JP2004100417A - Hydraulic circuit for small-bore pipe burying device - Google Patents

Hydraulic circuit for small-bore pipe burying device Download PDF

Info

Publication number
JP2004100417A
JP2004100417A JP2002303588A JP2002303588A JP2004100417A JP 2004100417 A JP2004100417 A JP 2004100417A JP 2002303588 A JP2002303588 A JP 2002303588A JP 2002303588 A JP2002303588 A JP 2002303588A JP 2004100417 A JP2004100417 A JP 2004100417A
Authority
JP
Japan
Prior art keywords
hydraulic
pipe
oil
hose
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002303588A
Other languages
Japanese (ja)
Inventor
Mamoru Hamano
浜野 衛
Mitsushige Minami
南 光繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwa Kizai Co Ltd
Original Assignee
Sanwa Kizai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanwa Kizai Co Ltd filed Critical Sanwa Kizai Co Ltd
Priority to JP2002303588A priority Critical patent/JP2004100417A/en
Publication of JP2004100417A publication Critical patent/JP2004100417A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an allowance in space inside an underground pipe by reducing the number of hydraulic circuit hoses to a leading pipe when burying work is executed in a small-bore pipe propulsion method, to shorten a time for setting the underground pipe, and to reduce dangerous parts where leakage of oil or the like is expected to occurs. <P>SOLUTION: A hydraulic oil is supplied from an hydraulic unit installed outside a shaft using at least a hydraulic hose to a plurality of hydraulic devices mounted inside the leading pipe and driving non-concurrently by combining the necessary number of direction changeover valves and destination changeover valves, and to a plurality of hydraulic devices mounted inside the leading pipe and having different driving pressure by combining the necessary number of adaptation pressure reducing valves and the direction changeover valves. The hydraulic oil discharged from a plurality of hydraulic driving devices which are mounted inside the leading pipe is gathered at a discharging line side by using a check valve, and is collected from the leading pipe at the hydraulic unit installed outside the shaft using at least a hydraulic hose. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
小口径管推進工法の先導管内油圧回路に関する。
【0002】
【従来の技術】
上下水道管や電線管等の比較的小口径の管を地中に埋設する手段として、埋設個所の地盤を管路全長にわたって開削して行う方法があるが、路面の交通障害を起こすと共に、騒音や振動が激しく、周辺環境に悪影響を及ぼす。また埋設位置が深い場合、開削時に土留めが必要となり、余分な工費が掛かるうえ、狭い作業場所では付近の民家まで地盤沈下が発生しやすい。
【0003】
これに対し、地表から掘削したピット内から先導管の先端に設けられたカッタヘッドにより水平方向に地盤を掘削し、掘削した土砂をそのままスクリューコンベア等で挿通する先導管内及び埋設管内に敷設された排出管を通じ、又は掘削した土砂を泥水状にして送排泥管を通じてピットから地上へ搬出しつつ先導管に埋設管を接続して後方から押進し、順次埋設管を継足して地中に埋設する推進工法がある。
【0004】
この方法では、埋設管内に掘削土砂の送排泥管、ピンチ弁等の操作用エアーライン、滑剤等の掘削補助剤輸送ライン、油圧ホース、駆動系と検出系の2本の信号ケーブル、推進方向確認用のターゲット通路、等々を設けなければならない。
【0005】
【発明が解決しようとする課題】
しかるに上記推進工法によるものでは、前記開削による問題点を解消することができるが、直径300mm以下の小口径管を埋設しようとした場合、管径が小さく、その中に前述の掘削・排土用のパイプやホース、信号用ケーブル類等、及び掘削進路確認用のターゲット用空間確保の必要もあり、油圧ホースやカプラのサイズが限定される。
【0006】
油圧ホースの径が限定されると、例えば内径がφ15mm以下になるとき油圧油流量にも依るが単位距離あたりの配管抵抗が大きくなり、カプラ等の圧力損失も加えると相当な圧力降下が起るため、掘削能力が掘削進行に従い急速に落ちていくという問題点があった。また、油圧ホース数に比例して接続個所数も増加するので油圧ホース繋ぎ部分からの油漏れやカプラ外れ等の危険も生じるという問題点もあった。これらに対し、施工者の神経を油圧ラインの圧力損失対応や油漏れ等に多大に使わせていた。
【0007】
更に、小口径管推進工法では、埋設管を延長する過程で油圧ホースを一旦切り離し、延長埋設管の中に通してセットする手順を繰り返していくが、油圧ホースの本数が多いと埋設管セットに要する時間が増加して、最終的な結果として工事所要時間の増加要素になる。
【0008】
ここで、従来法での埋設管内に敷設される油圧ホース数は、例えば先導管内に三つの油圧駆動構成部分がある場合に、通常の油圧回路構成で設計すると油圧ホースの本数は6本になる。尚、原始的な配管構成ならば、油圧駆動アクチュエータの個数×2倍の油圧ホース本数となる。
【0009】
油圧ホース数を減らすために、例えば特許第3219740号では、方向修正用ジャッキと送排泥管用止水バイパス弁との駆動油圧源を先導管内に油圧ユニットを搭載して、埋設管に仮敷設される油圧ホースをなくしている。しかしながら、特開2000−328876では埋設管径が300mm以下になると先導管内の油圧ユニット搭載は空間的に難しくなると考えられるため、地上に設置するのが好ましいとされている。
【0010】
また、これらの特許例ではカッタヘッドの回転駆動力を先導管内に搭載された電気モーターから得る方法を採っている。これは電気配線の場合、油圧配管等に比べて小径のものでよく利用空間が大きく取れ、更に扱いやすいという長所があるためである。しかしながら、施工現場は泥水泥土の環境にあり、大電力を地中掘削先端部で使うことはケーブルの損傷、切断事故や絶縁不良等による漏電の危険性が付きまとい好ましくない。
【0011】
本発明は上記従来の技術が有する問題点を解消させることを課題としてなされたもので、小口径管推進工法の先導管へ供給される油圧油のホース数を減らし、埋設工事時の埋設管内の空間に余裕をもたせ、埋設管のセット時間を短縮し又、油漏れ等の危険個所を半分以下とすることにある。
【0012】
更に、油圧ホース/カプラ等のサイズアップを可能とすることで、埋設管の継足しが進むことによる配管抵抗からくる圧力損失増大を極力抑え、運転管理を容易にすることにある。
【0013】
【課題を解決しようとする手段】
上記課題を解決する手段として本発明は、先導管内に載置した複数の非同時に駆動する油圧装置へ、必要数の方向切替弁と送先切替弁とを組み合わせて、また先導管内に載置した駆動圧の異なる複数の油圧装置に対しては、必要数の適合圧減圧弁と方向切替弁とを組み合わせて、立坑外に設置した油圧ユニットから最少1本の油圧ホースにて油圧油を供給し、且つ先導管内に載置した複数の油圧駆動装置から排出される油圧油を、チェック弁を用いて排出ライン側に集約し、先導管からは最少1本の油圧ホースにて立坑外に設置した油圧ユニットに回収することにある。
【0014】
こうすることにより、埋設管内に仮敷設する油圧ホース数を少なくとも半分以下に減らせられ、前述の課題が解消できるので、作業能率を著しく高めることができる。
【0015】
【発明の実施の形態】
以下、まず小口径管埋設を示す概念図面を参照して推進装置の概要を、次に本発明と比較のため先に従来装置の油圧回路について図に従い説明する。
【0016】
図3は一例としての小口径管埋設の推進装置全体を示す概念図であり、先導管1内にはカッタヘッド2に接続の油圧モーター3が搭載されている。ここで従来法の場合について説明すると、この油圧モーター3と油圧ユニット5は2本の油圧ホースにて繋げられており、7cは油圧ユニット5内に設けられている油圧ポンプ6の吐出側の配管であり、7dは油圧モーター3から油圧ユニット5に油圧油が戻る配管である。
【0017】
カッタヘッド2には掘削方向修正用の4つのシリンダーが上下左右に取付けられており、この駆動用に油圧ホースとして吐出と戻りの2本(7a、7b)が油圧ユニット5から配管されている。
【0018】
また、埋設管継ぎ足し時に掘削泥土の送排泥を一時停止する必要があり、送排泥管のバイパス弁を作動させるために供給排出用として油圧ホースが2本(7e、7f)油圧ユニット5から配管されており、埋設管内に仮敷設される油圧ホースは合計6本となっている。
【0019】
尚、先導管のA矢視からの断面を同図に示してあるが、図からも明らかなように管内には上記6本の油圧ホース7のほかに、掘削土砂の送排泥管20、21掘削補助剤(滑剤等)供給配管23、検出信号用ケーブル25、駆動信号用ケーブル26及びその他として掘削進路補正用のターゲット27用空間等が必要であり、遊び空間を取ることが難しく、このため油圧ホース7の外径も著しく制限されることが一般的である。
【0020】
そして、図2は一例として図3に示した従来法の油圧回路の構成図を示すものであり、三つの油圧駆動構成部分(油圧モーター3、方向修正ジャッキ4、送泥管用バイパス弁10)が夫々独立した油圧系にて構成されている。
【0021】
まずオーガ部であるが、油圧ポンプ6bから方向切替弁9bを経て油圧モーター3に油圧油が送られ、カッタヘッド2に回転掘削力が与えられる。方向切替弁9bを吐出側と戻り側を切替ることで逆回転とすることができる。
【0022】
次に、修正部であるが、油圧ポンプ6aからでた油圧油は方向切替弁9aを通り開閉指示弁8を経て指定の方向修正ジャッキ4に送られ、方向修正ジャッキ4a、4b、4c、4dを所望の方向に作動させる。この時4個の上下左右に取付けられ方向修正ジャッキ4a、4b、4c、4dは、修正方向により4個の開閉指示弁8a、8b、8c、8dの内、決められた上下左右の隣合った2個に開指示が信号ケーブルを通じてなされ、それによって作動する。こうして、修正が完了したならば、油圧ポンプ6a側の方向切替弁9aを逆にして油圧ジャッキ4を元の状態に戻し、施工を続ける。
【0023】
三つ目の油圧駆動構成部である掘削土砂の送排泥管バイパス弁10は埋設管19継ぎ足し時等の送排泥停止時に送排泥管20、21内に滞留する泥土が管底に沈降し、ラインの詰まり原因となるため、送排泥停止前に水又は固形物濾過回収液に送排泥管内を置換する必要があり、カッタヘッド2との切り離しのため備えられている。故に、送排泥停止前に油圧ポンプ6cから方向切替弁9cを経て油圧油が送排泥管バイパス弁10に送られ送排泥ラインをバイパス状態にして管内の土砂分を取除く置換が行われる。埋設管19の継ぎ足しが完了し掘削開始時には、方向切替弁9cを吐出側と戻り側とを切替、元のラインに戻す。
【0024】
施工方法は従来法と同じであるが、ここから本発明の油圧回路構成による実施の形態の一例を図1に基き説明する。発進立坑外の油圧ユニット5内に一台の油圧ポンプ6Aが設置してあり、油圧油の吐出側と戻り側を圧力調整用リリーフ弁11とアンロード時の油圧油熱蓄積防止用アンロード弁16とを介する2経路にて繋げてある。そして、油圧ユニット5からの2本の油圧ホース(出7Aと戻り7B)はカプラ12で埋設管内に仮敷設された油圧ホース7と接続され、更にカプラ12で接続し先導管1内に油圧油を導くように構成されている。そして、先導管内にて吐出側は二つに分かれ、一方は方向切替弁9Aを経由して、方向修正ジャッキ4部へ、もう一方は減圧弁15を経た後方向切替弁9Bを経由して受送先切替弁14Aにて油圧モーター3又は、送排泥管用バイパス弁10へ油圧油を送るよう配管されている。
【0025】
ここで、油圧油の流れと機能とについて述べると、油圧ポンプ6Aからの吐出はリリーフ弁11にて設定圧力以上分が油圧油戻りタンク17に戻り、設定圧力の油圧油はカプラ12で接続された埋設管内の一本の供給ライン7Aを通り、先導管1内に取付けられた方向切替弁9Aを経て、上下左右に取付けられた4個の方向修正ジャッキ4の入口に達する。ここで、方向修正が必要となった場合、上述の隣合った2個4A−4B、4A−4C、4B−4D又は4C−4Dを駆動させるように、駆動用信号ケーブルを通じて開閉指示弁に開信号が送られ、方向修正ジャッキ4(4A−4B、4A−4C、4B−4D、4C−4Dのどれか1組)内に油圧がかかりカッタヘッド2が必要方向へ動くこととなる。この時、ジャッキ4(4A−4B、4A−4C、4B−4D、4C−4Dのどれか1組)の逆側から排出される油圧油は方向切替弁9Aの排出側を経てチェック弁13に送られ、チェック弁13の働きによりその時点での油圧モーター3の排出ラインに合流する。そして、方向修正完了時には方向切替弁9Aの吐出と排出を逆にして前述の駆動させた2個の方向修正ジャッキ4に逆圧を掛け元に戻す。この時、方向修正ジャッキ4(4A−4B、4A−4C、4B−4D、4C−4Dのどれか1組)の正側から排出される油圧油は方向切替弁9Aを出たところからは方向修正時と同じラインを経てチェック弁13に送られその時点での油圧モーター3の排出ラインに合流する。
【0026】
次に、油圧モーター3には上記と同様、油圧ポンプ6Aからの吐出油がカプラ12で接続された埋設管19内の油圧油供給ホース7Aを通り、先導管1内で方向修正用油圧ジャッキ4のラインから分岐した部分に取付けられた減圧弁15(油圧モーターの設定圧力に落とす)を通り、方向切替弁9Bを経て更に、油圧モーター3とバイパス弁との受送先切替弁14Aを通って油圧モーター3に供給される。尚、方向切替弁9Bの方向を切替ると油圧モーターの逆転を行うことができる。
【0027】
油圧モーター3から排出される油圧油は受送先切替弁14Bから方向切替弁9Bを経て埋設管内に敷設されている油圧油排出ホース7Bを通り、油圧ユニット5に戻る。また、油圧モーター3から排出されるドレンはチェック弁13にて油圧モーター3の油圧油排出側に振分けられるので、上記排出油と合流して油圧ユニット5に戻ることになる。
【0028】
そして、埋設管を継足す時、油圧モーター3は油圧油供給を受送先切替弁14Aにて送排泥管バイパス弁10へ切替ることにより停止すると共に、バイパス弁10が開き送排泥管21,22がその部分でつながり、ライン内の土砂取除き置換が行われる。この時バイパス弁10油圧作動部より排出される油圧油は受送先切替弁14Bから方向切替弁9Bを経て埋設管内に敷設されている油圧油排出ホース7Bを通り、油圧ユニット5に戻る。
【0029】
継足しが完了し、掘削再開前に方向切替弁9Bを切替供給側と排出側を逆にして受送先切替弁14Bを経由して油圧油を流すことによりバイパス弁10は元に復帰し、この時の排出される油圧油は受送先切替弁14A及び方向切替弁9Bを経て埋設管内に敷設されている油圧油排出ホース7Bを通り、油圧ユニット5に戻る。
【0030】
この後、受送先切替弁14A,Bを油圧モーター3側に切替ると共に方向切替弁9Bの供給側と排出側を逆して元に戻し、掘削埋設を推進する。
【0031】
このような油圧回路を組むことにより、本例では従来例と比べて埋設管19内に仮敷設する油圧ホース7は3分の1に減り、それに従ってカプラ12部も3分の1に減るため、セット及びオフセット時間が減少すると共に、油漏れやカプラ12外れ等の危険個所が3分の1に減少させることができる。また、油圧ポンプ6も1台でよくなる。
【0032】
更に、例えば、φ200mm管の埋設の場合、油圧ホース数を6本から2本に減らせることとなり、従来この径の管埋設で使用されてきた外径20.4mm×内径12.7mmの油圧ホース×6本を口径が2段階上の外径28.7mm×内径19mmの油圧ホース×2本にしても埋設管内空間の専有面積は小さくでき、カプラサイズも1段上のものが使えるのでホース内径拡大分と合わせて100m当たりの圧力損失は油圧油22.5L/分の油圧油流量時、往復約4MPaから約1.5MPaへ減少させることができた。
【0033】
尚、往復1.5MPa位の圧力損失であれば、油圧モーターの許容圧力を心配する必要がないので油圧ポンプの吐口圧を最初からその分上げて運転することで、掘削進行に従って油圧油の圧力損失による掘削能力低下等に配慮を払わずともよくなる。
【0034】
【発明の効果】
以上詳述のとおり本発明によれば、以下の効果がある。
▲1▼油圧ホースの本数が減少して、埋設管のセット及びオフセット時間が減少できる。
▲2▼セットホース数の減少分をホース径の増大(カプラサイズの増大含む)に使え長距離化に伴う経路での圧力損失の低減化が図れる。
▲3▼ホース接続個所が減ることで、油漏れやカプラ外れ等の危険個所が半分に減少する。
▲4▼従来法の油圧ホース全断面積から本発明の方法による油圧ホース全断面積分を差引くとプラスになり、利用空間の拡大が図れる。
【図面の簡単な説明】
【図1】本発明の油圧回路構成図。
【図2】従来の油圧回路構成図。
【図3】小口径管埋設の推進装置全体を示す概念図
【符号の説明】
(弁、ジャッキ、ポンプ等の符号に付記した英字大文字は本発明、英字小文字は従来法のものをさす。)
1 先導管
2 カッタヘッド
3 油圧モーター
4 方向修正ジャッキ
5 油圧ユニット
6 油圧ポンプ
7 油圧ホース
8 開閉指示弁
9 方向切替弁
10 送排泥管用バイパス弁
11 リリーフ弁
12 カプラ
13 チェック弁
14 受送先切替弁
15 減圧弁
16 アンロード弁
17 油圧油戻りタンク
18 推進機
19 埋設管
20 送泥管
21 排泥管
27 ターゲット
30 発進立坑
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydraulic circuit in a front pipe of a small diameter pipe propulsion method.
[0002]
[Prior art]
There is a method of burying relatively small diameter pipes such as water and sewage pipes and conduit pipes in the ground by excavating the ground at the burial point along the entire length of the pipeline. Violently and violently, adversely affecting the surrounding environment. In addition, when the burial position is deep, earth retaining is required at the time of excavation, extra work costs are required, and land subsidence is likely to occur at a nearby private house in a narrow work place.
[0003]
On the other hand, the ground was excavated in the horizontal direction from the inside of the pit excavated from the ground surface by a cutter head provided at the tip of the front pipe, and the excavated earth and sand was laid in the front pipe and the buried pipe where the excavated soil was directly passed through a screw conveyor or the like. Connect the buried pipe to the leading pipe and push it from the rear through the discharge pipe or muddy excavated earth and sand from the pit through the sending and discharging mud pipe, and push the buried pipe sequentially from underground to go underground. There is a buried propulsion method.
[0004]
According to this method, a mud pipe for excavated earth and sand, an air line for operation such as a pinch valve, a transportation line for excavation aid such as a lubricant, a hydraulic hose, two signal cables of a drive system and a detection system, a propulsion direction are provided in a buried pipe. A confirmation target path must be provided.
[0005]
[Problems to be solved by the invention]
However, with the above-mentioned propulsion method, the problem caused by the above-mentioned excavation can be solved.However, when trying to bury a small-diameter pipe having a diameter of 300 mm or less, the pipe diameter is small, and the above-described excavation / discharge There is also a need to secure space for pipes, hoses, signal cables, etc., and a target for confirming the digging course, and the size of the hydraulic hose and coupler is limited.
[0006]
When the diameter of the hydraulic hose is limited, for example, when the inner diameter becomes 15 mm or less, the pipe resistance per unit distance increases depending on the hydraulic oil flow rate, and a considerable pressure drop occurs when the pressure loss of the coupler or the like is added. Therefore, there is a problem that the excavating ability rapidly decreases as the excavation progresses. Further, since the number of connecting points increases in proportion to the number of hydraulic hoses, there is also a problem that there is a danger that oil leaks from the connecting portions of the hydraulic hoses and the couplers come off. On the other hand, the nervousness of the builder has been heavily used for dealing with the pressure loss of the hydraulic line and for oil leakage.
[0007]
Furthermore, in the small-diameter pipe propulsion method, the procedure of once disconnecting the hydraulic hose in the process of extending the buried pipe and repeating the procedure for setting it through the extended buried pipe is repeated. The time required increases, and the net result is an increase in the time required for construction.
[0008]
Here, the number of hydraulic hoses to be laid in the buried pipe in the conventional method is six, for example, when there are three hydraulic drive components in the leading conduit and when designed with a normal hydraulic circuit configuration. . In the case of a primitive piping configuration, the number of hydraulic hoses is twice the number of hydraulic drive actuators.
[0009]
In order to reduce the number of hydraulic hoses, for example, in Japanese Patent No. 3219740, a hydraulic unit for driving a direction correcting jack and a water shutoff bypass valve for a feed / drainage pipe is temporarily laid in a buried pipe by mounting a hydraulic unit in a front pipe. Hydraulic hose is eliminated. However, Japanese Patent Application Laid-Open No. 2000-328876 states that if the buried pipe diameter is 300 mm or less, it is considered that mounting the hydraulic unit in the front pipe becomes difficult spatially, and therefore it is preferable to install the hydraulic unit on the ground.
[0010]
Further, in these patent examples, a method is employed in which the rotational driving force of the cutter head is obtained from an electric motor mounted in the front conduit. This is because the electric wiring is smaller in diameter than hydraulic piping or the like, has a large space for use, and has an advantage of being easy to handle. However, the construction site is in a muddy mud environment, and using large power at the tip of the underground excavation is not preferable because there is a danger of electric leakage due to cable damage, cutting accident, insulation failure and the like.
[0011]
The present invention has been made to solve the problems of the above-described conventional technology, and has been made to reduce the number of hoses of hydraulic oil supplied to the leading conduit of the small-diameter pipe propulsion method, and to reduce the number of hoses in the buried pipe at the time of burying work. An object of the present invention is to provide a sufficient space to reduce the time required for setting a buried pipe and to reduce a danger point such as an oil leak to half or less.
[0012]
Another object of the present invention is to make it possible to increase the size of hydraulic hoses / couplers and the like, thereby minimizing an increase in pressure loss caused by pipe resistance due to the extension of buried pipes, and facilitating operation management.
[0013]
[Means to solve the problem]
As a means for solving the above-mentioned problems, the present invention combines a required number of directional switching valves and a destination switching valve into a plurality of non-simultaneously driven hydraulic devices mounted in a front conduit, and also mounted in the front conduit. For a plurality of hydraulic devices with different driving pressures, the required number of compatible pressure reducing valves and direction switching valves are combined to supply hydraulic oil from a hydraulic unit installed outside the shaft with at least one hydraulic hose. Hydraulic oil discharged from a plurality of hydraulic drive units mounted in the front conduit was collected on the discharge line side using a check valve, and was installed outside the shaft with at least one hydraulic hose from the front conduit. It is to collect it in the hydraulic unit.
[0014]
By doing so, the number of hydraulic hoses temporarily laid in the buried pipe can be reduced to at least half or less, and the above-mentioned problem can be solved, so that the work efficiency can be significantly improved.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an outline of a propulsion device will be described first with reference to a conceptual drawing showing small diameter pipe burying, and then a hydraulic circuit of a conventional device will be described first with reference to the drawings for comparison with the present invention.
[0016]
FIG. 3 is a conceptual view showing an entire propulsion device with a small-diameter pipe buried as an example. A hydraulic motor 3 connected to a cutter head 2 is mounted in a front pipe 1. Here, the case of the conventional method will be described. The hydraulic motor 3 and the hydraulic unit 5 are connected by two hydraulic hoses, and 7c is a piping on the discharge side of a hydraulic pump 6 provided in the hydraulic unit 5. Reference numeral 7d denotes a pipe in which hydraulic oil returns from the hydraulic motor 3 to the hydraulic unit 5.
[0017]
Four cylinders for correcting the excavation direction are attached to the cutter head 2 at the top, bottom, left, and right. Two hydraulic hoses (7a, 7b) for discharge and return are piped from the hydraulic unit 5 for this drive.
[0018]
Further, it is necessary to temporarily stop the sending and discharging of excavated mud when the buried pipe is added, and two hydraulic hoses (7e, 7f) for supplying and discharging from the hydraulic unit 5 are used to operate the bypass valve of the sending and discharging mud pipe. A total of six hydraulic hoses are laid in the buried pipe.
[0019]
The cross section of the front pipe taken from the direction of arrow A is shown in the figure. As is clear from the figure, in addition to the above-mentioned six hydraulic hoses 7, the pipe 20 for sending and discharging the excavated earth and sand is provided in the pipe. 21 Drilling aid (lubricant etc.) supply pipe 23, detection signal cable 25, drive signal cable 26 and other space for target 27 for excavation course correction are required, and it is difficult to take play space. Therefore, it is common that the outer diameter of the hydraulic hose 7 is also significantly restricted.
[0020]
FIG. 2 shows, as an example, a configuration diagram of the conventional hydraulic circuit shown in FIG. 3, in which three hydraulic drive components (the hydraulic motor 3, the direction correcting jack 4, and the mud pipe bypass valve 10) are provided. Each is composed of an independent hydraulic system.
[0021]
First, in the auger section, hydraulic oil is sent from the hydraulic pump 6b to the hydraulic motor 3 via the direction switching valve 9b, and a rotary excavating force is applied to the cutter head 2. Reverse rotation can be achieved by switching the direction switching valve 9b between the discharge side and the return side.
[0022]
Next, as a correcting unit, the hydraulic oil from the hydraulic pump 6a is sent to the designated direction correcting jack 4 through the direction switching valve 9a and the opening / closing instruction valve 8, and the direction correcting jacks 4a, 4b, 4c, and 4d. In the desired direction. At this time, the four direction correcting jacks 4a, 4b, 4c, and 4d attached to the four directions of the open / close instruction valves 8a, 8b, 8c, and 8d are adjacent to the predetermined upper, lower, left, and right directions. Two open indications are made through the signal cable and actuated thereby. After the correction is completed, the direction switching valve 9a on the hydraulic pump 6a side is reversed to return the hydraulic jack 4 to the original state, and the construction is continued.
[0023]
The third hydraulically driven component, the excavated sediment sending / discharging pipe bypass valve 10, sets off the mud staying in the sending / discharging pipes 20 and 21 at the bottom of the pipe at the time of stopping the feeding / discharging when the buried pipe 19 is added. In order to cause clogging of the line, it is necessary to replace the inside of the sending / discharging pipe with water or a solid-filtration / recovery liquid before stopping the sending / discharging. Therefore, before the feeding and discharging mud is stopped, the hydraulic oil is sent from the hydraulic pump 6c to the feeding and discharging mud pipe bypass valve 10 via the directional switching valve 9c to put the feeding and discharging mud line into a bypass state to remove the sediment in the pipe. Is When the refilling of the buried pipe 19 is completed and the excavation is started, the direction switching valve 9c is switched between the discharge side and the return side to return to the original line.
[0024]
Although the construction method is the same as the conventional method, an example of the embodiment with the hydraulic circuit configuration of the present invention will be described based on FIG. One hydraulic pump 6A is installed in the hydraulic unit 5 outside the starting shaft, and a relief valve 11 for adjusting pressure on a discharge side and a return side of hydraulic oil and an unload valve for preventing heat accumulation of hydraulic oil during unloading. 16 and two paths. The two hydraulic hoses (outlet 7A and return 7B) from the hydraulic unit 5 are connected to the hydraulic hose 7 temporarily laid in the buried pipe by the coupler 12, and further connected by the coupler 12 to the hydraulic oil in the destination pipe 1. It is configured to guide. Then, the discharge side is divided into two parts in the leading conduit, one of which is received via the direction switching valve 9A to the direction correcting jack 4 and the other via the pressure reducing valve 15 via the rear direction switching valve 9B. The piping is arranged so that hydraulic oil is sent to the hydraulic motor 3 or the bypass valve 10 for the sending and discharging mud pipe by the destination switching valve 14A.
[0025]
Here, the flow and function of the hydraulic oil will be described. The discharge from the hydraulic pump 6A is returned to the hydraulic oil return tank 17 by an amount equal to or higher than the set pressure by the relief valve 11, and the hydraulic oil at the set pressure is connected by the coupler 12. After passing through one supply line 7A in the buried pipe, it reaches the inlets of four direction correcting jacks 4 mounted on the upper, lower, left and right sides via a directional switching valve 9A mounted in the front pipe 1. Here, when it is necessary to correct the direction, the opening / closing instruction valve is opened through a driving signal cable so as to drive the two adjacent 4A-4B, 4A-4C, 4B-4D or 4C-4D described above. A signal is sent, hydraulic pressure is applied to the direction correcting jack 4 (any one of 4A-4B, 4A-4C, 4B-4D, and 4C-4D), and the cutter head 2 moves in the required direction. At this time, the hydraulic oil discharged from the opposite side of the jack 4 (any one of 4A-4B, 4A-4C, 4B-4D, and 4C-4D) passes through the discharge side of the direction switching valve 9A to the check valve 13. It is sent and joins the discharge line of the hydraulic motor 3 at that time by the action of the check valve 13. Then, when the direction correction is completed, the discharge and discharge of the direction switching valve 9A are reversed to apply a reverse pressure to the two driven direction correction jacks 4 to return to the original position. At this time, the hydraulic oil discharged from the positive side of the direction correcting jack 4 (any one of 4A-4B, 4A-4C, 4B-4D, and 4C-4D) is discharged from the direction switching valve 9A in the direction. It is sent to the check valve 13 via the same line as that at the time of correction, and joins the discharge line of the hydraulic motor 3 at that time.
[0026]
Next, similarly to the above, the hydraulic motor 3 discharges oil from the hydraulic pump 6A through the hydraulic oil supply hose 7A in the buried pipe 19 connected by the coupler 12, passes through the hydraulic jack 3 for direction correction in the front pipe 1. Through the pressure reducing valve 15 (dropped to the set pressure of the hydraulic motor) attached to the part branched from the line, through the direction switching valve 9B, and further through the receiving destination switching valve 14A between the hydraulic motor 3 and the bypass valve. It is supplied to the hydraulic motor 3. When the direction of the direction switching valve 9B is switched, the reverse rotation of the hydraulic motor can be performed.
[0027]
The hydraulic oil discharged from the hydraulic motor 3 returns from the destination switching valve 14B to the hydraulic unit 5 via the direction switching valve 9B, the hydraulic oil discharge hose 7B laid in the buried pipe. Further, the drain discharged from the hydraulic motor 3 is distributed to the hydraulic oil discharge side of the hydraulic motor 3 by the check valve 13, so that the drain merges with the discharged oil and returns to the hydraulic unit 5.
[0028]
Then, when the buried pipe is added, the hydraulic motor 3 stops by switching the hydraulic oil supply to the sending / draining pipe bypass valve 10 by the destination switching valve 14A, and the bypass valve 10 is opened to open the sending / draining pipe. 21 and 22 are connected at that portion, and the earth and sand in the line are removed and replaced. At this time, the hydraulic oil discharged from the hydraulic operating portion of the bypass valve 10 returns to the hydraulic unit 5 from the destination switching valve 14B via the direction switching valve 9B, the hydraulic oil discharge hose 7B laid in the buried pipe.
[0029]
When the extension is completed, and before the excavation is resumed, the bypass valve 10 is returned to the original state by switching the direction switching valve 9B so that the supply side and the discharge side are reversed and the hydraulic oil flows through the destination switching valve 14B. The hydraulic oil discharged at this time returns to the hydraulic unit 5 through the hydraulic oil discharge hose 7B laid in the buried pipe via the destination switching valve 14A and the direction switching valve 9B.
[0030]
Thereafter, the destination switching valves 14A and 14B are switched to the hydraulic motor 3 side, and the supply side and the discharge side of the direction switching valve 9B are reversed and returned to the original state, and the excavation and burial is promoted.
[0031]
By constructing such a hydraulic circuit, in this example, the hydraulic hose 7 temporarily laid in the buried pipe 19 is reduced to one-third and the coupler 12 is also reduced to one-third accordingly. , Set and offset times are reduced, and danger points such as oil leaks and coupler 12 detachment can be reduced to one third. Also, one hydraulic pump 6 is sufficient.
[0032]
Furthermore, for example, in the case of burying a φ200 mm pipe, the number of hydraulic hoses can be reduced from six to two, and the hydraulic hose of 20.4 mm in outer diameter × 12.7 mm in inner diameter conventionally used for burying pipes of this diameter is used. Even if you use two hydraulic hoses with an outer diameter of 28.7 mm and an inner diameter of 19 mm, which are two steps larger than the six pipes, the occupied area of the space inside the buried pipe can be reduced and the coupler size can be one step higher, so the inner diameter of the hose The pressure loss per 100 m together with the expansion could be reduced from about 4 MPa reciprocation to about 1.5 MPa at a hydraulic oil flow rate of 22.5 L / min.
[0033]
If the pressure loss is about 1.5 MPa for reciprocation, there is no need to worry about the allowable pressure of the hydraulic motor. It is not necessary to pay attention to the loss of excavation ability due to loss.
[0034]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
{Circle around (1)} The number of hydraulic hoses is reduced, and the time for setting and offsetting the buried pipes can be reduced.
{Circle around (2)} The decrease in the number of set hoses can be used for increasing the diameter of the hose (including the increase in the size of the coupler), so that the pressure loss in the path accompanying the longer distance can be reduced.
{Circle around (3)} By reducing the number of hose connection locations, danger locations such as oil leakage and coupler disconnection are reduced by half.
{Circle around (4)} By subtracting the total sectional area of the hydraulic hose according to the method of the present invention from the total sectional area of the hydraulic hose according to the conventional method, it becomes positive, and the use space can be expanded.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a hydraulic circuit according to the present invention.
FIG. 2 is a configuration diagram of a conventional hydraulic circuit.
FIG. 3 is a conceptual diagram showing the entire propulsion device for burying a small-diameter pipe.
(The uppercase alphabetic letters attached to the symbols of valves, jacks, pumps, etc. refer to the present invention, and the lowercase letters refer to conventional methods.)
DESCRIPTION OF SYMBOLS 1 Lead pipe 2 Cutter head 3 Hydraulic motor 4 Direction correction jack 5 Hydraulic unit 6 Hydraulic pump 7 Hydraulic hose 8 Opening / closing instruction valve 9 Direction switching valve 10 By-pass valve for sending and discharging mud pipe 11 Relief valve 12 Coupler 13 Check valve 14 Destination switching Valve 15 Pressure reducing valve 16 Unloading valve 17 Hydraulic oil return tank 18 Propulsion device 19 Buried pipe 20 Mud feed pipe 21 Drain pipe 27 Target 30 Starting shaft

Claims (1)

小口径管を地中に押入埋設する管埋設装置において、先導管内に載置した複数の非同時に駆動する油圧装置へ、必要数の方向切替弁と送先切替弁とを組み合わせて、また先導管内に載置した駆動圧の異なる複数の油圧装置に対しては、必要数の適合圧減圧弁と方向切替弁とを組み合わせて、立坑外に設置した油圧ユニットから最少一本の油圧ホースにて油圧油を供給し、且つ先導管内に載置した複数の油圧駆動装置から排出される油圧油を、チェック弁を用いて排出ライン側に集約し、先導管からは最少一本の油圧ホースにて立坑外に設置した油圧ユニットに回収することを特徴とする小口径管埋設装置。In a pipe burial device that pushes and buries a small-diameter pipe into the ground, a required number of directional switching valves and destination switching valves are combined with a plurality of non-simultaneously driven hydraulic devices mounted in the front pipe, and For a plurality of hydraulic devices with different driving pressures mounted on the shaft, the required number of compatible pressure reducing valves and directional control valves are combined, and the hydraulic unit installed outside the shaft is hydraulically operated with at least one hydraulic hose. Hydraulic oil that supplies oil and is discharged from a plurality of hydraulic drive units placed in the front pipe is collected on the discharge line side using a check valve, and the shaft is connected with a minimum of one hydraulic hose from the front pipe. A small-diameter pipe burying device, which is collected in a hydraulic unit installed outside.
JP2002303588A 2002-09-11 2002-09-11 Hydraulic circuit for small-bore pipe burying device Pending JP2004100417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002303588A JP2004100417A (en) 2002-09-11 2002-09-11 Hydraulic circuit for small-bore pipe burying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002303588A JP2004100417A (en) 2002-09-11 2002-09-11 Hydraulic circuit for small-bore pipe burying device

Publications (1)

Publication Number Publication Date
JP2004100417A true JP2004100417A (en) 2004-04-02

Family

ID=32289293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002303588A Pending JP2004100417A (en) 2002-09-11 2002-09-11 Hydraulic circuit for small-bore pipe burying device

Country Status (1)

Country Link
JP (1) JP2004100417A (en)

Similar Documents

Publication Publication Date Title
KR20110007917A (en) Apparatus for removing concrete within underground tube without excavating manhole area
CN100370175C (en) Pipe connector
CN105275041A (en) Hybrid device and hybrid construction machine including same
KR100831404B1 (en) Semi-shield machine
JP2004100417A (en) Hydraulic circuit for small-bore pipe burying device
JP5545998B2 (en) Hydraulic work machine and output increasing method
JP2001020904A (en) Drain circuit of hydraulic motor for excavator
JP4152935B2 (en) Reconstruction method and equipment for existing pipes
JPH09189193A (en) Small-bore pipe jacking machine
EP2000627A2 (en) Directional boring machine for drilling underground ducts
JP4230316B2 (en) Method and apparatus for updating existing buried pipe
JP3165854B2 (en) Blockage detection method and blockage avoidance operation device for drainage pipe line in mud shield system
JP2930180B2 (en) Cleaning equipment in temporary earth retaining concrete placing equipment
KR100399216B1 (en) A moving equipment for dreding slug with auger screw pump and method for dreding sluge without smoke, noise and digging using it
JP3488407B2 (en) Method of preventing cutter face plate blockage of shield machine
KR102114156B1 (en) Old pipe reconstruction semi-shield apparatus and old pipe exchange method
JPH10220174A (en) Underground new pipe layout method
CN110080369B (en) Cross sewage drainage pipeline construction method without interrupting sewage drainage
JP5196585B2 (en) High water pressure pipe roof construction machine
CN210978025U (en) Boosting control device for push-pull motor of horizontal directional drilling machine
JP2022065476A (en) Drainage system and pipe line repairing method
JP4136902B2 (en) Small-diameter pipe excavation equipment
JP2928462B2 (en) Double pipe muddy water propulsion method
JPH08270058A (en) Method and equipment for maintaining discharge in sewerage work
JP2007002620A (en) Casing for shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050824

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A02 Decision of refusal

Effective date: 20071030

Free format text: JAPANESE INTERMEDIATE CODE: A02