JP2004100580A - Hybrid vehicle - Google Patents

Hybrid vehicle Download PDF

Info

Publication number
JP2004100580A
JP2004100580A JP2002263607A JP2002263607A JP2004100580A JP 2004100580 A JP2004100580 A JP 2004100580A JP 2002263607 A JP2002263607 A JP 2002263607A JP 2002263607 A JP2002263607 A JP 2002263607A JP 2004100580 A JP2004100580 A JP 2004100580A
Authority
JP
Japan
Prior art keywords
engine
vehicle
output shaft
oil
traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002263607A
Other languages
Japanese (ja)
Other versions
JP3722102B2 (en
Inventor
Keijiro Oshima
大島 啓次郎
Takeshi Hoshiba
干場 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002263607A priority Critical patent/JP3722102B2/en
Publication of JP2004100580A publication Critical patent/JP2004100580A/en
Application granted granted Critical
Publication of JP3722102B2 publication Critical patent/JP3722102B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • General Details Of Gearings (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To operate an oil pump at appropriate timing and to avoid unneeded battery consumption in a hybrid vehicle having a lubrication mechanism for operating the oil pump with the rotary torque of an engine output shaft. <P>SOLUTION: When the vehicle makes transition to an engine stop drive mode (Step S1; YES), a controller for hybrid control measures drive time and drive distance of the vehicle while no lubricant is supplied to a power distribution mechanism, and measures the temperature of oil in the power distribution mechanism (Step S4) and operates an oil pump with a pump operation rotational speed and a pump operation rotary time corresponding to the oil temperature (Step S5) when a preset non-lubrication drive enable time passes (Step S2; YES) or a non-lubrication drive enable distance is driven (Step S3; YES). <P>COPYRIGHT: (C)2004,JPO

Description

【発明の属する技術分野】
本発明はエンジンと電動モータとを車両走行時の動力源として備えたハイブリッド車両に関し、特に、エンジン出力軸と同一軸線上にオイルポンプを配置し、エンジン出力でオイルポンプを作動させる潤滑機構を備えたハイブリッド車両に関する。
【従来の技術】
内燃機関と電動モータを動力源とし、エンジン出力軸の回転によってオイルポンプを作動させて動力分割機構などへ潤滑油を供給するハイブリッド車両においては、電気自動車走行(EV走行)時のようにエンジンを停止させて走行するときには、ジェネレータの回転トルクをオイルポンプに伝達し、動力分割機構などへ潤滑油を供給するように構成されたものが知られている。
例えば、特開平10−169485号公報(特許文献1)には、エンジン出力を駆動輪とジェネレータに分配する動力分割機構としてプラネタリーギヤを使用し、車両がハイブリッド走行(HV走行)しているときには、エンジン出力軸の回転トルクでオイルポンプを作動させる一方、車両がEV走行しているときには、ジェネレータの回転トルクでエンジン出力軸を強制的に回転させ、オイルポンプを作動させる構成が開示されている。
プラネタリーギヤの歯車要素と上記各軸の回転数はプラネタリーギヤの共線特性を基にジェネレータの回転数を制御することで調整することが可能であるから、車両がEV走行している場合において、車両の走行負荷が大きくなると、ジェネレータの回転数を上げてオイルポンプの吐出量を増加させる一方で、走行負荷が小さくなると、ジェネレータの回転数を下げてオイルポンプの吐出量を減少させることが可能となる。かかる構成により、車両がエンジン停止のまま走行している場合であっても、走行負荷に対応した適切な回転数でジェネレータを駆動することでオイルポンプを作動できるため、動力分割機構への潤滑油の供給を適切に行うことができる。
【特許文献1】
特開平10−169485号公報
【発明が解決しようとする課題】
しかし、EV走行期間の全てにおいて、ジェネレータを駆動すると、バッテリの消費量を不要に増大させてしまい、EV走行の航続距離が短縮するなどの不都合が生じる。ハイブリッド車の商品価値を高めるには、EV走行の航続距離を延長することが課題となっている。
そこで、本発明は、エンジン出力軸の回転トルクでオイルポンプを作動させる潤滑機構を備えたハイブリッド車両において、不必要なバッテリ消費を抑制しつつ、オイルポンプを適切なタイミングで作動させる機構を備えたハイブリッド車両を提案することを課題とする。
【課題を解決するための手段】
上記の課題を解決するため、本発明のハイブリッド車両は、エンジンとモータジェネレータ機構とを組み合わせた動力源と、前記エンジンの出力を駆動輪と前記モータジェネレータ機構のそれぞれに動力伝達するとともに、当該モータジェネレータ機構によりエンジン出力軸を強制回転できるように構成した動力伝達機構と、前記エンジン出力軸と直結され、前記動力伝達機構に潤滑油を供給するオイルポンプと、前記動力源を制御する制御手段とを備え、前記制御手段は、車両の走行モードがエンジン停止走行モードに遷移したか否かを判定する走行モード判定手段と、当該判定結果に基づいて前記モータジェネレータ機構を制御するモータジェネレータ制御手段とを備え、前記モータジェネレータ制御手段は、前記車両の走行モードがエンジン停止走行モードに遷移した後であって、前記動力伝達機構への潤滑油の供給が休止されてからの経過量を計測する計測手段と、当該計測手段の計測結果と予め定められた所定量を比較する比較手段と、計測結果が所定量を超えた場合に、前記モータジェネレータ機構を作動させてエンジン出力軸を所定時間強制的に回転させるエンジン出力軸強制回転制御手段とを備える。かかる構成により、車両がエンジン停止走行モードに遷移した場合に、動力分割機構が無潤滑状態で焼損しないように適切なタイミングでオイルポンプを作動させ、動力分割機構に間欠的に潤滑油を供給することができるため、常にオイルポンプを作動させる必要がなく、ジェネレータ作動によるバッテリ消費を極力抑えることで、EV走行の航続距離を延ばすことができる。
好ましくは、前記計測手段による前記経過量の計測と、前記エンジン出力軸強制回転制御手段によるエンジン出力軸の強制回転とが交互に繰り返されるように構成される。かかる構成により、適切なタイミングでオイルポンプを作動することで、バッテリ消費を抑えつつ、動力分割機構が焼損しないように構成できる。好ましくは、前記経過量は車両の走行時間又は走行距離とする。これにより、車両の走行時間又は走行距離を基にオイルポンプの作動タイミングを決定できる。
好ましくは、前記モータジェネレータ制御手段は、前記動力伝達機構内の油温を計測する油温センサを含み、当該油温を基にエンジン出力軸の回転数及び回転時間を求める。かかる構成により、より精密なポンプ制御が可能となる。
好ましくは、前記エンジン停止走行モードは、車両が電気自動車走行をしているか、又は減速若しくは制動時の走行モードである。ハイブリッド車両では、車両が電気自動車走行をしているか、又は減速若しくは制動時にエンジンが停止するため、オイルポンプ駆動源の代替動力源として、ジェネレータを利用し、車両の走行状況に応じて適切なタイミングで動力分割機構に潤滑油を供給することが可能となる。
好ましくは、前記駆動輪に動力を出力するための電動モータをさらに備え、
前記動力伝達機構はサンギヤ、プラネタリーキャリア、及びリングギヤの3つの歯車要素から成る遊星歯車機構として構成されており、
前記3つの歯車要素のうち何れか1つに対して前記エンジン出力軸が接続される一方、他の歯車要素のそれぞれは前記モータジェネレータ機構及び前記電動モータに接続され、前記オイルポンプは前記遊星歯車機構に潤滑油を供給するものである。
【発明の実施の形態】
以下、各図を参照して本実施形態について説明する。
図1は本実施形態に係わるハイブリッド車両のトランスアクスルを中心とした動力系統の主なシステム構成図である。
同図に示すように、ハイブリッド車両のトランスアクスルは、内燃機関であるエンジン10の運動エネルギーを電気エネルギーに変換するジェネレータ14と、エンジン10の補助動力源として機能するモータ16と、エンジン出力をジェネレータ14と駆動輪28のそれぞれ2系統に分配する動力分割機構15とを含んで構成されている。ジェネレータ14はインバータ32を介してバッテリ34から電源供給を受けて電動モータとして作動することも可能である。
動力分割機構15は遊星歯車と称されるプラネタリーギヤから構成されており、複数の歯車要素の中心で自転する外歯歯車のサンギヤ15sと、サンギヤ15sに外接しながらその周辺を自転しつつ公転する外歯歯車のピニオンギヤ15pと、ピニオンギヤ15pと噛合するように中空環状に形成された内歯歯車のリングギヤ15rと、ピニオンギヤ15pを軸止するとともにピニオンギヤ15pの公転を通じて自転するプラネタリーキャリア15cとを備えている。
エンジン10を駆動することによって発生した回転トルクは、クランク軸11及びコイルスプリング式トランスアクスルダンパ12を介して出力軸13に伝達される。出力軸13の軸線上にはオイルポンプ17が配設されており、出力軸13の回転トルクの供給を受けてオイルポンプ17が作動するように構成されている。オイルポンプ17としては、トロコイド式ポンプ、ギヤ式ポンプなどを用いることができる。オイルパン18には潤滑油が充填されており、オイルポンプ17によって吸引された潤滑油は動力分割機構15などの各部の動力系統に搬送されて、各歯車要素及び各軸の回転部分及び摺動部分を循環し、各部を冷却するとともに、摩擦抵抗を低減し、腐食防止、気密保持の役割を果たす。
ジェネレータ14は出力軸13に対して回転自在に軸支された永久磁石から成るロータ14rと、3相巻線が巻回されたステータ14sとを備えた交流同期発電機であり、バッテリ34の充電やモータ駆動用の電力を供給するとともに、発電量を制御することでロータ14rの回転数を変化させ、トランスアクスルの無段変速機機能を実現している。同様に、モータ16は出力軸13に対して回転自在に軸止された永久磁石から成るロータ16rと、3相巻線が巻回されたステータ16sとを備えた交流同期発電機であり、当該3相巻線に3相交流電流を供給することで、モータ内に回転磁界を発生させ、所定の回転トルクを出力する。モータ16はエンジン10の補助動力源として、円滑な発進、加速をアシストする他、回生ブレーキ作動時には、車両の運動エネルギーを電気エネルギーに変換し、バッテリ34を充電する。バッテリ34は必要な定格電圧を備えるように個々のバッテリモジュールを適宜直列接続した構造を備えるようになっていてよい。動力分割機構15の各歯車要素の接続構成については、プラネタリーキャリア15cは出力軸13に、サンギヤ15sはロータ14rに、リングギヤ15rはロータ16r及びチェーンドライブスプロケット19にそれぞれ連結された構成となっている。かかる構成により、エンジン出力の一部は出力軸13、プラネタリーキャリア15c、ピニオンギヤ15p、リングギヤ15r、及びチェーンドライブスプロケット19を介して駆動輪28に伝達される他、残りの一部は出力軸13、プラネタリーキャリア15c、ピニオンギヤ15p、及びサンギヤ15sを介してロータ14rに伝達されて発電に利用される。
同図に示すギヤトレーンは4軸構成となっており、主軸上には出力軸13を中心としてジェネレータ14、動力分割機構15、モータ16、及びチェーンドライブスプロケット19が配置され、第2軸上にはチェーンドライブスプロケット19の回転トルクをチェーン20を介して伝達するチェーンドリブンスプロケット21及び同軸上に固定されたカウンタードライブギヤ22が配置され、第3軸上にはカウンタードライブギヤ22と噛合するカウンタードリブンギヤ23及び同軸上に固定されたファイナルドライブピニオンギヤ24が配置され、第4軸上にはファイナルドライブピニオンギヤ24と噛合するファイナルリングギヤ25と、駆動輪28の内輪及び外輪の回転差を吸収するように回転トルクを分配するディファレンシャル装置26と、ディファレンシャル装置26の差動出力を駆動輪28に伝達するドライブシャフト27とが配置されている。
これらの動力系統を制御するシステムコントローラとして、図示しないクランクポジションセンサ、カムポジションセンサ、及びスロットルポジションセンサなどの各種センサ出力からエンジン10の燃料噴射制御、点火時期制御、及び可変バルブタイミング制御などを行うエンジンコントロールユニット(ECU)29と、アクセル開度、車速、及びシフトポジションから必要なエンジン出力、モータトルク、及びジェネレータトルクを求め、ECU29及びモータコントローラ31に要求値を出力し、動力系統の制御を行うハイブリッド制御用コントローラ30と、同コントローラ30からの駆動要求値に従い、インバータ32を介してジェネレータ14及びモータ16を制御するモータコントローラ31が用意されている。
ところで、エンジン10は高出力で航続距離が長く、ある程度の負荷が荷重された状態ではエンジン効率は良好であるが、低速走行などの低負荷の状態ではエンジン効率が悪い。一方、モータ16は低速トルクが大きく、発進又は低速走行を多用する市街地走行に適しているが、航続距離が短い。本実施形態のハイブリッド車両では、このような特性を利用して、走行状況に応じてエンジン10とモータ16とを巧みに使い分けることで、それぞれの長所を活かしつつ、短所を補うことにより、滑らかでレスポンスのよい動力性能の実現と燃費向上を図っている。
例えば、発進時又は低速走行時では、エンジン10を停止する一方、バッテリ34からの電源供給を受けてモータ16を駆動し、EV走行を行う。このため、ハイブリッド制御用コントローラ30はバッテリ34に備えられたリレー33を作動し、インバータ32へ直流高電圧電源を供給する。インバータ32にはモータ用とジェネレータ用のそれぞれ6個のパワートランジスタで構成される3相ブリッジ回路が備えられており、直流電流と3相交流電流の変換を行う。パワートランジスタの制御はモータコントローラ31によって行われ、インバータ32から同コントローラ31に対して出力電流値などの電流制御に必要な情報が送信されている。インバータ32はモータ16の出力トルク及び回転数を所望の値に調整するために必要な三相交流電流の振幅及び周波数を調整し、モータ16に供給する。
通常走行時においては、エンジン10を駆動することでエンジン出力の一部を駆動輪28に伝達するとともに、残りの一部を発電に利用し、ジェネレータ14で得られた電力でモータ16を駆動してHV走行を行う。HV走行では、燃料消費率のよい高トルク域でエンジン10が作動するように動力分割機構15における動力配分を調整し、エンジン出力をアシストする。ハイブリッド制御用コントローラ30は、アクセルペダルの踏み込み量と車速から必要なエンジン出力を算出し、最適燃費線上からエンジン回転数を算出する。さらに、電子スロットルの開度制御を行うとともに、プラネタリーギヤの共線特性からジェネレータ14の回転数を求め、エンジン回転数を制御する。これと同時に、駆動輪28の必要な駆動力からモータ16分担すべきトルクを算出し、モータコントローラ31に必要な要求値を出力する。
全開加速走行や登坂走行などの高負荷走行時には、上述した通常走行時の駆動方法に加えて、バッテリ34からの電源供給を受けてモータ16を駆動し、モータ16の出力トルクを増大させてエンジン出力をアシストする。モータ16に供給される三相交流電流の電流値を調整することでモータ16の出力トルクを調整できる。減速時若しくは制動時には、車両の運動エネルギーはギヤトレーンを介してモータ16に供給され、電気エネルギーに変換される。つまり、このときモータ16は発電機として機能する。モータ16によって発電された電気エネルギーはバッテリ34に充電される。また、このときエンジン10は自動的に停止される。
図4は上述した各走行条件下におけるオイルポンプ駆動源と走行モードを対応付けた表である。同図に示すように、走行条件が「通常走行」又は「高負荷走行」のときには、エンジン10が作動した状態で車両が走行しているため、オイルポンプ17の駆動源は主としてエンジン10であるが、ジェネレータ14の回転トルクも補助的に加わる。本明細書では、エンジン10が作動した状態での車両走行モードを「エンジン作動走行モード」と称する。一方、走行条件が「発進又は軽負荷走行」又は「減速又は制動」のときには、エンジン10が停止した状態で車両が走行しているため、この間はエンジン出力を利用してオイルポンプ17を作動することができなくなる。動力分割機構15などの動力系統の無潤滑状態が一定期間継続すると、ギヤ等の焼け付き、摩耗が生じるため、本実施形態では、エンジン10に替わるオイルポンプ17の代替動力源として、ジェネレータ14を所定のタイミングで駆動し、オイルポンプ17を作動させる。本明細書では、エンジン10が停止した状態での車両走行モードを「エンジン停止走行モード」と称する。
図1に示すように、ハイブリッド制御用コントローラ30には、車両の走行モードに対応してフラグがセットされるレジスタ36を備えており、走行モードがエンジン停止走行モードに遷移すると、レジスタ36に「1」のフラグがセットされ、走行モードがエンジン作動走行モードに遷移すると、レジスタ36に「0」のフラグがセットされる。同コントローラ30は、さらに、車両の走行時間を計測するタイマー37と、車両の走行距離を計測するカウンタ38を備えている。また、動力分割機構15には油温センサ35が設置されており、ハイブリッド制御用コントローラ30は動力分割機構15内の油温を検出できるように構成されている。
図2はジェネレータ14をオイルポンプ17の代替動力源として駆動するときの処理手順を記述したフローチャートである。同図に示す各処理ステップはハイブリッド制御用コントローラ30によって実行される。ステップS1において、ハイブリッド制御用コントローラ30はレジスタ36にセットされているフラグを監視し、車両の走行モードがエンジン停止走行モードに移行したか否かをチェックする。ハイブリッド車両では、車両の走行状況(車速、アクセル開度、ブレーキ、シフトポジション等)を基に、予め定められたエンジン停止条件が満たされている場合に自動的にエンジンを停止するようシステム設計されているため、上記エンジン停止条件が満たされた場合に、レジスタ36に「1」がセットされる。エンジン停止条件として、例えば、(1)発進してから車速が所定速度に達していない、(2)一定期間継続して車速が所定速度以下になった、(3)車速及びブレーキ操作情報から車両が減速若しくは制動状態にある、(4)ドライバの手動操作によってEV走行モードが選択された、などの条件を設定することができる。エンジン10が駆動している状態でエンジン停止条件が成立すると、ハイブリッド制御用コントローラ30はECU29にエンジン停止要求信号を出力し、エンジン10を停止させる。
ハイブリッド制御用コントローラ30は、レジスタ36に「1」がセットされていることを検出すると(ステップS1;YES)、タイマー37を作動させ、動力分割機構15に潤滑油を供給しないで走行できる時間(以下、「無潤滑走行可能時間」と称する)を計測するとともに(ステップS2)、カウンタ38の値をインクリメントすることで、動力分割機構15に潤滑油を供給しない状態で走行できる距離(以下、「無潤滑走行可能距離」と称する)を計測する(ステップS3)。無潤滑走行可能時間、及び無潤滑走行可能距離は、動力分割機構15に潤滑油を供給しない状態でどの程度の時間又は距離を走行できるかを予め実験で求めた値であり、遊星歯車機構の各歯車要素や各軸が焼損しないで安全に走行できるように多少の余裕をもたせてある。
車両の走行時間が無潤滑走行可能時間内であり(ステップS2;NO)、かつ走行距離が無潤滑走行可能距離内であれば(ステップS3;NO)、ステップS2〜ステップS3の間でループを形成して、これらの判断ステップを繰り返し実行し、走行距離が無潤滑走行可能距離を越えるか(ステップS2;YES)、又は無潤滑走行可能距離を越えた場合に(ステップS4;YES)、当該ループを抜けて、タイマー37の値及びカウンタ38の値をリセットし、ステップS4に移行する。ステップS4では、ハイブリッド制御用コントローラ30は、油温センサ35のセンサ出力信号を取り込み、動力分割機構15内の油温を計測する。図3はオイルポンプ17を作動するために必要なポンプ作動時間を各油温毎に実験で求め、グラフに表したものである。実験では、ポンプ作動回転数として、Nrpm,Nrpm,Nrpmの3種類の回転数を選択した。同図に示すように、油温が高くなる程、オイルの粘性が低いため、短時間でオイルを動力分割機構15内に十分に拡散できることから、オイルポンプ17の作動時間は短くなっている。また、同図において、Nrpm<Nrpm<Nrpmの関係にあり、ポンプ作動回転数が高い程、オイルポンプ17の作動時間は短時間であることを示している。つまり、油温が一定の場合には、ポンプ作動回転数が高い程、短時間でオイルを動力分割機構15内に拡散できることを意味している。以上のことから、ある油温において、オイルを動力分割機構15内にて十分に拡散するには、オイルポンプ17の所要回転時間及びポンプ作動回転数を適宜調整すればよいことがわかる。
ハイブリッド制御用コントローラ30には、オイルポンプ17を作動させるためのポンプ作動回転数及びポンプ作動時間に関する情報が予め実験で求められ、テーブル情報としてメモリに格納されている。同コントローラ30は、ステップS4において、動力分割機構15内の油温を求めたならば、上記テーブル情報を参照して、オイルポンプ17を間欠作動させるためのポンプ作動回転数及びポンプ作動時間を求め、オイルポンプ17を作動させる(ステップS5)。同ステップにおいて、オイルポンプ17を作動させるには、インバータ32を介してバッテリ34からジェネレータ14に三相交流電流を供給し、サンギヤ15sを介してプラネタリーキャリア15cに回転トルクを与える。リングギヤ15rには駆動輪28からの走行負荷が荷重されているため、その反力により、プラネタリーキャリア15cに連結された出力軸13が回転し、オイルポンプ17を作動させることができる。ポンプ作動回転数及び作動時間は、ジェネレータ14へ供給される三相交流電流の周波数及び電流供給時間で調整できる。
このようにして、オイルポンプ17を作動させ、動力分割機構15内に潤滑油を十分に供給したならば(ステップS5)、再びステップS1に戻る。ここで、車両のエンジン停止走行モードが維持されているならば(ステップS1;YES)、ステップS2〜ステップS5の処理を繰り返し、これらのステップ間でループを形成する。つまり、動力分割機構15へ潤滑油を供給しない状態でしばらく車両を走行させ、走行時間が無潤滑走行可能時間に達するか、若しくは走行距離が無潤滑走行可能距離に達した段階でオイルポンプ17を再作動させて、潤滑油が切れ掛かっている動力分割機構15に潤滑油を供給する。つまり、間欠的にオイルポンプ17を作動させることで、動力分割機構15が無潤滑状態となる前に適度なタイミングでオイル供給を促すことができるため、動力分割機構15の焼き付きを防止しつつ、ジェネレータ14の作動によるバッテリ34の消費電力を極力抑えることが可能となる。これによって、EV走行の航続距離を延ばすことができ、ひいてはハイブリッド車両の商品性を高めることができる。また、EV走行の際にオイルポンプ駆動用の専用モータを別途設ける必要がないため、乾燥重量の増大を防ぎ、燃費向上及びコスト低下に資することができる。
ここで、図2の各処理ステップを車両の動作と関連付けて説明すると、以下のようになる。まず、車両停止状態から運転者がアクセルを踏み、車両を発進させ、低速走行を行うまでの段階では、車両はEV走行を行っているため、車両の走行モードはエンジン停止走行モードにある(ステップS1;YES)。そこで、車両はステップS2〜ステップS5の処理ステップを繰り返し実行することで、動力分割機構15に潤滑油を供給しない無潤滑走行(ステップS2,S3)と、オイルポンプを作動させて動力分割機構15に潤滑油を供給する潤滑油供給(ステップS5)を交互に繰り返すことで、バッテリ消費を抑える。
車速が一定速度を超えて通常走行に移行したり、或いは登坂走行や全開加速走行などの高負荷走行状態では、車両はEV走行からHV走行へと切り替わるため、走行モードはエンジン作動走行モードへと遷移する。この走行モードでは、エンジン出力を主動力源とし、モータ出力を補助的に利用しつつ走行するため、ステップS1の判断結果はNOとなり、ステップS2〜ステップS5の処理ステップは実行されず、主としてエンジン出力によるオイルポンプ作動が行われる。一方、運転者がブレーキペダルを踏むなどして、車両が減速又は制動状態にある場合には、エンジン停止走行モードに遷移するため、ステップS1の判断結果はYESとなり、ステップS2〜ステップS5の処理ステップが実行される。
尚、上記の説明ではオイルの状態を検出する手段として、油温センサ35を設けていたが、これに加えて、外気温を検出する温度センサを別途設けることで、より精密なポンプ作動制御を行ってもよい。
【発明の効果】
本発明によれば、車両がエンジン停止走行モードに遷移した場合に、動力伝達機構が焼損しないように適切なタイミングでオイルポンプを作動させ、動力伝達機構に間欠的に潤滑油を供給する構成であるため、常にオイルポンプを作動させる必要がなく、ジェネレータ作動によるバッテリ消費を極力抑えることで、EV走行の航続距離を延ばすことができる。また、動力伝達機構内の油温に基づいて、ポンプ作動回転数及びポンプ作動時間を求めることにより、車両の走行状況を反映したポンプ制御が可能となり、バッテリ消費を極力抑えつつ、動力伝達機構への十分な潤滑油の供給が可能となる。
【図面の簡単な説明】
【図1】本実施形態に係わるハイブリッド車両のトランスアクスルを中心とした動力系統の主なシステム構成図である。
【図2】ジェネレータをオイルポンプの代替動力源として駆動するときのハイブリッド制御用コントローラの処理手順を記述したフローチャートである。
【図3】オイルポンプを間欠作動するために必要なポンプ作動時間を各油温毎に実験で求めたグラフである。
【図4】各走行条件下におけるオイルポンプ駆動源と走行モードを対応付けた表である。
【符号の説明】
10…エンジン
13…出力軸
14…ジェネレータ
15…動力分割機構
16…モータ
17…オイルポンプ
28…駆動輪
29…エンジンコントロールユニット
30…ハイブリッド制御用コントローラ
31…モータコントローラ
35…油温センサ
36…レジスタ
37…タイマー
38…カウンタ
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hybrid vehicle equipped with an engine and an electric motor as power sources when the vehicle travels, and in particular, includes a lubrication mechanism that arranges an oil pump on the same axis as an engine output shaft and operates the oil pump with engine output. Related to hybrid vehicles.
[Prior art]
In a hybrid vehicle in which an internal combustion engine and an electric motor are used as power sources and an oil pump is operated by rotation of an engine output shaft to supply lubricating oil to a power split device or the like, the engine is operated as in electric vehicle running (EV running). When the vehicle is stopped and travels, a configuration is known in which the rotational torque of a generator is transmitted to an oil pump and lubricating oil is supplied to a power split device and the like.
For example, Japanese Patent Application Laid-Open No. 10-169485 (Patent Literature 1) discloses that a planetary gear is used as a power split mechanism for distributing engine output to driving wheels and a generator, and the vehicle is running in a hybrid mode (HV mode). There is disclosed a configuration in which an oil pump is operated by a rotation torque of an engine output shaft, and when the vehicle is running in an EV, the engine output shaft is forcibly rotated by a rotation torque of a generator to operate the oil pump. .
Since the rotation speed of the gear elements of the planetary gear and each of the above-mentioned shafts can be adjusted by controlling the rotation speed of the generator based on the collinear characteristics of the planetary gear, when the vehicle is running in the EV mode In the above, when the running load of the vehicle increases, the rotation speed of the generator is increased to increase the discharge amount of the oil pump, while when the running load decreases, the rotation speed of the generator is reduced to decrease the discharge amount of the oil pump. Becomes possible. With this configuration, even when the vehicle is traveling with the engine stopped, the oil pump can be operated by driving the generator at an appropriate rotation speed corresponding to the traveling load. Can be appropriately supplied.
[Patent Document 1]
JP-A-10-169485
[Problems to be solved by the invention]
However, when the generator is driven during the entire EV traveling period, the consumption of the battery is unnecessarily increased, resulting in a disadvantage that the cruising distance of the EV traveling is shortened. In order to increase the commercial value of a hybrid vehicle, it is an issue to extend the cruising range of EV driving.
Therefore, the present invention provides a hybrid vehicle including a lubrication mechanism that operates an oil pump with a rotation torque of an engine output shaft, including a mechanism that operates the oil pump at an appropriate timing while suppressing unnecessary battery consumption. It is an object to propose a hybrid vehicle.
[Means for Solving the Problems]
In order to solve the above-described problems, a hybrid vehicle according to the present invention includes a power source combining an engine and a motor generator mechanism, and transmitting power of the engine to driving wheels and the motor generator mechanism, respectively, A power transmission mechanism configured so that an engine output shaft can be forcibly rotated by a generator mechanism, an oil pump that is directly connected to the engine output shaft and supplies lubricating oil to the power transmission mechanism, and a control unit that controls the power source; Driving mode determination means for determining whether or not the travel mode of the vehicle has transitioned to the engine stop travel mode, and motor generator control means for controlling the motor generator mechanism based on the determination result. Wherein the motor generator control means is configured to switch the running mode of the vehicle to an Measuring means for measuring the amount of elapsed time after the supply of the lubricating oil to the power transmission mechanism has been stopped, after a transition to the gin stop running mode, and a measurement result of the measuring means and a predetermined amount And an engine output shaft forced rotation control unit that activates the motor generator mechanism to forcibly rotate the engine output shaft for a predetermined time when the measurement result exceeds a predetermined amount. With such a configuration, when the vehicle transits to the engine stop running mode, the oil pump is operated at an appropriate timing so that the power split mechanism is not burned in an unlubricated state, and lubricating oil is intermittently supplied to the power split mechanism. Therefore, it is not necessary to always operate the oil pump, and the cruising distance of EV traveling can be extended by minimizing battery consumption due to generator operation.
Preferably, the measurement of the elapsed amount by the measuring means and the forced rotation of the engine output shaft by the engine output shaft forced rotation control means are alternately repeated. With this configuration, by operating the oil pump at an appropriate timing, it is possible to suppress the battery consumption and to prevent the power split mechanism from burning out. Preferably, the elapsed amount is a running time or a running distance of the vehicle. Thus, the operation timing of the oil pump can be determined based on the travel time or travel distance of the vehicle.
Preferably, the motor generator control means includes an oil temperature sensor for measuring an oil temperature in the power transmission mechanism, and obtains a rotation speed and a rotation time of an engine output shaft based on the oil temperature. With this configuration, more precise pump control becomes possible.
Preferably, the engine stop traveling mode is a traveling mode in which the vehicle is traveling on an electric vehicle or when the vehicle is being decelerated or braked. In a hybrid vehicle, the vehicle is running on an electric vehicle, or the engine stops when decelerating or braking. Therefore, a generator is used as an alternative power source for the oil pump drive source, and an appropriate timing is set according to the running condition of the vehicle. Thus, lubricating oil can be supplied to the power split device.
Preferably, further comprising an electric motor for outputting power to the drive wheels,
The power transmission mechanism is configured as a planetary gear mechanism including three gear elements of a sun gear, a planetary carrier, and a ring gear,
The engine output shaft is connected to any one of the three gear elements, while each of the other gear elements is connected to the motor generator mechanism and the electric motor, and the oil pump is connected to the planetary gear. It supplies lubricating oil to the mechanism.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present embodiment will be described with reference to the drawings.
FIG. 1 is a main system configuration diagram of a power system centering on a transaxle of a hybrid vehicle according to the present embodiment.
As shown in FIG. 1, the transaxle of the hybrid vehicle includes a generator 14 that converts kinetic energy of an engine 10 as an internal combustion engine into electric energy, a motor 16 that functions as an auxiliary power source of the engine 10, and a generator 16 that outputs engine power. 14 and a power split mechanism 15 that distributes the driving wheels to two systems. The generator 14 can operate as an electric motor by receiving power supply from the battery 34 via the inverter 32.
The power split mechanism 15 is composed of a planetary gear called a planetary gear. The external gear sun gear 15s rotates at the center of a plurality of gear elements, and revolves around the sun gear 15s while rotating around the sun gear 15s. A pinion gear 15p of an external gear, a ring gear 15r of an internal gear formed in a hollow annular shape so as to mesh with the pinion gear 15p, and a planetary carrier 15c that rotates on the pinion gear 15p while revolving around the pinion gear 15p. Have.
The rotation torque generated by driving the engine 10 is transmitted to the output shaft 13 via the crankshaft 11 and the coil spring type transaxle damper 12. An oil pump 17 is provided on the axis of the output shaft 13, and the oil pump 17 is configured to operate by receiving the rotation torque of the output shaft 13. As the oil pump 17, a trochoid pump, a gear pump, or the like can be used. The oil pan 18 is filled with lubricating oil, and the lubricating oil sucked by the oil pump 17 is conveyed to the power system of each unit such as the power split mechanism 15, and the rotating parts of each gear element and each shaft, and the sliding parts. It circulates parts, cools each part, reduces frictional resistance, plays a role in preventing corrosion and maintaining airtightness.
The generator 14 is an AC synchronous generator including a rotor 14 r composed of a permanent magnet rotatably supported on the output shaft 13 and a stator 14 s wound with three-phase windings. In addition to supplying electric power for driving the motor and the motor, the number of revolutions of the rotor 14r is changed by controlling the amount of power generation, thereby realizing a continuously variable transmission function of the transaxle. Similarly, the motor 16 is an AC synchronous generator including a rotor 16r formed of a permanent magnet rotatably fixed to the output shaft 13 and a stator 16s having three-phase windings wound thereon. By supplying a three-phase alternating current to the three-phase winding, a rotating magnetic field is generated in the motor, and a predetermined rotating torque is output. The motor 16 assists smooth starting and acceleration as an auxiliary power source of the engine 10, and converts kinetic energy of the vehicle into electric energy when the regenerative braking is operated, and charges the battery 34. The battery 34 may have a structure in which individual battery modules are appropriately connected in series so as to have a required rated voltage. The connection configuration of each gear element of the power split device 15 is such that the planetary carrier 15c is connected to the output shaft 13, the sun gear 15s is connected to the rotor 14r, and the ring gear 15r is connected to the rotor 16r and the chain drive sprocket 19. I have. With this configuration, a part of the engine output is transmitted to the drive wheels 28 via the output shaft 13, the planetary carrier 15c, the pinion gear 15p, the ring gear 15r, and the chain drive sprocket 19, and the remaining part is output shaft 13 The power is transmitted to the rotor 14r via the planetary carrier 15c, the pinion gear 15p, and the sun gear 15s, and is used for power generation.
The gear train shown in the figure has a four-shaft configuration. On the main shaft, a generator 14, a power split mechanism 15, a motor 16, and a chain drive sprocket 19 are arranged around an output shaft 13, and on a second shaft. A chain driven sprocket 21 for transmitting the rotational torque of the chain drive sprocket 19 via a chain 20 and a counter drive gear 22 fixed on the same axis are arranged, and a counter driven gear 23 meshing with the counter drive gear 22 is arranged on a third shaft. A final drive pinion gear 24 fixed on the same axis is arranged. On the fourth shaft, a final ring gear 25 meshing with the final drive pinion gear 24 and a rotational torque so as to absorb a rotational difference between an inner ring and an outer ring of a drive wheel 28 are provided. Distributing differential equipment 26, a drive shaft 27 for transmitting the differential output of the differential device 26 to the drive wheels 28 are arranged.
As a system controller that controls these power systems, it performs fuel injection control, ignition timing control, variable valve timing control, and the like of the engine 10 from various sensor outputs such as a crank position sensor, a cam position sensor, and a throttle position sensor (not shown). The engine control unit (ECU) 29 obtains necessary engine output, motor torque, and generator torque from the accelerator opening, vehicle speed, and shift position, and outputs required values to the ECU 29 and the motor controller 31 to control the power system. A controller 30 for performing hybrid control and a motor controller 31 for controlling the generator 14 and the motor 16 via an inverter 32 in accordance with a drive request value from the controller 30 are provided.
By the way, the engine 10 has a high output and a long cruising distance, and the engine efficiency is good when a certain load is loaded, but the engine efficiency is poor when the load is low such as running at a low speed. On the other hand, the motor 16 has a large low-speed torque and is suitable for running in an urban area that frequently uses starting or low-speed running, but has a short cruising distance. In the hybrid vehicle of the present embodiment, by utilizing such characteristics, the engine 10 and the motor 16 are skillfully used in accordance with the driving situation, thereby making use of the respective advantages and compensating for the disadvantages. The aim is to achieve responsive power performance and improve fuel efficiency.
For example, at the time of starting or running at low speed, the engine 10 is stopped, while the power is supplied from the battery 34 to drive the motor 16 to perform EV running. For this reason, the hybrid control controller 30 operates the relay 33 provided in the battery 34 to supply the DC high voltage power to the inverter 32. The inverter 32 is provided with a three-phase bridge circuit composed of six power transistors each for a motor and for a generator, and converts a DC current and a three-phase AC current. The power transistor is controlled by the motor controller 31, and information necessary for current control such as an output current value is transmitted from the inverter 32 to the controller 31. The inverter 32 adjusts the amplitude and frequency of the three-phase alternating current necessary for adjusting the output torque and the number of revolutions of the motor 16 to desired values, and supplies them to the motor 16.
During normal driving, the engine 10 is driven to transmit a part of the engine output to the drive wheels 28, and the remaining part is used for power generation, and the motor 16 is driven by the electric power obtained by the generator 14. HV running. In the HV running, the power distribution in the power split device 15 is adjusted so that the engine 10 operates in the high torque region where the fuel consumption rate is good, and the engine output is assisted. The hybrid control controller 30 calculates the required engine output from the depression amount of the accelerator pedal and the vehicle speed, and calculates the engine speed from the optimal fuel consumption line. Further, while controlling the opening degree of the electronic throttle, the rotational speed of the generator 14 is obtained from the collinear characteristic of the planetary gear, and the engine rotational speed is controlled. At the same time, the torque to be shared by the motor 16 is calculated from the required driving force of the driving wheels 28, and the required value is output to the motor controller 31.
At the time of high load traveling such as full-open acceleration traveling or uphill traveling, in addition to the above-described driving method during normal traveling, the motor 16 is driven by receiving power supply from the battery 34, and the output torque of the motor 16 is increased to increase the engine torque. Assist output. The output torque of the motor 16 can be adjusted by adjusting the current value of the three-phase alternating current supplied to the motor 16. At the time of deceleration or braking, the kinetic energy of the vehicle is supplied to the motor 16 via the gear train and is converted into electric energy. That is, at this time, the motor 16 functions as a generator. The electric energy generated by the motor 16 charges the battery 34. At this time, the engine 10 is automatically stopped.
FIG. 4 is a table in which the oil pump drive sources and the traveling modes under the respective traveling conditions described above are associated with each other. As shown in the figure, when the traveling condition is “normal traveling” or “high load traveling”, the vehicle is traveling with the engine 10 operating, and therefore the driving source of the oil pump 17 is mainly the engine 10. However, the rotational torque of the generator 14 is also applied in an auxiliary manner. In the present specification, the vehicle traveling mode in a state where the engine 10 is operated is referred to as an “engine operation traveling mode”. On the other hand, when the traveling condition is “start or light load traveling” or “deceleration or braking”, the vehicle is traveling with the engine 10 stopped, and during this time, the oil pump 17 is operated using the engine output. You can't do that. If the non-lubricated state of the power system such as the power split mechanism 15 continues for a certain period of time, seizure and wear of gears and the like occur, so in this embodiment, the generator 14 is used as an alternative power source of the oil pump 17 instead of the engine 10. It is driven at a predetermined timing to operate the oil pump 17. In this specification, the vehicle traveling mode in a state where the engine 10 is stopped is referred to as “engine stopped traveling mode”.
As shown in FIG. 1, the hybrid control controller 30 includes a register 36 in which a flag is set in accordance with the running mode of the vehicle. When the flag “1” is set and the driving mode shifts to the engine operation driving mode, the flag “0” is set in the register 36. The controller 30 further includes a timer 37 for measuring the traveling time of the vehicle and a counter 38 for measuring the traveling distance of the vehicle. The power split mechanism 15 is provided with an oil temperature sensor 35, and the hybrid control controller 30 is configured to detect the oil temperature in the power split mechanism 15.
FIG. 2 is a flowchart describing a processing procedure when driving the generator 14 as an alternative power source of the oil pump 17. Each processing step shown in the figure is executed by the hybrid control controller 30. In step S1, the hybrid control controller 30 monitors the flag set in the register 36 and checks whether the traveling mode of the vehicle has shifted to the engine stop traveling mode. In a hybrid vehicle, a system is designed to automatically stop the engine when a predetermined engine stop condition is satisfied based on the running conditions of the vehicle (vehicle speed, accelerator opening, brake, shift position, etc.). Therefore, when the engine stop condition is satisfied, “1” is set in the register 36. The engine stop conditions include, for example, (1) the vehicle speed has not reached the predetermined speed after starting, (2) the vehicle speed has been lower than the predetermined speed for a certain period of time, (3) the vehicle speed and the vehicle operation information based on the brake operation information. Are in a decelerating or braking state, and (4) the EV driving mode is selected by a manual operation of the driver. When the engine stop condition is satisfied while the engine 10 is running, the hybrid control controller 30 outputs an engine stop request signal to the ECU 29 to stop the engine 10.
When the hybrid control controller 30 detects that “1” is set in the register 36 (step S1; YES), the hybrid control controller 30 activates the timer 37 to allow the vehicle to travel without supplying lubricating oil to the power split device 15 ( The distance that can be traveled without supplying lubricating oil to the power split device 15 (hereinafter, referred to as "the lubrication-free travel time") is measured (step S2), and the value of the counter 38 is incremented by incrementing the value of the counter 38 (hereinafter, referred to as "runable time"). (Referred to as "the lubrication-free travelable distance") (step S3). The lubrication-free travel time and the lubrication-free travel distance are values obtained by experiments in advance as to how much time or distance the vehicle can travel without supplying lubricating oil to the power split device 15, and the planetary gear mechanism There is some allowance so that each gear element and each shaft can travel safely without burning out.
If the traveling time of the vehicle is within the lubrication-free travel time (step S2; NO) and the travel distance is within the non-lubrication travel distance (step S3; NO), a loop is performed between steps S2 and S3. After forming these, these determination steps are repeatedly executed, and when the traveling distance exceeds the non-lubricated traveling possible distance (step S2; YES), or when the traveling distance exceeds the non-lubricating traveling possible distance (step S4; YES), After exiting the loop, the value of the timer 37 and the value of the counter 38 are reset, and the process proceeds to step S4. In step S4, the hybrid control controller 30 takes in the sensor output signal of the oil temperature sensor 35 and measures the oil temperature in the power split device 15. FIG. 3 is a graph showing the pump operation time required for operating the oil pump 17 for each oil temperature by experiment. In the experiment, the pump operating speed was N 1 rpm, N 2 rpm, N 3 Three kinds of rotation speeds of rpm were selected. As shown in the figure, the higher the oil temperature, the lower the viscosity of the oil. Therefore, the oil can be sufficiently diffused into the power split device 15 in a short time, and the operation time of the oil pump 17 is shortened. In FIG. 1 rpm <N 2 rpm <N 3 rpm, indicating that the higher the pump operating speed, the shorter the operating time of the oil pump 17. That is, when the oil temperature is constant, it means that the higher the pump operating speed, the shorter the oil can be diffused into the power split device 15. From the above, it can be seen that at a certain oil temperature, the oil can be sufficiently diffused in the power split device 15 by appropriately adjusting the required rotation time of the oil pump 17 and the pump operating speed.
In the hybrid control controller 30, information on the pump operation speed and the pump operation time for operating the oil pump 17 is obtained in advance through experiments, and is stored in the memory as table information. When the controller 30 determines the oil temperature in the power split device 15 in step S4, the controller 30 refers to the table information to determine the pump operating speed and the pump operating time for intermittently operating the oil pump 17. Then, the oil pump 17 is operated (step S5). In this step, to operate the oil pump 17, a three-phase AC current is supplied from the battery 34 to the generator 14 via the inverter 32, and a rotational torque is applied to the planetary carrier 15c via the sun gear 15s. Since the running load from the driving wheel 28 is loaded on the ring gear 15r, the output shaft 13 connected to the planetary carrier 15c is rotated by the reaction force, and the oil pump 17 can be operated. The pump operation speed and the operation time can be adjusted by the frequency of the three-phase alternating current supplied to the generator 14 and the current supply time.
Thus, when the oil pump 17 is operated and lubricating oil is sufficiently supplied into the power split device 15 (step S5), the process returns to step S1 again. Here, if the engine stop traveling mode of the vehicle is maintained (step S1; YES), the processing of steps S2 to S5 is repeated, and a loop is formed between these steps. That is, the vehicle is driven for a while in a state in which lubricating oil is not supplied to the power split device 15, and the oil pump 17 is turned on when the running time reaches the non-lubricable running time or when the running distance reaches the non-lubricating running possible distance. The operation is restarted to supply the lubricating oil to the power split device 15 where the lubricating oil is running out. That is, by intermittently operating the oil pump 17, it is possible to prompt the oil supply at an appropriate timing before the power split mechanism 15 becomes a non-lubricated state. The power consumption of the battery 34 due to the operation of the generator 14 can be minimized. As a result, the cruising distance of the EV traveling can be extended, and the commercial value of the hybrid vehicle can be enhanced. In addition, since it is not necessary to separately provide a dedicated motor for driving the oil pump during EV traveling, it is possible to prevent an increase in dry weight, thereby contributing to improved fuel efficiency and reduced cost.
Here, the respective processing steps in FIG. 2 will be described below in association with the operation of the vehicle. First, in a stage from when the vehicle is stopped to when the driver depresses the accelerator, starts the vehicle, and performs low-speed traveling, the vehicle is in EV traveling, and thus the traveling mode of the vehicle is in the engine stopped traveling mode (step S1; YES). Therefore, the vehicle repeatedly executes the processing steps of Steps S2 to S5 to perform lubrication-free running without supplying lubricating oil to the power split mechanism 15 (Steps S2 and S3), and to operate the oil pump to operate the power split mechanism 15. The battery consumption is suppressed by alternately repeating the lubricating oil supply (step S5) for supplying the lubricating oil to the battery.
When the vehicle speed exceeds a certain speed and shifts to normal driving, or in a high-load driving state such as uphill driving or full-open acceleration driving, the vehicle switches from EV driving to HV driving, so the driving mode changes to the engine operation driving mode. Transition. In this traveling mode, the vehicle travels while using the engine output as the main power source and using the motor output in an auxiliary manner. Therefore, the determination result in step S1 is NO, and the processing steps in steps S2 to S5 are not executed. The oil pump is operated by the output. On the other hand, if the vehicle is in a decelerating or braking state, for example, when the driver depresses the brake pedal, the mode transits to the engine stop traveling mode, so that the determination result in step S1 is YES, and the processing in steps S2 to S5 is performed. The steps are performed.
In the above description, the oil temperature sensor 35 is provided as a means for detecting the state of the oil. In addition to this, a temperature sensor for detecting the outside air temperature is separately provided, so that more precise pump operation control can be performed. May go.
【The invention's effect】
According to the present invention, when the vehicle transits to the engine stop traveling mode, the oil pump is operated at an appropriate timing so that the power transmission mechanism does not burn out, and lubricating oil is intermittently supplied to the power transmission mechanism. Therefore, it is not necessary to always operate the oil pump, and the cruising distance of EV traveling can be extended by minimizing battery consumption due to generator operation. In addition, by obtaining the pump operation speed and the pump operation time based on the oil temperature in the power transmission mechanism, it is possible to perform pump control that reflects the running condition of the vehicle, and to minimize the battery consumption and to control the power transmission mechanism. Sufficient lubrication oil can be supplied.
[Brief description of the drawings]
FIG. 1 is a main system configuration diagram of a power system centering on a transaxle of a hybrid vehicle according to an embodiment.
FIG. 2 is a flowchart describing a processing procedure of a hybrid control controller when driving a generator as an alternative power source of an oil pump.
FIG. 3 is a graph showing experimentally a pump operation time required for intermittently operating an oil pump for each oil temperature.
FIG. 4 is a table in which an oil pump drive source and a traveling mode are associated under each traveling condition.
[Explanation of symbols]
10 ... Engine
13 Output shaft
14 ... Generator
15 Power split mechanism
16 ... motor
17 ... oil pump
28 ... Drive wheel
29 ... Engine control unit
30 ... Hybrid control controller
31 ... Motor controller
35 ... Oil temperature sensor
36 ... Register
37 ... Timer
38 ... Counter

Claims (6)

エンジンとモータジェネレータ機構とを組み合わせた動力源と、前記エンジンの出力を駆動輪と前記モータジェネレータ機構のそれぞれに動力伝達するとともに、当該モータジェネレータ機構によりエンジン出力軸を強制回転できるように構成した動力伝達機構と、前記エンジン出力軸と直結され、前記動力伝達機構に潤滑油を供給するオイルポンプと、前記動力源を制御する制御手段とを備え、
前記制御手段は、車両の走行モードがエンジン停止走行モードに遷移したか否かを判定する走行モード判定手段と、当該判定結果に基づいて前記モータジェネレータ機構を制御するモータジェネレータ制御手段とを備え、
前記モータジェネレータ制御手段は、前記車両の走行モードがエンジン停止走行モードに遷移した後であって、前記動力伝達機構への潤滑油の供給が休止されてからの経過量を計測する計測手段と、当該計測手段の計測結果と予め定められた所定量を比較する比較手段と、計測結果が所定量を超えた場合に、前記モータジェネレータ機構を作動させてエンジン出力軸を所定時間強制的に回転させるエンジン出力軸強制回転制御手段とを備える、ハイブリッド車両。
A power source combining an engine and a motor generator mechanism, and a power source configured to transmit the output of the engine to each of the driving wheels and the motor generator mechanism and to forcibly rotate the engine output shaft by the motor generator mechanism. A transmission mechanism, an oil pump that is directly connected to the engine output shaft and supplies lubricating oil to the power transmission mechanism, and a control unit that controls the power source;
The control unit includes a traveling mode determination unit that determines whether the traveling mode of the vehicle has transitioned to the engine stop traveling mode, and a motor generator control unit that controls the motor generator mechanism based on the determination result.
The motor generator control means, after the traveling mode of the vehicle has transitioned to the engine stop traveling mode, measuring means for measuring the amount of elapsed since the supply of lubricating oil to the power transmission mechanism is suspended, Comparing means for comparing the measurement result of the measuring means with a predetermined amount; and, when the measurement result exceeds the predetermined amount, actuating the motor generator mechanism to forcibly rotate the engine output shaft for a predetermined time. A hybrid vehicle comprising: engine output shaft forced rotation control means.
前記計測手段による前記経過量の計測と、前記エンジン出力軸強制回転制御手段によるエンジン出力軸の強制回転とが交互に繰り返されるように構成された、請求項1に記載のハイブリッド車両。2. The hybrid vehicle according to claim 1, wherein the measurement of the elapsed amount by the measuring unit and the forced rotation of the engine output shaft by the engine output shaft forced rotation control unit are alternately repeated. 3. 前記経過量は車両の走行時間又は走行距離である、請求項1又は請求項2に記載のハイブリッド車両。The hybrid vehicle according to claim 1, wherein the elapsed amount is a traveling time or a traveling distance of the vehicle. 前記モータジェネレータ制御手段は、前記動力伝達機構内の油温を計測する油温センサを含み、当該油温を基にエンジン出力軸の回転数及び回転時間を求める、請求項1乃至請求項3のうち何れか1項に記載のハイブリッド車両。4. The motor generator control unit according to claim 1, further comprising an oil temperature sensor that measures an oil temperature in the power transmission mechanism, and determining a rotation speed and a rotation time of an engine output shaft based on the oil temperature. 5. A hybrid vehicle according to any one of the preceding claims. 前記エンジン停止走行モードは、車両が電気自動車走行をしているか、又は減速若しくは制動時の走行モードである、請求項1乃至請求項4のうち何れか1項に記載のハイブリッド車両。The hybrid vehicle according to any one of claims 1 to 4, wherein the engine stop traveling mode is a traveling mode in which the vehicle is traveling on an electric vehicle or in deceleration or braking. 前記駆動輪に動力を出力するための電動モータをさらに備え、
前記動力伝達機構はサンギヤ、プラネタリーキャリア、及びリングギヤの3つの歯車要素から成る遊星歯車機構として構成されており、
前記3つの歯車要素のうち何れか1つに対して前記エンジン出力軸が接続される一方、他の歯車要素のそれぞれは前記モータジェネレータ機構及び前記電動モータに接続され、
前記オイルポンプは前記遊星歯車機構に潤滑油を供給するものである、請求項1乃至請求項5のうち何れか1項に記載のハイブリッド車両。
Further comprising an electric motor for outputting power to the drive wheels,
The power transmission mechanism is configured as a planetary gear mechanism including three gear elements of a sun gear, a planetary carrier, and a ring gear,
While the engine output shaft is connected to any one of the three gear elements, each of the other gear elements is connected to the motor generator mechanism and the electric motor,
The hybrid vehicle according to any one of claims 1 to 5, wherein the oil pump supplies lubricating oil to the planetary gear mechanism.
JP2002263607A 2002-09-10 2002-09-10 Hybrid vehicle Expired - Lifetime JP3722102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263607A JP3722102B2 (en) 2002-09-10 2002-09-10 Hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263607A JP3722102B2 (en) 2002-09-10 2002-09-10 Hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2004100580A true JP2004100580A (en) 2004-04-02
JP3722102B2 JP3722102B2 (en) 2005-11-30

Family

ID=32263279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263607A Expired - Lifetime JP3722102B2 (en) 2002-09-10 2002-09-10 Hybrid vehicle

Country Status (1)

Country Link
JP (1) JP3722102B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006254570A (en) * 2005-03-09 2006-09-21 Suzuki Motor Corp Hybrid drive device
JP2007216764A (en) * 2006-02-15 2007-08-30 Toyota Motor Corp Hybrid car
WO2007096719A1 (en) 2006-02-27 2007-08-30 Toyota Jidosha Kabushiki Kaisha Oil pressure system and control method therefor
JP2008114844A (en) * 2006-11-03 2008-05-22 Ford Global Technologies Llc Power train for hybrid electric vehicle, and control method therefor
US20080234915A1 (en) * 2007-03-24 2008-09-25 Toyota Jidosha Kabushiki Kaisha Control device for hybrid vehicle driving device, and control method for the driving device
JP2008302801A (en) * 2007-06-07 2008-12-18 Toyota Motor Corp Controller for driving device of hybrid car
WO2010131334A1 (en) * 2009-05-12 2010-11-18 トヨタ自動車株式会社 Control device for hybrid vehicle
JP2012239369A (en) * 2011-04-27 2012-12-06 Nissan Motor Co Ltd Lubrication control apparatus for vehicle in-wheel motor unit
JP2014189102A (en) * 2013-03-26 2014-10-06 Toyota Motor Corp Drive device for hybrid vehicle
CN104853968A (en) * 2012-11-26 2015-08-19 丰田自动车株式会社 Hybrid vehicle drive device
DE102015106938A1 (en) * 2015-05-05 2016-11-10 Dr. Ing. H.C. F. Porsche Aktiengesellschaft A method of operating a hybrid vehicle and using a phantom start
JP2017143643A (en) * 2016-02-09 2017-08-17 トヨタ自動車株式会社 Vehicle control device
CN111204322A (en) * 2018-11-06 2020-05-29 丰田自动车株式会社 Control device for hybrid vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4274282B1 (en) 2008-02-07 2009-06-03 トヨタ自動車株式会社 Control device for vehicle drive device and plug-in hybrid vehicle

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006254570A (en) * 2005-03-09 2006-09-21 Suzuki Motor Corp Hybrid drive device
JP2007216764A (en) * 2006-02-15 2007-08-30 Toyota Motor Corp Hybrid car
JP4561650B2 (en) * 2006-02-15 2010-10-13 トヨタ自動車株式会社 Hybrid vehicle
WO2007096719A1 (en) 2006-02-27 2007-08-30 Toyota Jidosha Kabushiki Kaisha Oil pressure system and control method therefor
JP2008114844A (en) * 2006-11-03 2008-05-22 Ford Global Technologies Llc Power train for hybrid electric vehicle, and control method therefor
US8313413B2 (en) 2007-03-24 2012-11-20 Toyota Jidosha Kabushiki Kaisha Control device for hybrid vehicle driving device, and control method for the driving device
US20080234915A1 (en) * 2007-03-24 2008-09-25 Toyota Jidosha Kabushiki Kaisha Control device for hybrid vehicle driving device, and control method for the driving device
JP2008302801A (en) * 2007-06-07 2008-12-18 Toyota Motor Corp Controller for driving device of hybrid car
DE102008002264B4 (en) * 2007-06-07 2015-08-27 Toyota Jidosha Kabushiki Kaisha Control device for an internal combustion engine and an electric motor of a hybrid vehicle
US8251864B2 (en) 2007-06-07 2012-08-28 Toyota Jidosha Kabushiki Kaisha Control device for hybrid vehicle drive apparatus
WO2010131334A1 (en) * 2009-05-12 2010-11-18 トヨタ自動車株式会社 Control device for hybrid vehicle
JP5158258B2 (en) * 2009-05-12 2013-03-06 トヨタ自動車株式会社 Control device for hybrid vehicle
US8554400B2 (en) 2009-05-12 2013-10-08 Toyota Jidosha Kabushiki Kaisha Control apparatus for hybrid vehicle
CN102421649A (en) * 2009-05-12 2012-04-18 丰田自动车株式会社 Control device for hybrid vehicle
JP2012239369A (en) * 2011-04-27 2012-12-06 Nissan Motor Co Ltd Lubrication control apparatus for vehicle in-wheel motor unit
CN104853968A (en) * 2012-11-26 2015-08-19 丰田自动车株式会社 Hybrid vehicle drive device
JP2014189102A (en) * 2013-03-26 2014-10-06 Toyota Motor Corp Drive device for hybrid vehicle
DE102015106938A1 (en) * 2015-05-05 2016-11-10 Dr. Ing. H.C. F. Porsche Aktiengesellschaft A method of operating a hybrid vehicle and using a phantom start
JP2017143643A (en) * 2016-02-09 2017-08-17 トヨタ自動車株式会社 Vehicle control device
CN111204322A (en) * 2018-11-06 2020-05-29 丰田自动车株式会社 Control device for hybrid vehicle
CN111204322B (en) * 2018-11-06 2023-04-14 丰田自动车株式会社 Control device for hybrid vehicle

Also Published As

Publication number Publication date
JP3722102B2 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
JP4274282B1 (en) Control device for vehicle drive device and plug-in hybrid vehicle
JP5081969B2 (en) Hybrid drive device and control device for hybrid drive device
JP3379439B2 (en) Start control device for internal combustion engine
JP4040241B2 (en) Vehicle control device
US9180869B2 (en) Hybrid drive system
JP3651425B2 (en) Power output apparatus and hybrid vehicle equipped with the same
JP3894143B2 (en) Power output apparatus and automobile equipped with the same
JP3722102B2 (en) Hybrid vehicle
JP2007055460A (en) Hybrid car and its control method
JP2009096326A (en) Driving control device for oil pump unit and hybrid car equipped with the driving control device
JP4190490B2 (en) Power output device, automobile equipped with the same, control device for power output device, and control method for power output device
JP6032290B2 (en) Hybrid vehicle
JP2009115186A (en) Vehicle control device and hybrid vehicle mounted with the control device
JP2010260392A (en) Vehicle and control method therefor
JP2001058518A (en) Control system of oil pump for vehicle use
JP4140168B2 (en) Auxiliary machine drive device for vehicle having intermittent operation function of internal combustion engine
JP4337290B2 (en) Power output apparatus and hybrid vehicle equipped with the same
JP6829770B2 (en) Vehicle control device and control method
JP2000233667A (en) Hybrid vehicle and its control method
JP4548388B2 (en) Hybrid vehicle, control device and control method thereof
JP4248135B2 (en) Rotational speed control device for internal combustion engine
JP2001020773A (en) Vehicle drive control system
JP2004142590A (en) Power output unit, control method for the same, and hybrid vehicle
JP2012153250A (en) Vehicle control device
JP5751204B2 (en) Control device for hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

R150 Certificate of patent or registration of utility model

Ref document number: 3722102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

EXPY Cancellation because of completion of term