込みが低減されて超音波送受信器8、9間の流れの乱れを大幅に低減することができ、計測精度を高め、流量計測できる上限値を高めることができ、第一の流入抑制体15は超音波透過口22を有する開口穴封止部21として、開口穴への被測定流体の流入抑制効果を一層高めて開口穴内での流れを安定化でき、また超音波通過口22により超音波の伝搬は確保できるとともに開口穴封止部21を下流側の開口穴12のみに配置して超音波の減衰を一層少なくして超音波送受信器への駆動入力を低減させて低消費電力化を実現でき、計測精度を向上できる。 As described above, according to the ultrasonic flow measurement device of the present embodiment, the flow of the fluid to be measured into the opening hole 12 is reduced by the first inflow suppressing body 15 provided at least in the opening hole on the downstream side, The turbulence of the flow between the transceivers 8 and 9 can be significantly reduced, the measurement accuracy can be increased, and the upper limit value of the flow rate can be increased, and the first inflow suppressor 15 has the ultrasonic transmission port 22. The opening hole sealing portion 21 can further enhance the effect of suppressing the inflow of the fluid to be measured into the opening hole and stabilize the flow in the opening hole. By disposing the sealing portion 21 only in the opening 12 on the downstream side, attenuation of ultrasonic waves can be further reduced, drive input to the ultrasonic transceiver can be reduced, power consumption can be reduced, and measurement accuracy can be improved. .

 また、上流側の開口穴11に設けた第一の流入抑制体14は超音波透過口22を有する開口穴封止部21bを備えて、上流側および下流側の開口穴への流体の流れ込みの大幅な低減が実現でき、流量計測できる上限値を高めることができるとともに逆流を伴う流れに対しても計測精度を高めることができる。 In addition, the first inflow suppressing member 14 provided in the opening 11 on the upstream side includes an opening sealing portion 21b having an ultrasonic transmission port 22 to prevent fluid from flowing into the opening on the upstream and downstream sides. A significant reduction can be realized, the upper limit value of the flow rate measurement can be increased, and the measurement accuracy can be improved even for a flow accompanied by a backflow.

 また、上流側の開口穴11に設けた開口穴封止部21bの開口率は下流側の開口穴12に設けた開口穴封止部21aの開口率よりも大きくして、超音波の伝搬損失の低減がなされ、流量計測の上限値の向上と逆流に対する計測精度の向上を可能にするとともに、超音波送受信器への駆動入力の低減により低消費電力化できる。 Further, the opening ratio of the opening sealing portion 21b provided in the opening 11 on the upstream side is made larger than the opening ratio of the opening sealing portion 21a provided in the opening 12 on the downstream side, so that the propagation loss of the ultrasonic wave is reduced. , The upper limit value of the flow rate measurement can be improved and the measurement accuracy for the backflow can be improved, and the power consumption can be reduced by reducing the drive input to the ultrasonic transceiver.

 また、第一の流入抑制体15は超音波透過口22を有する開口穴封止部21と開口穴11あるいは12の近傍に設けた流れ偏向体を備えて、開口穴への被測定流体の流入抑制効果をなお一層高めることで計測精度の一層の向上ができるとともに、流れ偏向体により開口穴封止部へのダストなどの異物の付着を低減できるので、開口穴封止部は目詰まりを重視せずに超音波の通過性を第一として自由度を高めた選定ができ、超音波の通過性を一層高めることで低消費電力化あるいは感度を高め計測精度に優れた装置が実現できる。 Further, the first inflow suppressing body 15 includes an opening hole sealing portion 21 having an ultrasonic transmission port 22 and a flow deflector provided near the opening hole 11 or 12, so that the flow of the fluid to be measured into the opening hole is achieved. By further improving the suppression effect, the measurement accuracy can be further improved, and the flow deflector can reduce the adhesion of foreign substances such as dust to the opening hole sealing portion. It is possible to select the ultrasonic wave with high flexibility without putting the ultrasonic wave first, and it is possible to realize a device with lower power consumption or higher sensitivity and higher measurement accuracy by further increasing the ultrasonic wave permeability.

 また、開口穴封止部21は水平に対して傾きを持つ傾斜網目の網状体24として、水平に対して傾けることで傾斜網目部25に付着したダストなどの微粉体の落下を促進せしめて堆積量を低減し、網状体の目詰りを防止することで超音波の伝搬を確保し、長期間にわたり安定した計測精度を維持でき耐久性、信頼性が向上できる。 In addition, the opening hole sealing portion 21 is formed as a reticulated mesh member 24 having an inclination with respect to the horizontal, and is inclined with respect to the horizontal so as to promote the fall of fine powder such as dust attached to the inclined mesh portion 25 to be deposited. By reducing the amount and preventing clogging of the mesh body, propagation of ultrasonic waves can be secured, stable measurement accuracy can be maintained for a long time, and durability and reliability can be improved.

 また、計測流路6の流れに直交する断面は矩形として、矩形断面化により計測断面における計測領域の割合が大きくでき超音波伝搬路13の上流側から下流側にわたり流れに対して同じ条件で計測できること、および計測流路6内の流れの二次元化が促進できることにより流体の平均流速を精度高く計測でき、また第二の流入抑制体16を備えることにより流れの二次元化が一層促進できる。 The cross section orthogonal to the flow of the measurement flow path 6 is rectangular, and the ratio of the measurement area in the measurement cross section can be increased by forming a rectangular cross section, so that the flow is measured from the upstream side to the downstream side of the ultrasonic wave propagation path 13 under the same conditions. What can be done and the two-dimensional flow of the flow in the measurement flow path 6 can be promoted, so that the average flow velocity of the fluid can be measured with high accuracy. Further, the provision of the second inflow suppressing body 16 can further promote the two-dimensional flow.

 また、開口穴11、12の計測流路6への開口形状は計測流路6の流れ方向に対してほぼ直交する方向に一辺を有する形状としたものである。そして、計測流路6の高さ方向に対して均等に超音波を発信、受信できるとともに、開口穴の計測流路での流れ方向の開口寸法を短くできるため開口穴による流れの乱れを一層低減して計測精度を一層向上できるものである。 The shape of the opening holes 11 and 12 to the measurement flow path 6 is a shape having one side in a direction substantially orthogonal to the flow direction of the measurement flow path 6. Ultrasonic waves can be transmitted and received evenly in the height direction of the measurement flow path 6, and the size of the opening in the measurement flow path in the flow direction can be shortened, so that flow disturbance due to the opening is further reduced. As a result, the measurement accuracy can be further improved.

 なお、本実施例では屈曲部17、18を計測流路6の幅Wの方向に曲げた場合を示したが、屈曲部17、18の曲がり方向は計測流路6の高さHの方向でも良いだけでなく任意の方向でも良く、さらに屈曲部17と屈曲部18の曲がり方向が異なっていても良いのは言うまでもない。 In the present embodiment, the case where the bent portions 17 and 18 are bent in the direction of the width W of the measurement flow channel 6 is shown. However, the bending direction of the bent portions 17 and 18 is the same in the direction of the height H of the measurement flow channel 6. It goes without saying that the bending direction may be any direction as well as the bending direction of the bent portion 17 and the bent portion 18 may be different.

 また、第一の流入抑制体14、15の作用として開口穴への流体の流れ込みを抑制する効果を説明したが、計測流路を流れる流体の粘性により開口穴内の流体が誘引されて開口穴内に渦を生じることに対する誘引抑制効果も当然期待できるものであるのは言うまでもない。 In addition, the effect of suppressing the flow of the fluid into the opening hole has been described as an effect of the first inflow suppressing members 14 and 15, but the viscosity of the fluid flowing through the measurement flow path induces the fluid in the opening hole to enter the opening hole. Needless to say, the effect of suppressing the attraction to the generation of the vortex can be expected.

 (実施例2)
 図9において、図1〜図8の実施の形態と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。
(Example 2)
9, the same members and the same functions as those in the embodiment of FIGS. 1 to 8 are denoted by the same reference numerals, detailed description thereof will be omitted, and different points will be mainly described.

 26は計測流路6の入口となる導入部27に設けられ微細な流通口26aを多数有する偏流抑制体であり、この偏流抑制体26は導入部27に流入する流速分布に偏りが有る場合に流速分布を均等化して計測流路6に供給する。 Reference numeral 26 denotes a drift suppression body provided in an introduction portion 27 serving as an inlet of the measurement flow channel 6 and having a large number of fine flow openings 26a. This drift suppression body 26 is used when the flow velocity distribution flowing into the introduction portion 27 has a bias. The flow velocity distribution is equalized and supplied to the measurement flow path 6.

 28は屈曲部17の上流側に接続され導入部27に開口する接続口29を有する弁ブロックであり、この弁ブロック28には弁座30に対向する弁体31を有する開閉弁32が設けられている。33は弁座30の上流側に設けられ流体が流入する流体入口である。34は屈曲部18の下流側に接続され流体が流出する流体出口35を有する出口ブロックである。36は弁体31を弁座30の方向に付勢するスプリングであり、37は開閉弁32を開成あるいは閉成させるべく弁体31を駆動するソレノイドやモータなどの駆動部である。 Reference numeral 28 denotes a valve block having a connection port 29 connected to the upstream side of the bent portion 17 and opening to the introduction portion 27. The valve block 28 is provided with an on-off valve 32 having a valve element 31 facing the valve seat 30. ing. Reference numeral 33 denotes a fluid inlet provided upstream of the valve seat 30 and through which fluid flows. An outlet block 34 is connected to the downstream side of the bent portion 18 and has a fluid outlet 35 from which fluid flows out. Reference numeral 36 denotes a spring for urging the valve element 31 in the direction of the valve seat 30, and reference numeral 37 denotes a drive unit such as a solenoid or a motor for driving the valve element 31 to open or close the on-off valve 32.

 次に、この超音波流量計測装置の動作について説明する。開閉弁32の開成とともに被測定流体は流体入口33から流入して弁座30を通過し接続口29を通って導入部27に流入する。この導入部27に流入した流れは、流体入口33の上流側の配管の影響や弁ブロック28の屈曲した通路を通過することにより、流れ方向や流速分布の均一性が低下すると共に流れの脈動など不規則な状態となっている。 Next, the operation of the ultrasonic flow measurement device will be described. With the opening of the on-off valve 32, the fluid to be measured flows in from the fluid inlet 33, passes through the valve seat 30, flows into the inlet 27 through the connection port 29. The flow that has flowed into the introduction portion 27 is affected by the piping on the upstream side of the fluid inlet 33 and passes through the bent passage of the valve block 28, so that the flow direction and the uniformity of the flow velocity distribution are reduced, and the flow is pulsated. It is in an irregular state.

 しかし、導入部27に設けられた偏流抑制体26の微細な流通口26aを通過することにより、流れ方向や流速分布の不均一性が改善されると共に流れの脈動が低減されて安定した流れとなって計測流路6に流入する。 However, by passing through the fine flow opening 26a of the drift preventing body 26 provided in the introduction portion 27, the flow direction and the non-uniformity of the flow velocity distribution are improved, and the pulsation of the flow is reduced, and a stable flow is obtained. And flows into the measurement channel 6.

 計測流路6では前述のように第二の流入抑制体16の方向規制部16aにより計測流路6断面内の流速分布が均等になり、開口穴11、12に流入しにくくなる方向に整流するとともに、変動抑制部16bにより脈動などの流れの変動がより一層低減されて超音波伝搬路13に流入し、さらに上流側および下流側の開口穴11、12では、その上流側の近傍に設けられた第一の流入抑制体14、15により開口穴11、12内への流れの流入が低減される。 As described above, the flow rate distribution in the cross section of the measurement flow path 6 becomes uniform in the measurement flow path 6 due to the direction restricting portion 16 a of the second inflow suppressing body 16, and the flow is rectified in the direction in which the flow hardly flows into the opening holes 11 and 12. At the same time, the fluctuation of the flow such as pulsation is further reduced by the fluctuation suppressing portion 16b and flows into the ultrasonic wave propagation path 13, and the upstream and downstream opening holes 11 and 12 are provided near the upstream side. The first inflow suppressors 14 and 15 reduce the inflow of the flow into the opening holes 11 and 12.

 このようにして上流側の配管形状などに関わらず流れを一層安定化させた超音波伝搬路13に対して超音波送受信器8、9間で超音波を送受信してより精度の高い流速計測が実現できるとともに、流れの変動による超音波の減衰を低減して計測できる流量の上限値を一層高めることができる。 Thus, the ultrasonic wave is transmitted and received between the ultrasonic transceivers 8 and 9 with respect to the ultrasonic wave propagation path 13 in which the flow is further stabilized irrespective of the shape of the pipe on the upstream side, so that a more accurate flow velocity measurement can be performed. This can be realized, and the upper limit of the flow rate that can be measured by reducing the attenuation of the ultrasonic wave due to the fluctuation of the flow can be further increased.

 図10は導入部27の平面図であり、偏流抑制体26は導入部27の全域に配置したもので、29aは開閉弁32を図9のように図面の左右方向に配置し接続口29を紙面左側に設けた場合での接続口29の第一の開口位置(二点鎖線で示す)であり、29bは開閉弁32を図9の紙面表裏方向に配置し接続口29を紙面裏面側に設けた場合での接続口29の第二の開口位置(二点鎖線で示す)を示している。 FIG. 10 is a plan view of the introduction portion 27, in which the drift suppression body 26 is disposed over the entire region of the introduction portion 27, and 29a is provided with the on-off valve 32 arranged in the left-right direction of the drawing as shown in FIG. This is the first opening position of the connection port 29 when provided on the left side of the paper (indicated by a two-dot chain line). Reference numeral 29b denotes the on-off valve 32 arranged in the front and back direction of the paper of FIG. The second opening position of the connection port 29 in the case where it is provided (indicated by a two-dot chain line) is shown.

 これらの第一の開口位置29aと第二の開口位置29bがどちらも導入部27に配置できるように、導入部27の断面積Saは幅W、高さHの矩形で示す計測流路6の断面積Sb(図11参照)よりも大きな(Sa>Sb)断面として、偏流抑制体26の設置面積を大きくしている。このため、偏流抑制体26による被測定流体の圧力損失を小さくできるとともに、弁ブロック28の種々の配置構成に対して第一および第二の開口位置29a、29bが導入部27に対して偏りが有っても偏流抑制体26の微細な流通口26aにより流れ分布を均等化して計測流路6に流入させることができる。従って、弁ブロック28などの計測流路6の上流側の流路形状や配管形状が異なっていても計測精度を確保できるため設置の自由度を向上できる。 The cross-sectional area Sa of the introduction part 27 is a rectangle of the width W and the height H of the measurement channel 6 so that both the first opening position 29a and the second opening position 29b can be arranged in the introduction part 27. As a cross section larger than the cross sectional area Sb (see FIG. 11) (Sa> Sb), the installation area of the drift suppression body 26 is increased. For this reason, the pressure loss of the fluid to be measured by the drift suppression body 26 can be reduced, and the first and second opening positions 29 a and 29 b are biased with respect to the introduction portion 27 for various arrangements of the valve block 28. Even if there is, the flow distribution can be equalized by the fine flow openings 26 a of the drift suppressing body 26 and flow into the measurement flow path 6. Therefore, even if the flow path shape and the pipe shape on the upstream side of the measurement flow path 6 such as the valve block 28 are different, the measurement accuracy can be secured, so that the degree of freedom of installation can be improved.

 さらに、図11に示すように偏流抑制体26に設けた微細な開口を持つ流通口26aの開口寸法Taは第二の流入抑制体16の変動抑制部16bの微細な開口の流通口16cの開口寸法Tbより小さく(Ta<Tb)している。このため、流れの脈動や流速分布の偏りに対する均等化の作用は偏流抑制体26の方が第二の流入抑制体16よりも強くでき、偏流抑制体26を設けることで計測流路6により一層安定した流れを供給できる。 Further, as shown in FIG. 11, the opening dimension Ta of the flow opening 26 a having the fine opening provided in the drift suppressing body 26 is equal to the opening of the flow opening 16 c of the fine opening of the fluctuation suppressing portion 16 b of the second inflow suppressing body 16. It is smaller than the dimension Tb (Ta <Tb). For this reason, the action of equalizing the flow pulsation and the deviation of the flow velocity distribution can be stronger in the drift suppression body 26 than in the second inflow suppression body 16, and by providing the drift suppression body 26, the measurement flow path 6 can be further enhanced. It can supply a stable flow.

 従って、上流側の流体が流入する接続口29が偏って配置されても計測流路6へは一層均等に流体を流入させることで精度を高めた計測ができるとともに、流入する流体に脈動があっても計測流路6には脈動を低減した流れを供給でき、脈動流に対しても計測精度を向上できる。 Therefore, even if the connection port 29 into which the fluid on the upstream side flows is biased, the measurement can be performed with higher accuracy by making the fluid flow into the measurement flow path 6 more evenly, and the flowing fluid has pulsation. However, the flow with reduced pulsation can be supplied to the measurement flow path 6, and the measurement accuracy can be improved even for the pulsation flow.

 また、偏流抑制体26の流通口26aを第二の流入抑制体16の変動抑制部16bの流通口16cより小さい開口寸法とすることで、ゴミ、ダストなどの異物の計測流路6への侵入を低減させ計測動作を確実にして信頼性を高めることができる。さらに、偏流抑制体26の断面積Saを計測流路6の断面積Sbよりも大きくすることで、被測定流体の圧力損失を低減できるとともに異物が偏流抑制体26に付着しても計測特性の低下を防止できる。 In addition, by setting the flow opening 26a of the drift suppression body 26 to have an opening size smaller than the flow opening 16c of the fluctuation suppression unit 16b of the second inflow suppression body 16, foreign matter such as dust and dust enters the measurement flow path 6. Can be reduced, the measurement operation can be made reliable, and the reliability can be improved. Furthermore, by making the cross-sectional area Sa of the drift suppressing body 26 larger than the cross-sectional area Sb of the measurement flow path 6, the pressure loss of the fluid to be measured can be reduced, and the measurement characteristics can be improved even if foreign substances adhere to the drift suppressing body 26. Drop can be prevented.

 図12は偏流抑制体26の他の実施の形態を示したもので、導入部27に設けた第一の偏流抑制体26bと、計測流路6の下流側の導出部38に設けた第二の偏流抑制体26cとを設けたもので、第二の偏流抑制体26cは第一の偏流抑制体26bと同様に微細な流通口26dを多数有している。 FIG. 12 shows another embodiment of the drift suppression body 26, in which a first drift suppression body 26 b provided in the introduction section 27 and a second drift provision section 38 provided in the downstream side of the measurement flow path 6. And the second drift suppression body 26c has many fine flow ports 26d like the first drift suppression body 26b.

 この構成において、計測流路6の上流側に流れの変動や流入の偏りが有る場合は第一の偏流抑制体26bにより前述の脈動低減と偏流抑制効果を発揮するとともに、計測流路6の下流側に流れの変動や偏りの原因がある場合にも第二の偏流抑制体26cにより脈動
の低減と偏流抑制効果を発揮して計測精度の向上ができるとともに、計測流路6の上流側および下流側の流路形状や配管状態に関わらず安定した計測が実現でき、計測装置の設置の自由度が一層向上できる。
In this configuration, when there is flow fluctuation or inflow bias on the upstream side of the measurement flow path 6, the first pulsation suppressing body 26b exerts the above-described pulsation reduction and drift suppression effects, and the downstream of the measurement flow path 6 Even if there is a cause of flow fluctuation or deviation on the side, the pulsation can be reduced and the drift suppressing effect can be exerted by the second drift suppression body 26c to improve the measurement accuracy, and the upstream and downstream of the measurement flow path 6 can be improved. Stable measurement can be realized irrespective of the shape of the flow path on the side and the state of the piping, and the degree of freedom in installing the measuring device can be further improved.

 さらに、脈動により瞬間的に逆流を生じる場合でも精度を高めた計測ができ、脈動発生源の位置に関わらず安定した計測ができる。また、第二の偏流抑制体26cの流通口26dの開口寸法を第二の流入抑制体16の流通口16cより小さくしたり、第二の偏流抑制体26cを配置する導出部38の断面積を計測流路6の断面積より大きくすることで導入部27の場合と同様に前述した効果が発揮でき、計測精度の向上、設置の自由度の向上、異物に対する信頼性の向上ができる。 Furthermore, even when backflow occurs momentarily due to pulsation, measurement with high accuracy can be performed, and stable measurement can be performed regardless of the position of the pulsation source. In addition, the opening size of the flow opening 26d of the second drift suppression body 26c is made smaller than the flow opening 16c of the second inflow suppression body 16, or the cross-sectional area of the lead-out portion 38 in which the second drift suppression body 26c is arranged is reduced. By making it larger than the cross-sectional area of the measurement flow path 6, the above-described effects can be exerted similarly to the case of the introduction part 27, and the measurement accuracy can be improved, the degree of freedom in installation can be improved, and the reliability against foreign substances can be improved.

 このように、実施例2によれば、計測流路6の上流側に配置した導入部27に微細な開口を持つ流通口26aを有する偏流抑制体26を設けて、上流側の流路形状や配管形状に関わらず安定した流れを計測流路6に供給することで超音波送受信器8、9間の流れの乱れを低減でき、計測可能な上限値を一層高めることができるとともに計測精度を一層向上でき、さらに計測流路6の上流側の流路形状や配管状態に関わらず安定した計測が実現でき、計測装置の設置の自由度が向上できる。 As described above, according to the second embodiment, the drift suppression body 26 having the flow opening 26a having the fine opening is provided in the introduction portion 27 arranged on the upstream side of the measurement flow path 6 so that the shape of the flow path on the upstream side can be improved. By supplying a stable flow to the measurement flow path 6 regardless of the pipe shape, disturbance of the flow between the ultrasonic transceivers 8 and 9 can be reduced, and the upper limit of the measurable value can be further increased and the measurement accuracy can be further improved. In addition, stable measurement can be realized irrespective of the shape of the flow path on the upstream side of the measurement flow path 6 and the state of the piping, and the degree of freedom of installation of the measurement device can be improved.

 また、計測流路6の上流側に配置した導入部27と下流側の導出部38に微細な開口を持つ流通口26a、26dを有する偏流抑制体26b、26cを設けて、逆流を伴う脈動を持つ被測定流体あるいは下流側に脈動源を持つ被測定流体のいずれにおいても、安定した流れを計測流路6に供給することで超音波送受信器8、9間の流れの乱れを低減でき、計測可能な上限値を一層高めることができるとともに計測精度を一層向上でき、さらに計測流路6の上流側あるいは下流側の流路形状や配管状態や脈動発生源に関わらず安定した計測が実現でき、計測装置の設置の自由度が一層向上できる。 In addition, the introduction part 27 arranged on the upstream side of the measurement flow path 6 and the drift prevention bodies 26b and 26c having the flow openings 26a and 26d having fine openings are provided in the outlet part 38 on the downstream side to reduce pulsation accompanied by backflow. Regardless of the fluid to be measured having the pulsation source on the downstream side, the turbulence of the flow between the ultrasonic transceivers 8 and 9 can be reduced by supplying a stable flow to the measurement channel 6. The possible upper limit value can be further increased and the measurement accuracy can be further improved, and furthermore, stable measurement can be realized regardless of the flow path shape or piping state or pulsation source on the upstream or downstream side of the measurement flow path 6, The degree of freedom of installation of the measuring device can be further improved.

 また、導入部27あるいは導出部38の断面積は計測流路6の断面積よりも大きくして、偏流抑制体26の設置断面積を大きくして偏流抑制体26の圧力損失を低減して圧力損失の増大を防止でき、さらに導入部27あるいは導出部38を大きな断面とすることで上流側あるいは下流側の流路形状や配管形状が異なっていても導入部あるいは導出部の形状を変えることなく取付け可能にでき、設置の自由度を高めた計測装置が実現できる。 In addition, the cross-sectional area of the introduction part 27 or the lead-out part 38 is made larger than the cross-sectional area of the measurement flow path 6, the installation cross-sectional area of the drift suppression body 26 is increased, and the pressure loss of the drift suppression body 26 is reduced. The increase in loss can be prevented, and the introduction section 27 or the exit section 38 has a large cross section, so that the shape of the introduction section or the exit section does not change even if the flow path shape or the pipe shape on the upstream or downstream side is different. A measuring device that can be mounted and has a high degree of freedom in installation can be realized.

 また、偏流抑制体26の流通口の開口寸法は第二の流入抑制体16に設けた流通口の開口寸法よりも小さくしたものである。そして、上流側あるいは下流側の接続口が偏って配置されていても計測流路では均等に流体を流動させることで精度を高めた計測ができ、さらに被測定流体に脈動があっても小さい開口寸法の流通口により計測流路には脈動を低減した流れとして供給でき脈動流に対しても計測精度を向上できる。さらに、偏流抑制体の小さい開口寸法の流通口は計測部へのゴミ、ダストなどの侵入を低減して計測流路での計測動作の信頼性を高めることができる。 開口 The size of the opening of the flow opening of the drift suppression body 26 is smaller than the size of the opening of the flow opening provided in the second inflow suppression body 16. And even if the upstream or downstream connection port is arranged eccentrically, it is possible to perform measurement with high accuracy by flowing the fluid evenly in the measurement flow path, and even if the fluid to be measured has pulsation, a small opening The measurement flow channel can be supplied to the measurement channel as a flow with reduced pulsation by the flow port having the dimension, and the measurement accuracy can be improved even for the pulsation flow. Furthermore, the small-sized flow opening of the drift suppression body can reduce intrusion of dust, dust, and the like into the measurement section, and can increase the reliability of the measurement operation in the measurement flow path.

 なお、本実施例2では屈曲部17、18を計測流路6の幅Wの方向に曲げた場合を示したが、屈曲部17、18の曲がり方向は計測流路6の高さHの方向でも良いだけでなく任意の方向でも良く、さらに屈曲部17と屈曲部18の曲がり方向が異なっていても良いのは言うまでもない。 In the second embodiment, the case where the bent portions 17 and 18 are bent in the direction of the width W of the measurement channel 6 is shown. However, the bending direction of the bent portions 17 and 18 is the direction of the height H of the measurement channel 6. Needless to say, the bending direction may be any direction, and the bending directions of the bent portion 17 and the bent portion 18 may be different.

 (実施例3)
 図13において、図1〜図12の実施の形態と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。
(Example 3)
13, the same members and the same functions as those in the embodiment of FIGS. 1 to 12 are denoted by the same reference numerals, detailed description thereof will be omitted, and different points will be mainly described.

 39は被測定流体が計測流路6を順方向あるいは逆方向のいずれの方向に流れても開口穴11への被測定流体の流れ込みを低減させる第一の流入抑制体であり、開口穴11の上流近傍に設けた流れ偏向体40aと開口穴11の下流近傍に設けた流れ偏向体40bを備えている。41は超音波伝搬路13の下流側に設けた第二の流入抑制体であり、第二の流入抑制体41は被測定流体の流れ方向を整える方向規制部41aと流速分布の均一化あるいは流れの脈動を低減する変動抑制部41bを有している。また、下流側の開口穴12には前述の超音波通過口22を持つ開口穴封止部21を含む第一の流入抑制体15が設けられ、超音波伝搬路13の上流側には方向規制部16aと変動抑制部16bを備えた第二の流入抑制体16が設けられている。 Reference numeral 39 denotes a first inflow suppressor that reduces the flow of the fluid to be measured into the opening hole 11 even if the fluid to be measured flows in the measurement flow path 6 in either the forward direction or the reverse direction. A flow deflector 40a provided near the upstream and a flow deflector 40b provided near the downstream of the opening 11 are provided. Reference numeral 41 denotes a second inflow suppressor provided on the downstream side of the ultrasonic wave propagation path 13. The second inflow suppressor 41 is provided with a direction regulating portion 41a for adjusting the flow direction of the fluid to be measured and a uniform or uniform flow velocity distribution. And a fluctuation suppressing unit 41b for reducing the pulsation of the light. Further, a first inflow suppressing body 15 including an opening hole sealing portion 21 having the above-mentioned ultrasonic wave passage 22 is provided in the downstream opening hole 12, and a direction restriction is provided on the upstream side of the ultrasonic wave propagation path 13. A second inflow suppressing body 16 including a portion 16a and a fluctuation suppressing portion 16b is provided.

 次に、この超音波流量計測装置の計測流路内の流れ状態と計測動作について説明する。まず、被測定流体が計測流路6を順方向に流れる場合は実施の形態1で説明したように、偏流あるいは流れの脈動を生じた流れが計測流路6に流入してきても、第二の流入抑制体16あるいは第一の流入抑制体39、15により開口穴11、12への流入を抑えられた流れとなって超音波伝搬路13で流れが安定化され、計測精度の向上や計測可能な上限値の向上がなされる。 Next, a description will be given of a flow state and a measurement operation in the measurement flow path of the ultrasonic flow measurement device. First, in the case where the fluid to be measured flows in the measurement flow path 6 in the forward direction, as described in the first embodiment, even if the flow having the drift or the pulsation of the flow flows into the measurement flow path 6, the second flow is performed. The flow is stabilized in the ultrasonic wave propagation path 13 by the inflow suppressing body 16 or the first inflow suppressing bodies 39 and 15 to suppress the inflow to the opening holes 11 and 12, thereby improving the measurement accuracy and measuring. The upper limit is improved.

 次に、脈動により瞬間的な逆流を生じた場合や流動方向が変化する場合や配管の接続間違いなどにより逆方向に流した場合など計測流路6に逆方向流れが流入しても、第一の流入抑制体15、39あるいは第二の流入抑制体41は逆方向流れに対しても順方向流れの場合と同様に開口穴11、12への流入を抑える流れを実現できる。従って、脈動を伴った流れで瞬時的な逆流を生じる場合でも、順方向流れ時と同様に開口穴への被測定流体の流れ込みが低減されて超音波送受信器8、9間の流れの乱れを大幅に低減することができ、計測精度を高め、流量計測できる上限値を高めることができる。また、逆方向流れにも精度を高めた計測ができ、設置の自由度が高く利便性を向上できる。 Next, even if a reverse flow flows into the measurement flow path 6 such as when an instantaneous reverse flow occurs due to pulsation, when the flow direction changes, or when the flow flows in the reverse direction due to incorrect connection of piping, etc. The inflow suppressors 15 and 39 or the second inflow suppressor 41 can realize a flow that suppresses the inflow to the opening holes 11 and 12 with respect to the backward flow as in the case of the forward flow. Therefore, even when an instantaneous reverse flow occurs due to a flow with pulsation, the flow of the fluid to be measured into the opening hole is reduced as in the case of the forward flow, and the turbulence of the flow between the ultrasonic transceivers 8 and 9 is reduced. This can greatly reduce the measurement accuracy, increase the measurement accuracy, and increase the upper limit value at which the flow rate can be measured. In addition, measurement can be performed with high accuracy even in the case of a reverse flow, so that the degree of freedom of installation is high and convenience can be improved.

 なお、第一の流入抑制体39は開口穴11の上流側近傍および下流側近傍に設けた流れ偏向体40a、40bによる突起を開口面に配置した例を示したが、この突起を開口穴11、12の全周を囲う(図示せず)ように設けて良いのは言うまでもなく、また第一の流入抑制体39として図2あるいは図5に前述した開口穴封止部を用いた構成として、大きな逆方向の流れに対しても計測精度を向上でき、利便性を高めることができる。 The first inflow suppressing member 39 has an example in which the projections formed by the flow deflectors 40a and 40b provided near the upstream side and the downstream side of the opening hole 11 are arranged on the opening surface. , 12 may be provided so as to surround the entire circumference (not shown). Further, as a configuration using the opening hole sealing portion described above with reference to FIG. 2 or FIG. Measurement accuracy can be improved even for a large flow in the opposite direction, and convenience can be improved.

 図14は第一の流入抑制体の他の実施の形態であり、下流側の開口穴12に設置した場合で説明する。23は開口穴封止部21を備えた開口穴12の上流側近傍に設けた流れ偏向体であり、42は開口穴12の下流側近傍に設けた流れ偏向体である。この流れ偏向体23、42は板状あるいは翼状のもので形成され開口穴12内に被測定流体が流れ込まないように流れ方向を規制している。このように、本実施形態では、第一の流入抑制体は開口穴封止部21と開口穴11、12の上流側と下流側に流れ偏向体23、42をそれぞれ備えている。 FIG. 14 shows another embodiment of the first inflow suppressing body, which will be described in the case where the first inflow suppressing body is installed in the opening hole 12 on the downstream side. Reference numeral 23 denotes a flow deflector provided near the upstream side of the opening 12 having the opening sealing portion 21, and reference numeral 42 denotes a flow deflector provided near the downstream side of the opening 12. The flow deflectors 23 and 42 are formed in a plate shape or a wing shape, and regulate the flow direction so that the fluid to be measured does not flow into the opening hole 12. As described above, in the present embodiment, the first inflow suppressing member includes the flow deflecting members 23 and 42 on the upstream and downstream sides of the opening hole sealing portion 21 and the opening holes 11 and 12, respectively.

 ここで、計測流路6を順方向に流れる流体に対しては開口穴12の上流側に配置した流れ偏向体23で流れ方向を規制して開口穴12内に向かう流れを低減し、計測流路6を逆方向に流れる流体に対しては開口穴12の下流側に配置した流れ偏向体42で流れ方向を規制して開口穴12内に向かう流れを低減し、さらに僅かながらも開口穴12に向かってきた流れには開口穴封止部21により開口穴12内への流入を防止して開口穴12内での渦などの流れの乱れ発生を防ぎ、順方向および逆方向のいずれの流れに対しても超音波伝搬路13での流れを安定させて計測精度を一層向上できる。 Here, with respect to the fluid flowing in the measurement flow path 6 in the forward direction, the flow direction is regulated by the flow deflector 23 disposed on the upstream side of the opening hole 12 to reduce the flow toward the inside of the opening hole 12, and With respect to the fluid flowing in the path 6 in the opposite direction, the flow direction is restricted by the flow deflector 42 disposed downstream of the opening hole 12 to reduce the flow toward the inside of the opening hole 12, and the opening hole 12 The flow toward the opening is prevented by the opening sealing portion 21 from flowing into the opening 12 to prevent turbulence such as a vortex in the opening 12 from occurring. Therefore, the measurement accuracy can be further improved by stabilizing the flow in the ultrasonic wave propagation path 13.

 また、流れ偏向体23、42により開口穴封止部21に衝突する流れが低減できるため、ダストなど微細な粉末状の異物が被測定流体に含まれている場合でも開口穴封止部21への異物の付着が低減できる。このため開口穴封止部21は超音波の通過性を第一に考えた仕様が可能となり、選定あるいは設定の自由度が向上するとともに超音波の通過性を一層高めて高感度化ができ、低入力化あるいは高精度化が実現できる。 Further, since the flow deflectors 23 and 42 can reduce the flow colliding with the opening hole sealing portion 21, even if a fine powdery foreign material such as dust is contained in the fluid to be measured, the flow deflecting members 23 and 42 can be applied to the opening hole sealing portion 21. Foreign matter can be reduced. For this reason, the specification of the opening hole sealing portion 21 that allows the transmission of the ultrasonic wave is considered first, and the degree of freedom of selection or setting is improved, and the transmission of the ultrasonic wave is further increased, so that high sensitivity can be achieved. Low input or high accuracy can be realized.

 さらに、上流側の開口穴11にも下流側の開口穴12と同様に開口穴封止部21と流れ偏向体23、42を設けることで開口穴11においても同様の効果があるとともに、逆方向の流れに対してより一層計測精度の向上が可能となり、超音波の通過性を高めて高感度化と低消費電力化あるいは高精度化が実現できる。 Further, by providing the opening sealing portion 21 and the flow deflectors 23 and 42 in the opening 11 on the upstream side similarly to the opening 12 on the downstream side, the same effect can be obtained in the opening 11 and the reverse direction. The measurement accuracy can be further improved with respect to the flow of air, and the transmission of ultrasonic waves can be enhanced to achieve higher sensitivity, lower power consumption, or higher accuracy.

 このように、実施例3によれば、脈動を伴った流れで瞬時的な逆流を生じる場合でも、順方向流れ時と同様に開口穴への被測定流体の流れ込みが低減されて超音波送受信器間の流れの乱れを大幅に低減することができ、計測精度を高め、流量計測できる上限値を高めることができる。また、逆方向流れにも精度を高めた計測ができ、設置の自由度が高く利便性を向上できる。 As described above, according to the third embodiment, even when an instantaneous reverse flow occurs due to a flow accompanied by pulsation, the flow of the fluid to be measured into the opening hole is reduced as in the case of the forward flow, and the ultrasonic transceiver is used. The turbulence of the flow between them can be greatly reduced, the measurement accuracy can be increased, and the upper limit value at which the flow rate can be measured can be increased. In addition, measurement can be performed with high accuracy even in the case of a reverse flow, so that the degree of freedom of installation is high and convenience can be improved.

 また、流れ偏向体は開口穴の上流側および下流側に設けて、計測流路の順方向、逆方向のいずれの流れに対しても計測精度の一層の向上と開口穴への流入抑制と開口穴への異物侵入防止ができ、脈動流れに逆流を伴っても長期間にわたり安定した計測精度を維持でき耐久性、信頼性が向上できる。 In addition, the flow deflector is provided on the upstream and downstream sides of the opening to further improve the measurement accuracy and suppress the inflow into the opening and prevent the flow from flowing in the forward and backward directions of the measurement flow path. Foreign matter can be prevented from entering the hole, and stable measurement accuracy can be maintained for a long period of time even if a pulsating flow is accompanied by a reverse flow, so that durability and reliability can be improved.

 なお、本実施例3では屈曲部17、18を計測流路6の幅Wの方向に曲げた場合を示したが、屈曲部17、18の曲がり方向は計測流路6の高さHの方向でも良いだけでなく任意の方向でも良く、さらに屈曲部17と屈曲部18の曲がり方向が異なっていても良いのは言うまでもない。 In the third embodiment, the case where the bent portions 17 and 18 are bent in the direction of the width W of the measurement channel 6 is shown. However, the bending direction of the bent portions 17 and 18 is the direction of the height H of the measurement channel 6. Needless to say, the bending direction may be any direction, and the bending directions of the bent portion 17 and the bent portion 18 may be different.

 (実施例4)
 図15において、図1〜図14の実施の形態と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。
(Example 4)
15, the same members and the same functions as those in the embodiment of FIGS. 1 to 14 are denoted by the same reference numerals, detailed description thereof will be omitted, and different portions will be mainly described.

 43はこの超音波伝搬路13の上流側に設けた伝搬路流れ規制体であり、伝搬路流れ規制体43は計測流路6に対して斜めに横切る超音波伝搬路13に沿ってほぼ平行に配置されるとともに超音波の伝搬を邪魔しないように超音波伝搬路13から少し離れたところに設けている。 Reference numeral 43 denotes a propagation path flow regulating member provided on the upstream side of the ultrasonic propagation path 13. The propagation path flow regulating body 43 is substantially parallel to the ultrasonic wave propagation path 13 obliquely crossing the measurement flow path 6. It is provided at a position slightly away from the ultrasonic wave propagation path 13 so as not to disturb the propagation of the ultrasonic wave.

 図16は計測流路6の流れ方向から見た伝搬路流れ規制体43であり、伝搬路流れ規制体43は横断面が円形の計測流路6内に配置されている。13aは図15の紙面方向(計測流路6の高さ方向)に沿った計測流路6の断面中に示した超音波伝搬路であり、伝搬路流れ規制体43は、高さ方向の幅を2点鎖線で示す超音波伝搬路13aよりもその高さ方向の幅を大きくとるとともに流れの中に露出する規制部44が多数設けられている。 FIG. 16 shows the propagation path flow restricting body 43 viewed from the flow direction of the measurement flow path 6, and the propagation path flow restriction body 43 is disposed in the measurement flow path 6 having a circular cross section. Reference numeral 13a denotes an ultrasonic wave propagation path shown in the cross section of the measurement flow path 6 along the paper surface direction (the height direction of the measurement flow path 6) in FIG. 15, and the propagation path flow restrictor 43 has a width in the height direction. Are provided in the height direction as compared with the ultrasonic wave propagation path 13a indicated by a two-dot chain line, and a plurality of regulating portions 44 are provided to be exposed in the flow.

 次に、この超音波流量計測装置の動作について説明する。被計測流体が計測流路6の上流側に設けた開閉弁(図示せず)での流路断面積の拡大縮小あるいは屈曲部17を流れることなどにより流れの変動を生じたまま計測流路6に入り、超音波伝搬路13の上流側直前に設けた伝搬路流れ規制体43の規制部44により乱れが促進される。 Next, the operation of the ultrasonic flow measurement device will be described. The flow path of the measurement fluid 6 is changed while the flow of the fluid to be measured is increased or decreased by an on-off valve (not shown) provided on the upstream side of the measurement flow path 6 or flows through the bent portion 17. Turbulence is promoted by the regulating portion 44 of the propagation path flow regulating body 43 provided immediately before the upstream side of the ultrasonic wave propagation path 13.

 上流側の超音波送受信器8に近い所から下流側の超音波送受信器9に近い所まで超音波伝搬路13の全域にわたり上流側直前に伝搬路流れ規制体43が配置されているため、超音波伝搬路13の全域にわたり均等に乱流促進がなされる。このように上流側から下流側まで超音波伝搬路13内の流れ状態の違いを小さくして超音波伝搬路13内での平均流速の測定をし易くする。 Since the propagation path flow restricting body 43 is arranged immediately before the upstream side over the entire area of the ultrasonic propagation path 13 from a position near the upstream ultrasonic transmitter / receiver 8 to a position near the downstream ultrasonic transmitter / receiver 9, Turbulence is promoted uniformly over the entire area of the sound wave propagation path 13. As described above, the difference in the flow state in the ultrasonic wave propagation path 13 from the upstream side to the downstream side is reduced, so that the average flow velocity in the ultrasonic wave propagation path 13 can be easily measured.

 特に、流速が小さく(流量が小さい時)流れ状態が層流で計測流路6に流入してきた場合でも超音波伝搬路13内での流れ状態は伝搬路流れ規制体43により乱流化が促進される。このため、この乱流状態と、流速が大きく(流量が大きい時)計測流路6に乱流状態で流入した場合での超音波伝搬路13内の乱流状態との差が小さくなる。 In particular, even when the flow state is small (when the flow rate is small) and the flow state is laminar and flows into the measurement flow path 6, the flow state in the ultrasonic wave propagation path 13 is promoted to be turbulent by the propagation path flow restrictor 43. Is done. Therefore, a difference between the turbulent state and the turbulent state in the ultrasonic wave propagation path 13 when the flow velocity is large (when the flow rate is large) and flows into the measurement flow path 6 in a turbulent state is reduced.

 従って、小流量から大流量までの幅広い流量域で安定して超音波伝搬路13内の流れを乱流化できる。また、伝搬路流れ規制体43は計測流路6に斜めに配置するため、計測流路6に直交配置するよりも計測流路6内の長さを大きくできる。従って、開口割合の大きい伝搬路流れ規制体43が可能となり圧力損失を低減した計測装置が実現できる。 Therefore, the flow in the ultrasonic wave propagation path 13 can be turbulently stabilized in a wide flow rate range from a small flow rate to a large flow rate. Further, since the propagation path flow restricting member 43 is disposed obliquely in the measurement flow path 6, the length in the measurement flow path 6 can be made longer than when the propagation path flow restriction body 43 is disposed orthogonal to the measurement flow path 6. Therefore, the propagation path flow restricting member 43 having a large aperture ratio is made possible, and a measuring device with reduced pressure loss can be realized.

 このように構成した計測流路6において、前述したように超音波の伝搬時間T1、T2を基に流速Vを求め、計測流路6の断面積Sおよび補正係数Kから流量を求める。ところで、この補正係数Kは超音波伝搬路13に沿った伝搬路流れ規制体43が無い場合では、図17に示すように層流域から乱流域に移行する遷移域において補正係数が大きく変化し、計測流量に誤差ΔQmが発生すると補正係数はΔK1と大きく変わり、流量計測誤差が拡大されることになる。 In the measurement flow path 6 configured as described above, the flow velocity V is determined based on the propagation times T1 and T2 of the ultrasonic wave as described above, and the flow rate is determined from the cross-sectional area S of the measurement flow path 6 and the correction coefficient K. By the way, when the propagation path flow restricting body 43 along the ultrasonic wave propagation path 13 is not provided, the correction coefficient K greatly changes in a transition region where a transition is made from a laminar flow region to a turbulent flow region as shown in FIG. When an error ΔQm occurs in the measured flow rate, the correction coefficient greatly changes to ΔK1, and the flow rate measurement error is enlarged.

 この誤差は流体の温度変化あるいは流体の組成割合の変化などにより動粘性係数が変わり、レイノルズ数の違いにより流れ状態の違いにより発生したりする。とくに、都市ガス、LPG(液化石油ガス)等の流量を計測する場合では、季節あるいは地域の違いによるガス組成の変化が考えられる場合はこのことを考慮する必要がある。 誤差 This error is caused by a change in the kinematic viscosity coefficient due to a change in the temperature of the fluid or a change in the composition ratio of the fluid, and is caused by a difference in flow state due to a difference in Reynolds number. In particular, when measuring the flow rate of city gas, LPG (liquefied petroleum gas), or the like, it is necessary to consider this when there is a possibility of a change in gas composition due to seasonal or regional differences.

 しかし、本実施例のように超音波伝搬路13に沿って伝搬路流れ規制体43を設置した場合の補正係数Kは、図18に示すように流速の小さい層流域においても超音波伝搬路13内は上流側から下流側まで均等に乱流化できるため、流速の大きい乱流域の補正係数との差が小さくでき、層流から乱流へ移行する遷移域でも補正係数の変化は小さく、補正係数の平坦化がなされる。 However, when the propagation path flow restricting member 43 is installed along the ultrasonic propagation path 13 as in the present embodiment, the correction coefficient K is small even in the laminar flow region where the flow velocity is small as shown in FIG. Since the turbulence can be evenly distributed from the upstream side to the downstream side, the difference from the correction coefficient in the turbulence region where the flow velocity is large can be reduced, and the change in the correction coefficient is small even in the transition region where laminar flow shifts to turbulence The coefficients are flattened.

 従って、計測流量に誤差ΔQmを生じても補正係数の変化はΔK2(K2<K1)と十分小さくでき、計測精度を高めた計測ができる。温度変化あるいは流体の組成変化が有る場合は有効であり、特に組成変化および温度変化が考えられる都市ガス、LPGなどの燃料ガスの流量を計測する場合はより一層精度を高めた計測が実現できる。 Accordingly, even if an error ΔQm occurs in the measured flow rate, the change in the correction coefficient can be made sufficiently small as ΔK2 (K2 <K1), and measurement with improved measurement accuracy can be performed. This is effective when there is a change in temperature or a change in the composition of the fluid. In particular, when measuring the flow rate of fuel gas such as city gas or LPG in which a change in composition and a change in temperature are considered, measurement with even higher accuracy can be realized.

 なお、伝搬路流れ規制体43は入口側43aから出口側43bまでの長さが計測流路6の幅W方向に対してほぼ均等な例を示したが、図19に示す伝搬路流れ規制体43の他の実施例のように、超音波伝搬路13側の出口側43bだけを超音波伝搬路13に沿うようにして入口側43aは超音波伝搬路13に沿わないようにしても、超音波伝搬路13内は上流側から下流側まで均等に乱流促進されるため、入口側43aから出口側43bまでの長さを幅方向の位置により違えても良いのは云うまでもない。 Note that the propagation path flow restrictor 43 has an example in which the length from the entrance side 43a to the exit side 43b is substantially equal to the width W direction of the measurement flow path 6, but the propagation path flow restriction body shown in FIG. 43, as in the other embodiment, even if only the exit side 43b on the side of the ultrasonic wave propagation path 13 is along the ultrasonic wave propagation path 13 and the entrance side 43a is not along the ultrasonic wave propagation path 13, Since the turbulence is uniformly promoted in the sound wave propagation path 13 from the upstream side to the downstream side, it goes without saying that the length from the inlet side 43a to the outlet side 43b may be changed depending on the position in the width direction.

 また、伝搬路流れ規制体43は計測流路6の円形断面に対して超音波伝搬路13の部分だけに配置されているが、断面の高さH方向全域に設けてることにより上記補正係数Kの平坦化が促進できるのは云うまでもない。また本実施例では、伝搬路流れ規制体43の出口側43bは超音波伝搬路13に沿うようにほぼ平行に配置されているが、超音波伝搬路13の上流側端部から下流側端部までの計測流路6の幅W方向にほぼ均等の位置に配置すれば良いのであり、出口側43bに多少の凹凸が有っても良いのは云うまでもない。 The propagation path flow restrictor 43 is disposed only in the ultrasonic propagation path 13 with respect to the circular cross section of the measurement flow path 6. However, the provision of the correction coefficient K Needless to say, flattening can be promoted. Further, in the present embodiment, the outlet side 43b of the propagation path flow restricting body 43 is disposed substantially parallel along the ultrasonic propagation path 13, but the upstream end to the downstream end of the ultrasonic propagation path 13 are arranged. Needless to say, it is only necessary to arrange the measurement flow path 6 at substantially equal positions in the width W direction, and there may be some irregularities on the outlet side 43b.

 図20は伝搬路流れ規制体の他の実施例を示す超音波流量計測装置の構成図である。図20において、図1〜図19の実施例と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。 FIG. 20 is a configuration diagram of an ultrasonic flow measurement device showing another embodiment of the propagation path flow restricting member. 20, the same members and the same functions as those of the embodiment of FIGS. 1 to 19 are denoted by the same reference numerals, detailed description thereof will be omitted, and different portions will be mainly described.

 45は超音波伝搬路13の下流側に設けた伝搬路流れ規制体であり、下流側の伝搬路流れ規制体45は計測流路6に対して斜めに横切る超音波伝搬路13に沿ってほぼ平行に配置されるとともに超音波の伝搬を邪魔しないように超音波伝搬路13から少し離れたところに設けている。46は伝搬路流れ規制体45に設けられ計測流路6の流れに触れる規制部である。このように超音波伝搬路13は上流側の伝搬路流れ規制体43と下流側の伝搬路流れ規制体45により囲われている。 Reference numeral 45 denotes a propagation path flow restrictor provided on the downstream side of the ultrasonic transmission path 13, and the downstream path flow restriction body 45 substantially extends along the ultrasonic transmission path 13 obliquely crossing the measurement flow path 6. They are arranged in parallel with each other and are provided slightly away from the ultrasonic wave propagation path 13 so as not to disturb the propagation of the ultrasonic wave. Reference numeral 46 denotes a regulating unit provided in the propagation path flow regulating body 45 to touch the flow of the measurement channel 6. Thus, the ultrasonic wave propagation path 13 is surrounded by the propagation path flow restricting body 43 on the upstream side and the propagation path flow restricting body 45 on the downstream side.

 次に、この超音波流量計測装置の動作について説明する。計測流路6の幅W方向全域にわたり超音波伝搬路13の上流側直前に設けられた伝搬路流れ規制体43の規制部44により、超音波伝搬路13内では幅W方向全域にわたり均等に流れの乱れが促進される。 Next, the operation of the ultrasonic flow measurement device will be described. Due to the regulating portion 44 of the propagation path flow regulating member 43 provided immediately before the upstream side of the ultrasonic wave propagation path 13 over the entire area of the measurement flow path 6 in the width W direction, the flow uniformly flows over the entire area of the ultrasonic wave propagation path 13 in the width W direction. Is promoted.

 また、下流側に設けた伝搬路流れ規制体45は上流側の伝搬路流れ規制体43とで超音波伝搬路13を囲うことで超音波伝搬路13内の流れに背圧を加えて流れ状態をより均一化、安定化させるとともに補正係数の一層の平坦化が実現でき、さらに計測流路6の下流側の配管形状の違いあるいは被計測流体の使用条件などによる脈動などで超音波伝搬路13内の流れ状態が影響されるのを低減して安定した流量計測ができるとともに、逆流が発生した場合でも補正係数の平坦化が維持できて計測精度の向上ができる。 Further, the propagation path flow restricting body 45 provided on the downstream side surrounds the ultrasonic propagation path 13 with the upstream side propagation path flow restricting body 43, so that a back pressure is applied to the flow in the ultrasonic propagation path 13 so that the flow state is reduced. And the flattening of the correction coefficient can be realized, and the ultrasonic wave propagation path 13 due to the pulsation due to the difference in the pipe shape on the downstream side of the measurement flow path 6 or the use condition of the fluid to be measured. It is possible to measure the flow rate stably by reducing the influence of the flow state in the inside, and to maintain the flattening of the correction coefficient even when the backflow occurs, thereby improving the measurement accuracy.

 図21は上流側の伝搬路流れ規制体43と下流側の伝搬路流れ規制体45を一体化した伝搬路流れ規制体47の斜視図であり、48は上流側の伝搬路流れ規制体43と下流側の伝搬路流れ規制体45とを接続して一体化する連結部であり、49は超音波伝搬の邪魔にならないように穴明き構造とした超音波伝搬窓である。 FIG. 21 is a perspective view of a propagation path flow restricting body 47 in which an upstream propagation path flow restricting body 43 and a downstream propagation path flow restricting body 45 are integrated. A connecting portion which connects and integrates with the downstream propagation path flow restricting body 45, and 49 is an ultrasonic wave propagation window having a perforated structure so as not to hinder ultrasonic wave propagation.

 伝搬路流れ規制体47は連結部48により互いに連結され一体化されて上流側と下流側の規制部44、46の相互位置のずれが防止されるため、超音波伝搬路13内の流れ状態のバラツキを低減して安定化でき、バラツキの小さい計測が実現できる。また、伝搬路流れ規制体47は連結部48により構造上の強度を高めることができ、それぞれの伝搬路流れ規制体43、45は規制部44、46を含めて薄肉化あるいは微細化が可能となり計測流路6の断面位置に関わらず超音波伝搬路13内の流れ状態の均等化ができる。 The propagation path flow restricting members 47 are connected to each other by a connecting portion 48 and integrated to prevent the upstream and downstream restricting portions 44 and 46 from being displaced from each other. Variation can be reduced and stabilized, and measurement with small variation can be realized. In addition, the propagation path flow restricting body 47 can increase the structural strength by the connecting portion 48, and each of the propagation path flow restricting bodies 43 and 45 can be thinned or miniaturized including the restricting sections 44 and 46. The flow state in the ultrasonic wave propagation path 13 can be equalized regardless of the cross-sectional position of the measurement flow path 6.

 また、規制部44、46の薄肉化あるいは微細化により被計測流体が流れるための開口面積を拡大できるため計測流路の圧力損失の低減ができる。また、伝搬路流れ規制体43、45は連結部48により補強されるため、長期の使用にわたって変形を防いで耐久性、信頼性を向上できる。 {Circle around (4)} The thickness of the regulating portions 44 and 46 is reduced or reduced, so that the opening area for the flow of the fluid to be measured can be increased, so that the pressure loss in the measurement flow path can be reduced. In addition, since the propagation path flow restrictors 43 and 45 are reinforced by the connecting portions 48, they can be prevented from being deformed over a long period of use, thereby improving durability and reliability.

 なお、連結部48は伝搬路流れ規制体47のコーナー部に設置する場合を示したが、超音波の伝搬に邪魔にならない位置であれば補強に適した任意の位置に設けることができるのは言うまでもない。 Although the connecting portion 48 is shown to be installed at the corner of the propagation path flow restricting body 47, the connecting portion 48 can be provided at any position suitable for reinforcement as long as it does not interfere with the propagation of ultrasonic waves. Needless to say.

 図22は実施例4における計測流路6の他の断面形状を示すA−A断面図であり、50は計測流路6の断面形状を幅W、高さHの矩形とした流路壁であり、この矩形断面全域に規制部44、46が配置されている。 FIG. 22 is an AA cross-sectional view showing another cross-sectional shape of the measurement flow channel 6 according to the fourth embodiment. Reference numeral 50 denotes a flow channel wall in which the cross-sectional shape of the measurement flow channel 6 is rectangular having a width W and a height H. The restricting portions 44 and 46 are arranged in the entire rectangular cross section.

 次に、この矩形断面における計測動作を説明する。超音波伝搬路13は矩形断面の幅W方向全域を横切るとともに、矩形断面の高さH方向に対しては計測領域の割合を高めることができ、かつ上流側から下流側まで幅W方向全域にわたり高さH方向の計測領域の割合を同じにできるため超音波伝搬路13における流体の平均流速の精度高い計測が可能になる。 Next, the measurement operation in this rectangular section will be described. The ultrasonic wave propagation path 13 traverses the entire width W direction of the rectangular cross section, and can increase the ratio of the measurement area with respect to the height H direction of the rectangular cross section, and extends over the entire width W direction from the upstream side to the downstream side. Since the ratio of the measurement area in the height H direction can be made the same, highly accurate measurement of the average flow velocity of the fluid in the ultrasonic wave propagation path 13 becomes possible.

 また、超音波伝搬路13内の流れは伝搬路流れ規制体43、45の規制部44、46により幅広い流量域において上流側から下流側にわたり均等な乱流促進がされて平均流速を精度高く計測できる。このため、矩形断面のアスペクト比(W/H)を大きくして偏平度を高めて計測流路6内に安定した二次元流れを発生させることで計測精度を高めるという方法をとる必要がなくなり、断面の高さHを形成する上下面での超音波の反射波の影響を低減する観点で高さHを設定すれば良い。 Further, the flow in the ultrasonic wave propagation path 13 is uniformly promoted from the upstream side to the downstream side in a wide flow rate region by the regulating portions 44 and 46 of the propagation path flow regulating members 43 and 45, and the average flow velocity is accurately measured. it can. For this reason, it is not necessary to increase the aspect ratio (W / H) of the rectangular cross section to increase the flatness and generate a stable two-dimensional flow in the measurement flow path 6, thereby increasing the measurement accuracy. The height H may be set from the viewpoint of reducing the influence of ultrasonic reflected waves on the upper and lower surfaces forming the height H of the cross section.

 従って、断面仕様を反射波の干渉を低減する流路高さHに自在に設定でき、感度を高めた超音波の送受信ができる。また、補正係数の変動の小さくして計測精度を高めることができる。 Therefore, the cross-sectional specification can be freely set to the flow path height H for reducing the interference of the reflected wave, and the transmission and reception of the ultrasonic wave with increased sensitivity can be performed. In addition, the measurement accuracy can be improved by reducing the fluctuation of the correction coefficient.

 さらに、断面のアスペクト比が2より小さい偏平度の小さい矩形断面として被計測流体との接触長さを低減した断面として計測流路の圧力損失を低減できる。なお、ダイキャストなどで流体通路壁7を形成する場合のように金型などの生産設備の耐久性を確保するため、矩形断面の角に丸み(コーナーR)を設けた略矩形のものもここでいう矩形断面に含めるのは言うまでもない。 Furthermore, the pressure loss of the measurement flow path can be reduced as a cross section in which the length of contact with the fluid to be measured is reduced as a rectangular cross section having a small flatness whose aspect ratio is smaller than 2 in the cross section. In addition, in order to ensure the durability of production equipment such as a mold, as in the case where the fluid passage wall 7 is formed by die casting or the like, a substantially rectangular shape having rounded corners (corners R) in a rectangular cross section is also used. Needless to say, it is included in the rectangular cross section.

 図23は本実施例における伝搬路流れ規制体43あるいは45の超音波伝搬路13からの設置距離を示すもので、上流側の伝搬路流れ規制体43は超音波伝搬路13からの距離をGuとし、下流側の伝搬路流れ規制体45は超音波伝搬路13からの距離をGdとしている。 FIG. 23 shows the installation distance of the propagation path flow restricting body 43 or 45 from the ultrasonic wave propagation path 13 in this embodiment. The upstream propagation path flow restriction body 43 sets the distance from the ultrasonic wave propagation path 13 to Gu. The distance from the ultrasonic wave propagation path 13 of the propagation path flow regulating body 45 on the downstream side is Gd.

 ここで、種々の被計測流体に対して幅広い流量域で計測値の補正係数を平坦化できるように伝搬路流れ規制体43、45の超音波伝搬路13との設置距離を最適化し、超音波伝搬路13内の流れ分布を上流側から下流側まで均等に乱流化させる。例えば、レイノルズ数の小さい場合は距離Gu、Gdを小さくし、レイノルズ数の大きい場合は距離Gu、Gdを大きくできる。レイノルズ数は動粘性係数の逆数に比例するので、粘性の小さい流体の場合は距離Gu、Gdを大きくでき、粘性の大きい流体の場合は距離Gu、Gdを小さくする。 Here, the installation distance between the propagation path flow restrictors 43 and 45 and the ultrasonic wave propagation path 13 is optimized so that the correction coefficient of the measurement value can be flattened in a wide flow rate range for various fluids to be measured. The flow distribution in the propagation path 13 is uniformly turbulent from the upstream side to the downstream side. For example, when the Reynolds number is small, the distances Gu and Gd can be reduced, and when the Reynolds number is large, the distances Gu and Gd can be increased. Since the Reynolds number is proportional to the reciprocal of the kinematic viscosity coefficient, the distances Gu and Gd can be increased for a fluid having a small viscosity, and the distances Gu and Gd are decreased for a fluid having a large viscosity.

 例えば、プロパンガスの動粘性係数は4.5mm2/s(300°K)であり、メタンガスの動粘性係数は17.1mm2/s(300°K)であるため、プロパンガスの場合は距離Gu、Gdを大きくでき、メタンガスの場合は距離Gu、Gdを小さくする。このような条件の下で超音波伝搬路13を伝搬する超音波が伝搬路流れ規制体43、45に反射して流速計測に影響するのを低減するため、伝搬路流れ規制体43、45は可能な限り超音波伝搬路13からの距離を大きくして設置すべきであるが、超音波伝搬路13内の上流側から下流側まで流れを均等に乱流化するため、設置距離の最適化が必要となる。 For example, the kinematic viscosity coefficient of propane gas is 4.5 mm 2 / s (300 ° K), and the kinematic viscosity coefficient of methane gas is 17.1 mm 2 / s (300 ° K). Gu and Gd can be increased, and in the case of methane gas, the distances Gu and Gd are reduced. Under these conditions, in order to reduce the influence of the ultrasonic wave propagating in the ultrasonic wave propagation path 13 reflected on the propagation path flow regulating bodies 43 and 45 and affecting the flow velocity measurement, the propagation path flow regulating bodies 43 and 45 are The distance from the ultrasonic wave propagation path 13 should be set as large as possible. However, since the flow is uniformly turbulent from the upstream side to the downstream side in the ultrasonic wave propagation path 13, the installation distance is optimized. Is required.

 また、距離Gu、Gdは同じにする必要はなく、異なる値に設定しても良いし、上流あるいは下流側の伝搬路流れ規制体43、45の規制部44、46の形状、開口寸法の細かさなどの違いにより距離GuとGdとの大小関係は異なってくるのは言うまでもない。
また、流体の種類により規制部44、46の形状、開口寸法を変える場合は、設置距離と粘性との関係が上記と異なることが有り得るのは言うまでもない。
Further, the distances Gu and Gd do not need to be the same and may be set to different values, and the shape of the regulating portions 44 and 46 of the upstream or downstream propagation path flow regulating members 43 and 45 and the fineness of the opening size may be set. It goes without saying that the magnitude relationship between the distances Gu and Gd is different due to differences in length and the like.
When the shapes and opening dimensions of the regulating portions 44 and 46 are changed depending on the type of fluid, it goes without saying that the relationship between the installation distance and the viscosity may be different from the above.

 従って、伝搬路流れ規制体を変えるだけで計測流路6の形状、寸法を同じにして種々の流体に対して精度高い計測が可能となり利用者の利便性が高められるとともに、様々な条件について様々な部材を共用することにより低コストで計測装置を提供できる。 Therefore, the shape and dimensions of the measurement flow path 6 can be made the same, and high-precision measurement can be performed for various fluids by simply changing the flow path flow restricting body, and the convenience for the user can be improved. The measurement device can be provided at low cost by sharing various members.

 図24は伝搬路流れ規制体の他の実施の形態を示す斜視図であり、51は伝搬路流れ規制体43の規制部であり、規制部51は流れ方向に厚さの小さい金網、織物などの網状体で形成している。なお、下流側の伝搬路流れ規制体45に対しても同様の規制部51を設ける(図示せず)ことも可能である。また伝搬路流れ規制体の外周枠44aを無くして網状体だけで伝搬路流れ規制体を形成することができるのは言うまでもない。 FIG. 24 is a perspective view showing another embodiment of the propagation path flow restricting body. Reference numeral 51 denotes a restricting portion of the propagation path flow restricting body 43. The restricting section 51 has a wire mesh, a woven fabric, or the like having a small thickness in the flow direction. It is formed of a mesh. It is also possible to provide a similar regulating portion 51 (not shown) for the downstream-side propagation path flow regulating member 45. It goes without saying that the outer periphery frame 44a of the propagation path flow restricting body can be eliminated and the propagation path flow restricting body can be formed only by the mesh body.

 ここで、規制部51は流れ方向に厚さの小さい網状体で形成するため伝搬路流れ規制体43あるいは45はその流れ方向の大きさを小さくでき、僅かなスペースに設置できるため計測流路の小型化ができる。また、超音波伝搬路13を囲う網状体として超音波が反射し難い材質とすれば、開口率の大きい網状のものという形状効果と合わせて伝搬路流れ規制体43あるいは45による超音波の反射が低減され、反射波の干渉による計測精度低下への影響を低減して高精度の計測が実現できる。 Here, since the regulating part 51 is formed of a net having a small thickness in the flow direction, the propagation path flow restrictor 43 or 45 can be made small in the flow direction, and can be installed in a small space. Can be downsized. In addition, if the mesh surrounding the ultrasonic wave propagation path 13 is made of a material that does not easily reflect the ultrasonic waves, the reflection of the ultrasonic waves by the propagation path flow restricting body 43 or 45 can be achieved in addition to the shape effect of the mesh having a large aperture ratio. It is possible to realize high-precision measurement by reducing the influence on the measurement accuracy deterioration due to the interference of the reflected wave.

 図25は伝搬路流れ規制体の他の実施例を示す斜視図であり、52は伝搬路流れ規制体43の規制部であり、この規制部52は流れ方向に多数の壁面52aを設けて格子体53を構成している。なお、下流側の伝搬路流れ規制体45に対しても同様の規制部52を設ける(図示せず)ことも可能である。 FIG. 25 is a perspective view showing another embodiment of the propagation path flow restricting body. Reference numeral 52 denotes a restricting portion of the propagation path flow restricting body 43. The restricting section 52 has a large number of wall surfaces 52a in the flow direction. The body 53 is constituted. It is also possible to provide a similar regulating portion 52 (not shown) for the downstream propagation path flow regulating body 45.

 流れ方向に設けた壁面52aにより伝搬路流れ規制体43を通過する流れ方向を規制することができ、特に超音波送受信器8、9の直前にある開口穴11、12への流れの流入を低減して渦の発生を減少させ、渦による超音波の減衰を低減してより大きい流量域まで計測が可能にできる。また、超音波伝搬路13内での流速分布をより均等化する方向にそれぞれの壁面52aを偏向させることにより超音波伝搬路13内の流速分布をより一層均等化でき、計測精度の向上が実現できる。 The flow direction passing through the propagation path flow restrictor 43 can be restricted by the wall surface 52a provided in the flow direction, and in particular, the flow of the flow into the opening holes 11 and 12 immediately before the ultrasonic transceivers 8 and 9 is reduced. As a result, the generation of vortices is reduced, and the attenuation of ultrasonic waves due to vortices is reduced, so that measurement can be performed up to a larger flow rate region. In addition, by deflecting each wall surface 52a in a direction that makes the flow velocity distribution in the ultrasonic wave propagation path 13 more uniform, the flow velocity distribution in the ultrasonic wave propagation path 13 can be made even more uniform, and the measurement accuracy is improved. it can.

 図26は伝搬路流れ規制体の他の実施例を示す流れ方向から見た正面図であり、54は伝搬路流れ規制体43に設け計測流路6の横断面の位置により2つの隣接する規制部の間隔を変えて通過穴55の断面積を変えた規制部である。ここでは周辺側の通過穴55aの断面積は伝搬路流れ規制体43の中央部側の通過穴55bの断面積より大きくしている。すなわち、伝搬路流れ規制体43の幅W方向の端部側あるいは高さH方向の端部側では通過穴55断面積を大きくしている。なお、下流側の伝搬路流れ規制体45に対しても同様の規制部54を設ける(図示せず)ことも可能である。 FIG. 26 is a front view of another embodiment of the propagation path flow restrictor viewed from the flow direction, and reference numeral 54 denotes two adjacent restrictions provided on the propagation path flow restrictor 43 depending on the position of the cross section of the measurement flow path 6. This is a regulating portion in which the cross-sectional area of the passage hole 55 is changed by changing the interval between the portions. Here, the cross-sectional area of the peripheral through-hole 55a is larger than the cross-sectional area of the central through-hole 55b of the propagation path flow restrictor 43. That is, the cross-sectional area of the passage hole 55 is increased on the end side in the width W direction or the end side in the height H direction of the propagation path flow restrictor 43. It is also possible to provide a similar regulating portion 54 (not shown) for the downstream propagation path flow regulating body 45.

 次に、動作を説明する。もし伝搬路流れ規制体43が無い場合は計測流路6の壁面沿いに流れる流体の粘性により流速が低下して計測流路6の中央部の流速が比較的速くなるので均等な流速分布になり難い。しかし、ここでは伝搬路流れ規制体43を設けると共に計測流路6の断面の中央側は通過穴55の断面積を小さくして流速を低減し、端部側は通過穴55の断面積を大きくすること通過抵抗を中央部に比べて小さくして流速の低下を小さくすることで超音波伝搬路13内の流速分布を均等化している。 Next, the operation will be described. If the propagation path flow restricting member 43 is not provided, the flow velocity decreases due to the viscosity of the fluid flowing along the wall of the measurement flow path 6 and the flow velocity in the central portion of the measurement flow path 6 becomes relatively high, so that a uniform flow velocity distribution is obtained. hard. However, here, the propagation path flow restricting body 43 is provided, and at the center of the cross section of the measurement flow path 6, the cross sectional area of the through hole 55 is reduced to reduce the flow velocity, and at the end side, the cross sectional area of the through hole 55 is increased. The flow resistance distribution in the ultrasonic wave propagation path 13 is equalized by reducing the passage resistance as compared with the central part to reduce the decrease in the flow velocity.

 このため、計測流路6を斜めに横切る超音波伝搬路13内の流速は上流側から下流側まで均等化され、超音波伝搬路13内の平均流速の計測値が計測流路6の直交断面での平均流速と層流域から乱流域まで幅広い流量域でよく一致させることができ、流量係数の変化が平坦化され計測精度を高めることができる。 For this reason, the flow velocity in the ultrasonic wave propagation path 13 obliquely crossing the measurement flow path 6 is equalized from the upstream side to the downstream side, and the measured value of the average flow velocity in the ultrasonic wave propagation path 13 is orthogonal to the cross section of the measurement flow path 6. And the average flow velocity can be made to match well in a wide flow area from a laminar flow area to a turbulent flow area, and the change in the flow coefficient can be flattened to improve the measurement accuracy.

 このように、実施例4によれば、超音波伝搬路13の上流側端部から下流側端部まで全域においてすぐ上流側に設けた伝搬路流れ規制体43により、超音波伝搬路13の全域において乱流促進がなされ、流量計測範囲の全域にわたり補正係数の流量変化特性は平坦化され計測精度の向上ができる。また、流体の物性値変化が生じても計測精度の維持がなされ、実用性、利便性を高めることができる。 As described above, according to the fourth embodiment, the entire area of the ultrasonic wave propagation path 13 is controlled by the propagation path flow restrictor 43 provided immediately upstream in the entire area from the upstream end to the downstream end of the ultrasonic wave propagation path 13. , The turbulence is promoted, the flow rate change characteristic of the correction coefficient is flattened over the entire flow rate measurement range, and the measurement accuracy can be improved. Further, even if a change in the physical property value of the fluid occurs, the measurement accuracy is maintained, and the practicality and convenience can be improved.

 また、伝搬路流れ規制体43は計測流路6に斜めに配置することで開口割合を大きくでき、圧力損失を低減した計測装置が実現できる。また、伝搬路流れ規制体43は計測流路6に斜めに配置することで規制部44を設置する部分の面積を大きく確保できるため、圧力損失を増大せずに規制部44の間隔をより細かく多数設けて乱流促進効果を高めることができる。 伝 搬 Furthermore, by disposing the propagation path flow restricting member 43 obliquely in the measurement flow path 6, the aperture ratio can be increased, and a measuring device with reduced pressure loss can be realized. In addition, since the propagation path flow restricting body 43 is obliquely disposed in the measurement flow path 6, a large area of a portion where the restricting section 44 is provided can be ensured. Therefore, the distance between the restricting sections 44 can be reduced without increasing the pressure loss. By providing a large number, the turbulence promoting effect can be enhanced.

 また、上流側と下流側に配置した伝搬路流れ規制体43、45で超音波伝搬路13を囲い、超音波伝搬路13内の乱流状態を上流側から下流側まで均等化することで補正係数をより一層平坦化でき、計測精度を一層向上できる。 In addition, the ultrasonic wave propagation path 13 is surrounded by the propagation path flow restrictors 43 and 45 arranged on the upstream side and the downstream side, and the turbulence state in the ultrasonic wave propagation path 13 is corrected by equalizing from the upstream side to the downstream side. The coefficient can be further flattened, and the measurement accuracy can be further improved.

 さらに、下流側の伝搬路流れ規制体45により計測流路6の下流側の流れ状態の影響を受けるのを低減して計測流路6の下流側の配管状態などに関わらず安定した計測が実現でき、計測装置の設置の自由度が向上できる。さらに、計測流路における順方向あるいは逆方向のいずれの流れに対しても同じ効果が得られ脈動流れや逆流時においても補正係数の変化を平坦化でき計測精度を向上できる。 Further, the influence of the flow state on the downstream side of the measurement flow path 6 is reduced by the downstream propagation path flow restricting body 45, and stable measurement is realized regardless of the pipe state on the downstream side of the measurement flow path 6. The degree of freedom of installation of the measuring device can be improved. Further, the same effect can be obtained for either forward or backward flow in the measurement flow path, and the change in the correction coefficient can be flattened even during a pulsating flow or a backward flow, and the measurement accuracy can be improved.

 また、上流側と下流側の伝搬路流れ規制体43、45を一体化することで伝搬路流れ規制体間の設置距離あるいは上流側と下流側の規制部の相互位置のずれを防いで安定化し、バラツキの少ない計測装置を実現できる。さらに、連結部により伝搬路流れ規制体の補強がなされるため規制部の微細化あるいは薄肉化が実現でき、超音波伝搬路内の流れ状態の均等化あるいは計測流路の圧力損失の低減ができる。 In addition, by integrating the upstream and downstream propagation path flow restrictors 43 and 45, the installation distance between the propagation path flow restrictors or the mutual position of the upstream and downstream restriction sections is prevented from shifting and stabilized. Thus, a measuring device with less variation can be realized. Further, since the propagation path flow regulating body is reinforced by the connection section, the regulation section can be made finer or thinner, and the flow state in the ultrasonic propagation path can be equalized or the pressure loss in the measurement flow path can be reduced. .

 また、被計測流体の種類に関わらず伝搬路流れ規制体の超音波伝搬路13からの設置距離を変えるだけで計測流路は共用化でき利便性を向上できるとともに、被計測流体の種類に関わらず安定した計測精度が維持できる。さらに、計測流路の共用化により低コスト化できる。 Further, regardless of the type of the fluid to be measured, the measurement flow path can be shared and the convenience can be improved only by changing the installation distance of the propagation path flow restrictor from the ultrasonic wave propagation path 13, and regardless of the type of the fluid to be measured. And stable measurement accuracy can be maintained. Further, the cost can be reduced by sharing the measurement flow path.

 また、場合によっては、規制部を網状体で形成してもよく、伝搬路流れ規制体の設置スペースを流れ方向に対して薄く小さくでき、計測流路が小型化できる。 In some cases, the regulating portion may be formed of a net-like body, so that the installation space for the propagation path flow regulating body can be made thinner and smaller in the flow direction, and the measurement flow path can be made smaller.

 また、規制部を格子体で形成してもよく、流れ方向に延びる壁面により流れ方向を規制することで超音波伝搬路内の流速分布をより一層均等化して計測精度の向上ができる。 The restricting portion may be formed of a lattice body, and the flow direction in the ultrasonic wave propagation path is further uniformed by restricting the flow direction by the wall surface extending in the flow direction, so that the measurement accuracy can be improved.

 また、計測流路の横断面位置により隣接する2つの規制部の相互の間隔を変えるてもよく、それぞれの規制部では流れ方向の長さを小さくしたままで開口の大きさを計測流路の横断面の位置により最適化することで超音波伝搬路内の流速分布を一層均等化でき、規制部の流れ方向の長さは小さくできるため圧力損失の低減と流速分布の均等化による計測精度の向上が両立できる。 Further, the mutual interval between two adjacent regulating portions may be changed according to the cross-sectional position of the measurement channel, and the size of the opening in each of the regulating portions is reduced while the length in the flow direction is kept small. By optimizing the position of the cross section, the flow velocity distribution in the ultrasonic wave propagation path can be further equalized, and the length of the regulating section in the flow direction can be reduced, so that pressure loss is reduced and measurement accuracy is improved by equalizing the flow velocity distribution. Improvement can be compatible.

 また、計測流路の矩形断面化により計測断面における計測領域の割合が大きくでき、超音波伝搬路の上流側から下流側にわたり流れに対して同じ条件で計測できるため、流体の平均流速を精度高く計測できる。 In addition, by making the measurement flow channel a rectangular cross-section, the ratio of the measurement area in the measurement cross-section can be increased, and the flow can be measured under the same conditions from the upstream side to the downstream side of the ultrasonic wave propagation path. Can be measured.

 また、超音波伝搬路に沿って配置した伝搬路流れ規制体と計測流路の矩形断面化により、二次元流れを起こさせるための断面の高アスペクト比化から開放され、断面仕様を反射波の干渉を低減する流路高さに自在に設定でき、感度を高めた超音波の送受信ができる。また、計測断面を過剰に偏平化させず流体との接触長さを低減した断面として計測流路の圧力損失の低減ができる。 In addition, the rectangular cross-section of the propagation path flow restrictor and measurement channel arranged along the ultrasonic propagation path frees the section from having a high aspect ratio for causing a two-dimensional flow, and the section specification of the reflected wave The height of the flow path can be set freely to reduce interference, and transmission and reception of ultrasonic waves with increased sensitivity can be performed. Further, the pressure loss of the measurement flow path can be reduced as a cross section in which the length of contact with the fluid is reduced without excessively flattening the measurement cross section.

 なお、本実施例では屈曲部17、18を計測流路6の幅Wの方向に曲げた場合を示したが、屈曲部17、18の曲がり方向は計測流路6の高さHの方向でも良いだけでなく任意の方向でも良く、さらに屈曲部17と屈曲部18の曲がり方向が異なっていても良いのは言うまでもない。 In the present embodiment, the case where the bent portions 17 and 18 are bent in the direction of the width W of the measurement flow channel 6 is shown. However, the bending direction of the bent portions 17 and 18 is the same in the direction of the height H of the measurement flow channel 6. It goes without saying that the bending direction may be any direction as well as the bending direction of the bent portion 17 and the bent portion 18 may be different.

 (実施例5)
 図27において、図1〜図26の実施の形態と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。
(Example 5)
27, the same members and the same functions as those in the embodiment of FIGS. 1 to 26 are denoted by the same reference numerals, detailed description is omitted, and different portions will be mainly described.

 56は開口穴11、12へ被測定流体が流れ込むのを低減する流入抑制体であり、前述した超音波伝搬路13の上流側に設けた伝搬路流れ規制体43の下流側に設けている。流入抑制体56は図28に拡大して示すように超音波が通過できる超音波通過口22を多数持つ開口穴封止部21で構成した第一の流入抑制体57を含み、この開口穴封止部21は超音波伝搬路13を横切るとともに開口穴11、12の計測流路面6aに対して面一に設けて開口穴11、12内への流れ込みを低減している。 Reference numeral 56 denotes an inflow suppressor that reduces the flow of the fluid to be measured into the opening holes 11 and 12, and is provided on the downstream side of the propagation path flow regulating body 43 provided on the upstream side of the ultrasonic wave propagation path 13. The inflow restricting body 56 includes a first inflow restricting body 57 composed of an open hole sealing portion 21 having a number of ultrasonic passage openings 22 through which ultrasonic waves can pass as shown in an enlarged view in FIG. The stop portion 21 traverses the ultrasonic wave propagation path 13 and is provided flush with the measurement flow path surface 6a of the opening holes 11 and 12 to reduce the flow into the opening holes 11 and 12.

 図29は流入抑制体の他の実施の形態を示すもので、上流側の開口穴11の上流近傍に流路壁7から突出するように配置される流れ偏向体58aとこの流れ偏向体58aの上流側に設け滑らかに高さを増加させた案内面58bで形成した第一の流入抑制体58により計測流路面6a近くの流れを壁面から遠ざけるように流れを偏向させて開口穴11内に流れ込まないようにしている。なお、伝搬路流れ規制体の超音波伝搬路からの設置距離GuあるいはGdが小さい場合は流れ偏向体58aと案内面58bを伝搬路流れ規制体43と一体に形成して第二の流入抑制体とすることは可能である。 FIG. 29 shows another embodiment of the inflow suppressor, in which a flow deflector 58a arranged near the upstream of the upstream opening hole 11 so as to protrude from the flow path wall 7 and the flow deflector 58a The flow near the measurement flow path surface 6a is deflected by the first inflow suppressing body 58 formed by the guide surface 58b provided on the upstream side and having a smoothly increased height, and flows into the opening hole 11 so as to be kept away from the wall surface. I try not to. When the installation distance Gu or Gd of the propagation path flow restricting body from the ultrasonic wave propagation path is small, the flow deflector 58a and the guide surface 58b are formed integrally with the propagation path flow restricting body 43 to form the second inflow suppressing body. It is possible.

 図30において、60は伝搬路流れ規制体59の計測流路壁6a側に流れ偏向体60aを設けて流入抑制部60bを形成した第二の流入抑制体であり、伝搬路流れ規制体59と第二の流入抑制体60を一体化したものである。 In FIG. 30, reference numeral 60 denotes a second inflow restricting body in which a flow deflector 60 a is provided on the measurement flow path wall 6 a side of the propagation path flow restricting body 59 to form an inflow suppressing section 60 b. The second inflow suppressing body 60 is integrated.

 次に、この超音波流量計測装置の被測定流体の流れ状況について説明する。まず、被計測流体が計測流路6の上流側に設けた開閉弁(図示せず)での流路断面積の拡大縮小あるいは屈曲部17を流れることなどにより流れの変動を生じたまま計測流路6に入り、超音波伝搬路13の上流側直前に設けた伝搬路流れ規制体43の規制部44により乱れが促進される。 Next, the flow state of the fluid to be measured in the ultrasonic flow measurement device will be described. First, the flow rate of the measurement fluid is changed while the flow of the fluid to be measured is increased or decreased by an on-off valve (not shown) provided on the upstream side of the measurement flow path 6 or flows through the bent portion 17. The turbulence is promoted by the regulating portion 44 of the propagation path flow regulating body 43 provided immediately before the ultrasonic wave propagation path 13 after entering the path 6.

 上流側の超音波送受信器8に近い所から下流側の超音波送受信器9に近い所まで超音波伝搬路13の全域にわたり上流側直前に伝搬路流れ規制体43が配置されているため、超音波伝搬路13の全域にわたり均等に乱流促進がなされる。このように上流側から下流側まで超音波伝搬路13内の流れ状態の違いを小さくして超音波伝搬路13内での平均流速の測定をし易くする。特に、流速が小さく(流量が小さい時)流れ状態が層流で計測流路6に流入してきた場合でも超音波伝搬路13内での流れ状態は伝搬路流れ規制体43により乱流化が促進される。 Since the propagation path flow restricting body 43 is arranged immediately before the upstream side over the entire area of the ultrasonic propagation path 13 from a position near the upstream ultrasonic transmitter / receiver 8 to a position near the downstream ultrasonic transmitter / receiver 9, Turbulence is promoted uniformly over the entire area of the sound wave propagation path 13. As described above, the difference in the flow state in the ultrasonic wave propagation path 13 from the upstream side to the downstream side is reduced, so that the average flow velocity in the ultrasonic wave propagation path 13 can be easily measured. In particular, even when the flow state is small (when the flow rate is small) and the flow state is laminar and flows into the measurement flow path 6, the flow state in the ultrasonic wave propagation path 13 is promoted to be turbulent by the propagation path flow restrictor 43. Is done.

 このため、この乱流状態と、流速が大きく(流量が大きい時)計測流路6に乱流状態で流入した場合での超音波伝搬路13内の乱流状態との差が小さくなる。従って、小流量から大流量までの幅広い流量域で安定して超音波伝搬路13内の流れを乱流化できる。また、伝搬路流れ規制体43は計測流路6に斜めに配置するため、計測流路6に直交配置するよりも計測流路6内の長さを大きくできる。従って、開口面積の大きい伝搬路流れ規制体43が可能となり圧力損失を低減した計測装置が実現できる。 Therefore, the difference between the turbulent state and the turbulent state in the ultrasonic wave propagation path 13 when the flow velocity is large (when the flow rate is large) and flows into the measurement flow path 6 in a turbulent state is reduced. Accordingly, the flow in the ultrasonic wave propagation path 13 can be made turbulent in a wide flow rate range from a small flow rate to a large flow rate. Further, since the propagation path flow restricting member 43 is disposed obliquely in the measurement flow path 6, the length in the measurement flow path 6 can be made longer than when the propagation path flow restriction body 43 is disposed orthogonal to the measurement flow path 6. Therefore, the propagation path flow restricting body 43 having a large opening area is made possible, and a measuring device with reduced pressure loss can be realized.

 次に、開口穴近傍での流れについて説明する。まず、流入抑制体として、下流側の開口穴12に設けた第一の流入抑制体57あるいは58だけを用いた場合は、流れに対して鋭角で交わるためより強い渦が発生し易い下流側の開口穴への流れ込みを低減させて超音波送受信器間の流れの乱れを効率よく低減することができ、流量計測できる上限値を高めることができる。特に、開口穴封止部21を第一の流入抑制体57とする場合は、流入抑制効果を一層高めて開口穴内での流れを低減できるとともに、両方の開口穴11、12に開口穴封止部21を設けた時よりも超音波の減衰量を低減でき、超音波送受信器への駆動入力を低減させ低消費電力化を実現できる。 Next, the flow near the opening hole will be described. First, when only the first inflow suppressing body 57 or 58 provided in the downstream opening hole 12 is used as the inflow suppressing body, the downstream side where a stronger vortex is likely to be generated because it intersects the flow at an acute angle. By reducing the flow into the opening hole, the turbulence of the flow between the ultrasonic transceivers can be efficiently reduced, and the upper limit value at which the flow rate can be measured can be increased. In particular, in the case where the opening hole sealing portion 21 is the first inflow suppressing body 57, the inflow suppressing effect can be further enhanced to reduce the flow in the opening holes, and the opening holes are sealed in both the opening holes 11 and 12. The amount of attenuation of the ultrasonic wave can be reduced as compared with the case where the unit 21 is provided, and the driving input to the ultrasonic transceiver can be reduced to realize low power consumption.

 次に、流入抑制体を上流側および下流側の両方の開口穴11、12に設けた第一の流入抑制体57あるいは58とした場合は、超音波伝搬路での流れの乱れの中で大きな割合を占める開口穴内での乱れを効率よく低減でき、計測精度および流量計測できる上限値を高めることができる。 Next, when the inflow suppressing body is the first inflow suppressing body 57 or 58 provided in the opening holes 11 and 12 on both the upstream side and the downstream side, the flow in the ultrasonic wave propagation path is large. Disturbance in the opening hole, which accounts for the ratio, can be efficiently reduced, and the measurement accuracy and the upper limit of the flow rate that can be measured can be increased.

 特に、開口穴封止部21を第一の流入抑制体57とした場合は、計測流路における順方向あるいは逆方向のいずれの流れに対しても流れの乱れを効率よく低減できる。なお、上流側の開口穴11には流れ偏向体58aを含む第一の流入抑制体58を設け、下流側の開口穴12には開口穴封止部21を含む第一の流入抑制体57とした場合は、超音波送受信器間の流れの乱れの一層低減と超音波の減衰量の低減による超音波送受信器の低消費電力化ができるのは言うまでもない。 Particularly, in the case where the opening hole sealing portion 21 is the first inflow suppressing body 57, the turbulence of the flow can be efficiently reduced with respect to either the forward flow or the reverse flow in the measurement flow path. A first inflow suppressing member 58 including a flow deflector 58a is provided in the upstream opening hole 11, and a first inflow suppressing member 57 including the opening hole sealing portion 21 is provided in the downstream opening hole 12. In this case, it is needless to say that the power consumption of the ultrasonic transceiver can be reduced by further reducing the turbulence of the flow between the ultrasonic transceivers and reducing the attenuation of the ultrasonic waves.

 さらに、流入抑制体を伝搬路流れ規制体に流入抑制部を設けて第二の流入抑制体とした場合は、開口穴への流入抑制されるとともに伝搬路流れ規制体と流入抑制体の一体化により開口穴への流入抑制特性のバラツキを低減して信頼性を高めることができ、またコンパクトな超音波伝搬路が形成できるため計測流路を小型化できる。 Further, when the inflow suppressing body is provided with an inflow suppressing portion in the propagation path flow restricting body to serve as the second inflow suppressing body, the inflow into the opening hole is suppressed and the propagation path flow restricting body and the inflow suppressing body are integrated. Accordingly, it is possible to reduce the variation of the characteristic of suppressing the inflow into the opening hole, thereby improving the reliability, and to form a compact ultrasonic propagation path, so that the measurement flow path can be downsized.

 このように流れが安定化された超音波伝搬路13に対して超音波送受信器8、9間で超音波を送受信して精度の高い流速計測が実現できるとともに流れの変動による超音波の減衰を低減して計測できる流量の上限値を高めることができる。 Ultrasonic waves are transmitted and received between the ultrasonic transceivers 8 and 9 with respect to the ultrasonic wave propagation path 13 in which the flow is stabilized in this way, so that highly accurate flow velocity measurement can be realized, and the attenuation of the ultrasonic waves due to the fluctuation of the flow can be reduced. It is possible to increase the upper limit of the flow rate that can be measured by reducing the flow rate.

 もし第一の流入抑制体57、58あるいは第二の流入抑制体60が無い場合では、下流側の開口穴12は計測流路6に対して鋭角で交わるため計測流路6内の強い流れが開口穴12内に流入して強い渦を発生し、部分的な流速変動による流速計測の精度の低下や渦による超音波の減衰により計測可能な流量の上限値が低下したりする。 If the first inflow suppressors 57 and 58 or the second inflow suppressor 60 is not provided, the downstream opening hole 12 intersects the measurement flow path 6 at an acute angle, so that a strong flow in the measurement flow path 6 is generated. A strong vortex is generated by flowing into the opening hole 12, and the accuracy of flow velocity measurement is reduced due to partial flow velocity fluctuation, and the upper limit of the measurable flow rate is reduced due to attenuation of ultrasonic waves due to the vortex.

 また、上流側の開口穴11でも第一の流入抑制体57、58あるいは第二の流入抑制体60が無い場合では流れの流入は発生するが、開口穴11が計測流路6に対して鈍角で交わるため渦の強度は下流側の開口穴12の場合より小さくその悪影響は小さい。しかし、上流側の開口穴11に第一の流入抑制体57、58あるいは第二の流入抑制体60を設けることでより一層流れが安定化されるのは言うまでもない。 In addition, even if the first inflow suppressing members 57 and 58 or the second inflow suppressing member 60 is not provided in the upstream opening hole 11, the flow inflow occurs, but the opening hole 11 forms an obtuse angle with respect to the measurement flow path 6. Vortices, the intensity of the vortex is smaller than in the case of the downstream opening hole 12, and its adverse effect is small. However, it is needless to say that the flow is further stabilized by providing the first inflow suppressing bodies 57 and 58 or the second inflow suppressing body 60 in the opening 11 on the upstream side.

 次に、超音波の伝搬時間T1、T2を基に流量を求める時の補正係数Kについて説明する。超音波伝搬路13の上流側端部から下流側端部まで全域においてすぐ上流側に設けた伝搬路流れ規制体43により、超音波伝搬路13の全域において乱流促進がなされるため、流量係数Kは図17、図18で前述したと同様に流量変化に対する変化が少なく平坦になり、補正係数の流量変化特性の平坦化により流体の物性値変化が生じても計測精度の維持がなされ、実用性、利便性を高めることができ、超音波送受信器間の流れの乱れの大幅な低減により測定範囲内の全域において超音波の受信レベルを高めて測定精度の一層の向上ができる。 Next, the correction coefficient K for obtaining the flow rate based on the ultrasonic propagation times T1 and T2 will be described. The turbulence is promoted in the entire area of the ultrasonic wave propagation path 13 by the propagation path flow restrictor 43 provided immediately upstream in the entire area from the upstream end to the downstream end of the ultrasonic wave propagation path 13. As shown in FIGS. 17 and 18, K has a small change with respect to the flow rate change and becomes flat, and the flatness of the flow rate change characteristic of the correction coefficient maintains the measurement accuracy even if the fluid property value changes. The efficiency and convenience can be improved, and the turbulence of the flow between the ultrasonic transceivers can be greatly reduced, so that the reception level of the ultrasonic wave can be increased in the entire range of the measurement range, and the measurement accuracy can be further improved.

 しかも、開口穴11、12への流れ込みを低減させて超音波送受信器間の流れの乱れを大幅に低減することができ、流量計測できる上限値を高めることができる。また、開口穴封止部は水平に対して傾きを持つ傾斜網目の網状体としたり、流れ偏向体を開口穴の上流側と下流側の両方に設けたものでは、流量係数を平坦化して計測精度を向上できるとともに、実施の形態1で前述した効果が加わり信頼性を一層向上できる。 Moreover, the flow into the openings 11 and 12 can be reduced to greatly reduce the turbulence of the flow between the ultrasonic transceivers, and the upper limit of the flow rate can be increased. Also, when the opening hole sealing part is a mesh of inclined mesh that is inclined with respect to the horizontal, or when the flow deflector is provided on both the upstream side and the downstream side of the opening hole, the flow coefficient is flattened and measured. The accuracy can be improved, and the effects described above in the first embodiment are added, so that the reliability can be further improved.

 図31は流入抑制体の他の実施例を示したもので、超音波通過口22を有する開口穴封止部21含む第一の流入抑制体57と、伝搬路流れ規制体61の計測流路面6a側に設けた流入抑制部62aを含む第二の流入抑制体62として備えている。このため、開口穴への被測定流体の流入抑制効果をなお一層高めることで計測精度の一層の向上ができるとともに、流れ偏向体により開口穴封止部へのダストなどの異物の付着を低減できるので、開口穴封止部は目詰まりを重視せずに超音波の通過性を第一として自由度を高めた選定ができ、超音波の通過性を一層高めることで低入力化あるいは感度を高め計測精度に優れた装置が実現できる。 FIG. 31 shows another embodiment of the inflow suppressing body, in which the first inflow suppressing body 57 including the opening hole sealing portion 21 having the ultrasonic wave passage 22 and the measurement flow path surface of the propagation path flow restricting body 61 are shown. It is provided as a second inflow suppressing body 62 including an inflow suppressing portion 62a provided on the 6a side. Therefore, the measurement accuracy can be further improved by further increasing the effect of suppressing the inflow of the fluid to be measured into the opening hole, and the adhesion of foreign substances such as dust to the sealing portion of the opening hole can be reduced by the flow deflector. Therefore, it is possible to select the sealing part of the opening hole with higher flexibility, placing priority on the ultrasonic wave transmission without giving priority to clogging. An apparatus with excellent measurement accuracy can be realized.

 さらに、第二の流入抑制体62は被測定流体の流量あるいは物性値に適切な形状に伝搬路流れ規制体61の一部として加工できるため、計測流路6そのものの共用化が容易にできるようになる。さらに、第一および第二の流入抑制体の相乗効果による開口穴内の乱れ低減と伝搬路流れ規制体と流入抑制体の一体化による開口穴への流入抑制特性のバラツキ低減とにより計測精度と信頼性を高めることができ、またコンパクトな超音波伝搬路が形成できるため計測流路を小型化できる。 Further, since the second inflow suppressing body 62 can be processed as a part of the propagation path flow regulating body 61 into a shape suitable for the flow rate or the physical property value of the fluid to be measured, the measurement flow path 6 itself can be easily shared. become. Furthermore, measurement accuracy and reliability are reduced by reducing the turbulence in the opening hole due to the synergistic effect of the first and second inflow suppression bodies and reducing the variation in the inflow suppression characteristics into the opening hole by integrating the propagation path flow control body and the inflow suppression body. Performance can be enhanced, and a compact ultrasonic propagation path can be formed, so that the measurement channel can be downsized.

 図32、図33は伝搬路流れ規制体と流入抑制体の他の実施例を示したもので、上流側の伝搬路流れ規制体43と下流側の伝搬路流れ規制体45により超音波伝搬路13を囲うとともに、流入抑制体56を設けている。図33に示すように、これらの伝搬路流れ規制体43、45は連結部48により接続され一体化されるとともに、超音波伝搬窓49には流入抑制体56を取り付けている。流入抑制体56は、開口穴11、12を覆う開口穴封止部21としてのメッシュである。 FIGS. 32 and 33 show another embodiment of the propagation path flow restricting body and the inflow suppressing body. The upstream propagation path flow restricting body 43 and the downstream side propagation path flow restricting body 45 form an ultrasonic wave propagation path. 13 and an inflow suppressor 56 is provided. As shown in FIG. 33, these propagation path flow restrictors 43 and 45 are connected and integrated by a connecting portion 48, and an inflow suppressing member 56 is attached to the ultrasonic wave propagation window 49. The inflow suppressing body 56 is a mesh as the opening hole sealing portion 21 that covers the opening holes 11 and 12.

 この構成において、超音波伝搬路13内の流れは下流側の伝搬路流れ規制体45により背圧が印加されるため均一化、安定化されるとともに、計測流路6の下流側の配管形状の違いあるいは被計測流体の使用条件などによる脈動などで超音波伝搬路13内の流れ状態が影響されるのを低減して安定した流量計測ができる。 In this configuration, the flow in the ultrasonic wave propagation path 13 is uniformed and stabilized because the back pressure is applied by the propagation path flow regulating body 45 on the downstream side. It is possible to reduce the influence of the flow state in the ultrasonic wave propagation path 13 due to a difference or a pulsation due to the use condition of the fluid to be measured, and to perform a stable flow rate measurement.

 また、開口穴11、12には流入抑制体56が設けられているので、計測可能な流量の上限値を高めることができる。 Further, since the inflow suppressing members 56 are provided in the opening holes 11 and 12, the upper limit of the measurable flow rate can be increased.

 また、伝搬路流れ規制体43、45を連結し、さらに流入抑制体56としての開口穴封止部21を一体化しているため、相互の距離などの位置関係が確定して流れ状態の安定化ができ、超音波伝搬路13内の流れ状態のバラツキを低減して、バラツキの小さい安定した計測が実現できる。また、伝搬路流れ規制体43、45の一体化だけでなく開口穴封止部21をも一体化することにより伝搬路流れ規制体の強度を一層補強でき、長期の使用にわたって変形を防いで耐久性、信頼性を向上できる。 In addition, since the propagation path flow restricting bodies 43 and 45 are connected to each other and the opening sealing portion 21 as the inflow suppressing body 56 is integrated, the positional relationship such as mutual distance is determined and the flow state is stabilized. Thus, variations in the flow state in the ultrasonic wave propagation path 13 can be reduced, and stable measurement with small variations can be realized. In addition, by integrating not only the propagation path flow restrictors 43 and 45, but also the opening hole sealing portion 21, the strength of the propagation path flow restriction body can be further reinforced, and the deformation can be prevented over a long period of use and the durability can be reduced. Performance and reliability can be improved.

 なお、伝搬路流れ規制体43は計測流路6の幅W方向に対しては超音波伝搬路13に沿ってほぼ平行に配置されているが、計測流路6の高さH方向については図16で説明したように横断面が円形の計測流路6内に配置しても良く、また図22で説明したように横断面が矩形の計測流路6内に配置することで前述の実施例での効果が同様に期待できるものである。 The propagation path flow restrictor 43 is disposed substantially parallel to the width W direction of the measurement flow path 6 along the ultrasonic wave propagation path 13, but is not illustrated in the height H direction of the measurement flow path 6. As described with reference to FIG. 16, the cross section may be arranged in the measurement flow channel 6 having a circular cross section, and as described with reference to FIG. The effect in can be expected similarly.

 また、開口穴の開口形状は計測流路の流れ方向にほぼ直交する方向に一辺を有する形状としたり、計測流路の上流側の導入部あるいは下流側の導出部に偏流抑制体を配置したりする場合などに関しても前述の実施の形態での効果が同様に期待できる。 In addition, the opening shape of the opening hole may be a shape having one side in a direction substantially orthogonal to the flow direction of the measurement flow path, or a non-uniform flow suppressing body may be arranged at an upstream introduction portion or a downstream extraction portion of the measurement flow path. The same effect can be expected in the above-described embodiment also in the case where the operation is performed.

 このように、実施例5によれば、超音波伝搬路13の上流側端部から下流側端部まで全域においてすぐ上流側に設けた伝搬路流れ規制体43により、超音波伝搬路13の全域において乱流促進がなされ、流量計測範囲の全域にわたり補正係数の流量変化特性は平坦化され補正係数による誤差の拡大が防止されて計測精度の向上ができ、また流入抑制体を設けて開口穴への流れ込みを低減させて超音波伝搬路での流れの乱れを大幅に低減できるため超音波の受信レベルを高めて流量計測できる上限値を高めることができる。 As described above, according to the fifth embodiment, the entirety of the ultrasonic wave propagation path 13 is controlled by the propagation path flow restrictor 43 provided immediately upstream in the entire area from the upstream end to the downstream end of the ultrasonic wave propagation path 13. The turbulence is promoted in the flow rate, and the flow rate change characteristics of the correction coefficient are flattened over the entire flow rate measurement range to prevent the expansion of the error due to the correction coefficient, thereby improving the measurement accuracy. Therefore, the disturbance of the flow in the ultrasonic wave propagation path can be greatly reduced by reducing the inflow of the ultrasonic wave, so that the reception level of the ultrasonic wave can be increased and the upper limit value at which the flow rate can be measured can be increased.

 また、流入抑制体は下流側の開口穴に設けた第一の流入抑制体として、流れに対して鋭角で交わるためより強い渦が発生し易い下流側の開口穴に流入抑制体を配置して開口穴への流れ込みを低減させて超音波送受信器間の流れの乱れを効率よく低減することができ、流量計測できる上限値を高めることができる。 In addition, the inflow suppressing body is disposed as a first inflow suppressing body provided in the downstream opening hole, and the inflow suppressing body is disposed in the downstream opening hole where a stronger vortex is easily generated because it intersects the flow at an acute angle. By reducing the flow into the opening hole, the turbulence of the flow between the ultrasonic transceivers can be efficiently reduced, and the upper limit value at which the flow rate can be measured can be increased.

 また、流入抑制体は上流側および下流側の開口穴に設けた第一の流入抑制体として、超音波伝搬路での流れの乱れの中で大きな割合を占める開口穴内での乱れを計測流路における順方向あるいは逆方向のいずれの流れに対しても効率よく低減でき、計測精度および流量計測できる上限値を高めることができる。 In addition, the inflow suppression body is a first inflow suppression body provided in the upstream and downstream opening holes, and measures the turbulence in the opening hole which accounts for a large proportion of the flow disturbance in the ultrasonic wave propagation path. , The flow can be efficiently reduced for either forward or reverse flow, and the measurement accuracy and the upper limit of the flow rate can be increased.

 また、流入抑制体は伝搬路流れ規制体に流入抑制部を設けて第二の流入抑制体として、伝搬路流れ規制体と流入抑制体の一体化により開口穴への流入抑制特性のバラツキを低減して信頼性を高めることができ、またコンパクトな超音波伝搬路が形成できるため計測流路を小型化できる。 In addition, the inflow suppressing body is provided with an inflow suppressing portion in the propagation path flow regulating body, and as a second inflow suppressing body, the dispersion of the inflow suppressing characteristics to the opening hole is reduced by integrating the propagation path flow regulating body and the inflow suppressing body. Therefore, the reliability can be improved, and a compact ultrasonic propagation path can be formed, so that the measurement flow path can be downsized.

 また、第一の流入抑制体は少なくとも1つの超音波透過口を有する開口穴封止部として、開口穴を開口穴封止部で覆うことで開口穴への被測定流体の流入抑制効果を一層高めて開口穴内での流れを低減して安定化でき、また超音波通過口により超音波の伝搬は確保できるとともに開口穴封止部を下流側の開口穴のみに配置する場合では超音波の減衰を一層少なくして超音波送受信器への駆動入力を低減させて低消費電力化を実現できる。 Further, the first inflow suppressing body is an opening hole sealing portion having at least one ultrasonic transmission port, and the opening hole is covered with the opening hole sealing portion to further suppress the inflow of the fluid to be measured into the opening hole. By increasing the flow, the flow in the opening can be reduced and stabilized, and the propagation of ultrasonic waves can be ensured by the ultrasonic passage, and the ultrasonic attenuation when the opening sealing part is placed only in the downstream opening And the drive input to the ultrasonic transceiver can be reduced to achieve low power consumption.

 また、第一の流入抑制体は少なくとも1つの超音波透過口を有する開口穴封止部と開口穴の近傍に設けた流れ偏向体を備えて、開口穴への被測定流体の流入抑制効果をなお一層高めることで計測精度の一層の向上ができるとともに、流れ偏向体により開口穴封止部へのダストなどの異物の付着を低減できるので、開口穴封止部は目詰まりを重視せずに超音波の通過性を第一として自由度を高めた選定ができ、超音波の通過性を一層高めることで低入力化あるいは感度を高め計測精度に優れた装置が実現できる。 Further, the first inflow suppressing body includes an opening hole sealing portion having at least one ultrasonic transmission port and a flow deflector provided in the vicinity of the opening hole, and has an effect of suppressing the inflow of the fluid to be measured into the opening hole. In addition, by further increasing the measurement accuracy, measurement accuracy can be further improved, and foreign matter such as dust can be reduced from adhering to the opening hole sealing portion by the flow deflector, so that the opening hole sealing portion does not place importance on clogging. It is possible to select a device with a high degree of freedom, with the ultrasonic wave permeability being the first priority, and to realize a device with lower input or higher sensitivity and higher measurement accuracy by further increasing the ultrasonic wave permeability.

 また、流入抑制体は開口穴に設けた第一の流入抑制体と伝搬路流れ規制体に設けた第二の流入抑制体を設けて、第一および第二の流入抑制体の相乗効果による開口穴内の乱れ低減と伝搬路流れ規制体と流入抑制体の一体化による開口穴への流入抑制特性のバラツキ低減とにより計測精度と信頼性を高めることができ、またコンパクトな超音波伝搬路が形成できるため計測流路を小型化できる。 Further, the inflow suppressing body is provided with a first inflow suppressing body provided in the opening hole and a second inflow suppressing body provided in the propagation path flow restricting body, and the opening due to a synergistic effect of the first and second inflow suppressing bodies. The measurement accuracy and reliability can be improved by reducing the turbulence in the hole and the dispersion of the inflow suppression characteristics into the opening hole by integrating the propagation path flow control body and the inflow suppression body, and a compact ultrasonic wave propagation path is formed. Therefore, the measurement channel can be downsized.

 なお、本実施例では屈曲部17、18を計測流路6の幅Wの方向に曲げた場合を示したが、屈曲部17、18の曲がり方向は計測流路6の高さHの方向でも良いだけでなく任意の方向でも良く、さらに屈曲部17と屈曲部18の曲がり方向が異なっていても良いのは言うまでもない。 In the present embodiment, the case where the bent portions 17 and 18 are bent in the direction of the width W of the measurement flow channel 6 is shown. However, the bending direction of the bent portions 17 and 18 is the same in the direction of the height H of the measurement flow channel 6. It goes without saying that the bending direction may be any direction as well as the bending direction of the bent portion 17 and the bent portion 18 may be different.

 (実施例6)
 図34において、図1〜図33の実施の形態と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。
(Example 6)
34, the same members and the same functions as those in the embodiment of FIGS. 1 to 33 are denoted by the same reference numerals, detailed description thereof will be omitted, and different portions will be mainly described.

 63は開口穴11、12に設けられ超音波の伝搬方向に開口穴11、12を仕切っている複数の分割通路である。また、図35に示すように、この分割通路63は、超音波送受信器9の振動面64に沿った入口面65と、計測流路面6aに沿った出口面66を備え、分割通路63の垂直断面の一辺67が送受信に用いる超音波の半波長λ/2より長い寸法で、かつ超音波の半波長の整数倍でない寸法とした。 # 63 is a plurality of divided passages provided in the opening holes 11 and 12 and dividing the opening holes 11 and 12 in the ultrasonic wave propagation direction. As shown in FIG. 35, the divided passage 63 has an inlet surface 65 along the vibration surface 64 of the ultrasonic transceiver 9 and an outlet surface 66 along the measurement flow passage surface 6a. One side 67 of the cross section has a dimension longer than a half wavelength λ / 2 of the ultrasonic wave used for transmission and reception, and a dimension that is not an integral multiple of the half wavelength of the ultrasonic wave.

 そして、開口穴12内の分割通路63と超音波受発振素子9の振動面との距離68は、超音波の半波長λ/2の整数倍とした。そして、分割通路63を構成する仕切りの厚みdは、超音波の波長λより短い寸法とすることとした。ここでは、下流側の超音波送受信器9についてのみ説明したが、上流側の超音波送受信器8の方も同様である。 {Circle around (2)} The distance 68 between the divided passage 63 in the opening 12 and the vibration surface of the ultrasonic receiving / oscillating element 9 is an integral multiple of the half wavelength λ / 2 of the ultrasonic wave. Then, the thickness d of the partition forming the divided passage 63 is set to a dimension shorter than the wavelength λ of the ultrasonic wave. Here, only the ultrasonic transmitter / receiver 9 on the downstream side has been described, but the same applies to the ultrasonic transmitter / receiver 8 on the upstream side.

 さらに、図36に示すように、超音波送受信器9に対向する側の計測流路面6aに設けた開口穴11の分割通路63のそれぞれは、他方の開口穴12の分割通路63の対応する1つと同一直線上に延びるように配置した。 Further, as shown in FIG. 36, each of the divided passages 63 of the opening 11 provided on the measurement flow path surface 6a on the side facing the ultrasonic transmitter / receiver 9 corresponds to one of the divided passages 63 of the other opening 12. They were arranged so as to extend on the same straight line as the two.

 次に流量計測の一般的方法について説明する。超音波式流量計は、前述したように超音波の伝搬時間T1およびT2の逆数差から次式によって流速Vを求め、流路の断面積を掛けることによって流量に換算するものである。すなわち、流速Vは次式のように求まる。 (5) Next, a general method of flow rate measurement will be described. As described above, the ultrasonic flow meter obtains the flow velocity V from the reciprocal difference between the propagation times T1 and T2 of the ultrasonic wave according to the following formula, and converts the flow velocity V into a flow rate by multiplying the cross-sectional area of the flow path. That is, the flow velocity V is obtained by the following equation.

 V=[L/(2cosθ)]×[(1/T1)−(1/T2)]
 この時、流れによって影響を受ける超音波の伝搬距離Lは、開口穴の内部に流れが進入する場合としない場合で異なってくる。すなわち、流速によって、あるいは脈動流の有無によって、開口穴内に流れが侵入したりしなかったりするため、有効な伝搬距離Lが変化し、計測流量に誤差が生じることになっていた。
V = [L / (2 cos θ)] × [(1 / T1) − (1 / T2)]
At this time, the propagation distance L of the ultrasonic wave affected by the flow differs depending on whether the flow enters the opening hole or not. That is, since the flow does not enter the opening hole depending on the flow velocity or the presence or absence of the pulsating flow, the effective propagation distance L changes and an error occurs in the measured flow rate.

 本発明の構成によれば、計測流路に設けた開口穴の内部が小さく分割され、渦が発生しにくくなることと、分割流路の流入抑制体としての作用により開口穴内部への流体の流入も低減させることができ、流速が変わったり、脈動が発生しても、有効伝搬距離Lを一定に保つことができ、流量を正しく計測することができる。そして、超音波が分割通路の被測定流体中を伝搬するのでバルク素子よりも感度低下が少ないことと、通路を分割することによって超音波の直進性が維持され、良好な送受信を行うことができる。 ADVANTAGE OF THE INVENTION According to the structure of this invention, the inside of the opening hole provided in the measurement flow path is divided small, and it becomes difficult to generate a vortex. The inflow can be reduced, and even if the flow velocity changes or pulsation occurs, the effective propagation distance L can be kept constant, and the flow rate can be measured correctly. Since the ultrasonic wave propagates through the fluid to be measured in the divided passage, the sensitivity is less reduced than that of the bulk element, and the straightness of the ultrasonic wave is maintained by dividing the passage, so that good transmission and reception can be performed. .

 さらに、超音波が分割通路に垂直入射し、分割通路に沿って真っ直ぐに進行することができ、反射などを起こさず減衰の少ない伝搬路とすることができる。そして、計測流路面に対して出口が平坦な面となり、計測流路面の境界層の流れを乱すことがないとともに、放射面として出口面を揃えることで効率よく超音波を放射することができる。そして、一対の分割通路の送信面と受信面が超音波の進行方向に対し一致することで、対向する開口穴部の仕切り板によって反射減衰することがないようにすることができる。 Furthermore, the ultrasonic wave is perpendicularly incident on the divided passage, can travel straight along the divided passage, and can be a propagation path with no reflection or the like and with little attenuation. The exit is flat with respect to the measurement flow path surface, so that the flow of the boundary layer of the measurement flow path surface is not disturbed, and the ultrasonic waves can be efficiently emitted by aligning the exit surface as the radiation surface. Since the transmitting surface and the receiving surface of the pair of divided passages coincide with each other with respect to the traveling direction of the ultrasonic waves, it is possible to prevent the reflection and attenuation by the partition plates of the opposed opening holes.

 また、分割通路の垂直断面の一辺67が、半波長より長いので分割面からの粘性の影響を受けにくく減衰の少ない伝搬路とすることができる。さらに、その一辺67の長さを、波長の整数倍としないことで、横方向の共鳴を抑制することができ、効率よく伝搬させることができる。 の 一 Further, since one side 67 of the vertical cross section of the divided passage is longer than a half wavelength, the propagation path is less affected by the viscosity from the divided surface and has less attenuation. Furthermore, by setting the length of one side 67 not to be an integral multiple of the wavelength, it is possible to suppress the resonance in the lateral direction, and it is possible to propagate the light efficiently.

 そして、超音波送受信器と分割通路入口面との間の距離68を、半波長の長さで共鳴させることによって、放射を効率よく行うことができる。そして、分割通路の仕切りの厚みdを波長より短くすることで、分割通路へ入射するときの超音波の反射が防止でき、効率よく超音波が伝搬して良好な送受信を実現することができる。 (4) By resonating the distance 68 between the ultrasonic transceiver and the entrance surface of the split passage with a length of a half wavelength, radiation can be performed efficiently. By making the thickness d of the partition of the divided passage shorter than the wavelength, the reflection of the ultrasonic wave when entering the divided passage can be prevented, and the ultrasonic wave can be efficiently propagated to realize good transmission and reception.

 ここで、図37、図38および図39のような四角形の分割通路断面でも同様の効果が発揮できるとともに、図40のようなハニカム状の分割通路では、開口穴にハニカム格子材料を嵌合して容易に固定できるとともに分割通路63の仕切の厚みdを超音波の波長よりも十分薄くでき、かつ開口穴の上下左右の分割が可能となる。そして、効率よく超音波が伝搬して良好な送受信を実現することができる。 Here, the same effect can be exerted even in a rectangular divided passage section as shown in FIGS. 37, 38 and 39, and in a honeycomb-shaped divided passage as shown in FIG. In addition, the thickness d of the partition of the divided passage 63 can be made sufficiently smaller than the wavelength of the ultrasonic wave, and the opening hole can be divided vertically and horizontally. Then, the ultrasonic waves can be efficiently propagated, and good transmission and reception can be realized.

 また、分割通路の1つは開口穴の中央部に開口部を設けたものである。そして、開口穴の中心部に開口部があるので超音波送受信器の中心軸と一致し、超音波の出力の強い中央部の伝搬を効率よく行い、超音波送受信による信号伝達を良好にするものである。 分割 One of the divided passages has an opening at the center of the opening. And since there is an opening in the center of the opening hole, it is aligned with the center axis of the ultrasonic transmitter / receiver, and efficiently propagates the central part where the output of ultrasonic waves is strong, and improves the signal transmission by ultrasonic transmission / reception. It is.

 また、分割通路の対向面が平行とならないような多角形などでは、超音波の進行方向に垂直な伝搬が分散され共鳴を起こしにくくなり、超音波が効率よく伝搬される効果がある。特にハニカム格子材料を分割通路とし、中心部に開口部を設けることで、上記共鳴現象の低減と前述の十分薄い仕切の厚みdによる効果と超音波の出力の強い中央部の高効率の超音波の伝搬により、超音波送受信による信号伝達の一層の効率化が促進できる。 (4) In a polygon or the like in which the opposing surfaces of the divided passages are not parallel, the propagation perpendicular to the traveling direction of the ultrasonic waves is dispersed and resonance is unlikely to occur, and the ultrasonic waves are efficiently propagated. In particular, the honeycomb lattice material is used as a divided passage, and an opening is provided in the center to reduce the above-mentioned resonance phenomenon, the effect of the sufficiently thin partition thickness d, and the high-efficiency ultrasonic wave at the center where the ultrasonic output is strong. , The efficiency of signal transmission by ultrasonic transmission / reception can be further enhanced.

 さらに、図41に示すように、分割通路の通路途中に各通路が連通する連通部69を備えることによって、仕切り面が少なくなり、壁面による減衰を最小限に抑えることができる。連通部69の大きさも超音波の波長より長くすることで、分割通路が連結しやすくなる。連結部と仕切り部を交互に備えることで、仕切りの効果と減衰を低減する効果を備えることができる。 Furthermore, as shown in FIG. 41, the provision of the communicating portion 69 in the middle of the divided passages allows the passages to communicate with each other, thereby reducing the number of partition surfaces and minimizing the attenuation due to the wall surfaces. By making the size of the communication portion 69 longer than the wavelength of the ultrasonic wave, the divided passages can be easily connected. By providing the connecting portion and the partition portion alternately, it is possible to provide a partition effect and an effect of reducing attenuation.

 次に、分割通路の他の実施の形態を図42、図43を用いて説明する。図42は開口穴12の分割通路70を示す断面図である。前述の実施の形態と異なる点は、分割通路の通路長Lbを、送受信に用いる超音波の波長λより短い寸法として、網材料としての金網を、超音波の伝搬方向に垂直な方向に配置した超音波送受信素子側と、流路壁面に沿わせた流路側に配置して分割通路を構成したことである。図43に、開口部71を示す。 Next, another embodiment of the divided passage will be described with reference to FIGS. FIG. 42 is a sectional view showing a divided passage 70 of the opening hole 12. The difference from the above-described embodiment is that the wire length Lb of the divided passage is shorter than the wavelength λ of the ultrasonic wave used for transmission and reception, and the wire mesh as the net material is arranged in a direction perpendicular to the ultrasonic wave propagation direction. That is, a divided passage is configured by arranging on the side of the ultrasonic transmitting / receiving element and on the side of the flow path along the wall of the flow path. FIG. 43 shows the opening 71.

 そして、超音波の波長より短い通路長とすることで、分割通路を減衰の少ない伝搬路とすることができる。また、計測流路面に設けた開口穴内部の開口空間が小さく分割され、渦が発生しにくくなることと、開口穴内部への流体の流入も低減させることができ、流速が変わったり、脈動が発生しても、流量を正しく計測することができる。そして、超音波が分割通路の空気中を伝搬するのでバルク素子よりも感度低下が少ないことと、通路を分割することによって超音波の直進性が維持され、良好な送受信を行うことができる。 (4) By making the path length shorter than the wavelength of the ultrasonic wave, the split path can be made a propagation path with less attenuation. In addition, the opening space inside the opening hole provided on the measurement flow path surface is divided into small portions, making it difficult for vortices to occur, and also reducing the flow of fluid into the opening hole, changing the flow velocity and reducing pulsation. Even if it occurs, the flow rate can be measured correctly. Since the ultrasonic wave propagates in the air in the divided passage, the sensitivity is less reduced than that of the bulk element, and the straightness of the ultrasonic wave is maintained by dividing the passage, so that good transmission and reception can be performed.

 また、分割通路の垂直断面の一辺67が、半波長より長いので分割面に沿って流れる流体の粘性の影響を受けにくく減衰の少ない伝搬路とすることができる。さらに、その一辺67の長さを、波長の整数倍としないことで、横方向の共鳴を抑制することができ、効率よく伝搬させることができる。 の 一 Further, since one side 67 of the vertical cross section of the divided passage is longer than half a wavelength, the propagation path is less affected by the viscosity of the fluid flowing along the divided surface and can be reduced in attenuation. Furthermore, by setting the length of one side 67 not to be an integral multiple of the wavelength, it is possible to suppress the resonance in the lateral direction, and it is possible to propagate the light efficiently.

 また、分割通路を第一の流入抑制体、第二の流入抑制体などの流入抑制体を備えた計測流路に用いることにより開口穴での流れの乱れが一層低減でき、上記の効果に加えて計測上限値を向上できる。 In addition, by using the divided passage for the measurement flow path including the inflow suppressing body such as the first inflow suppressing body and the second inflow suppressing body, the turbulence of the flow in the opening hole can be further reduced. To improve the measurement upper limit.

 以上の説明から明らかなように上記各実施例によれば、次の効果が得られる。 According to the above embodiments, the following effects can be obtained as is clear from the above description.

 実施例の超音波流量計測装置は、少なくとも下流側の開口穴の近傍に設けて開口穴への被測定流体の流れ込みを低減させる第一の流入抑制体と、計測流路の上流側に設けて開口穴への被測定流体の流れ込みを低減させる第二の流入抑制体を有し、下流側の開口穴に設けた第一の流入抑制体は少なくとも1つの超音波透過口を有する開口穴封止部を備えているので、超音波送受信器間の流れを安定化して超音波の受信レベルを高めて計測精度および流量計測できる上限値を高め、超音波の受信レベル向上と流入抑制体による超音波の減衰改善とにより超音波送受信器の駆動入力を低減できる。 The ultrasonic flow rate measuring device of the embodiment is provided at least in the vicinity of the opening on the downstream side to reduce the flow of the fluid to be measured into the opening, and is provided on the upstream side of the measurement flow path. A second inflow restrictor for reducing the flow of the fluid to be measured into the opening; and a first inflow restrictor provided in the downstream opening has an at least one ultrasonic transmission opening. Unit, so that the flow between the ultrasonic transmitter and receiver is stabilized and the reception level of the ultrasonic wave is increased to increase the measurement accuracy and the upper limit of the flow rate measurement. , The drive input of the ultrasonic transceiver can be reduced.

 また、本実施例の超音波流量計測装置は、被測定流体の順逆両方向流れに対して開口穴への被測定流体の流れ込みを低減させる第一の流入抑制体および第二の流入抑制体を有し、順方向流れ時の下流側の開口穴に設けた第一の流入抑制体は少なくとも1つの超音波透過口を有する開口穴封止部とし、第二の流入抑制体は計測流路の入口側および出口側の両方に配置しているので、脈動を伴った流れで瞬時的な逆流を生じる場合でも、順方向流れ時と同様に開口穴への被測定流体の流れ込みが低減されて超音波送受信器間の流れの乱れを大幅に低減することができ、計測精度を高め、流量計測できる上限値を高めることができる。 Further, the ultrasonic flow measurement device of the present embodiment has a first inflow suppressing body and a second inflow suppressing body that reduce the flow of the fluid to be measured into the opening hole with respect to the forward and reverse flow of the fluid to be measured. The first inflow suppressor provided in the downstream opening hole at the time of forward flow is an opening hole sealing portion having at least one ultrasonic transmission port, and the second inflow suppressor is an inlet of the measurement flow path. Even when instantaneous reverse flow occurs due to pulsating flow, the flow of the fluid to be measured into the opening hole is reduced as in the case of forward flow, and the ultrasonic The turbulence of the flow between the transmitter and the receiver can be greatly reduced, the measurement accuracy can be increased, and the upper limit value for the flow rate measurement can be increased.

 また、本実施例の超音波流量計測装置は、上流側および下流側の超音波送受信器間の超音波伝搬路に沿って配置されるとともに流れの中に露出する規制部を有する伝搬路流れ規制体を備えて、超音波伝搬路の上流側から下流側まで全域においてすぐ上流側に配置される伝搬路流れ規制体の規制部により流れの乱流促進がなされ、超音波伝搬路では流量に関わらず上流側の開口穴に近い領域から下流側の開口穴に近い領域まで超音波伝搬路の幅方向全域にわたり流れ状態が均等に乱流化され、流量計測範囲の全域にわたり補正係数の変化を小さくすることができ、補正係数による誤差の拡大が防止されて計測精度を高めることができ、流体の動粘性係数の変化によりレイノルズ数が変化しても計測精度が維持され、流体温度変化や流体成分変化に対して強い計測装置を実現でき、実用性を高めることがで
きる。
Further, the ultrasonic flow rate measuring apparatus of the present embodiment is a propagation path flow restriction having a restriction section disposed along the ultrasonic transmission path between the upstream and downstream ultrasonic transceivers and exposed in the flow. The turbulence of the flow is promoted by the regulating part of the propagation path flow regulating body located immediately upstream in the whole area from the upstream side to the downstream side of the ultrasonic wave propagation path. The flow condition is evenly turbulent over the entire width direction of the ultrasonic propagation path from the area near the upstream opening to the area near the downstream opening, reducing the change in the correction coefficient over the entire flow measurement range. The measurement accuracy can be improved by preventing the error from increasing due to the correction coefficient, and the measurement accuracy can be maintained even if the Reynolds number changes due to the change in the kinematic viscosity coefficient of the fluid. change Can achieve strong measuring device for, it is possible to improve the practicability.

 また、本実施例の超音波流量計測装置は、上流側および下流側の超音波送受信器間の超音波伝搬路に沿って配置されるとともに流れの中に露出する規制部を有する伝搬路流れ規制体と、開口穴への被測定流体の流れ込みを低減させる流入抑制体を備えて、超音波伝搬路の上流側から下流側まで全域においてすぐ上流側に配置される伝搬路流れ規制体により流れの乱流促進がなされて超音波伝搬路では流量に関わらず上流側の開口穴に近い領域から下流側の開口穴に近い領域まで超音波伝搬路の幅方向全域にわたり流れ状態が均等に乱流化され、流量計測範囲の全域にわたり補正係数の変化を小さくすることができるとともに補正係数による誤差の拡大が防止されて計測精度を高めることができ、また計測流路に開口する開口穴に流入抑制体を配置して開口穴への流れ込みを低減させて超音波送受信器間
の超音波伝搬路での流れの乱れを大幅に低減することができ、流量計測できる上限値を高めることができる。
Further, the ultrasonic flow rate measuring apparatus of the present embodiment is a propagation path flow restriction having a restriction section disposed along the ultrasonic transmission path between the upstream and downstream ultrasonic transceivers and exposed in the flow. Body, and an inflow suppressor that reduces the flow of the fluid to be measured into the opening hole, and the flow path is regulated by a propagation path flow restrictor disposed immediately upstream in the entire region from the upstream side to the downstream side of the ultrasonic propagation path. The turbulence is promoted, and the flow state is uniformly turbulent throughout the width of the ultrasonic wave propagation path from the area near the upstream opening to the area near the downstream opening regardless of the flow rate. The change in the correction coefficient can be reduced over the entire flow rate measurement range, the error due to the correction coefficient can be prevented from increasing, and the measurement accuracy can be increased. To Location and the turbulence of the flow of by reducing the flow of the open hole in the ultrasonic wave propagation path between the ultrasonic transducers can be greatly reduced, it is possible to increase the upper limit value that can flow measurement.

 また、上流側の開口穴に設けた第一の流入抑制体は流れ偏向体としたものであり、上流側の開口穴での超音波通過口による超音波の伝搬損失を無くして超音波送受信器の駆動入力を低減できるとともに、上流側の開口穴への流体の流入を低減して超音波伝搬路での流れの乱れを安定化して計測精度を向上できる。 Further, the first inflow suppressing member provided in the upstream opening is a flow deflector, and the ultrasonic transmission / reception unit eliminates the ultrasonic wave propagation loss due to the ultrasonic passage opening in the upstream opening. In addition to reducing the drive input, the flow of fluid into the upstream opening can be reduced, and the turbulence of the flow in the ultrasonic wave propagation path can be stabilized to improve the measurement accuracy.

 また、上流側の開口穴に設けた第一の流入抑制体は少なくとも1つの超音波透過口を有する開口穴封止部を備えたものであり、上流側および下流側の開口穴への流体の流れ込みの大幅な低減が実現でき、流量計測できる上限値を高めることができるとともに逆流を伴う流れに対しても計測精度を高めることができ、開口穴での流れの乱れの大幅な低減によりS/N特性に優れた超音波の送受信が実現でき、送信出力の低減が可能となり駆動入力の低減による低消費電力化ができる。 In addition, the first inflow suppressing member provided in the upstream opening hole includes an opening hole sealing portion having at least one ultrasonic transmission port, and the flow of the fluid into the upstream and downstream opening holes is provided. A drastic reduction in inflow can be realized, the upper limit value of the flow rate measurement can be increased, and the measurement accuracy can be improved even for a flow accompanied by a backflow. Ultrasonic transmission and reception with excellent N characteristics can be realized, transmission output can be reduced, and power consumption can be reduced by reducing drive input.

 また、上流側の開口穴に設けた開口穴封止部の開口率は下流側の開口穴に設けた開口穴封止部の開口率よりも大きくしたものであり、超音波の伝搬損失の低減がなされ、流量計測の上限値の向上と逆流に対する計測精度の向上を可能にするとともに、超音波送受信器への駆動入力の低減により低消費電力化できる。 In addition, the opening ratio of the opening sealing portion provided in the upstream opening is larger than the opening ratio of the opening sealing portion provided in the downstream opening, thereby reducing the propagation loss of ultrasonic waves. Thus, it is possible to improve the upper limit value of the flow rate measurement and the measurement accuracy for the backflow, and to reduce the power consumption by reducing the drive input to the ultrasonic transceiver.

 また、伝搬路流れ規制体は超音波伝搬路の上流側および下流側に配置したものであり、上流側と下流側の伝搬路流れ規制体とで超音波伝搬路を囲い超音波伝搬路内の乱流状態を上流側から下流側まで均等化することで補正係数をより一層平坦化でき、計測精度を一層向上でき、また下流側の伝搬路流れ規制体により計測流路の下流側の流れ状態の影響を受けるのを低減して計測装置の下流側の配管状態に関わらず安定した計測が実現され計測装置の設置の自由度が向上でき、さらに計測流路における順方向あるいは逆方向のいずれの流れに対しても同じ効果を得て脈動流れに対する補正係数の安定化により計測精度を高めることができる。 In addition, the propagation path flow restricting member is disposed on the upstream side and the downstream side of the ultrasonic wave propagation path, and surrounds the ultrasonic wave propagation path with the upstream side and the downstream side propagation path flow restricting body. By equalizing the turbulence state from the upstream side to the downstream side, the correction coefficient can be further flattened, the measurement accuracy can be further improved, and the flow state on the downstream side of the measurement flow path by the downstream propagation path flow restrictor The effect of the measurement is reduced and stable measurement is realized irrespective of the piping condition on the downstream side of the measurement device, the degree of freedom of installation of the measurement device can be improved, and furthermore, either the forward direction or the reverse direction in the measurement flow path The same effect can be obtained for the flow, and the measurement accuracy can be improved by stabilizing the correction coefficient for the pulsating flow.

 また、超音波伝搬路の上流側および下流側に配置した伝搬路流れ規制体は連結部を介して一体化したものであり、伝搬路流れ規制体間の設置距離あるいは上流側と下流側の規制部の相互位置のずれを防いで安定化し、バラツキの少ない計測装置を実現できる。さらに、連結部により伝搬路流れ規制体の補強がなされるため規制部の微細化あるいは薄肉化が実現でき、超音波伝搬路内の流れ状態の均等化あるいは計測流路の圧力損失の低減ができる。 Also, the propagation path flow restrictors disposed on the upstream and downstream sides of the ultrasonic propagation path are integrated via a connecting portion, and the installation distance between the propagation path flow restriction bodies or the restriction on the upstream and downstream sides is established. It is possible to realize a measurement device that is stabilized by preventing the displacement of the parts from each other and that has little variation. Further, since the propagation path flow regulating body is reinforced by the connection section, the regulation section can be made finer or thinner, and the flow state in the ultrasonic propagation path can be equalized or the pressure loss in the measurement flow path can be reduced. .

 また、超音波伝搬路の上流側および下流側に配置した伝搬路流れ規制体と流入抑制体を一体化したものであり、上流側および下流側の伝搬路流れ規制体と流入抑制体との相互の距離などの位置関係が確定して流れ状態の安定化ができ、超音波伝搬路内の流れ状態のバラツキを低減して、バラツキの小さい安定した計測が実現でき、一体化することにより伝搬路流れ規制体の強度を一層補強でき、長期の使用にわたって変形を防いで耐久性、信頼性を向上できる。 In addition, the propagation path flow restrictors and the inflow restrictors disposed on the upstream and downstream sides of the ultrasonic propagation path are integrated, so that the upstream and downstream propagation path flow restrictors and the inflow restrictors are not The positional relationship such as the distance is determined and the flow state can be stabilized, the dispersion of the flow state in the ultrasonic propagation path can be reduced, and stable measurement with small dispersion can be realized. The strength of the flow control body can be further reinforced, and deformation can be prevented over a long period of use, thereby improving durability and reliability.

 また、流入抑制体は下流側の開口穴に設けた第一の流入抑制体としたものであり、流れに対して鋭角で交わるためより強い渦が発生し易い下流側の開口穴に流入抑制体を配置して開口穴への流れ込みを低減させて超音波送受信器間の流れの乱れを効率よく低減することができ、流量計測できる上限値を高めることができる。 In addition, the inflow suppressing body is a first inflow suppressing body provided in the downstream opening, and the inflow suppressing body is provided in the downstream opening in which a stronger vortex easily intersects the flow at an acute angle. Is arranged to reduce the flow into the opening hole, the turbulence of the flow between the ultrasonic transceivers can be efficiently reduced, and the upper limit of the flow rate measurement can be increased.

 また、流入抑制体は上流側および下流側の開口穴に設けた第一の流入抑制体としたものであり、超音波伝搬路での流れの乱れの中で大きな割合を占める開口穴内での乱れを効率よく低減でき、計測精度および流量計測できる上限値を高めることができる。 Further, the inflow suppressor is a first inflow suppressor provided in the upstream and downstream opening holes, and the turbulence in the opening hole that accounts for a large proportion of the flow disturbance in the ultrasonic wave propagation path. Can be efficiently reduced, and the measurement accuracy and the upper limit value at which the flow rate can be measured can be increased.

 また、流入抑制体は超音波伝搬路に沿って配置した伝搬路流れ規制体に流入抑制部を設けて第二の流入抑制体としたものであり、伝搬路流れ規制体と流入抑制体の一体化により開口穴への流入抑制特性のバラツキを低減して信頼性を高めることができ、またコンパクトな超音波伝搬路が形成できるため計測流路を小型化できる。 Also, the inflow suppressor is a second inflow suppressor provided with an inflow suppressor in a propagation path flow restrictor arranged along the ultrasonic propagation path, and is an integral part of the propagation path flow restrictor and the inflow suppressor. Thus, the variation in the characteristic of suppressing the inflow into the opening hole can be reduced to improve the reliability, and the compact ultrasonic propagation path can be formed, so that the measurement flow path can be downsized.

 また、流入抑制体は、開口穴に設けた第一の流入抑制体と、伝搬路流れ規制体に流入抑制部を設けた第二の流入抑制体とを備えたものであり、第一および第二の流入抑制体の相乗効果による開口穴内の乱れ低減と伝搬路流れ規制体と流入抑制体の一体化による開口穴への流入抑制特性のバラツキ低減とにより計測精度と信頼性を高めることができ、またコンパクトな超音波伝搬路が形成できるため計測流路を小型化できる。 Further, the inflow suppression body includes a first inflow suppression body provided in the opening hole, and a second inflow suppression body provided with an inflow suppression unit in the propagation path flow regulating body, and a first and a second inflow suppression body. Measurement accuracy and reliability can be improved by reducing turbulence in the opening hole due to the synergistic effect of the two inflow suppression bodies and reducing the variation in inflow suppression characteristics into the opening hole by integrating the propagation path flow control body and the inflow suppression body. Since a compact ultrasonic wave propagation path can be formed, the measurement flow path can be reduced in size.

 また、第一の流入抑制体は少なくとも1つの超音波透過口を有する開口穴封止部としたものであり、開口穴を開口穴封止部で覆うことで開口穴への被測定流体の流入抑制効果を一層高めて開口穴内での流れを低減して安定化できる。 Further, the first inflow suppressing body is an opening hole sealing portion having at least one ultrasonic transmission port, and the inflow of the fluid to be measured into the opening hole is achieved by covering the opening hole with the opening hole sealing portion. The suppression effect can be further enhanced, and the flow in the opening hole can be reduced and stabilized.

 また、第一の流入抑制体は少なくとも1つの超音波透過口を有する開口穴封止部と開口穴の近傍に設けた流れ偏向部を備えたものであり、開口穴への被測定流体の流入抑制効果をなお一層高めることで計測精度の一層の向上ができるとともに、流れ偏向体により開口穴封止部へのダストなどの異物の付着を低減できるので、開口穴封止部は目詰まりを重視せずに超音波の通過性を第一として自由度を高めた選定ができ、超音波の通過性を一層高めることで低消費電力化あるいは感度を高め計測精度に優れた装置が実現できる。 Further, the first inflow suppressor includes an opening hole sealing portion having at least one ultrasonic transmission port and a flow deflecting portion provided in the vicinity of the opening hole. By further improving the suppression effect, the measurement accuracy can be further improved, and the flow deflector can reduce the adhesion of foreign substances such as dust to the opening hole sealing portion. It is possible to select the ultrasonic wave with high flexibility without putting the ultrasonic wave first, and it is possible to realize a device with lower power consumption or higher sensitivity and higher measurement accuracy by further increasing the ultrasonic wave permeability.

 また、上流側の開口穴に設けた開口穴封止部の開口率は下流側の開口穴に設けた開口穴封止部の開口率よりも大きくしたものであり、超音波の伝搬損失の低減がなされ、流量計測の上限値の向上と逆流に対する計測精度の向上を可能にするとともに、超音波送受信器への駆動入力の低減により低消費電力化できる。 In addition, the opening ratio of the opening sealing portion provided in the upstream opening is larger than the opening ratio of the opening sealing portion provided in the downstream opening, thereby reducing the propagation loss of ultrasonic waves. Thus, it is possible to improve the upper limit value of the flow rate measurement and the measurement accuracy for the backflow, and to reduce the power consumption by reducing the drive input to the ultrasonic transceiver.

 また、開口穴封止部は水平に対して傾きを持つ傾斜網目の網状体としたものであり、水平に対して傾けることで傾斜網目部に付着したダストなどの微粉体の落下を促進せしめて堆積量を低減し、網状体の目詰りを防止することで超音波の伝搬を確保し、長期間にわたり安定した計測精度を維持でき耐久性、信頼性が向上できる。 Also, the opening hole sealing portion is a mesh of a slanted mesh having a slope with respect to the horizontal, and by tilting with respect to the horizontal, the fall of fine powder such as dust attached to the slanted mesh is promoted. By reducing the amount of deposition and preventing clogging of the mesh, propagation of ultrasonic waves can be ensured, stable measurement accuracy can be maintained over a long period of time, and durability and reliability can be improved.

 また、流れ偏向体は開口穴の上流側および下流側に設けたものであり、計測流路の順方向、逆方向のいずれの流れに対しても計測精度の一層の向上と開口穴への流入抑制と開口穴への異物侵入防止ができ、脈動流れに逆流を伴っても長期間にわたり安定した計測精度を維持でき耐久性、信頼性が向上できる。 In addition, the flow deflectors are provided on the upstream and downstream sides of the opening, so that the measurement accuracy can be further improved and the flow into the opening can be improved in both forward and reverse directions of the measurement flow path. Suppression and foreign matter intrusion into the opening can be suppressed, and stable measurement accuracy can be maintained for a long period of time even if pulsating flow is accompanied by backflow, so that durability and reliability can be improved.

 また、伝搬路流れ規制体は被測定流体の種類に応じて超音波伝搬路からの設置距離を変えたものであり、伝搬路流れ規制体を変えるだけで被測定流体の種類に関わらず計測流路は共用化でき利便性を向上できるとともに、被計測流体に関わらず安定した計測精度が維持できる。さらに、計測流路の共用化により低コスト化できる。 In addition, the propagation path flow restricting body changes the installation distance from the ultrasonic wave propagation path according to the type of the fluid to be measured. The road can be shared and the convenience can be improved, and stable measurement accuracy can be maintained regardless of the fluid to be measured. Further, the cost can be reduced by sharing the measurement flow path.

 また、伝搬路流れ規制体の規制部は網状体で形成したものであり、伝搬路流れ規制体の設置スペースを流れ方向に対して薄く小さくでき、計測流路の小型化ができる。 規 制 Further, since the regulating portion of the propagation path flow restricting body is formed of a mesh, the installation space of the propagation path flow restricting body can be made thinner and smaller in the flow direction, and the measurement flow path can be downsized.

 また、伝搬路流れ規制体の規制部は流れ方向に壁面を有する格子体で形成したものであり、流れ方向に延びる壁面により流れ方向を規制することで超音波伝搬路内の流速分布をより一層均等化して計測精度の向上ができる。 In addition, the regulating portion of the propagation path flow regulating body is formed by a lattice having a wall surface in the flow direction, and the flow direction in the ultrasonic propagation path is further improved by regulating the flow direction by the wall surface extending in the flow direction. Equalization can improve measurement accuracy.

 また、伝搬路流れ規制体の隣接する2つの規制部は計測流路の横断面の位置により相互の間隔を変えたものであり、それぞれの規制部では流れ方向の長さを小さくしたままで開口の大きさを計測流路の横断面の位置により最適化することで超音波伝搬路内の流速分布を一層均等化でき、規制部の流れ方向の長さは小さくできるため圧力損失の低減と流速分布の均等化による計測精度の向上が両立できる。 The two regulating portions adjacent to each other in the propagation path flow regulating body are different in the mutual distance depending on the position of the cross section of the measurement flow path, and each regulating portion is opened while keeping the length in the flow direction small. By optimizing the size according to the position of the cross section of the measurement flow path, the flow velocity distribution in the ultrasonic wave propagation path can be made more uniform, and the length of the regulating section in the flow direction can be reduced, so that pressure loss is reduced and flow velocity is reduced. It is possible to improve the measurement accuracy by equalizing the distribution.

 また、計測流路の流れに直交する断面は矩形としたものであり、矩形断面化により計測断面における計測領域の割合が大きくでき超音波伝搬路の上流側から下流側にわたり流れに対して同じ条件で計測できること、および計測流路内の流れの二次元化が促進できることにより流体の平均流速を精度高く計測できる。また第二の流入抑制体を備えることにより流れの二次元化が一層促進できる。 In addition, the cross section orthogonal to the flow of the measurement flow channel is a rectangular shape, and the rectangular cross section can increase the ratio of the measurement area in the measurement cross section, and the same conditions are applied to the flow from the upstream side to the downstream side of the ultrasonic wave propagation path. The average flow velocity of the fluid can be measured with high accuracy because the measurement can be performed by the method and the two-dimensional flow in the measurement flow path can be promoted. Further, by providing the second inflow suppressing body, the two-dimensional flow can be further promoted.

 また、計測流路の流れに直交する断面はアスペクト比が2より小さい矩形としたものであり、高アスペクト比化して二次元流れを起こさせる必要がなく、断面仕様を反射波の干渉を低減する流路高さに合わせて自在に設定でき、感度を高めた超音波の送受信ができる。さらに、計測断面を過剰に偏平化させず流体との接触長さを低減した断面として計測流路の圧力損失の低減ができる。 The cross section orthogonal to the flow of the measurement flow path is a rectangle having an aspect ratio smaller than 2, so that it is not necessary to increase the aspect ratio to cause a two-dimensional flow, and reduce the cross section specification to reduce interference of reflected waves. It can be set freely according to the height of the flow path, and can transmit and receive ultrasonic waves with enhanced sensitivity. Further, the pressure loss of the measurement flow path can be reduced as a cross section in which the length of contact with the fluid is reduced without excessively flattening the measurement cross section.

 また、開口穴の計測流路への開口形状は計測流路の流れ方向に対してほぼ直交する方向に一辺を有する形状としたものであり、計測流路の高さ方向に対して均等に超音波を発信、受信できるとともに、開口穴の計測流路での流れ方向の開口寸法を短くできるため開口穴による流れの乱れを一層低減して計測精度を一層向上できる。 The shape of the opening hole into the measurement flow path has a side in a direction substantially orthogonal to the flow direction of the measurement flow path, and is uniformly superimposed in the height direction of the measurement flow path. Sound waves can be transmitted and received, and the size of the opening in the measurement flow path in the flow direction can be shortened, so that the flow disturbance due to the opening can be further reduced and the measurement accuracy can be further improved.

 また、計測流路の上流側に配置した導入部に微細な開口を持つ流通口を有する偏流抑制体を設けたものであり、上流側の流路形状や配管形状に関わらず安定した流れを計測流路に供給することで超音波送受信器間の流れの乱れを低減でき、計測可能な上限値を一層高めることができるとともに計測精度を一層向上できる。また、計測流路の上流側の流路形状や配管状態に関わらず安定した計測が実現でき、計測装置の設置の自由度が向上できる。 In addition, a drift suppression body with a flow opening with a fine opening is provided at the introduction part located upstream of the measurement flow path, and a stable flow is measured regardless of the flow path shape and pipe shape on the upstream side By supplying the flow to the flow path, turbulence of the flow between the ultrasonic transceivers can be reduced, the upper limit value that can be measured can be further increased, and the measurement accuracy can be further improved. Further, stable measurement can be realized regardless of the flow path shape and the pipe state on the upstream side of the measurement flow path, and the degree of freedom of installation of the measuring device can be improved.

 また、計測流路の上流側に配置した導入部と下流側の導出部に微細な開口を持つ流通口を有する偏流抑制体を設けたものであり、逆流を伴う脈動を持つ被測定流体あるいは下流側に脈動源を持つ被測定流体でも安定した流れを計測流路に供給することで超音波送受信器間の流れの乱れを低減でき、計測可能な上限値を一層高めることができるとともに計測精度を一層向上できる。また、計測流路の上流側あるいは下流側の流路形状や配管状態や脈動発生源に関わらず安定した計測が実現でき、計測装置の設置の自由度が一層向上できる。 In addition, a drift suppression body having a flow opening having a fine opening is provided at an introduction portion disposed upstream of the measurement flow path and a discharge portion at the downstream side. By supplying a stable flow to the measurement flow path even with a fluid to be measured that has a pulsation source on the side, the turbulence of the flow between the ultrasonic transmitter and receiver can be reduced, the upper limit value that can be measured can be further increased, and the measurement accuracy can be improved. Can be further improved. In addition, stable measurement can be realized regardless of the shape of the flow path on the upstream or downstream side of the measurement flow path, the state of the pipe, or the source of pulsation, and the degree of freedom of installation of the measurement device can be further improved.

 また、導入部あるいは導出部の断面積は計測流路の断面積よりも大きくしたものであり、偏流抑制体の設置断面積を大きくして偏流抑制体の圧力損失を低減して圧力損失の増大を防止でき、さらに導入部あるいは導出部を大きな断面とすることで上流側あるいは下流側の流路形状や配管形状が異なっていても導入部あるいは導出部の形状を変えることなく計測装置の取付けを可能にでき、設置の自由度を高めた計測装置が実現できる。 In addition, the cross-sectional area of the inlet or outlet is larger than the cross-sectional area of the measurement flow path, and the installation cross-sectional area of the drift suppression body is increased to reduce the pressure loss of the drift suppression body and increase the pressure loss. In addition, a large cross section of the inlet or outlet makes it possible to mount the measuring device without changing the shape of the inlet or outlet even if the upstream or downstream channel shape or piping shape is different. It is possible to realize a measuring device that can be installed and has a high degree of freedom in installation.

 また、偏流抑制体の流通口の開口寸法は第二の流入抑制体に設けた流通口の開口寸法よりも小さくしたものであり、上流側あるいは下流側の接続口が位置的に偏って配置されていても計測流路では均等に流体を流動させることで精度を高めた計測ができ、さらに被測定流体に脈動があっても小さい開口寸法の流通口により計測流路には脈動を低減した流れとして供給でき脈動流に対しても計測精度を向上できる。さらに、偏流抑制体の小さい開口寸法の流通口は計測部へのゴミ、ダストなどの侵入を低減して計測流路での計測動作の信頼性を高めることができる。 In addition, the opening size of the flow opening of the drift suppression body is smaller than the opening size of the flow opening provided in the second inflow suppression body, and the upstream or downstream connection port is arranged to be offset in position. Even if the measurement fluid is flowing evenly in the measurement flow path, accurate measurement can be performed, and even if there is pulsation in the fluid to be measured, the pulsation is reduced in the measurement flow path by the small opening size flow port And the measurement accuracy can be improved even for a pulsating flow. Furthermore, the small-sized flow opening of the drift suppression body can reduce intrusion of dust, dust, and the like into the measurement section, and can increase the reliability of the measurement operation in the measurement flow path.

 また、本実施例の超音波流量計測装置は、被測定流体が流れる計測流路と、この計測流路の上流側および下流側に設けた超音波送受信器と、この超音波送受信器を前記計測流路に臨ませる上流側および下流側の開口穴とを有し、この開口穴の少なくとも一方は超音波の伝搬方向に沿って延びる複数の分割通路を備えたものであり、超音波が分割流路内の流体中を伝搬するので感度低下も少なく、また通路を分割することによって超音波の直進性が維持され、良好な送受信を行うことができるとともに、流路側面に設けた開口穴内部の開口流路が小さく分割され、渦が発生しにくくなることと、開口穴内部への流体の流入も低減させることができ、脈動が発生しても流量を正しく計測することができる。 Further, the ultrasonic flow measurement device of the present embodiment includes a measurement flow path through which a fluid to be measured flows, an ultrasonic transceiver provided on the upstream side and the downstream side of the measurement flow path, and the ultrasonic transceiver described above. Upstream and downstream openings facing the flow path, at least one of the openings having a plurality of divided passages extending along the propagation direction of the ultrasonic wave, Since the light propagates in the fluid in the passage, the sensitivity is low, and by dividing the passage, the straightness of the ultrasonic wave is maintained, and good transmission and reception can be performed. The open flow path is divided into small parts, so that vortices are not easily generated, the flow of fluid into the inside of the open hole can be reduced, and even if pulsation occurs, the flow rate can be correctly measured.

 また、開口穴の少なくとも一方は超音波の伝搬方向に沿って延びる複数の分割通路を備えたものであり、流入抑制体により開口穴への流れ込みが低減でき計測上限値を向上できるとともに、超音波が分割流路内の流体中を伝搬するので感度低下も少なく、また通路を分割することによって超音波の直進性が維持され、良好な送受信を行うことができるとともに、流路側面に設けた開口穴内部の開口流路が小さく分割され、渦が発生しにくくなることと、開口穴内部への流体の流入も一層低減させることができ、脈動が発生しても流量を正しく計測することができる。 In addition, at least one of the opening holes has a plurality of divided passages extending along the propagation direction of the ultrasonic wave, and the inflow suppressing body can reduce the flow into the opening hole, improve the measurement upper limit value, and improve the ultrasonic wave. Is transmitted through the fluid in the divided flow path, so that the sensitivity is less reduced, and by dividing the passage, the straightness of the ultrasonic wave can be maintained, good transmission and reception can be performed, and the opening provided on the side surface of the flow path The opening flow path inside the hole is divided into small parts, making it difficult for vortices to be generated, and further reducing the inflow of fluid into the opening hole, making it possible to correctly measure the flow rate even if pulsation occurs .

 また、分割通路のそれぞれは、超音波送受信器の振動面に沿った入口面と、流路壁面に沿った出口面を備えたものであり、超音波が分割通路に垂直入射し、分割通路に沿って真っ直ぐに進行することができ、反射などを起こさず減衰の少ない超音波伝搬路とすることができるとともに、流路壁面に対して出口が平坦な面となり、流路壁面の境界層の流れを乱すことがないとともに、放射面として出口面を揃えることで効率よく超音波を放射とすることができる。 Each of the divided passages has an entrance surface along the vibration surface of the ultrasonic transceiver and an exit surface along the channel wall surface, and the ultrasonic wave is perpendicularly incident on the divided passage, and enters the divided passage. It can travel straight along the path, it can be an ultrasonic wave propagation path that does not cause reflection etc. and has little attenuation, and the outlet becomes a flat surface with respect to the flow path wall surface, and the flow of the boundary layer of the flow path wall surface And ultrasonic waves can be efficiently emitted by aligning the exit surfaces as emission surfaces.

 また、一方の開口穴部の各分割通路は、他方の開口穴の対応する分割通路と同一直線上に延びており、送信面と受信面が超音波の進行方向に沿って位置合わせされることで、対向する開口穴の分割通路の仕切り板によって反射減衰を低減することができる。 Further, each of the divided passages of one of the opening holes extends on the same straight line as the corresponding divided passage of the other of the opening holes, so that the transmitting surface and the receiving surface are aligned along the traveling direction of the ultrasonic wave. Thus, the return loss can be reduced by the partition plates of the divided passages of the opposed opening holes.

 また、各分割通路の垂直断面の一辺が送受信に用いる超音波の半波長より長い寸法としたものであり、分割面からの粘性の影響を受けにくく、減衰の少ない分割通路とすることができる。 Further, one side of the vertical cross section of each of the divided passages has a length longer than a half wavelength of the ultrasonic wave used for transmission / reception, so that the divided passage is less susceptible to the influence of the viscosity from the divided surface and can be reduced in attenuation.

 また、各分割通路の垂直断面の一辺が送受信に用いる超音波の半波長の整数倍でない寸法としたものであり、横方向の共鳴を抑制することができ、効率よく伝搬させることができる。 の 一 Further, one side of the vertical cross section of each divided passage has a dimension that is not an integral multiple of a half wavelength of the ultrasonic wave used for transmission and reception, so that resonance in the horizontal direction can be suppressed, and transmission can be performed efficiently.

 また、開口穴の分割通路と対応する超音波送受信器の振動面との距離は、超音波の半波長の整数倍としたものであり、半波長の長さで共鳴させることによって、放射を効率よく行うことができる。 In addition, the distance between the divided passage of the opening hole and the corresponding vibration surface of the ultrasonic transmitter / receiver is an integral multiple of a half wavelength of the ultrasonic wave. Can do well.

 また、分割通路を構成する仕切りの厚みは、送受信に用いる超音波の波長より短い寸法としたものであり、超音波の反射が防止でき効率よく送受信することができる。 The thickness of the partition forming the divided passage is shorter than the wavelength of the ultrasonic wave used for transmission and reception, so that reflection of the ultrasonic wave can be prevented and transmission and reception can be performed efficiently.

 また、開口穴に、ハニカム格子材料を嵌合して分割通路を構成したものであり、格子とすることで、上下左右の方向において開口穴を分割することができる。 分割 Furthermore, a honeycomb lattice material is fitted into the opening hole to form a divided passage, and by forming a lattice, the opening hole can be divided in the vertical and horizontal directions.

 また、分割通路の1つは開口穴の中心部に開口部を設けたものであり、開口穴が超音波送受信器の中心と一致し、効率よく送受信することができる。 分割 One of the divided passages is provided with an opening at the center of the opening, and the opening matches the center of the ultrasonic transceiver so that transmission and reception can be performed efficiently.

 また、各分割通路の通路長は、送受信に用いる超音波の波長より短い寸法としたものであり、減衰の少ない超音波伝搬路とすることができる。 The length of each of the divided passages is shorter than the wavelength of the ultrasonic wave used for transmission / reception, so that the ultrasonic wave propagation path can be reduced in attenuation.

 また、開口穴に、超音波の伝搬方向に垂直な方向に網材料を配置して分割通路を構成したものであり、開口穴を網で分割することで、通路長を最小限にすることができる。 Further, in the opening hole, a mesh material is arranged in a direction perpendicular to the propagation direction of the ultrasonic wave to form a divided passage, and by dividing the opening hole with a mesh, the passage length can be minimized. it can.

 また、分割通路は通路途中で各通路を隣接する通路と連通させる連通部を備えたものであり、仕切り板による減衰を最小限に抑えることができる。 The divided passage has a communicating portion that connects each passage with an adjacent passage in the middle of the passage, so that attenuation by the partition plate can be minimized.

 以上の説明から明らかなように本発明の超音波流量計測装置によれば、超音波を用いて高精度の流量計測ができるもので、ガスなどの流体計測に適合するものである。 よ う As is clear from the above description, the ultrasonic flow rate measuring device of the present invention can measure the flow rate with high accuracy using ultrasonic waves, and is suitable for measuring fluid such as gas.

本発明の実施例1の超音波流量計測装置の構成断面図1 is a cross-sectional view illustrating a configuration of an ultrasonic flow rate measurement device according to a first embodiment of the present invention. 図1における第一の流入抑制体の断面図FIG. 1 is a sectional view of a first inflow suppressing body in FIG. 1. 別の第一の流入抑制体の断面図Sectional view of another first inflow suppressor 別の第一の流入抑制体のを示す超音波流量計測装置の構成断面図Configuration sectional view of an ultrasonic flow rate measuring device showing another first inflow suppressing body 実施例1での別の第一の流入抑制体の断面図Sectional drawing of another 1st inflow suppression body in Example 1. 図4における開口穴封止部の別の例を示す正面図FIG. 4 is a front view showing another example of the opening hole sealing portion in FIG. 4. 図1における計測流路のA−A線断面図FIG. 1 is a cross-sectional view taken along line AA of the measurement channel in FIG. 1. 図6における開口穴の正面図Front view of opening hole in FIG. 本発明の実施例2の超音波流量計測装置の構成断面図2 is a sectional view showing the configuration of an ultrasonic flow rate measuring apparatus according to a second embodiment of the present invention. 実施例2の導入部の平面図Top view of the introduction part of the second embodiment 図9における計測流路のB−B線断面図BB line sectional view of the measurement flow path in FIG. 9 別の偏流抑制体を示す超音波流量計測装置の構成断面図Configuration sectional view of an ultrasonic flow measurement device showing another drift suppression body 本発明の実施例3の超音波流量計測装置の構成断面図3 is a cross-sectional view illustrating a configuration of an ultrasonic flow measurement device according to a third embodiment of the present invention. 実施例3における別の第一の流入抑制体の断面図Sectional drawing of another 1st inflow suppression body in Example 3. 本発明の実施例4の超音波流量計測装置の構成断面図Embodiment 4 Cross-sectional view of the configuration of an ultrasonic flow measurement device according to a fourth embodiment of the present invention. 実施例4における伝搬路流れ規制体の流れ方向の正面図Front view of the flow direction of the propagation path flow restrictor in the fourth embodiment. 図15の伝搬路流れ規制体が無い場合の補正係数の特性図FIG. 15 is a characteristic diagram of a correction coefficient when there is no propagation path flow restrictor in FIG. 本発明の実施例4の伝搬路流れ規制体が有る場合の補正係数の特性図4 is a characteristic diagram of a correction coefficient when there is a propagation path flow restrictor according to a fourth embodiment of the present invention. 実施例4の別の伝搬路流れ規制体を示す断面図Sectional drawing which shows another propagation path flow regulating body of Example 4. 実施例4の別の伝搬路流れ規制体を示す超音波流量計測装置の構成断面図Configuration sectional view of an ultrasonic flow measurement device showing another propagation path flow restricting body of the fourth embodiment. 実施例4の別の伝搬路流れ規制体を示す斜視図FIG. 17 is a perspective view showing another propagation path flow restricting body of the fourth embodiment. 図20における伝搬路流れ規制体のA−A線断面矢視図FIG. 20 is a cross-sectional view taken along line AA of the propagation path flow restricting body in FIG. 20. 伝搬路流れ規制体の設置位置を示す断面図Sectional view showing installation position of propagation path flow restrictor 別の伝搬路流れ規制体を示す斜視図A perspective view showing another propagation path flow restricting body. 別の伝搬路流れ規制体を示す斜視図A perspective view showing another propagation path flow restricting body. 別の伝搬路流れ規制体を示す流れ方向から見た正面図Front view of another propagation path flow restrictor viewed from the flow direction 本発明の実施例5の超音波流量計測装置の構成断面図Embodiment 5 Cross-sectional view of the configuration of an ultrasonic flow measurement device according to a fifth embodiment of the present invention. 実施例5の流入抑制体を示す断面図Sectional drawing which shows the inflow suppression body of Example 5. 実施例5の別の流入抑制体を示す断面図Sectional drawing which shows another inflow suppressing body of Example 5. 実施例の別の流入抑制体を示す断面図Sectional drawing which shows another inflow suppression body of an Example. 実施例5の別の流入抑制体を示す断面図Sectional drawing which shows another inflow suppressing body of Example 5. 実施例5の別の例を示す超音波流量計測装置の断面図Sectional view of an ultrasonic flow measuring device showing another example of the fifth embodiment. 実施例5の流入抑制体と伝搬路流れ規制体の別の例を示す斜視図Perspective view showing another example of the inflow suppressing body and the propagation path flow regulating body of the fifth embodiment. 本発明の実施例6を示す超音波流量計測装置の流路断面図Sectional view of the flow path of the ultrasonic flow measuring device showing the sixth embodiment of the present invention. 実施例6における開口穴部の断面図Sectional View of Opening Hole in Example 6 実施例6における対向する超音波送受信器間の位置関係を示す断面図Sectional drawing which shows the positional relationship between the opposing ultrasonic transceivers in Example 6. 実施例6における第1の分割通路の出口面を示す正面図FIG. 14 is a front view showing the exit surface of the first split passage in the sixth embodiment. 実施例6における第2の分割通路の出口面を示す正面図FIG. 14 is a front view showing the exit surface of the second divided passage in the sixth embodiment. 実施例6における第3の分割通路の出口面を示す正面図FIG. 14 is a front view showing the exit surface of the third divided passage in the sixth embodiment. 実施例6における分割通路の出口面を示す正面図FIG. 14 is a front view showing the exit surface of the divided passage in the sixth embodiment. 実施例6における分割通路の連通部を示す断面図Sectional view showing a communicating portion of a divided passage in Embodiment 6. 実施例6における分割通路別の例を示す断面図Sectional view showing another example of the divided passage in the sixth embodiment. 図42における分割通路の出口面を示す正面図FIG. 42 is a front view showing the exit surface of the divided passage in FIG. 42. 従来の超音波流量計測装置の構成図Configuration diagram of conventional ultrasonic flow measurement device 従来の他の超音波流量計測装置の構成図Configuration diagram of another conventional ultrasonic flow measurement device

符号の説明Explanation of reference numerals

 6 計測流路
 8,9 超音波送受信器
 11,12 開口穴
 13 超音波伝搬路
 19 計測制御部
 20 演算部
 21 開口穴封止部
 22 超音波通過口
 43,45 伝搬路流れ規制体
 44 規制部
 56 流入抑制体
 58 第一の流入抑制体
 58a 流れ偏向体
Reference Signs List 6 Measurement flow path 8, 9 Ultrasonic transmitter / receiver 11, 12 Opening hole 13 Ultrasonic propagation path 19 Measurement control unit 20 Operation unit 21 Opening hole sealing unit 22 Ultrasonic passage port 43, 45 Propagation path flow regulating body 44 Regulation unit 56 inflow suppressor 58 first inflow suppressor 58a flow deflector

Claims (7)

 被測定流体が流れる計測流路と、この計測流路の上流側および下流側に設けた超音波送受信器と、この超音波送受信器を前記計測流路に臨ませる開口穴と、上流側および下流側の超音波送受信器間の超音波伝搬路に沿って配置されるとともに流れの中に露出する規制部を有する伝搬路流れ規制体と、前記超音波送受信器間の超音波の伝搬時間を計測する計測制御部と、前記計測制御部からの信号に基づいて流量を算出する演算部とを備えた超音波流量計測装置。 A measurement channel through which the fluid to be measured flows, an ultrasonic transceiver provided on the upstream side and the downstream side of the measurement channel, an opening hole for allowing the ultrasonic transceiver to face the measurement channel, and an upstream side and a downstream side. A propagation path flow restrictor having a restriction section disposed along the ultrasonic propagation path between the ultrasonic transmitters and receivers on the side and exposed in the flow, and measuring the propagation time of ultrasonic waves between the ultrasonic transmitters and receivers An ultrasonic flow rate measuring device, comprising: a measurement control unit that performs a calculation;  開口穴への被測定流体の流れ込みを低減させる流入抑制体を設けた請求項1記載の超音波流量計測装置。 2. The ultrasonic flow rate measuring device according to claim 1, further comprising an inflow restricting body that reduces the flow of the fluid to be measured into the opening hole.  上流側の開口穴に設けた第一の流入抑制体は流れ偏向体とした請求項2記載の超音波流量計測装置。 3. The ultrasonic flow rate measuring device according to claim 2, wherein the first inflow suppressing member provided in the opening on the upstream side is a flow deflector.  流入抑制体は少なくとも1つの超音波透過口を有する開口穴封止部とした請求項2記載の超音波流量計測装置。 (3) The ultrasonic flow rate measuring device according to (2), wherein the inflow suppressing body is an opening hole sealing portion having at least one ultrasonic transmission port.  伝搬路流れ規制体は超音波伝搬路の上流側および下流側に配置した請求項1記載の超音波流量計測装置。 2. The ultrasonic flow measurement device according to claim 1, wherein the propagation path flow restricting member is arranged on an upstream side and a downstream side of the ultrasonic wave propagation path.  超音波伝搬路の上流側および下流側に配置した伝搬路流れ規制体は連結部を介して一体化した請求項5記載の超音波流量計測装置。 The ultrasonic flow measurement device according to claim 5, wherein the propagation path flow restrictors disposed on the upstream side and the downstream side of the ultrasonic propagation path are integrated via a connecting portion.  伝搬路流れ規制体は被測定流体の種類に応じて超音波伝搬路からの設置距離を変えた請求項1記載の超音波流量計測装置。 2. The ultrasonic flow rate measuring device according to claim 1, wherein the propagation path flow restricting body changes an installation distance from the ultrasonic propagation path according to a type of the fluid to be measured.
JP2003422420A 1999-03-17 2003-12-19 Ultrasonic flow measuring device Expired - Fee Related JP3781424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003422420A JP3781424B2 (en) 1999-03-17 2003-12-19 Ultrasonic flow measuring device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP7145899 1999-03-17
JP9256099 1999-03-31
JP10224099 1999-04-09
JP10787899 1999-04-15
JP2003422420A JP3781424B2 (en) 1999-03-17 2003-12-19 Ultrasonic flow measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000605166 Division 2000-03-17

Publications (2)

Publication Number Publication Date
JP2004101543A true JP2004101543A (en) 2004-04-02
JP3781424B2 JP3781424B2 (en) 2006-05-31

Family

ID=32303765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003422420A Expired - Fee Related JP3781424B2 (en) 1999-03-17 2003-12-19 Ultrasonic flow measuring device

Country Status (1)

Country Link
JP (1) JP3781424B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6368916B2 (en) * 2015-04-16 2018-08-08 パナソニックIpマネジメント株式会社 Flow measuring device

Also Published As

Publication number Publication date
JP3781424B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
WO2000055581A1 (en) Ultrasonic flowmeter
US7360449B2 (en) Ultrasonic fluid measurement instrument having a plurality of split channels formed by partition boards
US7252015B2 (en) Ultrasonic flow meter including guide elements
KR100495970B1 (en) Flow measuring device
JP2010164558A (en) Device for measuring flow of fluid
WO2014057673A1 (en) Flowmeter
CN101424554B (en) Ultrasonic flow measuring instrument
CN112543861A (en) Ultrasonic flowmeter
JP2004101542A (en) Ultrasonic flow measuring instrument
JP4207662B2 (en) Ultrasonic fluid sensor
JP2004101543A (en) Ultrasonic flow measuring instrument
JP2003065817A (en) Ultrasonic flow-measuring instrument
JP2009264906A (en) Flow meter
JP2004279224A (en) Supersonic flowmeter
JP3922078B2 (en) Ultrasonic flow measuring device
JP4084236B2 (en) Ultrasonic flow meter
JP3438713B2 (en) Ultrasonic flow meter
JP3438716B2 (en) Ultrasonic flow meter
JP3436247B2 (en) Ultrasonic flow meter
JP3514259B1 (en) Ultrasonic flow meter
JPH09318411A (en) Ultrasonic flowmeter
JPH11351926A (en) Ultrasonic flow rate measuring device
JP2004198372A (en) Fluid measuring apparatus
JP2004069527A (en) Ultrasonic flow rate measuring device
JP2004028664A (en) Ultrasonic wave type flow rate measuring apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060306

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees