JP2004100519A - エンジンシステムの異常検出装置 - Google Patents

エンジンシステムの異常検出装置 Download PDF

Info

Publication number
JP2004100519A
JP2004100519A JP2002261729A JP2002261729A JP2004100519A JP 2004100519 A JP2004100519 A JP 2004100519A JP 2002261729 A JP2002261729 A JP 2002261729A JP 2002261729 A JP2002261729 A JP 2002261729A JP 2004100519 A JP2004100519 A JP 2004100519A
Authority
JP
Japan
Prior art keywords
pressure
passage
air
engine
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002261729A
Other languages
English (en)
Inventor
Shigemasa Hirooka
広岡 重正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002261729A priority Critical patent/JP2004100519A/ja
Publication of JP2004100519A publication Critical patent/JP2004100519A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

【課題】内燃機関に二次空気供給装置を搭載したエンジンシステムにおいて、二次空気供給装置に発生する異常を高い精度で検出することのできる異常検出装置を提供する。
【解決手段】二次空気供給系40は、エンジン1の外部から取り入れた空気を二次空気として各排気ポートに供給する機能を備える。電動式エアポンプ41は、ECU50の指令信号に基づいて作動し、導入通路42を通じて吸気管21の途中(スロットル弁24の上流で、且つ、エアクリーナ25の下流にあたる部位)から空気を吸入し、圧送通路43を通じて主供給管44に圧送する。主供給管44に圧送された空気は、4本の分配管45を通じて各排気ポート31に供給される。ECU50は、二次空気の供給時、エンジン1の回転変動に基づく診断により失火が起こっていないと認めた上で、圧送通路43に設けられた圧力センサ66の検出信号の波形に基づき、各分配管45の詰まりを検出する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明は、排気系に二次空気を供給する装置を備えたエンジンシステムの異常を検出する装置に関する。
【0002】
【従来の技術】
従来、この種のエンジンシステムは、空気を圧送するエアポンプと、エアポンプにより圧送される空気を移送する空気通路と、空気通路の途中に設けられた制御弁と、空気通路が制御弁下流で分岐して形成された分配通路とからなる二次空気供給装置を内燃機関に搭載したものである。
【0003】
内燃機関では、機関始動時等、その温度が十分に高くなっていない条件下で(冷間時に)運転を行う場合、機関燃焼に供される燃料の量を増量し(機関燃焼に供する混合気をリッチ化し)、機関燃焼の安定化や暖機の促進を図る。ところが、機関燃焼に供する混合気をリッチ化すれば、排気中の未燃燃料(HC、CO等)の量が増大することになる。しかも、このような燃料の増量が要求される条件下では、排気系に設けられた排気浄化用触媒の温度も低く、当該触媒が十分に活性化する温度(活性温度)に達していないのが通常である。
【0004】
二次空気供給装置は、冷間始動時等、三元触媒の温度が活性温度に達していない条件下で機関燃焼に供する混合気をリッチ化する場合において、各燃焼室から排出された直後の排気ガスに二次空気を混入し、排気中に含まれる未燃燃料成分(HC、CO)の酸化反応を促す。これにより、排気浄化用触媒の上流において未燃燃料成分の浄化が促進され、またその反応熱によって当該触媒の活性化が早められる。
【0005】
ところで、二次空気供給装置が正常に機能しているか否か、その作動状態を監視する手段として、空気通路内に圧力センサを設けてそのセンサ出力をモニタする方法が知られている(例えば、特開平9−125946号公報を参照)。二次空気供給装置の各構成要素が正常に機能している場合、圧力センサはエアポンプや制御弁の動作に対応する検出信号を出力する。例えば、制御弁を開いてエアポンプを作動すれば、エアポンプから圧送される空気の作用によって空気通路内の圧力値が上昇し、また、内燃機関から排出される排気ガスの作用(圧力脈動)によって空気通路内の圧力値が規則的に変動する。空気通路内におけるこのような圧力変化を観測し、その観測結果を評価することにより、二次空気供給装置の各構成要素の機能について、異常の有無を診断することができる。
【0006】
【特許文献1】特開平9−125946号公報
【特許文献2】特開平9−21312号公報
【0007】
【発明が解決しようとする課題】
ところが、内燃機関から排出される排気ガスの圧力脈動は、その波形が内燃機関の燃焼状態や機関回転数等の影響を強く受ける。このため、空気通路内における圧力変化に基づき二次空気供給装置の各構成要素の異常の有無を判断する際、内燃機関の燃焼状態や不安定になっていたり、機関回転数が変動していると、各構成要素の異常の有無について、誤った判断をする懸念がある。
【0008】
とくに、二次空気供給装置が正常に機能しているか否かを正確に判断するためには、当該装置を通じて排気系に二次空気が供給されている際に診断を行うことが望ましい。排気系への二次空気の供給は、機関温度が低い条件下、すなわち内燃機関の燃焼状態が不安定になる傾向の強い条件下で実行されることが多いため、二次空気供給装置が正常に機能しているか否かを正しく判断することが困難になっていた。
【0009】
本発明は、こうした実情に鑑みてなされたものであり、その目的とするところは、内燃機関に二次空気供給装置を搭載したエンジンシステムにおいて、二次空気供給装置に発生する異常を高い精度で検出することのできる異常診断装置を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明は、空気を圧送するエアポンプと、前記エアポンプにより圧送される空気を移送する空気通路と、前記空気通路の途中に設けられ該通路を開閉する制御弁と、前記空気通路が前記制御弁下流で分岐して形成された複数の通路であって、多気筒内燃機関の各気筒から排出される排気ガスの各通路に二次空気を分配供給する分配通路と、前記空気通路の前記制御弁上流において該空気通路内の圧力を検出する圧力検出手段とを備えたエンジンシステムに設けられた装置であって、前記内燃機関の着火状態を検出する着火状態検出手段と、前記検出される内燃機関の着火状態が正常である場合に、前記検出される圧力の推移波形の局所的な変化に基づいて前記分配通路内の詰まりに関するエンジンシステムの異常を検出する異常検出手段と、備えることを要旨とする。
【0011】
ここで、二次空気とは、内燃機関の燃焼室において燃焼行程を経たガスに対して再度供給される空気を意味する。また、前記制御弁としては、前記空気通路の流路を択一的に開閉するものであってもよいし、当該流路の面積を多段階に、或いは無段階に調整するようなものであってもよい。
【0012】
同構成によるように、空気を圧送するエアポンプと、前記エアポンプにより圧送される空気を移送する空気通路と、前記空気通路の途中に設けられ該通路を開閉する制御弁と、前記空気通路が前記制御弁下流で分岐して形成された複数の通路であって、多気筒内燃機関の各気筒から排出される排気ガスの各通路に二次空気を分配供給する分配通路とを備えたエンジンシステムは、前記内燃機関の排気系に二次空気を導入することにより、当該機関の排気特性を最適化する機能を有する。
【0013】
とくに機関温度が比較的低い条件下(冷間時)において、機関始動の直後(暖機期間)には、機関燃焼のために供給される燃料の増量に伴い当該燃料の未燃成分が排気系に多量に排出されるため、排気系に導入される二次空気は、そのような未燃成分の酸化を促す点において極めて効果的に作用する。
【0014】
ここで、前記内燃機関の各気筒から排出される排気ガスの圧力脈動は、前記空気通路内に伝播し、前記空気通路内に規則的な圧力変動を生じさせる。このため、前記分配通路に詰まりが発生した場合には、その影響が前記空気通路内の規則的な圧力変動に及ぶ。すなわち、前記空気通路内の圧力変動を観測することで、前記分配通路内に発生する詰まりを検出することができる。
【0015】
しかし、冷間時には機関燃焼が不安定になりやすいため、失火も生じ易い。機関燃焼の不安定や失火もまた、排気の圧力脈動の伝搬を通じて、前記空気通路内における規則的な圧力脈動へ影響を及ぼすことになる。
【0016】
上記構成によれば、圧力検出手段を通じて取得される情報と着火状態検出手段を通じて取得される情報とを考量することにより、機関燃焼の不安定や失火に起因する圧力変動と、前記分配通路の詰まりに起因する圧力変動とを正しく判別することができる。
【0017】
よって、前記分配通路内に発生する詰まりを高い精度で検出することができるようになる。
【0018】
また、前記着火状態検出手段は、前記内燃機関の各気筒について着火状態を検出し、且つ、前記異常検出手段は、前記検出される内燃機関の着火状態が正常である気筒について、当該気筒から排出される排気ガスの通路に空気を供給する分配通路内の詰まりに関するエンジンシステムの異常を検出するのが好ましい。
【0019】
同構成によれば、着火の認められた気筒から排出される排気ガスの圧力脈動の影響を最も受けやすい分配通路について、当該通路の詰まりに関する異常を検出することになる。よって、一層高い検出精度を補償することができるようになる。
【0020】
また、前記内燃機関の機関回転数を検出する回転数検出手段と、前記分配通路内の詰まりが検出される場合に、各気筒から排出される排気ガスの圧力が、前記空気通路内の圧力の検出部位における圧力変動に反映されるまでの応答遅れ時間を、前記検出される機関回転数に基づいて推定し、該推定される応答遅れ時間に基づいて、詰まりの生じている分配通路を特定する異常通路特定手段と、を備えるのが好ましい。
【0021】
同構成によれば、何れの気筒から排出された排気ガスの圧力波が前記圧力検出手段を通じて検出されたのかを、確実に識別することができる。よって、着火の認められた気筒から排出される排気ガスの圧力脈動の影響を最も受けやすい分配通路について、当該通路の詰まりに関する異常を検出する上で、詰まりの生じている分配通路を確実に特定することができるようになる。
【0022】
なお、上記各構成は、可能な限り組み合わせて採用し得る。
【0023】
【発明の実施の形態】
以下、本発明を具体化した一実施の形態について説明する。
〔エンジンの基本構成〕
図1に示すように、ガソリンエンジンシステム(以下、エンジンと称する)1は、直列配置された4つの燃焼室(気筒)11を形成するエンジン本体(内燃機関)10の他、吸気系20、排気系30、二次空気供給系40及び電子制御装置(以下、ECUと称する)50等を主要部として構成される。
【0024】
エンジン本体10は、シリンダブロックおよびシリンダヘッドを外郭部材とし、直列する4つの燃焼室11を内部に備える。シリンダヘッドには、各燃焼室11に空気及び燃料の混合気を導入するための吸気ポート23と、各燃焼室11から排気ガスを排出するための排気ポート31とが形成されている。各燃焼室11に対応する吸気ポート23には燃料噴射弁12が備えられている。燃料噴射弁12は、その内部に電磁ソレノイド(図示略)を備えた電磁弁であり、ECU50の指令信号に応じて適宜開弁し、燃焼室11内に燃料を噴射供給する。
【0025】
吸気系20は、各燃焼室11に導入される吸入空気の通路(吸気通路)をなし、空気流路の上流から下流にかけて、吸気管21、吸気マニホールド22及び吸気ポート23が順次連結されて形成される。
【0026】
吸気管21に設けられたスロットル弁24は、ECU50の指令信号に応じてその開度を変更し、吸入空気の流路面積(流量)を調整する電子制御式のバタフライ弁である。スロットル弁24の開度は、アクセルペダル(図示略)の踏込量に、エンジン1の運転状態を反映する各種パラメータを加味して決定される。同じく吸気管21において、スロットル弁24の上流に設けられたエアクリーナ25は、吸入空気に含まれる埃等を除去するフィルタである。
【0027】
排気系30は、各燃焼室11から排出される排気ガスの通路(排気通路)をなし、排気流路の上流から下流にかけて、排気ポート31、排気マニホールド32及び排気管33が順次連結されて形成される。排気管33には、触媒ケーシング34が設けられている。触媒ケーシング34は、排気中に含まれる炭化水素(HC)、一酸化炭素(CO)及び窒素酸化物(NOx)を浄化する機能を備えた周知の三元触媒を内蔵する。
【0028】
二次空気供給系40は、エンジン1の外部から取り入れた空気を二次空気として各排気ポート31に供給する機能を備える。電動式エアポンプ(以下、エアポンプと称する)41は、ECU50の指令信号に基づいて作動し、導入通路42を通じて吸気管21の途中(スロットル弁24の上流で、且つ、エアクリーナ25の下流にあたる部位)から空気を吸入し、圧送通路43を通じて主供給管44に圧送する。主供給管44に圧送された空気は、4本の分配管45を通じて排気ポート31に供給される。
【0029】
圧送通路43及び主供給管44の連結部位には、圧送通路43及び主供給管44の間を流れる空気の流路を開閉する二次空気制御弁46が設けられている。
【0030】
二次空気制御弁46の内部には、ダイアフラム46a及びこのダイアフラム46aの変形によって動作する弁体46bが設けられている。弁体46bは、ダイアフラム46aが変形した場合にのみ圧送通路43及び主供給管44の間を流れる空気の流路を解放する。また、二次空気制御弁46には、吸気系20において発生する負圧(吸引力)をダイアフラム46aに作用させるための負圧通路47が接続されている。負圧通路47は、吸気マニホールド22及び二次空気制御弁46の間を連絡し、吸気マニホールド22の側から二次空気制御弁46の側に向かって、その通路途中に、逆止弁47a、負圧タンク47b及び負圧制御弁47cを順次備える。逆止弁47aは、負圧タンク47bから吸気マニホールド22に向かう空気の流れのみを許容し、吸気マニホールド22から負圧タンク47bに向かう空気の流れを規制する。負圧タンク47bは、その内部を大気圧よりも低いガス圧に保持し得る耐圧性の容器である。負圧制御弁47cは、電磁駆動式の開閉弁である。負圧制御弁47cは、通常は閉弁状態にあるが、ECU50の指令信号に応じて適宜開弁する。
【0031】
エンジン1の運転中、吸気マニホールド22内に負圧が発生するため、負圧タンク47b内の圧力が低下し、大気圧を下回る(負圧に保持される)。このような条件下でECU50が負圧制御弁47cを開くと、負圧タンク47b内の負圧(吸引力)が二次空気制御弁46内のダイアフラム46aを変形させる。このダイアフラム46aの変形によって弁体46bが動作し、圧送通路43及び主供給管44の間を流れる空気の流路を解放する。このときエアポンプ41を作動させると、エンジン1外部から導入された空気(二次空気)がエアポンプ41から主供給管44に圧送され、分配管45を通じて排気ポート31に供給される。
【0032】
また、エンジン1の各部位には、各種センサ61〜66が取り付けられており、当該部位の環境条件や、エンジン1の運転状態に関する信号を出力する。例えば、吸気管に設けられたエアフロメータ61は、吸入空気の流量(吸気量)に応じた検出信号を出力する。スロットル開度センサ62はスロットル弁24に取り付けられ、同弁24の開度に応じた検出信号を出力する。クランク角センサ63は、エンジン1の出力軸(クランクシャフト)が一定角度回転する毎に検出信号(パルス)を出力する。また排気管33の触媒ケーシング34上流及び下流に設けられた酸素濃度センサ64,65は、各々の配設部位において排気中の酸素濃度に応じ連続的に変化する検出信号を出力する。酸素濃度センサ64,65の検出信号は、機関燃焼に供される混合気の空燃比を反映し、排気中の酸化成分(酸素(O)等)と還元成分(炭化水素(HC)等)の量を直接的に示す指標となる。また、圧力センサ66は、二次空気供給系40における圧送通路43内の圧力Pに応じた検出信号を出力する。これら各センサ61〜66は、ECU50と電気的に接続されている。
【0033】
ECU50は、中央処理装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、バックアップRAM及びタイマーカウンタ等の他、A/D変換器を含む外部入力回路や、外部出力回路等を備える。CPU、ROM、RAM、バックアップRAM及びタイマカウンタ等と、外部入力回路や外部出力回路等とは、双方向性バスにより接続され、全体として論理演算回路を構成する。
【0034】
このように構成されたECU50は、上記各種センサ61〜66の検出信号に基づき、燃料噴射弁12の開閉弁動作を通じて各吸気ポート23に燃料を噴射供給する制御(燃料噴射制御)や、負圧制御弁47cの開閉弁動作及びエアポンプ41の駆動を通じて各排気ポート31に二次空気を供給する制御(二次空気供給制御)等、エンジン1の運転状態に関する各種制御を実施する。
【0035】
なお、上記のように構成されたECU50は、クランク角センサ63や圧力センサ66等と併せて本実施の形態にかかるエンジン1の異常検出装置を構成する。
〔二次空気供給制御〕
次に、二次空気供給制御について、詳しく説明する。
【0036】
エンジン1では、機関始動時等、エンジン本体10の温度が十分に高くなっていない条件下で(冷間時に)機関運転を行う場合、燃料噴射弁12を通じて燃焼室11内に供給する燃料の量を増量し(機関燃焼に供する混合気をリッチ化し)、機関燃焼の安定化や暖機の促進を図る。ところが、機関燃焼に供する混合気をリッチ化すれば、排気中の未燃燃料(HC、CO等)の量が増大することになる。しかも、このような燃料の増量が要求される条件下では、排気系30に設けられた三元触媒の温度も低く、当該触媒が十分に活性化する温度(活性温度)に達していないのが通常である。
【0037】
このためエンジン1では、冷間始動時等、三元触媒の温度が活性温度に達していない条件下で機関燃焼に供する混合気をリッチ化する場合には、二次空気供給制御を実施することにより、各燃焼室11から排出された直後の排気ガスに空気を混入し、排気中に含まれる未燃燃料成分(HC、CO)の酸化反応を促す。これにより、三元触媒の上流において未燃燃料成分の浄化が促進され、またその反応熱によって三元触媒の活性化が早められる。
【0038】
図2は、二次空気供給系40を構成する二次空気制御弁46、負圧制御弁47c及びエアポンプ41の機能を概略的に説明する模式図である。
【0039】
二次空気制御弁46の内部は、3つの空間S1,S2,S3に区画されている。第1空間S1は負圧通路47に、第2空間S2は圧送通路43に、第3空間S3は主供給管44に各々連通している。第1空間S1及び第2空間の間を仕切るダイアフラム46aは、弁体46bと一体に形成されている。また、第2空間S2及び第3空間S3の境界には、両空間S2,S3を相互に連通させる連通孔46dが設けられている。第1空間S1側に収容されたスプリング46cは、弁体46bが連通孔46dを塞ぐように、ダイアフラム46aを第2空間S2側に付勢する。
【0040】
このため、図2(a)に示すように、負圧制御弁47cが閉弁状態にある場合、第2空間S2(圧送通路43)及び第3空間S3(主供給管44)は相互に遮断される。
【0041】
他方、図2(b)に示すように、負圧制御弁47cが開弁状態にある場合、第1空間S1内が負圧になることで(大気圧を下回ることで)、ダイアフラム46aを第1空間S1側に吸引する力が発生する。そして、このダイアフラム46aを第1空間S1側に吸引する力がスプリング46cの付勢力を上回り、弁体46bが連通孔46dから離間する。この結果、第2空間S2(圧送通路43)及び第3空間S3(主供給管44)が相互に連通するようになる。二次空気供給制御の実施に際しては、ECU50の指令信号に基づき負圧制御弁47cの開弁とエアポンプ41の作動とが同時に行われることで、エアポンプ41から圧送される空気が圧送通路43から主供給管44へ移送され、さらに各分配管45を通じて各排気ポート31に供給される。
【0042】
なお、第3空間S3に設けられたリード弁46eは、第2空間S2から第3空間S3を経て主供給管44に向かう空気の流れを許容する一方、主供給管44から第3空間S3を経て第2空間S2へ向かう空気の流れを規制する。何らかの理由で弁体46bが連通孔46dから離間したまま固着したような場合、このリード弁46eが、主供給管44から圧送通路43へのガスの逆流を防止する(図2(c))。
〔二次空気供給系の異常診断〕
ECU50は、圧力センサ66の検出信号に基づいて圧送通路43内の圧力推移をモニタし、この圧力推移に基づいて二次空気供給系40の異常の有無を診断する。
【0043】
図3(a)及び図3(b)には、負圧制御弁47cやエアポンプ41への通電状態に応じて異なる圧送通路43内の圧力推移を示す。
【0044】
例えば図3(a)には、負圧制御弁47cが閉じている条件下で、エアポンプ41を作動させた場合と、停止させた場合とに観測される圧送通路内の圧力推移の違いを示す。負圧制御弁47cを閉弁状態にしておくと、二次空気制御弁46内の第2空間S2及び第3空間S3が相互に遮断されるため(図2(a)参照)、排気ポート31内で発生する排気の圧力脈動が圧送通路43にまで伝播することはない。このような条件下でエアポンプ41が作動すると、圧送通路43内の圧力Pは初期値P0から所定値P1まで上昇し、この値P1を保持する。ここで、エアポンプ41が正常に機能していなかったり、機能低下をきたしている場合、エアポンプ41への通電が行われているにもかかわらず、圧送通路43内の圧力Pが初期値P0から変化しなかったり、所定値P1を下回る値までしか上昇しないことになる。ECU50は、このような圧力推移の異常から、エアポンプ41の不具合を診断することができる。
【0045】
また、図3(b)には、二次空気供給系40が正常に機能している場合に観測される圧送通路43内の圧力推移の一例を示す。二次空気供給制御の実施中には、負圧制御弁47cが開弁状態になるため、二次空気制御弁46内の第2空間S2及び第3空間S3が連通する(図2(b)参照)。また、エアポンプ41が作動することにより、空気が圧送通路43から主供給管44に向かって流動するためリード弁46eも開弁状態になる(図2(b)参照)。この結果、圧送通路43及び主供給管44が相互に連通し、排気ポート31内で発生する排気の圧力脈動が圧送通路43まで伝播する。このため、二次空気供給制御の実施中、負圧制御弁47c、二次空気制御弁46及びエアポンプ41等の各種部材が正常に機能していれば、図3(b)中において実線で示すように、所定値(平均値)Pmを変動幅の中心とする規則的な圧力変動が圧送通路43内において観測される。
【0046】
このように、エンジン1のECU50は、負圧制御弁47cを開弁させる指令信号を出力するか否かといった選択、また、エアポンプ41を作動させる指令信号を出力するか否かといった選択を適宜組み合わせて行いつつ、圧送通路43内の圧力推移を観測することで、二次空気供給系40の機能について異常発生の有無を診断する。
〔分配管の詰まり検出〕
以下、圧力センサ66の検出信号を利用して行う二次空気供給系40の機能の診断内容のうち、特に、分配管の詰まり検出について詳述する。
【0047】
図4(a)は、二次空気供給制御の実施期間中における圧送通路43内の圧力推移であって、とくに、特定の分配管45について、詰まりが生じていない場合(正常な場合)の圧力推移と、詰まりが生じている場合(異常が発生した場合)の圧力推移とを比較すべく、両者を併せ示すタイムチャートである。
【0048】
上述したように、二次空気供給制御の実施期間中、エンジン1の機関燃焼が正常に行われていれば、所定値(平均値)Pmを変動幅の中心とする規則的な圧力変動が圧送通路43内において観測される。ところが、煤等によって特定の分配管が詰まると、詰まった分配管においては、排気の圧力脈動が伝播し難くなる。各分配管45は各々対応する排気ポート31に接続されているため、本来、各排気ポート31から4本の分配管45を通じて順次圧送通路43に伝播する圧力脈動のうち、詰まった分配管に接続された排気ポート31内の圧力脈動のみが伝播し難くなる。
【0049】
この結果、タイムチャート上で、本来所定レベルを上回る極大値が順次に出現すべきところ(実線)、例えば時刻tA〜時刻tBの期間において示すように、詰まりの生じた分配管を通じて伝播する圧力脈動が反映される期間においてのみ、比較的小さな極大値が出現するのみであったり(一点鎖線)、極大値が出現しない(二点鎖線)といった現象が起きる。
【0050】
なお、各々の気筒(燃焼室11)内における点火タイミング(燃焼行程の始期)や排気バルブの開弁タイミング(排気行程の始期)は、点火プラグへの通電タイミングや、クランク角センサ63の検出信号等に基づいて正確に把握することができる。また、各燃焼室11で発生する排気脈動が、圧力変動として圧力センサ66の設置部位まで伝播するのに要する時間(応答遅れ時間)も、実験等によって予め求めることができる。すなわち、個々の気筒について、排気行程を含む所定期間中の圧力推移を観測し、この所定期間中における圧力推移(変動)の波形を分析すれば、各分配管45における詰まりを検出することができる。
【0051】
ところで、圧力通路43に伝播する排気の圧力脈動に影響を及ぼす要素として、上記「分配管45の詰まり」の他、「エンジン1の失火」がある。
【0052】
図4(b)は、二次空気供給制御の実施期間中における圧送通路43内の圧力推移であって、とくにエンジン1の特定気筒について、正常に機関燃焼が行われている場合の圧力推移と失火が起こった場合の圧力推移とを比較すべく、両者を併せ示すタイムチャートである。
【0053】
エンジン1を構成する4つの気筒(燃焼室11)のうち何れかが失火すると、特定の分配管45に詰まりが生じた場合と同じく、タイムチャート上で、本来所定レベルを上回る極大値が順次に出現すべきところ(実線)、例えば時刻tA〜時刻tBの期間において示すように、失火の起こった気筒で発生すべき圧力脈動が反映される期間においてのみ、比較的小さな極大値が出現するのみであったり(一点鎖線)、極大値が出現しない(二点鎖線)といった現象が起きる。
【0054】
このように、「分配管45の詰まり」が生じた場合と、「エンジン1の失火」が生じた場合とでは、タイムチャート上において圧送通路43内の圧力推移に現れる変化が相互に類似するため、両者を判別することは容易でない。
【0055】
しかし、エンジン1に失火はエンジン回転数NEに不測の変動を引き起こすため、例えば、アクセルペダルの踏込動作の如き外的な要因が存在しない条件下で、且つ、エンジン回転数NEが安定していれば(変動幅が所定範囲内に維持されていれば)、当該エンジン1の着火状態は良好であり、失火は起こっていないと判断することができる。
【0056】
すなわち、失火が起こっていないことを確認できる条件下で、圧送通路43内の圧力変動の波形を分析すれば、個々の分配管45について、詰まりの有無を判断することができる。このような原理に基づき、ECU50は、二次空気供給制御の実施期間中、エンジン回転数NEの変動から推定される失火発生の有無と、圧送通路43内の圧力推移の波形から、個々の分配管45について詰まりの検出を行う。
【0057】
より具体的には、二次空気供給制御の実施中、図4(a)及び図4(b)のタイムチャート上に示すような圧送通路43内の圧力推移の波形から、特定の気筒(観測対象となる気筒)の燃焼行程や排気行程に対応する期間内において、圧送通路43内の圧力Pが所定レベルを上回る期間(以下、排気圧伝播期間と称する)Tを計測する。そして、正圧伝播期間Tが所定の基準値T0を下回っている場合、当該観測対象となった気筒と連通する排気ポート31に接続された分配管45に「詰まり」が生じた可能性があると判断する。ここで、エンジン回転数NEの推移に基づき、当該観測対象となった気筒に「失火」が起きていないと判断できる場合には、分配管45に詰まりが生じている旨の診断を行う。
〔詰まり検出ルーチン〕
以下、分配管45の詰まりを検出するための具体的な手順について、フローチャートを参照して説明する。
【0058】
図5は、「分配管の詰まり検出」を行うための処理ルーチンを示すフローチャートである。このルーチンは、エンジン1の運転中、ECU50を通じて所定周期で繰り返し実行される。
【0059】
このルーチンに処理が移行すると、ECU50は先ずステップS101において、二次空気供給制御が現在実施されているか否かを判断する。ちなみに、二次空気供給制御は、エンジン本体10の温度が所定値を下回っている状態でエンジン1を始動した直後等、触媒ケーシング34内の三元触媒が十分に活性していないにも関わらず、機関燃焼に供される燃料の増量が見込まれるような条件下で実施される。同ステップS101での判断が肯定である場合、ECU50はその処理をステップS102に移行し、その判断が否定である場合、本ルーチンを一旦抜ける。
【0060】
ステップS102においてECU50は、現在のエンジン回転数NEに基づき、各燃焼室11で発生する排気脈動が圧力センサ66の設置部位(圧力の検出部位)まで伝播するのに要する時間(応答遅れ時間)を予め設定されたマップを参照して認識する。
ここで、応答遅れ時間及びエンジン回転数NEの関係として採用されるマップ上には、例えば図6に示すような関係が記憶される。
【0061】
続くステップS103においては、ステップS103で認識した応答遅れ時間を加味して、圧送通路43内で現在観測されている圧力変動が、何れの気筒から発生する排気脈動に起因するものかを判別する。この気筒判別に際しては、気筒判別カウンタなる回路を採用する。
【0062】
図7は、燃焼室11に近接する部位(排気ポート31)で観測される排気脈動(図7(a))、圧送通路43内で観測される圧力変動(図7(b))、及び気筒判別カウンタのカウント値の変化(図7(c))を、同一時間軸上に示すタイムチャートである。
【0063】
気筒判別カウンタは、ECU50に包含される回路であって、個々の気筒(便宜上、気筒#1,#2,#3,#4と称して区別する)に対応する設定値を記憶する機能を備える。例えば、気筒#1に起因する圧力変動が圧送通路43内に生じる期間(以下、気筒#1の対応期間という)として、当該気筒#1のクランク角が圧縮上死点前α°(時刻t0)〜排気上死点後β°(時刻t1)までの期間中、ECU50は、気筒判別カウンタのカウント値を「1」に設定する(図7(c))。
【0064】
ここで、燃焼室11に近接する部位(排気ポート31)で観測される排気脈動(図7(a))と、圧送通路43内で観測される圧力変動(図7(b))との間の応答遅れは、時刻t0′及びt0間にみられるような位相差となって現れる。
【0065】
このためECU50は、この応答遅れ時間を考慮し、各気筒に対応する気筒判別カウンタの設定範囲(期間)を、その時々のエンジン回転数NEに応じ適宜修正する。
【0066】
例えば、図7(a)〜(c)において、気筒#1の対応期間として、時刻t0′〜t1′(破線)がエンジン回転数NEの変動を加味しないで設定した期間であるとすれば、時刻t0〜t1は、本実施の形態によるように、エンジン回転数NEの変動を加味して設定した期間に相当する。
【0067】
ステップS104では、圧力センサ66の検出信号と、その履歴に基づき、現時点に至るまでの所定期間における圧送通路43内の圧力推移を認識する。
【0068】
ステップS105においては、先のステップS103で認識した圧力推移について、平均値Pmを算出する。なおECU50は、圧力センサ66の検出信号に基づいて認識される圧力Pが上昇過程において平均値Pmを上回った場合、これを始期として正圧伝播期間Tの計測を開始する。観測対象となっている気筒の燃焼状態が正常であれば、平均値Pmを上回った圧力Pはその後も上昇を続け、極大値に至ったところで下降する。極大値に至った圧力Pがその後の下降過程において平均値Pmを下回る時刻を、ECU50は、正圧伝播期間Tの終期として認識する。
【0069】
ステップS106においては、現時点が分配管45の詰まり検出を行うべきタイミングか否かを判断する。例えば、各気筒の対応期間の終期(図7における時刻t1,t2,t3,・・・)を、分配管の詰まり検出を行うタイミングとして設定しておけばよい。
【0070】
ステップS107では、今回の観測対象となった気筒の対応期間において、圧送通路43内の圧力Pの推移に異常が認められる否かを判断する。具体的には、今回計測した正圧伝播期間Tが予め設定された基準値T0を上回っている場合、観測対象となった気筒の対応期間中、圧力推移は正常であると判断する。一方、正圧伝播期間Tが基準値T0以下である場合、圧力推移が異常であると判断する。圧力推移が異常であると判断した場合、ECU50はその処理をステップS108に移行する。一方、圧力推移は正常であると判断した場合、ECU50は本ルーチンを一旦抜ける。
【0071】
ステップS109においては、気筒別詰まりカウンタのカウント値を更新する。ここで、気筒別詰まりカウンタはECU50に包含される回路である。上記ステップS108で詰まりが検出された場合(詰まりの疑いが認められた場合)、ECU50は、今回観測対象となった気筒(分配管)に対応する気筒別詰まりカウンタのカウント値を「1」インクリメントする。
【0072】
例えば図8は、二次空気供給制御の実施中における圧送通路内の圧力推移(図8(a))と、気筒判別カウンタのカウント値の変化(図8(b))とを同一時間軸上に示すタイムチャートの一例である。
【0073】
両図8(a),(b)を併せ参照すると、時刻t11〜t12(気筒#2の対応期間)と、時刻t15〜t16(気筒#2の対応期間)において、圧送通路43内の圧力に局所的な落ち込み(失火)が認められる。結果として、このタイムチャート上での観測期間中には、気筒#2に対応する気筒別詰まりカウンタのカウント値が「1」づつ2回インクリメントされることになる。
【0074】
すなわち、ステップS109においてECU50は、上記ステップS108で更新した気筒別詰まりカウンタのカウント値に基づいて、各分配管45の状態を診断する。例えば、特定の気筒に対応する分配管45について所定回数以上、詰まりの疑いが認められた場合、ECU50は運転者に対し、その分配管45に詰まりが生じている旨の通知を、警告ランプの点灯等を通じて行う。
【0075】
ステップS109での処理を経た後、ECU50は本ルーチンを一旦抜ける。
【0076】
このような手順に従い、ECU50は、二次空気供給制御の実施に併せて、個々の分配管45の詰まりを検出する。
【0077】
ここで、エンジン1の各気筒から排出される排気ガスの圧力脈動は、各気筒に近接する排気ポート31から分配管45、主供給管44を通じて圧送通路43に伝播し、圧送通路43内に規則的な圧力変動を生じさせる。このため、何れかの分配通路45に詰まりが発生した場合には、その影響が圧送通路43内の規則的な圧力変動に及ぶ。すなわち、圧送通路43内の圧力変動を観測することで、各分配通路45内に発生する詰まりを分別して検出することができる。
【0078】
しかし、冷間時には機関燃焼が不安定になりやすいため、失火も生じ易い。機関燃焼の不安定や失火もまた、排気の圧力脈動の伝搬を通じて、圧送通路43内における規則的な圧力脈動へ影響を及ぼすことになる。
【0079】
本実施の形態の異常検出装置によれば、圧力センサ66を通じて取得される情報(圧力Pの変動)とクランク角センサ63を通じて取得される情報(エンジン回転数NEの変動)とを併せ考量することにより、機関燃焼の不安定や失火に起因する圧力変動と、分配通路45の詰まりに起因する圧力変動とを正しく判別することができる。
【0080】
よって、分配通路45内に発生する詰まりを高い精度で検出することができるようになる。
【0081】
さらに、本実施の形態では、その時々のエンジン回転数NEに基づき、燃焼室11内で発生した排気脈動が圧力センサ66に達するまでの応答遅れ時間を正確に把握(推定)することにより、何れの気筒に対応する分配通路45において詰まりが発生しているのかを正確に特定することができる。
【0082】
なお、上記実施の形態では、クランク角センサ63がエンジン1の各気筒について、失火の有無を検出する着火状態検出手段としての機能を担うことになる。しかしこれに限らず、例えば、各気筒での点火毎に点火プラグの端子に流れるイオン電流を検出する装置構成を着火状態検出手段として採用し、このイオン電流の発生の有無に基づき着火状態(着火/失火)を判断するようにしてもよい。
【0083】
また、上記実施の形態では、エアポンプ41から圧送される空気を排気ポート31に供給するための通路を開閉する制御弁として、二次空気制御弁46のように、吸気系20で発生する負圧(吸引力)を必要に応じて利用することで、通路を開閉する構成を適用した。しかし、例えば二次空気制御弁46に替え、ECU50等の指令信号に基づいて動作する電磁駆動式の制御弁を圧送通路43と主供給管44との間に設けるようにしてもよい。
【0084】
また、上記実施の形態では、二次空気供給制御の実施期間中に圧力センサ66の検出信号に基づく詰まり検出を行う実施態様を例示した。二次空気供給制御の実施期間は、エンジン1の回転変動等に基づく失火検出が困難になる一方、圧力センサ66の検出信号を効果的に活用することができる代表的な機会に相当するからである。しかしこれに限らず、圧力センサ66に排気系由来の圧力脈動が伝播される条件下であれば(或いはそのような条件を積極的に設定することにより)、二次空気供給制御の実施期間中以外であっても、圧力センサ66の検出信号に基づく詰まり検出を実施し、本実施の形態に準ずる効果を奏することはできる。また、圧力センサ66の検出信号に基づく失火検出を行うように、(冷間始動時に限ることなく)二次空気供給制御の実施機会を拡大してもよい。
【0085】
また、上記実施の形態では、圧送通路43内の圧力値が所定レベルを上回る期間(排気圧伝播期間)Tを計測し、排気圧伝播期間Tが所定の基準値T0を下回っている場合、圧送通路43内の圧力推移が異常であると判断するようにした。しかしこれに限らず、圧力通路43内の圧力推移の波形の異常を判別する他の基準を適用することもできる。例えば、所定期間内において観測される圧力推移の最小値と最大値との差が、所定値以下である場合、圧送通路43内の圧力推移が異常である判断するようにしてもよい。
【0086】
また、上記実施の形態では、ガソリンエンジンに本発明を適用することとしたが、例えばディーゼルエンジンに本発明を適用してもよい。
【0087】
【発明の効果】
以上説明したように、本発明によれば、二次空気供給機能を備えたエンジンシステムにおいて、二次空気の供給経路の詰まりを高い精度で検出することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態にかかるエンジンの基本構成を示す略図。
【図2】二次空気制御弁の機能を模式的に示す略図。
【図3】負圧制御弁やエアポンプへの通電状態に応じて異なる圧送通路内の圧力推移を示すタイムチャート。
【図4】二次空気供給制御の実施期間中における圧送通路内の圧力推移を示すタイムチャート。
【図5】分配管の詰まりを検出するための手順を示すフローチャート。
【図6】マップ上における応答遅れ時間及びエンジン回転数の関係を示すグラフ。
【図7】排気ポートで観測される排気脈動、圧送通路内で観測される圧力変動、及び気筒判別カウンタのカウント値の変化を、同一時間軸上に示すタイムチャート。
【図8】二次空気供給制御の実施中における圧送通路内の圧力推移と、気筒判別カウンタのカウント値の変化とを同一時間軸上に示すタイムチャート。
【符号の説明】
1 エンジン
10 エンジン本体
11 燃焼室
12 燃料噴射弁
20 吸気系
21 吸気管
22 吸気マニホールド
23 吸気ポート
24 スロットル弁
25 エアクリーナ
30 排気系
31 排気ポート
33 排気管
34 触媒ケーシング
40 二次空気供給系
41 エアポンプ
42 導入通路
43 圧送通路(空気通路)
44 主供給管(空気通路)
45 分配管(分配通路)
46 二次空気制御弁
46a ダイアフラム
46b 弁体
46c スプリング
46d 連通孔
46e リード弁
47 負圧通路
47a 逆止弁
47b 負圧タンク
47c 負圧制御弁
61 エアフロメータ
62 スロットル開度センサ
63 クランク角センサ
64,65 酸素濃度センサ
66 圧力センサ
S1 第1空間
S2 第2空間
S3 第3空間

Claims (3)

  1. 空気を圧送するエアポンプと、
    前記エアポンプにより圧送される空気を移送する空気通路と、
    前記空気通路の途中に設けられ該通路を開閉する制御弁と、
    前記空気通路が前記制御弁下流で分岐して形成された複数の通路であって、多気筒内燃機関の各気筒から排出される排気ガスの各通路に二次空気を分配供給する分配通路と、
    前記空気通路の前記制御弁上流において該空気通路内の圧力を検出する圧力検出手段とを備えたエンジンシステムに設けられ、
    前記内燃機関の着火状態を検出する着火状態検出手段と、
    前記検出される内燃機関の着火状態が正常である場合に、前記検出される圧力の推移波形の局所的な変化に基づいて前記分配通路内の詰まりに関するエンジンシステムの異常を検出する異常検出手段と、
    を備えることを特徴とするエンジンシステムの異常検出装置。
  2. 前記着火状態検出手段は、前記内燃機関の各気筒について着火状態を検出し、且つ、
    前記異常検出手段は、前記検出される内燃機関の着火状態が正常である気筒について、当該気筒から排出される排気ガスの通路に空気を供給する分配通路内の詰まりに関するエンジンシステムの異常を検出することを特徴とする請求項1記載のエンジンシステムの異常検出装置。
  3. 前記内燃機関の機関回転数を検出する回転数検出手段と、
    前記分配通路内の詰まりが検出される場合に、各気筒から排出される排気ガスの圧力が、前記空気通路内の圧力の検出部位における圧力変動に反映されるまでの応答遅れ時間を、前記検出される機関回転数に基づいて推定し、該推定される応答遅れ時間に基づいて、詰まりの生じている分配通路を特定する異常通路特定手段と、
    を備えることを特徴とする請求項2記載のエンジンシステムの異常検出装置。
JP2002261729A 2002-09-06 2002-09-06 エンジンシステムの異常検出装置 Pending JP2004100519A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002261729A JP2004100519A (ja) 2002-09-06 2002-09-06 エンジンシステムの異常検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002261729A JP2004100519A (ja) 2002-09-06 2002-09-06 エンジンシステムの異常検出装置

Publications (1)

Publication Number Publication Date
JP2004100519A true JP2004100519A (ja) 2004-04-02

Family

ID=32262023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002261729A Pending JP2004100519A (ja) 2002-09-06 2002-09-06 エンジンシステムの異常検出装置

Country Status (1)

Country Link
JP (1) JP2004100519A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105275558A (zh) * 2015-11-12 2016-01-27 舟山市三峰电气设备有限公司 多路巡检式柴油机尾气检测装置
DE102014220815A1 (de) * 2014-10-14 2016-04-14 Continental Automotive Gmbh Verfahren zum Überwachen des Sekundärluftsystems in einer Abgasreinigungsanlage einer Brennkraftmaschine
CN115382437A (zh) * 2022-08-10 2022-11-25 台州市荣科自动化设备有限公司 一种护手霜生产工艺

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014220815A1 (de) * 2014-10-14 2016-04-14 Continental Automotive Gmbh Verfahren zum Überwachen des Sekundärluftsystems in einer Abgasreinigungsanlage einer Brennkraftmaschine
DE102014220815B4 (de) * 2014-10-14 2017-01-19 Continental Automotive Gmbh Verfahren zum Überwachen des Sekundärluftsystems in einer Abgasreinigungsanlage einer Brennkraftmaschine
US10443475B2 (en) 2014-10-14 2019-10-15 Continental Automotive Gmbh Secondary air system in an exhaust gas purification system of an internal combustion engine
CN105275558A (zh) * 2015-11-12 2016-01-27 舟山市三峰电气设备有限公司 多路巡检式柴油机尾气检测装置
CN115382437A (zh) * 2022-08-10 2022-11-25 台州市荣科自动化设备有限公司 一种护手霜生产工艺

Similar Documents

Publication Publication Date Title
KR101147588B1 (ko) 배기 정화 시스템의 이상 진단 장치
US5119631A (en) Apparatus and method for detecting abnormalities in a secondary air supplier
EP2942505B1 (en) An abnormality determination apparatus for a particulate filter
EP1898076A1 (en) Method and apparatus for detecting assembled state of exhaust gas sensors
EP2278144A1 (en) NOx SENSOR ABNORMALITY DIAGNOSING APPARATUS AND ABNORMALITY DIAGNOSING METHOD
US5333446A (en) Diagnostic system for a secondary air supplier in an engine
EP1784562A1 (en) Secondary air supply apparatus and control method for the same
JP2003193903A (ja) 空燃比検出手段の故障判定装置
US6393833B2 (en) Abnormality test method and apparatus for secondary air supply system of a vehicle
JP2004308492A (ja) 2次空気供給装置の故障診断装置。
US5325663A (en) Diagnostic system for a secondary air supplier in an engine
JP3683175B2 (ja) 内燃機関の排気浄化装置
JP2008169749A (ja) 空燃比センサの劣化診断装置
JP2004100519A (ja) エンジンシステムの異常検出装置
JP2004100520A (ja) 内燃機関の失火検出装置
US10253684B2 (en) Internal combustion engine control apparatus and internal combustion engine control method
JPH0921359A (ja) エバポパージシステムの故障診断方法
JP2797802B2 (ja) 二次空気供給装置の異常検出装置
JP4547617B2 (ja) 内燃機関の二次空気供給システムの異常診断装置
JPH09209745A (ja) 内燃機関制御の解除時期制御装置
JP2888023B2 (ja) 二次空気供給装置の故障診断方法
JPH041444A (ja) 2次空気供給装置の異常検出装置
JP3910669B2 (ja) 燃料ラインの残留ガス検出装置
CN115461533A (zh) 控制装置、内燃机系统及诊断方法
JPH05133221A (ja) 内燃機関の2次空気供給装置における自己診断装置