JP2004100035A - Green compact and powder compaction process, metallic sintered body and its manufacturing method, and worked component part and method of working - Google Patents

Green compact and powder compaction process, metallic sintered body and its manufacturing method, and worked component part and method of working Download PDF

Info

Publication number
JP2004100035A
JP2004100035A JP2003166642A JP2003166642A JP2004100035A JP 2004100035 A JP2004100035 A JP 2004100035A JP 2003166642 A JP2003166642 A JP 2003166642A JP 2003166642 A JP2003166642 A JP 2003166642A JP 2004100035 A JP2004100035 A JP 2004100035A
Authority
JP
Japan
Prior art keywords
powder
raw material
molding
mold
compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003166642A
Other languages
Japanese (ja)
Other versions
JP3945455B2 (en
Inventor
Mikio Kondo
近藤 幹夫
Taku Saito
斎藤 卓
Hiroyuki Takamiya
高宮 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2003166642A priority Critical patent/JP3945455B2/en
Priority to US10/615,939 priority patent/US20040013558A1/en
Publication of JP2004100035A publication Critical patent/JP2004100035A/en
Application granted granted Critical
Publication of JP3945455B2 publication Critical patent/JP3945455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F2003/026Mold wall lubrication or article surface lubrication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F2003/145Both compacting and sintering simultaneously by warm compacting, below debindering temperature

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powder compaction process by which active metal powder can be compacted under high pressure. <P>SOLUTION: The powder compaction process comprises the steps of: applying a higher fatty acid-based lubricant to the inner surface of a die; filling a raw material powder whose major component is an active metallic element into the die after the application step; compacting the raw material powder after the filling step by warm pressing to make a green compact; and ejecting the green compact after the compaction step from the die. The resultant green compact has high density. By this procedure, the active metal powder composed of the active metallic elements, such as Ti and Al, can be pressed under high pressure without causing galling etc. at the inner surface of the die, and the green compact having high density which has not been available conventionally can be obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、Ti、Al等の活性金属元素を主成分とする原料粉末(以下、適宜、「活性金属粉末」と略称する。)からなる高密度の粉末成形体とその粉末成形方法、およびその粉末成形体を燒結させた高密度な金属焼結体とその製造方法に関するものである。
また、活性金属元素を主成分とする金属素材を成形加工した成形加工部材とその成形加工方法に関するものである。
【0002】
【従来の技術】
高価な加工費を削減して部材の生産コストの低減を図ったり、バルク状の溶製材等では得られない特性を得るために、原料粉末を加圧成形した粉末成形体が従来から用いられている。この粉末成形体は、その後に焼結体とされることも多いが、圧粉磁心のように粉末成形体のままで使用される場合もある。
ところで、粉末成形体の特長を生かすには、多くの場合、粉末成形体が高密度であることが要求される。高密度な粉末成形体を得るには、原料粉末を高圧で加圧成形することが不可避である。しかし、通常、その成形圧力を高める程、原料粉末と金型との間の摩擦力が大きくなる。その結果、大きな圧力で加圧成形すると、得られた粉末成形体の金型からの抜出が困難となったり、その抜出しの際にかじり等を生じて金型を損傷したり、粉末成形体の表面が荒れたりする。
勿論、潤滑剤を多量に使用してそれらを改善することも考えられるが、それでは結局、粉末成形体の密度が低下したり、加圧成形後に別途、脱脂(脱ろう)工程等が必要となってコスト高となったりする。
【0003】
このような事情の下、潤滑剤の種類、潤滑方法、金型温度等を種々工夫して、高密度の粉末成形体を効率的に製造する方法が多数提案されている。例えば、特開昭62−109902号公報、特開昭62−294102号公報、特開平5−271709号公報、特開平8−100203号公報、特開平9−104902号公報、特開平11−193404号公報、特開平11−100602号公報、特開平11−140505号公報、特開2000−273502号公報、特開2000−290703号公報、特開平2001−294902号公報、国際公開WO98/41347号公報、米国特許4955798号公報、研究論文(”INFLUENCE OF TEMPERATURE ON PROPERTIES OF LITHIUM STEARATE LUBRICANT”、Powder Metallurgy & Particulate Materials、vol1、1997) に関連事項が開示されている。もっとも、このような提案のいずれも、高密度の粉末成形体を低コストで生産するには不十分であった。
そこで、本発明者は、金型寿命等を確保しつつ、従来になく著しく高い成形圧力で加圧成形し、真密度に非常に近い高密度の粉末成形体が得られる成形方法を世界に先駆けて開発した。この内容は、国際公開WO01/43900号公報に開示されている。
【0004】
【特許文献1】
特開昭62−109902号公報
【特許文献2】
特開昭62−294102号公報
【特許文献3】
特開平5−271709号公報
【特許文献4】
特開平8−100203号公報
【特許文献5】
特開平9−104902号公報
【特許文献6】
特開平11−193404号公報
【特許文献7】
特開平11−100602号公報
【特許文献8】
特開平11−140505号公報
【特許文献9】
特開2000−273502号公報
【特許文献10】
特開2000−290703号公報
【特許文献11】
特開平2001−294902号公報
【特許文献12】
国際公開WO98/41347号公報
【特許文献13】
米国特許4955798号公報
【非特許文献1】
研究論文(”INFLUENCE OF TEMPERATURE ON PROPERTIES OF LITHIUM STEARATE LUBRICANT”、Powder Metallurgy & Particulate Materials、vol1、1997)
【0005】
【発明が解決しようとする課題】
ところが、上記国際公開WO01/43900号公報の内容を含めて考えても、これまで提案されてきた粉末成形方法は、原料粉末が鉄粉末または鉄合金粉末からなるものがほとんどである。つまり、Ti、Al等の活性金属元素を主成分とする原料粉末の粉末成形方法について、現実的な提案がなされているものはほとんどない。
少なくとも、内部潤滑法(混入潤滑法)ではなく、金型潤滑法によって、そのような原料粉末を工業レベル(量産レベル)で高圧成形したものは、現状知る限りにおいて見当らない。
【0006】
これは、Ti、Al等を主成分とした原料粉末の粉末成形体に対する需要が少ないからではない。むしろ、各種部材の軽量化等が求められる昨今、そのような粉末成形体の需要は大きい。特に、加工困難な純チタンやチタン合金からなる部材の場合、粉末成形法を利用することで、(ニア)ネットシェイプ化による低コスト化を図れるといった大きなメリットがある。
【0007】
しかし、Ti、Al等の活性金属元素からなる原料粉末を工業レベルで高圧成形することはできない、というのがこれまでの技術常識であった。そのような高圧成形を行った場合、即座に、金型内面にかじりを生じたり、金型内面を荒したり、さらには、金型からその粉末成形体を抜出すことができなくなったりするからである。しかも、非常に高価な金型が一回限りの成形で使用できなくなり、大きな損失を生じ得る。
このような事情により、活性金属元素からなる原料粉末を加圧成形する場合、その成形圧力を高くすることはできず、得られた粉末成形体の到達密度は当然に低いものであった。例えば、Ti粉末からなる粉末成形体の場合なら、その成形体密度は、真密度の80%以下に過ぎないものであった。
【0008】
また、従来のように内部潤滑法でTi粉末を加圧成形した場合、得られた粉末成形体を真空中で焼結させる際に、脱ろう工程が別途必要となる。しかもそのとき使用される潤滑剤の主成分である水素、窒素、炭素等はTi内部に固溶され易いため、内部潤滑法は好ましくない。
このような潤滑剤の使用を避けるためにゴム型を用いたCIP成形やRIP成形等もある。しかし、その場合でも十分な高圧成形をすることはできず、その装置も非常に大型で高価である。また、得られた粉末成形体の寸法精度も低く、粉末成形体の最大の特長であるネットシェイプな部材が得られないのが現実である。
このような事情は、Al粉末等を使用した場合でも同様である。さらに、Al粉末に潤滑剤を混入させて粉末成形した場合、その潤滑剤の脱ろう温度が、粉末成形体の焼結温度(500℃程度)と近いため、十分な脱ろうができないといった問題も生じる。
【0009】
本発明はこのような事情に鑑みて為されたものである。すなわち、Ti、Al等の活性金属元素を主成分とする原料粉末を用いて、現実的なレベルで高圧成形を可能とした粉末成形方法およびそれより得られる高密度な粉末成形体を提供することを目的とする。
また、その粉末成形体を焼結させた金属焼結体およびその製造方法を提供することを目的とする。
さらには、粉末成形方法等に限らず、活性金属元素を主成分とした金属素材を成形加工する成形加工方法およびそれにより得られる成形加工部材をも提供することを目的とする。
【0010】
【課題を解決するための手段および発明の効果】
そこで、本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、活性金属元素を主成分とする原料粉末(以下、適宜、「活性金属粉末」と略称する。)に、金型潤滑による温間加圧成形法を適用することを思いつき、その効果を実際に確認して本発明を完成させるに至ったものである。
(粉末成形方法)
すなわち、本発明の粉末成形方法は、金型の内面に高級脂肪酸系潤滑剤を塗布する塗布工程と、該塗布工程後の金型内へ活性金属元素を主成分とする原料粉末を充填する充填工程と、該充填工程後の原料粉末を温間状態で加圧して粉末成形体とする成形工程と、該成形工程後の粉末成形体を該金型内から抜き出す抜出工程とからなり、得られた該粉末成形体が高密度であることを特徴とする。
【0011】
本発明によると、活性金属粉末を用いた場合でも、高圧成形により、高密度の粉末成形体が得られる。このとき、実質的に、金型内面にかじり等を生じることもなく、寸法精度や表面粗さの良好な粉末成形体が得られる。従って、金型の高寿命化、歩留りの向上、(ニア)ネットシェイプによる加工コスト削減等により、粉末成形体やその焼結体等のコストを大きく低減できる。
しかも、本発明の場合、内部潤滑しなくても金型潤滑で十分な効果が得られるため、潤滑剤の使用量も少なく、粉末成形体の高密度化が図れると共に粉末成形体を焼結する際の脱ろう工程も省略できる。また、潤滑剤の粉末成形体への悪影響も回避できる。
さらに、本発明の粉末成形方法によれば、成形圧力を著しく大きくしたにも拘らず、抜出力が従来に比較して格段に小さくなる。このため、粉末成形体を金型から容易に抜出すことができ、粉末成形体の生産効率を非常に高めることもできる。
【0012】
ところで、本発明の場合、当業者にとりこれまで不可能と考えられていた活性金属粉末の高圧成形が何故可能になったのか、現在、本発明者はその理由を鋭意究明中である。この理由については、粉末成形体と金型内面との間に、金型潤滑に使用した高級脂肪酸系潤滑剤とは異なる別の新たな金属石鹸被膜が形成されて摩擦係数が著しく低減したとも考えらる。また、高級脂肪酸系潤滑剤が粉末成形体表面に吸着してレビンダ(Rebinder)効果が生じているとも考えられる。さらには、これまでの認識を超えた超潤滑作用によるものであるとも考えられる。もっとも、本発明者の最近の調査研究から、前記成形工程中に、前記金属石鹸の被膜が粉末成形体の表面に新たなに形成されたためとするのが妥当と思われる。すなわち、前記成形工程は、前記高級脂肪酸系潤滑剤とは別の前記活性金属元素を含む新たな金属石鹸の被膜が前記粉末成形体の表面に形成される工程と考えられる。例えば、前記活性金属元素がTiなら、その金属石鹸は高級脂肪酸のTi塩であり、活性金属元素がAlなら、その金属石鹸は高級脂肪酸のAl塩になっていると考えられる。
【0013】
いずれにしても、抜出力が非常に低いことから、原料粉末または粉末成形体と金型との間の摩擦力が著しく低減していることは明らかだといえる。もっともこのことが、摩擦係数が極端に低いということには必ずしも直結しない。原料粉末の種類によっては、金型から取出した後の膨張量(スプリングバック量)が小さいものもある。その場合には、摩擦係数が極端に小さくなくても、抜出時の摩擦力が小さくなるからである。
【0014】
本明細書でいう活性金属元素とは、Ti、Al、Mg、Zr、Na、希土類元素(La、Ce等)等である。実用金属材料としてTi、AlおよびMgが重要である。つまり、原料粉末がTi、Al、Mgを主成分とする場合が特に工業的に重要である。この詳細は後述する。なお、本発明でいう「活性金属元素を主成分とする原料粉末」とは、原料粉末全体を100at%としたときに、対象としている特定の活性金属元素が50at%以上である場合をいう。この原料粉末は、金属粉末のみならず、セラミックス粉末であっても良い。従って、得られた粉末成形体は、金属成形体のみならずセラミックス成形体であっても良い。
【0015】
(粉末成形体)
本発明は、上記粉末成形方法に限らず、その結果得られた粉末成形体としても把握できる。
例えば、上記粉末成形方法により得られることを前提に、本発明は、前記活性金属元素はTiであり、前記粉末成形体の見掛け上の密度である成形体密度が、前記原料粉末の組成から定る真密度の85%以上の高密度であることを特徴とする粉末成形体としても良い。
【0016】
この場合の成形体密度は、成形圧力を調整することで、さらに、真密度の88%以上、90%以上、95%以上、98%以上ともなり、上限の100%に限りなく近づけることができる。
同様に、上記粉末成形方法により得られることを前提に、本発明は、前記活性金属元素はAlであり、前記粉末成形体の見掛け上の密度である成形体密度は、前記原料粉末の組成から定る真密度の90%以上の高密度であることを特徴とする粉末成形体としても良い。
【0017】
この場合も、成形体密度は、成形圧力を調整することで、さらに、真密度の93%以上、95%以上、98%以上とすることができ、上限の100%に限りなく近づけることもできる。
従来のTi粉末等からなる粉末成形体の場合、その成形体密度が高々真密度の80%程度であり、従来のAl粉末等からなる粉末成形体の場合、その成形体密度が高々真密度の85%程度であった。これらのことを踏まえると、本発明の粉末成形体の高密度は正に驚異的でさえある。勿論、このような高密度成形を行った場合でさえ、本発明によると、金型にかじり等を生じることはなく、低い抜出力で、寸法精度や表面粗さの良好な粉末成形体が得られることは前述した通りである。
【0018】
(金属焼結体の製造方法)
本発明は、上記粉末成形方法に限らず、その方法を経て得られた粉末成形体を焼結させた金属焼結体の製造方法としても把握できる。
すなわち、本発明は、金型の内面に高級脂肪酸系潤滑剤を塗布する塗布工程と、該塗布工程後の金型内へ活性金属元素を主成分とする原料粉末を充填する充填工程と、該充填工程後の原料粉末を温間状態で加圧して粉末成形体とする成形工程と、該成形工程後の粉末成形体を該金型内から抜き出す抜出工程と、該抜出工程後の粉末成形体を加熱して金属焼結体とする焼結工程とからなり、得られた該金属焼結体が高密度であることを特徴とする金属焼結体の製造方法としても良い。
【0019】
この金属焼結体の製造方法によると、高密度な金属焼結体が容易に得られる。また、粉末成形体の成形時に使用する潤滑剤量が極めて微量であるため、焼結工程における脱ろう工程は不要となり、焼結工程が著しく短縮される。その分、生産コストも削減され、高密度な金属焼結体が一層低コストで得られる。
【0020】
(金属焼結体)
さらに、本発明は、その製造方法を経て得られた金属焼結体としても把握できる。
例えば、上記製造方法により得られることを前提に、本発明は、前記活性金属元素はTiであり、前記金属焼結体の見掛け上の密度である焼結体密度が前記原料粉末の組成から定る真密度の95%以上の高密度であることを特徴とする金属焼結体としても良い。
この場合の焼結体密度は、焼結前の成形体密度が大きい程大きくなり、真密度の97%以上、さらには99%以上ともなり、成形体密度以上に上限の100%に限りなく近づく。
【0021】
同様に、上記製造方法により得られることを前提に、本発明は、前記活性金属元素はAlであり、前記金属焼結体の見掛け上の密度である焼結体密度は、前記原料粉末の組成から定る真密度の95%以上の高密度であることを特徴とする金属焼結体としても良い。
この場合も、焼結体密度は、焼結前の成形体密度が大きい程大きくなり、真密度の97%以上、さらには99%以上ともなり、成形体密度以上に上限の100%に限りなく近づく。
【0022】
本発明の金属焼結体は、いずれの場合でも、焼結前の成形体密度が大きいため、焼結後に寸法収縮等の寸法変化が小さい。このため、活性金属元素からなる焼結品であるにも拘らず、ネットシェイプ化が可能となり、Ti製品等の低価格化の達成が容易となる。
【0023】
(成形加工方法および成形加工部材)
本発明によると、活性金属粉末の高圧成形が可能であり、これを前提に本発明の種々の形態についてこれまで説明してきた。しかし、本発明はそもそも、金型内面と、活性金属粉末またはその加圧後の粉末成形体との間に作用する摩擦力が著しく小さいことに大きな特徴をもつと考えられる。従って、本発明は、原料粉末を加圧成形する場合に限らず、有形の金属素材を所望の形状に成形加工する場合にも当然に適用できる。
すなわち、本発明は、活性金属元素を主成分とした金属素材の表面および/または成形加工金型の加工面に高級脂肪酸系潤滑剤を塗布する塗布工程と、該成形加工金型により該金属素材を温間状態で成形加工する成形加工工程とからなることを特徴とする成形加工方法としても把握できる。
本発明によると、前述した粉末成形方法の場合と同様に、活性金属粉末からなる金属素材であっても、成形加工金型との間にかじり等を生じることなく、効率的に、低コストで、所望の形状に成形加工できる。
【0024】
ここでいう「金属素材」は、溶製材でも焼結材でもよい。また、その形態は問わず、インゴットでも、板材でも、線材でも、管材でも良い。要するに、金属粉末等と異なり、マクロ的な外形を有するものであれば良い。「成形加工」とは、マクロ的な有形状の素材に対して、その外形状を所望の形状に整えること、つまりは、所望の形状に加工することを意味する。
【0025】
このような成形加工には、鍛造、圧延、押出し、引抜き、転造、コイニング、サイジングまたは再圧縮等がある。加工の種類によって使用する成形加工金型は異なるが、例えば、鍛造金型、ロール、ダイス等がある。
成形加工工程を温間状態で行うために、成形加工金型または金属素材の少なくとも一方を、その工程前に加熱しておいても、その工程と同時に加熱しても良い。
【0026】
金属素材は有形であるため、前述の塗布工程をその金属素材に対して行うこともできる。勿論、粉末成形の場合と同様に、成形加工金型に対して行っても良い。例えば、前記塗布工程は、加熱した前記金属素材を前記高級脂肪酸系潤滑剤を分散させた分散液中に浸漬するディップ法、または、加熱した該金属素材若しくは前記成形加工金型へ該高級脂肪酸系潤滑剤を分散させた分散液を吹付けるスプレー法等により行う工程とすることができる。なお、本発明は、その成形加工方法により得られる成形加工部材として把握できることは言うまでもない。
【0027】
【発明の実施の形態】
次に、実施形態を挙げ、本発明をより具体的に説明する。なお、以下に説明する内容は、本発明に係る粉末成形方法、粉末成形体、金属焼結体とその製造方法、成形加工方法および成形加工部材のいずれにも、適宜、該当し得る。
(1)原料粉末
原料粉末は、前述したように、活性金属元素を主成分とする粉末からなり、Ti系粉末やAl系粉末が代表的である。
▲1▼活性金属元素をTiとする場合、原料粉末は、例えば、純Ti粉末、Ti合金粉末、Ti化合物粉末等からなる。1種の粉末単独でも、2種以上の粉末を混合したものでも良い。その原料粉末は、Ti以外に、Al、Zr、Hf、V、Nb、Ta、Sc、Cr、Fe、Mo、Sn、W、Mn、Ni、Cu、Si、C、B、N、O等の元素を含んでいても良い。
【0028】
Ti化合物粉末は、例えば、TiB等からなるホウ化チタン粉末、TiC等からなる炭化チタン粉末、TiN等からなる窒化チタン粉末、TiO等からなる酸化チタン粉末などが代表的である。
各元素の含有形態は問わないが、例えば、純粉末、合金粉末、化合物粉末等として原料粉末に含有していれば良い。いずれの元素を原料粉末に含有させるかは、粉末成形体やその焼結体の用途、特性、粉末コスト等により決定される。
【0029】
▲2▼活性金属元素をAlとする場合、原料粉末は、例えば、純Al粉末、Al合金粉末またはAl化合物粉末等からなる。その原料粉末は、Al以外に、Cu、Mg、Mn、Zr、Sr、Ni、Cr、Fe、Mo、Sn、Si、C、B、NまたはO等の元素を含んでいても良い。なお、Al化合物粉末は、Al等からなる酸化アルミニウム粉末が代表的である。
この原料粉末の場合も、活性金属元素をTiとする場合と同様で、1種の粉末単独でも、2種以上の粉末を混合したものでも良く、各元素の含有形態を問わない。
【0030】
▲3▼原料粉末は、ホウ化物、窒化物、酸化物または炭化物からなる硬質粒子粉末が混合された混合粉末であっても良い。その混合粉末は、2種以上の硬質粒子粉末を混合したものでも良い。硬質粒子がTiやAlの化合物からなる場合、硬質粒子粉末は前述のTi化合物粉末やAl化合物粉末となる。
【0031】
硬質粒子粉末を含む原料粉末を粉末成形すると、Ti、Al等の活性金属やその合金等からなるマトリックス中に、硬質粒子が均一に分散した複合材料が容易に得られる。このような複合材料は、強度、剛性、耐熱性、耐摩耗性等の機械的特性などに優れたものとなる。特に、粉末成形体を焼結させた金属焼結体の場合に顕著である。
硬質粒子には、前述したTiB 、TiB、TiC、TiN、TiO、Al 以外に、SiC、Si 、BC、CrN、CrN、MoB、CrB、Y、ThO等がある。
【0032】
従来、このような硬質粒子を原料粉末中に多量に分散させた場合、原料粉末を微粉化したとしても、成形性、焼結性が著しく劣った。本発明の場合、硬質粒子を原料粉末中へ多量に含有させたとしても、高密度な粉末成形体が得られる。またそれを焼結させたとき、短時間の加熱で高密度な焼結体が得られる。さらに、添加元素を十分に拡散させるために焼結工程中の加熱時間を長くしたとしても、得られた焼結体の寸法変化は小さく安定したものとなる。
【0033】
そこで、本発明を利用すれば、原料粉末中の硬質粒子粉末の割合の上限を、5質量%、10質量%、15質量%、20質量%と大きくしても、高密度な粉末成形体や焼結体が得られる。なお、この硬質粒子粉末の割合は、混合後の原料粉末全体を100質量%としたときの割合である。
【0034】
▲4▼原料粉末中に含まれる合金、化合物、硬質粒子等は、粉末成形体またはその金属焼結体中で、必ずしも粉末時の状態を留めている必要はない。粉末成形中の加圧や焼結中の加熱によって、より安定な状態へ変化しても良い。例えば、チタン系焼結体中で、TiB粒子がより安定で硬質なTiBに変化するような場合がある。
【0035】
各粉末は、機械粉砕粉、水素化脱水素粉、アトマイズ粉等、その製造方法は問題ではない。また、原料粉末は造粒粉でも良い。原料粉末の粒径は特に拘らないが、例えば、平均粒径が1〜100μmであると良い。
本発明では、原料粉末への潤滑剤の混合を除くものではない。原料粉末に潤滑剤を少量混合することにより、粉末の流動性を向上させることができる。このとき、本発明でいう高級脂肪酸系潤滑剤(分散液に分散させたものを含む)を用いるとより好ましい。もっとも、潤滑剤を多量に混入させると、粉末成形体の到達密度が低下して好ましくないことは前述した通りである。
【0036】
(2)高級脂肪酸系潤滑剤
本発明でいう高級脂肪酸系潤滑剤は、高級脂肪酸からなる潤滑剤と高級脂肪酸の金属塩からなる潤滑剤の双方を意味する。高級脂肪酸には、ステアリン酸、パルミチン酸、オレイン酸等ある。高級脂肪酸の金属塩には、例えば、リチウム塩、カルシウム塩、亜鉛塩がある。具体的には、ステアリン酸リチウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸バリウム、パルミチン酸リチウム、オレイン酸リチウム、パルミチン酸カルシウム、オレイン酸カルシウム等である。本発明でいう高級脂肪酸系潤滑剤は、それらの1種以上を主成分とするものであれば足る。
【0037】
高級脂肪酸系潤滑剤は、室温域〜温間域で、固体であることが好ましい。液状であると潤滑剤が下方向に流れ落ち、金型内面に潤滑剤を均一に塗布することが難しくなるからである。
この高級脂肪酸系潤滑剤を金型内面に、効率よく均一に塗布するには、高級脂肪酸系潤滑剤を分散液に分散させると良い。この分散液は、水でも、アルコール系溶媒でも、水とアルコール系溶媒との混合液でも良い。このような分散液に分散させた高級脂肪酸系潤滑剤を、加熱した金型に噴霧等すると、分散液中の水やアルコール系溶媒が瞬時に蒸発して、均一な潤滑剤の被膜が容易に形成され得る。特に、アルコール系溶媒を混合することで、水分等の蒸発が速くなり、均一でむらのない潤滑剤被膜が一層形成され易い。
【0038】
本発明では、本来、金型と非常に焼付き易い活性金属粉末を使用するため、高級脂肪酸系潤滑剤による均一な潤滑剤被膜の形成が特に重要となる。これにより、金型寿命を延しつつ、高密度の良質な粉末成形体が安定して得ることができる。
金型を加熱する場合、好適な金型温度は分散液によって異なる。例えば、分散液が水からなる場合、金型温度を100℃以上とするのが好ましい。アルコール系溶媒を混合した場合、その濃度に応じて、100℃よりも低い温度でも良い。もっとも、成形工程を温間状態で行える程度の金型温度であるとより好ましい。いずれにしても、金型温度は、分散液の沸点以上で高級脂肪酸系潤滑剤の融点未満とするのが良い。高級脂肪酸系潤滑剤の融点未満としたのは、高級脂肪酸系潤滑剤が垂れ落ちるのを防止するためである。
【0039】
水とアルコール系溶媒との混合液を分散液として使用する場合、アルコール系溶媒は1〜50体積%、さらには5〜25体積%であると好ましい。アルコール系溶媒が1体積%未満では、アルコール系溶媒を混合する意味があまりなく、50体積%を超えると、アルコール系溶媒臭による作業環境の悪化およびコスト高を招く。
【0040】
このようなアルコール系溶媒には、メチルアルコール、エチルアルコール、イソプロピルアルコール等を使用できる。もっとも、水よりも沸点が低く、揮発したときに有害でなければ、その種類は問わない。
分散液に分散させる高級脂肪酸系潤滑剤は、最大粒径が30μm以下の粒子からなる粉末状であることが好ましい。30μmを超える粒子があると、金型内面に形成される潤滑剤被膜が不均一になる。また、分散液中で高級脂肪酸系潤滑剤の粒子が容易に沈殿してしまい、金型内面への均一な塗布が困難になるからである。
【0041】
次に、高級脂肪酸系潤滑剤を水等の分散液に均一分散させるには、分散液に予め界面活性剤を添加しておくと良い。
この界面活性剤は、例えばアルキルフェノール系の界面活性剤、ポリオキシエチレンノニルフェニルエーテル(EO)6、ポリオキシエチレンノニルフェニルエーテル(EO)10、アニオン性非イオン型界面活性剤、ホウ酸エステル系エマルボンT−80等である。
【0042】
使用する高級脂肪酸系潤滑剤等に応じて、1種または2種以上の界面活性剤を適宜選択すれば良い。例えば、高級脂肪酸系潤滑剤としてステアリン酸リチウム(LiSt)を用いる場合、ポリオキシエチレンノニルフェニルエーテル(EO)6、ポリオキシエチレンノニルフェニルエーテル(EO)10及びホウ酸エステルエマルボンT−80の3種類の界面活性剤を同時に添加すると好ましい。
【0043】
ホウ酸エステルエマルボンT−80のみであると、LiStは水等に分散し難いからである。これに対して、ポリオキシエチレンノニルフェニルエーテル(EO)6、(EO)10の場合、それらのみでも、LiStは水等に分散する。しかし、その分散液を希釈しようとした際に、高級脂肪酸系潤滑剤が均一に分散し難い。従って、高級脂肪酸系潤滑剤としてLiStを使用する場合、上記3種類の界面活性剤を適切に複合添加するのが好ましい。界面活性剤の添加量は、界面活性剤を含む分散液全体を100体積%としたときに、1.5〜15体積%とするのが好ましい。なお、このとき、上記3種の界面活性剤をそれぞれ1:1:1の体積割合で混合すると良い。
【0044】
界面活性剤の添加量が多い程、LiSt等を多量に分散させることができる。しかし、その界面活性剤の添加量が多くなると、分散液の粘度も高くなり、後述の粉砕処理で、LiSt等の粒子を微細にすることが困難となる。
さらに、適宜、少量の消泡剤(シリコン系の消泡剤等)を添加すると、均一な潤滑剤被膜を形成し易い。この消泡剤の添加量は、概ね分散液の体積を100体積%としたときに、0.1〜1体積%であれば良い。
ところで、界面活性剤を含む分散液に高級脂肪酸系潤滑剤の粉末を分散させる場合、例えば、分散液100cmに対してLiStを10〜30gを添加して、テフロンコートした鋼球(直径:5〜10mm程度)を用いたボールミル式粉砕処理を行うと良い。この処理を概ね50〜100時間行うと、最大粒径が30μm以下に粉砕されたLiStが、分散液中に浮遊分散した状態となる。
【0045】
(3)塗布工程
高級脂肪酸系潤滑剤を金型内面に塗布する場合、高級脂肪酸系潤滑剤を分散させた分散液を、適当に希釈して用いると良い。具体的には、希釈された分散液全体を100質量%としたときに、高級脂肪酸系潤滑剤(例えば、LiSt)が0.1〜5質量%、さらには、0.5〜2質量%となる程度に希釈すると良い。このような稀釈により、薄くて均一な潤滑剤被膜の形成が可能となる。
この希釈された分散液を、例えば塗装用のスプレーガン等で吹き付けることにより、高級脂肪酸系潤滑剤の金型内面への均一な塗布を容易に行える。この塗布は、静電ガン等の静電塗布装置を用いて行うこともできる。その他、金型内面へ高級脂肪酸系潤滑剤を均一に塗布する具体的な方法については、前述した国際公開公報WO01/43900の図1または図2に開示された方法等を適宜参考にすれば良い。
【0046】
(4)成形工程
本発明の成形工程は、高級脂肪酸系潤滑剤が塗布された金型へ充填された活性金属粉末を、温間状態で加圧する工程である。
▲1▼本発明でいう温間状態は、使用する原料粉末や高級脂肪酸系潤滑剤等によって異なり、特定の温度を一律には規定することは難しいと思われる。敢ていうなら、高圧成形した場合でも抜出力の低減効果が得られる温度範囲となる。もっとも、発明者の経験上、少なくとも前記金型内面と前記原料粉末とが接触する部分の温度(接触部分温度)が100〜225℃、より望ましくは100〜180℃の温間状態にあれば良い。活性金属粉末毎に最適化をするなら、例えば、活性金属元素がTiのとき、その接触部分温度を130〜160℃とすればより良い。活性金属元素がAlの場合なら、その接触部分温度を100〜160℃とすればより良い。
このような温間状態は、金型と原料粉末の少なくとも一方を加熱することにより達成できるが、その両者をほぼ同温度に加熱することで、より安定な温間状態が得られる。
【0047】
▲2▼本発明の場合、成形圧力に上限はない。敢ていうなら、金型や成形装置が損傷または破損しない範囲となる。従って、通常の粉末成形、特に活性金属粉末の成形では考えられないような高い成形圧力(2500MPa程度)であっても、何ら問題なく粉末成形が可能である。もっとも、十分な高密度が得られ、生産性の向上も図れる範囲として、成形圧力が392〜2000MPa、さらには588〜1568MPaであると好ましい。成形圧力がその下限(392MPa)未満なら、高密度の粉末成形体は得られず、そもそも本発明の粉末成形方法を利用するまでもなく、従来の粉末成形方法でも到達できるレベルである。本発明の場合、成形圧力の下限は686MPa以上、さらには784MPa以上ともできる。
【0048】
活性金属粉末毎に成形圧力の最適化を図るなら、例えば、活性金属元素がTiのとき、その成形圧力を500〜2500MPa、さらには784〜1568MPaとすれば良い。活性金属元素がAlの場合なら、その成形圧力を392〜2500MPa、さらには588〜1568MPaとすればより良い。
【0049】
▲3▼次に、成形圧力と抜出力との関係について説明する。
通常の粉末成形なら、成形圧力が高くなる程、粉末成形体を金型から抜き出すときの抜出力も大きくなる。しかし、本発明の場合、成形圧力を大きくすることで粉末成形体の高密度化が達成されるにも拘らず、抜出力はほとんど変化しないか、僅かに大きくなる程度である。しかも、本発明の場合の抜出力は、従来の粉末成形方法を用いた場合に比べて、約1/10程度にまで低減する。
例えば、成形工程の成形圧力が784MPa以上のとき、抜出工程の抜出力は10MPa以下となる。これは、成形圧力が、980MPa以上、1176MPa以上、さらには1372MPa以上となっても変らない。さらに言うなら、抜出力は5MPa以下、さらには3MPa以下ともなる。
【0050】
活性金属粉末毎に観ると、活性金属元素がTiのとき、成形圧力は784MPa以上で、抜出力は10MPa以下、さらには3MPa以下ともなる。活性金属元素がAlのとき、成形圧力は392MPa以上で、抜出力は5MPa以下、さらには、成形圧力は588MPa以上で、抜出力は1MPa以下ともなる。
本発明の場合、成形圧力に対する抜出力の圧力比を観ると、抜出力の変化が小さいことから、その圧力比が成形圧力の増加に対して減少傾向を示すこととなる。
【0051】
(5)その他
▲1▼本発明でいう金型は、ハイス鋼(高速度工具鋼)製であっても、超硬合金製であっても良い。金型内面には、TiNコート処理等を施しておいても良い。なお、金型内面の表面粗さは小さい程、金型および粉末成形体間の摩擦力低減に有効であり、得られた粉末成形体の表面粗さや寸法精度も良い。
【0052】
▲2▼本発明の粉末成形体やそれを焼結させた金属焼結体は、真密度に非常に近い高密度であるため、強度等の機械的特性にも優れたものとなる。従って、各種部材は勿論、構造部材としても利用できる。
【0053】
特に、活性金属元素をTiとして、本発明により得られた粉末成形体やその金属焼結体の有効性は非常に大きい。従来、航空、宇宙、軍事等の各分野では、軽量で高強度である(つまり比強度等に優れる)チタン合金が多用されてきた。しかし、一般的に大量生産させる民生品に、チタン合金が適用されることは殆ど無い。特に、鉄鋼材料を多用している量産専用部品に、その代替としてチタン合金を適用した例はこれまでにない。チタン合金を使用すると、その製造コストが著しく高価となり、低コスト化が要求される量産部品に不向きだからである。その製造コストを高めている最大の要因は、原料コストのみならず、チタン合金の素材形状が限定されるが故に、その素材から各部材へ加工する際の二次加工コストが非常に高いからである。
【0054】
これに対し、本発明の粉末成形方法等を用いれば、高い二次加工コストを実質的に発生させることなく、軽量で強度等に優れたチタン合金からなる部材が得られるので、種々の量産部品等を従来の鉄鋼製からチタン合金製に代替可能となる。
このようなものとして、例えば、あらゆる強度が要求される自動車用部品、各種スポーツ用品、工具類等がある。より具体的にいえば、自動車部品の場合、エンジンバルブ、バルブリテーナ、バルブリフタ、ピストンピン、バルブガイド、コネクティングロッド、ロッカーアーム等の自動車エンジン部品が挙げられる。また、歯車、ドライブシャフト、 CVT用ブロック等の動力伝達系部品が挙げられる。スポーツ用品の場合、ドライバ、アイアン、パターなどのゴルフクラブが代表的である。
【0055】
ところで、円柱形状部材(押出し用ビレット等)、ピストンピン、バルブガイド、バルブリテーナ、コネクティングロッド、 CVT用ブロック、アイアン、パターなどの成形は、従来の金型成形方案に本発明の粉末成形方法や成形加工方法等を応用することで可能となる。
また、エンジンバルブ、バルブリフタ、ロッカーアーム、歯車、ドライブシャフト、ゴルフ−ツドなどの成形は、 CNCプレスなどの高度な成形方法に本発明の粉末成形方法や成形加工方法等を応用することで可能となる。
【0056】
【実施例】
実施例を挙げて、本発明をより具体的に説明する。
(1)実施例
▲1▼原料粉末
原料粉末の配合に際して、先ず、5種類の粉末を用意した。すなわち、純チタン粉末(WUYI社製:平均粒径42μm)、純アルミニウム粉末(福田金属箔粉社製:平均粒径30μm)、Al−6%Zn−2%Mg−1.5%Cu合金粉末(住友軽金属社製:平均粒径35μm)、AlV粉末(日本電工社製:平均粒径20μm)、TiB粉末(日本新金属社製:平均粒径3.5μm)である。なお、合金組成の単位は質量%である(以下、同様)。TiB粉末は、本発明でいう硬質粒子粉末に相当する。
次に、これらの粉末を単体で用いたり、適当に混合することにより、表1に示す5種類の組成からなる活性金属粉末を用意した。
【0057】
▲2▼金型潤滑剤の調製
界面活性剤として、ポリオキシエチレンノニルフェニルエーテル(EO)6、(EO)10及びホウ酸エステルエマルボンT−80を用意した。これら3種の界面活性剤を1:1:1で混合して、水(分散液)100体積%に界面活性剤1.5体積%の割合で含有させた。さらにここへ、消泡剤アンチフォームを0.1体積%の割合で添加した。この界面活性剤を含んだ水100ccに対して、ステアリン酸リチウム(LiSt)粉末を25g分散させた。このLiStは、融点が約225℃で、平均粒径が20μmのものである。
【0058】
次に、この分散液をボールミル式粉砕装置(テフロンコート鋼球)で、100時間、微細化粉砕処理した。この粉砕処理後の原液を水およびエチルアルコール系溶媒で希釈した。このときの割合は、原液1体積部に対して、水14体積部およびエチルアルコール系溶媒5体積部の割合とした。これは、水に対してアルコール系溶媒を25体積%加えたことになる。こうして、金型内面に塗布する金型潤滑剤を得た。
【0059】
▲3▼金型
円筒状キャビティ(φ23.000±0.005×50mm)を有する超硬合金製金型と、ハイス鋼製の上下パンチとを用意した。この金型内面には、予めTiNコート処理を施し、その表面粗さを0.4Zとしておいた。また、この金型の周囲にはバンドヒータを巻き、適宜、加熱できるようにした。
【0060】
▲4▼成形
上記金型および各原料粉末を150℃に加熱した。原料粉末の加熱はオーブン(電気炉)により、大気雰囲気中でおこなった。
金型温度150℃の金型内面に、上記金型潤滑剤をスプレーガンで、1cm/秒程度の割合で均一に塗布した。これにより、膜厚約1.5μmの潤滑剤皮膜を金型内面に形成した(塗布工程)。
【0061】
この金型内へ、加熱した上記各種原料粉末を充填した(充填工程)。そして、392〜1568MPaの範囲で、成形圧力を適宜変更して、温間加圧成形を行った(成形工程)。そのときの成形圧力を表1に併せて示した。
前記パンチを駆動して、成形後の各粉末成形体を金型から抜出した(抜出工程)。このときの抜出力も併せて測定した。
【0062】
▲5▼焼結
チタン系粉末からなる粉末成形体に関しては、真空中で、1300℃x4hrの焼結も行った(焼結工程)。
【0063】
(2)比較例
比較例として、上記純チタン粉末と純アルミニウム粉末とを用いて、室温成形した粉末成形体を用意した。このとき、市販の乾性フッ素潤滑剤ユノンSを金型潤滑剤として、実施例と同様に金型内面にスプレー塗布した。成形圧力は、基本的にかじり等による金型の損傷が発生じない範囲内とした。そのときの成形圧力も表1に併せて示した。
【0064】
(3)測定
上記の実施例および比較例で得られた粉末成形体について、それぞれ、成形体密度および抜出力を求めた。この結果を表1に併せて示す。また、真密度に対する各成形体密度の比(相対密度比)も表1に併せて示した。なお、真密度は各原料粉末の組成と同組成の溶製材について求めた密度である。成形体密度は、各粉末成形体の重量および寸法を測定し、両測定値から算出したものである。
抜出力は、抜出荷重をロードセルにより測定し、その抜出荷重を粉末成形体の側面積で除して求めた。
また、金属焼結体については、焼結工程前後で測定した寸法から、焼結工程による寸法変化も求めた。その焼結体密度については、アルキメデス法により測定した。
【0065】
(4)評価
A.チタン系原料粉末の粉末成形について
▲1▼純チタン粉末の場合
表1の試料No.1−1〜1−6、試料No.C1−1〜C1−3および図1〜4に、純チタン粉末を種々の成形圧力で成形した場合の各特性を示した。
これらから明らかなように、温間成形した本実施例では、活性金属粉末である純チタン粉末に対して、1500MPaを超える高圧成形が実現した。そして、非常に高密度な粉末成形方法が得られた。
具体的には、粉末成形体の相対密度比が従来の最高レベルである85%を優に超えて、98〜99%にまで達し、正に真密度に近い粉末成形体が得られた。
【0066】
なお、表1および図1等で成形体密度の指標として相対密度比を採用しているのは、組成によって真密度が変化するところ、本発明の粉末成形方法による高密度化の程度を相対密度比によって客観的に評価するためである。焼結体密度についても同様である。
【0067】
図2を観ると明らかなように、本実施例の場合、成形圧力が著しく増加しているにも拘らず、抜出力はほとんど変化しなかった。しかも、その成形圧力は600MPaを超えるころから、抜出力が5MPa以下という、非常に低い値となった。また、784MPaを超えると抜出力は約2.5MPaという極めて低い値でほぼ一定となった。
一方、室温成形した比較例では、成形圧力が高々588MPaで金型にかじりを生じた。そして、得られた粉末成形体の相対密度比は、高々85%にすら到達しないものであった。しかも、室温成形した場合、成形圧力の増加にほぼ比例して抜出力が急激に増加した。
【0068】
図3を観ると明らかなように、成形圧力の増加と共に成形体密度が増加し、それに伴って焼結体密度も増加している。特に本実施例では、成形圧力を1176MPa以上とした粉末成形体を焼結させた場合に、その焼結体密度がほぼ真密度まで上昇した。
しかも図4を観ると分るように、本実施例の場合、焼結前後の寸法変化率が約1〜3%程度と、非常に小さなものであった。一方、室温成形した比較例の場合、元の成形体密度自体が低いため、焼結前後の寸法変化率は4〜10%と、相当大きなものとなった。
【0069】
▲2▼チタン合金粉末の場合
純チタン粉末およびAlV粉末を混合した合金混合粉末と、その合金混合粉末にTiB粉末を混合したTiB合金混合粉末とを、種々の成形圧力で成形した場合の各特性を表1の試料No.2−1〜2−3、試料No.3−1〜3−3および図5〜7に示した。
【0070】
先ず、合金組成がTi−6Al−4Vの混合粉末を温間成形した場合、純チタン粉末の場合と同様程度に、非常に高い成形体密度および焼結体密度が得られた。特に焼結体密度は、いずれも相対密度比が約99.5%という極めて高い値で安定した。また、そのときの抜出力は、いずれも、約1MPa以下という非常に低い値で安定した。
【0071】
次に、上記合金混合粉末に、硬質粒子粉末であるTiB粉末を混合した粉末を加圧成形した場合も、十分に大きな成形体密度および焼結体密度と、十分に低い抜出力が得られた。例えば、成形圧力が1176MPaのとき粉末成形体の相対密度比は94%、金属焼結体の相対密度比は99%にも達した。そのとき、粉末成形体の抜出力はいずれも5MPa以下であった。
また、図6から解るように、TiBを6質量%とした場合、成形圧力の増加とともに抜出力が減少するという特異な現象が現れた。
【0072】
但し、TiB粉末の混合量にも依ると思うが、TiB粉末を混合した場合は、それを混合しない場合に比べて、同じ成形圧力で観ると、各密度が少し低く、抜出力も少し高めとなった。言うまでもないが、室温成形したような場合と比べれば、いずれも格段に優れた値である。
また図7から、本実施例の場合、いずれも、従来例の場合(CIP法により392MPaで成形した場合)に比べて高密度となっていることも解った。
【0073】
B.アルミニウム系原料粉末の粉末成形について
▲1▼純アルミニウム粉末の場合
表1の試料No.4−1〜4−7、試料No.C2−1〜C2−3および図8、図9に、純アルミニウム粉末を種々の成形圧力で成形した場合の各特性を示した。
全体的な傾向は、純チタン粉末の場合と同様であり、本実施例に係る粉末成形体は非常に高密度であった。
但し、本実施例の場合、成形圧力に拘らず抜出力が約1MPa以下という小さいものとなった。つまり、成形圧力が低いときにも(本実施例では392MPa)抜出力が低くなった。これは表1の外径を観れば解るように、抜出後の粉末成形体の外径が金型内径と同程度かやや小さくなったためと思われる。もっとも、このような傾向は、表1や図9からも解るように、室温成形した比較例には観られないものである。
【0074】
▲2▼アルミニウム合金粉末の場合
合金組成がAl−6Zn−2Mg−1.5Cuの合金粉末(1種のみ)を種々の成形圧力で成形した場合の各特性を表1の試料No.5−1〜5−3、図10および図11に示した。全体的な傾向は、純アルミニウム粉末の場合と同様であった。
【0075】
但し、同じ成形圧力で観ると、この合金粉末の場合、純アルミニウム粉末の場合よりも成形体密度が少し低く、抜出力が僅かに高くなった。これは、その合金粉末が純アルミニウム粉末よりも高強度の粒子からなり、圧縮性が低下したためと思われる。それでも、粉末成形体の相対密度比は94%以上に到達しており、十分に高密度の粉末成形体が得られていることが解る。言うまでもないが、室温成形したような場合に比べれば、いずれも格段に優れた値である。
【0076】
C.硬質粒子の含有量を増量した金属焼結体について
TiBの含有量が増える程、高剛性、高強度の金属焼結体が得られるが、その一方で、TiBの含有量が増える程、一般的に成形性および焼結性が低下する。そこで、TiBを12質量%にまで増量した金属焼結体を新たに製作して、本発明による成形性および焼結性を評価した。
【0077】
本発明の実施例となる供試材は、TiB量を除き、試料No.3−3と同様の条件で製造した。つまり、金型温度150℃、成形圧力1568MPaで粉末成形した後、1300℃で焼結させたものである。比較例とした供試材は、同組成の原料粉末を前述の室温成形(成形圧力:588MPa)により粉末成形して、1300℃で焼結させたものである。
ここで、その焼結時間を変化させたときに、供試材の相対密度比および寸法変化率がどのように変化するかを図12および図13にそれぞれ示した。ちなみに、各図中に20vol%TiBと表記してあるのは、12質量%のTiBが焼結によって20体積%のTiBに変化するからである。
【0078】
先ず、図12から解るように、実施例の場合、極短時間の焼結で、相対密度比が100%に近い十分に高い焼結体が得られた。これに対して、比較例の場合、焼結体の相対密度比を高めるのに長い焼結時間を必要とした。なお、比較例のように従来の製法では、原料粉末を微粉化したとしても、硬質粒子を多量に原料粉末中に分散させると、粉末成形性、焼結性が著しく劣り、上記実施例のような高密度の焼結体は得られない。
【0079】
次に、図13から解るように、実施例の場合、焼結時間が長くなっても寸法変化率が2%程度と非常に小さく安定していた。これに対して、比較例の場合、寸法変化率が焼結時間と共に大きく減少し安定しなかった。
このように本発明の実施例では、従来になく、高密度で寸法安定性に優れる金属焼結体が得られることが明らかとなった。
【0080】
D.硬質粒子を分散させた金属焼結体の機械的特性について
TiBを含む原料粉末を粉末成形および焼結させて得られた供試材について、引張強度、剛性、疲労強度等を評価した。
このとき使用した原料粉末の組成は、表1に示した試料No.3−3と同様である。実施例の供試材は、試料No.3−3と同様に製造した。但し、その形状は、10x10x55mmの抗折試験片形状とした。比較例の供試材は、392MPaでCIP成形した同形状の粉末成形体を1300℃で焼結したものである。この焼結時間が4時間の場合を比較例1、焼結時間が16時間の場合を比較例2とした。得られた各供試材を引張試験片および回転曲げ疲労試験片に加工して、それぞれの試験片について機械的特性を評価した。この結果を図14および図15に示した。ちなみに、各図中に10vol%TiBと表記してあるのは、6質量%のTiBが焼結によって10体積%のTiBに変化したからである。
【0081】
図14および図15から明らかなように、実施例の焼結体は、比較例の焼結体に対して、焼結体の相対密度比が非常に高く、引張強度、伸びおよび疲労強度のいずれをとっても、格段に優れたものであることが確認された。
【0082】
E.本発明に係る粉末成形体の表面分析結果について
表1の試料No.1−4(原料粉末が純Tiの場合)および試料No.4−5(原料粉末が純Tiの場合)に示した粉末成形体の表面を、それぞれTOF−SIMS(Time of Flight Secondary Ion Mass Spectrometer)で表面分析した。この結果得られたそれぞれの二次イオン像を図16および図17に示した。
【0083】
これらから、ステアリン酸の分布が、Liの分布よりもTiあるいはAlの分布に近いことがそれぞれの場合について確認された。このことは、本実施例に係る成形工程の際に、メカノケミカル反応が生じてステアリン酸チタンやステアリン酸アルミと思われる新たな金属石鹸皮膜が、各粉末成形体表面に形成されたことを示唆していると思われる。
【0084】
【表1】

Figure 2004100035

【図面の簡単な説明】
【図1】純チタン粉末を用いて室温成形および温間成形したときの、成形圧力と成形体密度(相対密度比)との関係を示すグラフである。
【図2】そのときの成形圧力と抜出力との関係を示すグラフである。
【図3】純チタン粉末の成形圧力と得られた粉末成形体を焼結させた金属焼結体の相対密度比との関係を示すグラフである。
【図4】純チタン粉末の成形圧力と粉末成形体の焼結時の寸法変化率との関係を示すグラフである。
【図5】チタン合金粉末を温間成形したときの成形圧力と成形体密度(相対密度比)との関係を示すグラフである。
【図6】そのときの成形圧力と抜出力との関係を示すグラフである。
【図7】チタン合金粉末の成形圧力と得られた粉末成形体を焼結させた金属焼結体の相対密度比との関係を示すグラフである。
【図8】純アルミニウム粉末を用いて室温成形および温間成形したときの、成形圧力と成形体密度(相対密度比)との関係を示すグラフである。
【図9】そのときの成形圧力と抜出力との関係を示すグラフである。
【図10】純アルミニウム粉末とアルミニウム合金粉末とを用いて室温成形および温間成形したときの、成形圧力と成形体密度(相対密度比)との関係を示すグラフである。
【図11】そのときの成形圧力と抜出力との関係を示すグラフである。
【図12】難焼結材の焼結時間と相対密度比との関係を示すグラフである。
【図13】難焼結材の焼結時間と寸法変化率との関係を示すグラフである。
【図14】製造条件の相違による相対密度比、引張強度および伸びの相違を対比した棒グラフである。
【図15】製造条件の相違による疲労強度の相違を対比したグラフである。
【図16】純Ti粉末からなる粉末成形体の表面をTOF−SIMSで観察した二次イオン像である。
【図17】純Al粉末からなる粉末成形体の表面をTOF−SIMSで観察した二次イオン像である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-density powder compact made of a raw material powder mainly containing an active metal element such as Ti or Al (hereinafter, abbreviated as “active metal powder” as appropriate), a powder compacting method thereof, and a powder compact. The present invention relates to a high-density metal sintered body obtained by sintering a powder compact and a method for producing the same.
The present invention also relates to a formed member formed by forming a metal material containing an active metal element as a main component and a forming method thereof.
[0002]
[Prior art]
In order to reduce the production cost of components by reducing expensive processing costs, and to obtain characteristics that can not be obtained with bulk ingots, powder compacts formed by pressing raw material powders have been used conventionally. I have. Although this powder compact is often subsequently formed into a sintered compact, it may be used as it is, such as a dust core.
By the way, in order to make full use of the features of the powder compact, it is often required that the powder compact has a high density. In order to obtain a high-density powder compact, it is inevitable to press-mold the raw material powder under high pressure. However, generally, the higher the molding pressure, the greater the frictional force between the raw material powder and the mold. As a result, when pressure molding is performed under a large pressure, it is difficult to extract the obtained powder molded body from the mold, or the mold may be damaged due to galling or the like during the extraction, or the powder molded body may be damaged. Or the surface of the surface becomes rough.
Of course, it is conceivable to use a large amount of lubricant to improve them. However, in that case, the density of the powder compact decreases, and a degreasing (dewaxing) step or the like is required separately after pressure molding. Or cost.
[0003]
Under such circumstances, many methods have been proposed for efficiently producing a high-density powder compact by variously devising the type of lubricant, the lubrication method, the mold temperature, and the like. For example, JP-A-62-109902, JP-A-62-294102, JP-A-5-271709, JP-A-8-100203, JP-A-9-104902, JP-A-11-193404 JP, JP-A-11-100602, JP-A-11-140505, JP-A-2000-273502, JP-A-2000-290703, JP-A-2001-294902, International Publication WO98 / 41347, U.S. Pat. No. 4,955,798, a research paper ("INFLUENCE OF TEMPERATURE ON PROPERTIES OF LITHIUM STEARATE LUBRICANT", Powder Metallurgy & Particulate Materials, vol. 1, 1997) Related matters have been disclosed to. However, none of these proposals was sufficient to produce a high-density powder compact at low cost.
Therefore, the present inventor has led the world in a molding method capable of obtaining a high-density powder compact very close to the true density by performing pressure molding at a significantly higher molding pressure than before, while securing the mold life and the like. Developed. This content is disclosed in International Publication WO 01/43900.
[0004]
[Patent Document 1]
JP-A-62-109902
[Patent Document 2]
JP-A-62-294102
[Patent Document 3]
JP-A-5-271709
[Patent Document 4]
JP-A-8-100203
[Patent Document 5]
JP-A-9-104902
[Patent Document 6]
JP-A-11-193404
[Patent Document 7]
JP-A-11-100602
[Patent Document 8]
JP-A-11-140505
[Patent Document 9]
JP-A-2000-273502
[Patent Document 10]
JP 2000-290703 A
[Patent Document 11]
JP-A-2001-294902
[Patent Document 12]
International Publication WO98 / 41347
[Patent Document 13]
U.S. Pat. No. 4,955,798
[Non-patent document 1]
Research paper ("INFLUENCE OF TEMPERATURE ON PROPERTIES OF LITHIUM STEARATE LUBRICANT", Powder Metallurgy & Particulate Materials, vol1, 1997)
[0005]
[Problems to be solved by the invention]
However, even in consideration of the contents of the above-mentioned WO 01/43900, most of the powder molding methods proposed so far consist of a raw material powder composed of iron powder or iron alloy powder. That is, there is hardly any practical proposal for a method for molding a raw material powder mainly containing an active metal element such as Ti or Al.
At least, as far as we know at present, there is no such raw material powder formed by high pressure molding at an industrial level (mass production level) by a mold lubrication method instead of an internal lubrication method (mixing lubrication method).
[0006]
This is not because the demand for a powder compact of a raw material powder mainly composed of Ti, Al or the like is small. Rather, the demand for such powder compacts is great in recent years when weight reduction of various members is required. In particular, in the case of a member made of pure titanium or a titanium alloy that is difficult to process, the use of the powder molding method has a great advantage in that the cost can be reduced by (near) net shape.
[0007]
However, it has been common technical knowledge so far that a raw material powder made of an active metal element such as Ti or Al cannot be formed under high pressure at an industrial level. When such high-pressure molding is performed, galling occurs immediately on the inner surface of the mold, the inner surface of the mold is roughened, and furthermore, it becomes impossible to extract the powder compact from the mold. is there. In addition, very expensive molds cannot be used for one-time molding, which may cause a large loss.
Under such circumstances, when the raw material powder made of the active metal element is subjected to pressure molding, the molding pressure cannot be increased, and the ultimate density of the obtained powder molded body is naturally low. For example, in the case of a powder compact made of Ti powder, the compact density was only 80% or less of the true density.
[0008]
Further, when the Ti powder is press-formed by the internal lubrication method as in the related art, a separate dewaxing step is required when sintering the obtained powder compact in a vacuum. In addition, hydrogen, nitrogen, carbon, and the like, which are the main components of the lubricant used at that time, are easily dissolved in Ti, so that the internal lubrication method is not preferable.
In order to avoid the use of such a lubricant, there are also CIP molding and RIP molding using a rubber mold. However, even in that case, it is impossible to perform high-pressure molding sufficiently, and the apparatus is very large and expensive. In addition, the dimensional accuracy of the obtained powder compact is low, and it is a reality that a net-shaped member, which is the greatest feature of the powder compact, cannot be obtained.
Such a situation is the same even when Al powder or the like is used. Furthermore, when a powder is formed by mixing a lubricant with Al powder, the dewaxing temperature of the lubricant is close to the sintering temperature of the powder compact (about 500 ° C.), so that sufficient dewaxing cannot be performed. Occurs.
[0009]
The present invention has been made in view of such circumstances. That is, to provide a powder molding method capable of performing high-pressure molding at a realistic level using a raw material powder containing an active metal element such as Ti or Al as a main component, and a high-density powder compact obtained therefrom. With the goal.
It is another object of the present invention to provide a metal sintered body obtained by sintering the powder compact and a method for producing the same.
Still another object of the present invention is to provide not only a powder molding method and the like but also a molding method for molding a metal material containing an active metal element as a main component and a molded member obtained by the method.
[0010]
Means for Solving the Problems and Effects of the Invention
Therefore, the present inventor has conducted intensive studies to solve this problem, and as a result of repeated trial and error, as a result, a raw material powder containing an active metal element as a main component (hereinafter abbreviated as “active metal powder” as appropriate). The present inventors came up with the idea of applying a warm pressure molding method using mold lubrication, and confirmed the effects thereof to complete the present invention.
(Powder molding method)
That is, the powder molding method of the present invention comprises a coating step of applying a higher fatty acid-based lubricant to the inner surface of a mold, and a filling step of filling a raw material powder containing an active metal element as a main component into the mold after the coating step. And a molding step of pressing the raw material powder after the filling step in a warm state to form a powder molded body, and an extraction step of extracting the powder molded body after the molding step from the mold. The obtained powder compact has a high density.
[0011]
According to the present invention, even when an active metal powder is used, a high-density powder compact can be obtained by high-pressure molding. At this time, a powder compact having good dimensional accuracy and surface roughness can be obtained without substantially causing galling or the like on the inner surface of the mold. Therefore, the cost of the powder compact, the sintered compact thereof, and the like can be significantly reduced by extending the life of the mold, improving the yield, and reducing the processing cost by (near) net shape.
Moreover, in the case of the present invention, a sufficient effect can be obtained by mold lubrication without internal lubrication, so that the amount of the lubricant used is small, the density of the powder compact can be increased, and the powder compact is sintered. The dewaxing step at the time can also be omitted. In addition, adverse effects of the lubricant on the powder compact can be avoided.
Further, according to the powder molding method of the present invention, the ejection force is significantly reduced as compared with the conventional one, despite the molding pressure being significantly increased. For this reason, the powder compact can be easily extracted from the mold, and the production efficiency of the powder compact can be greatly enhanced.
[0012]
By the way, in the case of the present invention, the present inventor is now studying why the high pressure molding of active metal powder, which has been considered impossible by those skilled in the art, has become possible. It is thought that the reason for this is that a new metal soap film different from the higher fatty acid-based lubricant used for mold lubrication was formed between the powder compact and the inner surface of the mold, and the friction coefficient was significantly reduced. Rara. Further, it is considered that the higher fatty acid-based lubricant is adsorbed on the surface of the powder molded body, and the Rebinder effect is caused. Furthermore, it is considered that this is due to the superlubricating action which has exceeded the conventional recognition. However, from recent research and research by the present inventor, it seems appropriate that the metal soap film was newly formed on the surface of the powder compact during the molding process. That is, the molding step is considered to be a step in which a new metal soap film containing the active metal element different from the higher fatty acid-based lubricant is formed on the surface of the powder molded body. For example, if the active metal element is Ti, the metal soap is a Ti salt of a higher fatty acid, and if the active metal element is Al, the metal soap is considered to be an Al salt of a higher fatty acid.
[0013]
In any case, since the ejection force is very low, it can be clearly seen that the frictional force between the raw material powder or powder compact and the mold is significantly reduced. However, this does not necessarily lead to an extremely low coefficient of friction. Depending on the type of the raw material powder, the amount of expansion (spring-back amount) after being removed from the mold is small. In this case, even if the friction coefficient is not extremely small, the frictional force at the time of extraction is reduced.
[0014]
The active metal element referred to in the present specification includes Ti, Al, Mg, Zr, Na, rare earth elements (La, Ce, etc.). Ti, Al and Mg are important as practical metal materials. That is, the case where the raw material powder contains Ti, Al, and Mg as main components is particularly industrially important. The details will be described later. The “raw material powder containing an active metal element as a main component” in the present invention refers to a case where the specific active metal element to be treated is 50 at% or more when the entire raw material powder is 100 at%. This raw material powder may be not only a metal powder but also a ceramic powder. Therefore, the obtained powder compact may be not only a metal compact but also a ceramic compact.
[0015]
(Powder compact)
The present invention can be understood not only as the powder molding method but also as a powder molded body obtained as a result.
For example, on the premise that the active metal element is Ti, the present invention is based on the premise that the active metal element is Ti, and the apparent density of the powder compact, that is, the compact density, is determined from the composition of the raw material powder. It may be a powder compact characterized by a high density of 85% or more of the true density.
[0016]
By adjusting the molding pressure, the compact density in this case becomes 88% or more, 90% or more, 95% or more, and 98% or more of the true density, and can approach the upper limit of 100% without limit. .
Similarly, on the premise that the powder is obtained by the powder molding method, the present invention provides that the active metal element is Al, and the apparent density of the powder molded body, that is, the molded body density is calculated from the composition of the raw material powder. It may be a powder compact having a high density of 90% or more of the true density determined.
[0017]
Also in this case, the molded body density can be made 93% or more, 95% or more, and 98% or more of the true density by adjusting the molding pressure, and can be made as close as possible to the upper limit of 100%. .
In the case of a powder compact made of a conventional Ti powder or the like, the density of the compact is at most about 80% of the true density, and in the case of a powder compact made of a conventional Al powder or the like, the density of the compact is at most a true density. It was about 85%. In view of these facts, the high density of the powder compact of the present invention is even surprising. Of course, even when such a high-density molding is performed, according to the present invention, a powder molded body having a low ejection force, good dimensional accuracy and good surface roughness can be obtained without generating a galling or the like in a mold. This is as described above.
[0018]
(Method of manufacturing sintered metal body)
The present invention is not limited to the above-described powder compacting method, but can also be grasped as a method for manufacturing a metal sintered body obtained by sintering a powder compact obtained through the method.
That is, the present invention provides a coating step of applying a higher fatty acid-based lubricant to the inner surface of a mold, a filling step of filling a raw material powder containing an active metal element as a main component into the mold after the coating step, A molding step of pressing the raw material powder after the filling step in a warm state to form a powder molded body, an extraction step of extracting the powder molded body after the molding step from the mold, and a powder after the extraction step And a sintering step of heating the formed body to form a metal sintered body, and the method for producing a metal sintered body characterized in that the obtained metal sintered body has a high density.
[0019]
According to the method for manufacturing a metal sintered body, a high-density metal sintered body can be easily obtained. Further, since the amount of the lubricant used at the time of molding the powder compact is extremely small, the dewaxing step in the sintering step becomes unnecessary, and the sintering step is significantly shortened. Accordingly, the production cost is reduced, and a high-density metal sintered body can be obtained at a lower cost.
[0020]
(Metal sintered body)
Further, the present invention can be understood as a metal sintered body obtained through the manufacturing method.
For example, on the premise that the active metal element is Ti, the present invention is based on the premise that the active metal element is Ti, and the sintered body density, which is the apparent density of the metal sintered body, is determined from the composition of the raw material powder. It may be a metal sintered body characterized by having a high density of 95% or more of the true density.
In this case, the density of the sintered body increases as the density of the green body before sintering increases, and is 97% or more, more preferably 99% or more of the true density, and approaches the upper limit of 100% as much as the density of the green body. .
[0021]
Similarly, on the premise that the active metal element is Al, the present invention is based on the assumption that the active metal element is Al, and the apparent density of the metal sintered body is the sintered density, which is the composition of the raw material powder. It may be a metal sintered body characterized by having a high density of 95% or more of the true density determined from the above.
Also in this case, the density of the sintered body increases as the density of the molded body before sintering increases, and becomes 97% or more, more preferably 99% or more of the true density. Get closer.
[0022]
In any case, the metal sintered body of the present invention has a high density of the compact before sintering, and therefore has a small dimensional change such as dimensional shrinkage after sintering. For this reason, although it is a sintered product made of an active metal element, it is possible to form a net shape, and it is easy to reduce the cost of Ti products and the like.
[0023]
(Molding method and member)
According to the present invention, high-pressure molding of active metal powder is possible, and various forms of the present invention have been described on the premise of this. However, the present invention is considered to have a significant feature in that the frictional force acting between the inner surface of the mold and the active metal powder or the powder compact after pressing is extremely small. Therefore, the present invention is naturally applicable not only to the case where the raw material powder is subjected to pressure molding but also to the case where a tangible metal material is formed into a desired shape.
That is, the present invention provides an application step of applying a higher fatty acid-based lubricant to a surface of a metal material containing an active metal element as a main component and / or a processing surface of a forming die, and And a forming step of forming in a warm state.
According to the present invention, as in the case of the powder molding method described above, even if the metal material is made of an active metal powder, it does not cause galling or the like with a molding die, efficiently, at low cost. It can be formed into a desired shape.
[0024]
The “metal material” here may be an ingot material or a sintered material. Also, regardless of its form, it may be an ingot, a plate, a wire, or a tube. In short, any material having a macroscopic outer shape, unlike metal powder or the like, may be used. "Molding" refers to adjusting the outer shape of a macroscopic material into a desired shape, that is, processing the material into a desired shape.
[0025]
Such forming includes forging, rolling, extrusion, drawing, rolling, coining, sizing or recompression. Although the forming die used varies depending on the type of processing, for example, there are a forging die, a roll, a die and the like.
In order to perform the forming step in a warm state, at least one of the forming die and the metal material may be heated before the step, or may be heated simultaneously with the step.
[0026]
Since the metal material is tangible, the above-described coating step can be performed on the metal material. Of course, as in the case of powder molding, the molding may be performed on a molding die. For example, the coating step may include dipping the heated metal material into a dispersion in which the higher fatty acid-based lubricant is dispersed, or applying the higher fatty acid-based material to the heated metal material or the molding die. The process can be performed by a spray method or the like in which a dispersion liquid in which a lubricant is dispersed is sprayed. Needless to say, the present invention can be grasped as a molded member obtained by the molding method.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described more specifically with reference to embodiments. In addition, the content described below can be appropriately applied to any of the powder molding method, the powder molded body, the metal sintered body and its manufacturing method, the molding method, and the molded member according to the present invention.
(1) Raw material powder
As described above, the raw material powder is composed of a powder containing an active metal element as a main component, and is typically a Ti-based powder or an Al-based powder.
{Circle around (1)} When the active metal element is Ti, the raw material powder includes, for example, pure Ti powder, Ti alloy powder, Ti compound powder and the like. One type of powder alone or a mixture of two or more types of powder may be used. The raw material powder includes, in addition to Ti, Al, Zr, Hf, V, Nb, Ta, Sc, Cr, Fe, Mo, Sn, W, Mn, Ni, Cu, Si, C, B, N, O, etc. It may contain an element.
[0028]
Ti compound powder is, for example, TiB 2 Boride powder, titanium carbide powder such as TiC, titanium nitride powder such as TiN, TiO 2 A typical example is a titanium oxide powder composed of such as
Although the form of each element is not limited, for example, the element may be contained in the raw material powder as a pure powder, an alloy powder, a compound powder or the like. Which element is contained in the raw material powder is determined by the use, characteristics, powder cost and the like of the powder compact and its sintered body.
[0029]
{Circle over (2)} When the active metal element is Al, the raw material powder is, for example, a pure Al powder, an Al alloy powder or an Al compound powder. The raw material powder may contain an element such as Cu, Mg, Mn, Zr, Sr, Ni, Cr, Fe, Mo, Sn, Si, C, B, N or O, in addition to Al. The Al compound powder is Al 2 O 3 A typical example is aluminum oxide powder consisting of
In the case of this raw material powder, similarly to the case where Ti is used as the active metal element, one kind of powder alone or a mixture of two or more kinds of powders may be used, regardless of the content form of each element.
[0030]
{Circle around (3)} The raw material powder may be a mixed powder in which hard particle powders composed of boride, nitride, oxide or carbide are mixed. The mixed powder may be a mixture of two or more hard particle powders. When the hard particles are made of a compound of Ti or Al, the hard particle powder is the above-mentioned Ti compound powder or Al compound powder.
[0031]
When the raw material powder including the hard particle powder is formed into a powder, a composite material in which the hard particles are uniformly dispersed in a matrix made of an active metal such as Ti or Al or an alloy thereof can be easily obtained. Such a composite material has excellent mechanical properties such as strength, rigidity, heat resistance, and wear resistance. In particular, it is remarkable in the case of a metal sintered body obtained by sintering a powder compact.
The hard particles include the aforementioned TiB 2 , TiB, TiC, TiN, TiO 2 , Al 2 O 3 Besides, SiC, Si 2 N 4 , B 4 C, CrN, Cr 2 N, MoB, CrB, Y 2 O 3 , ThO 2 Etc.
[0032]
Conventionally, when such hard particles are dispersed in a large amount in the raw material powder, the formability and sinterability are remarkably inferior even if the raw material powder is pulverized. In the case of the present invention, a high-density powder compact can be obtained even when a large amount of hard particles are contained in the raw material powder. When it is sintered, a high-density sintered body can be obtained by heating for a short time. Further, even if the heating time during the sintering step is extended to sufficiently diffuse the additional element, the dimensional change of the obtained sintered body is small and stable.
[0033]
Therefore, according to the present invention, even if the upper limit of the ratio of the hard particle powder in the raw material powder is increased to 5% by mass, 10% by mass, 15% by mass, and 20% by mass, A sintered body is obtained. Note that the ratio of the hard particle powder is a ratio when the whole raw material powder after mixing is 100% by mass.
[0034]
{Circle around (4)} The alloy, compound, hard particles and the like contained in the raw material powder need not necessarily remain in the powdered state in the powder compact or its sintered metal. The state may be changed to a more stable state by pressing during powder molding or heating during sintering. For example, in a titanium-based sintered body, TiB 2 In some cases, the particles change to more stable and hard TiB.
[0035]
The production method of each powder, such as mechanical pulverized powder, hydrodehydrogenated powder, and atomized powder, does not matter. The raw material powder may be a granulated powder. Although the particle size of the raw material powder is not particularly limited, for example, the average particle size is preferably 1 to 100 μm.
The present invention does not exclude mixing of a lubricant with the raw material powder. By mixing a small amount of lubricant with the raw material powder, the fluidity of the powder can be improved. At this time, it is more preferable to use the higher fatty acid-based lubricant (including one dispersed in a dispersion liquid) according to the present invention. However, as described above, if a large amount of the lubricant is mixed, the ultimate density of the powder compact decreases.
[0036]
(2) Higher fatty acid lubricant
The higher fatty acid-based lubricant in the present invention means both a lubricant composed of a higher fatty acid and a lubricant composed of a metal salt of a higher fatty acid. Higher fatty acids include stearic acid, palmitic acid, oleic acid and the like. Metal salts of higher fatty acids include, for example, lithium salts, calcium salts, and zinc salts. Specific examples include lithium stearate, calcium stearate, zinc stearate, barium stearate, lithium palmitate, lithium oleate, calcium palmitate, calcium oleate, and the like. The higher fatty acid-based lubricant referred to in the present invention suffices if it contains at least one of them as a main component.
[0037]
The higher fatty acid-based lubricant is preferably solid in a room temperature range to a warm range. This is because if the lubricant is liquid, the lubricant flows down and it becomes difficult to uniformly apply the lubricant to the inner surface of the mold.
To efficiently and uniformly apply the higher fatty acid-based lubricant to the inner surface of the mold, the higher fatty acid-based lubricant is preferably dispersed in a dispersion liquid. This dispersion may be water, an alcohol-based solvent, or a mixture of water and an alcohol-based solvent. When a higher fatty acid-based lubricant dispersed in such a dispersion is sprayed on a heated mold, water or an alcohol-based solvent in the dispersion is instantaneously evaporated, and a uniform lubricant film is easily formed. Can be formed. In particular, by mixing an alcohol-based solvent, evaporation of moisture and the like is accelerated, and a uniform and even lubricant film is more easily formed.
[0038]
In the present invention, since an active metal powder which is very easy to seize with a mold is originally used, it is particularly important to form a uniform lubricant film with a higher fatty acid-based lubricant. This makes it possible to stably obtain a high-density and high-quality powder compact while extending the life of the mold.
When heating the mold, the suitable mold temperature depends on the dispersion. For example, when the dispersion comprises water, the mold temperature is preferably set to 100 ° C. or higher. When an alcohol-based solvent is mixed, the temperature may be lower than 100 ° C. depending on the concentration. However, it is more preferable that the mold temperature is such that the molding step can be performed in a warm state. In any case, the mold temperature is preferably set to be higher than the boiling point of the dispersion and lower than the melting point of the higher fatty acid-based lubricant. The reason why the melting point is lower than the melting point of the higher fatty acid-based lubricant is to prevent the higher fatty acid-based lubricant from dripping.
[0039]
When a mixed solution of water and an alcohol solvent is used as a dispersion, the alcohol solvent is preferably 1 to 50% by volume, more preferably 5 to 25% by volume. When the amount of the alcoholic solvent is less than 1% by volume, there is not much meaning in mixing the alcoholic solvent, and when the amount is more than 50% by volume, the working environment is deteriorated due to the odor of the alcoholic solvent and the cost is increased.
[0040]
As such an alcohol solvent, methyl alcohol, ethyl alcohol, isopropyl alcohol and the like can be used. However, it does not matter if it has a lower boiling point than water and is not harmful when volatilized.
The higher fatty acid-based lubricant to be dispersed in the dispersion is preferably in the form of a powder composed of particles having a maximum particle size of 30 μm or less. If there is a particle exceeding 30 μm, the lubricant film formed on the inner surface of the mold becomes uneven. In addition, the particles of the higher fatty acid-based lubricant easily precipitate in the dispersion, making it difficult to uniformly apply the lubricant to the inner surface of the mold.
[0041]
Next, in order to uniformly disperse the higher fatty acid-based lubricant in a dispersion such as water, a surfactant is preferably added to the dispersion in advance.
Examples of the surfactant include an alkylphenol-based surfactant, polyoxyethylene nonyl phenyl ether (EO) 6, polyoxyethylene nonyl phenyl ether (EO) 10, an anionic nonionic surfactant, and a borate-based emalbon. T-80 and the like.
[0042]
One or more surfactants may be appropriately selected depending on the higher fatty acid-based lubricant used. For example, when lithium stearate (LiSt) is used as the higher fatty acid-based lubricant, polyoxyethylene nonyl phenyl ether (EO) 6, polyoxy ethylene nonyl phenyl ether (EO) 10 and borate ester Emalbon T-80 are used. It is preferred to simultaneously add two types of surfactants.
[0043]
This is because LiSt is difficult to disperse in water or the like if only borate ester Emalbon T-80 is used. On the other hand, in the case of polyoxyethylene nonyl phenyl ether (EO) 6 and (EO) 10, LiSt is dispersed in water or the like by using only them. However, it is difficult to uniformly disperse the higher fatty acid-based lubricant when diluting the dispersion. Therefore, when LiSt is used as the higher fatty acid-based lubricant, it is preferable that the above-mentioned three types of surfactants are appropriately added in combination. The amount of the surfactant to be added is preferably 1.5 to 15% by volume when the entire dispersion containing the surfactant is 100% by volume. At this time, it is preferable to mix the three surfactants in a volume ratio of 1: 1: 1.
[0044]
The larger the amount of the surfactant added, the more LiSt and the like can be dispersed. However, when the addition amount of the surfactant increases, the viscosity of the dispersion liquid also increases, and it becomes difficult to make particles such as LiSt fine by the pulverization treatment described later.
Furthermore, when a small amount of an antifoaming agent (such as a silicon-based antifoaming agent) is appropriately added, a uniform lubricant film is easily formed. The addition amount of the defoaming agent may be about 0.1 to 1% by volume, assuming that the volume of the dispersion is generally 100% by volume.
By the way, when a powder of a higher fatty acid-based lubricant is dispersed in a dispersion containing a surfactant, for example, 100 cm of the dispersion is used. 3 To 30 g of LiSt, and then a ball mill type pulverizing process using a Teflon-coated steel ball (diameter: about 5 to 10 mm) is preferable. When this process is performed for approximately 50 to 100 hours, LiSt pulverized to a maximum particle size of 30 μm or less is in a state of being suspended and dispersed in the dispersion.
[0045]
(3) Coating process
When the higher fatty acid-based lubricant is applied to the inner surface of the mold, a dispersion in which the higher fatty acid-based lubricant is dispersed may be appropriately diluted and used. Specifically, when the entire diluted dispersion is 100% by mass, the higher fatty acid-based lubricant (for example, LiSt) is 0.1 to 5% by mass, and further 0.5 to 2% by mass. It is good to dilute to an extent. Such dilution enables the formation of a thin and uniform lubricant film.
By spraying the diluted dispersion with, for example, a spray gun for coating or the like, uniform application of the higher fatty acid-based lubricant to the inner surface of the mold can be easily performed. This coating can also be performed using an electrostatic coating device such as an electrostatic gun. In addition, for a specific method of uniformly applying the higher fatty acid-based lubricant to the inner surface of the mold, the method disclosed in FIG. 1 or 2 of International Publication WO 01/43900 described above may be appropriately referred to. .
[0046]
(4) Forming process
The molding step of the present invention is a step of pressing the active metal powder filled in a mold coated with a higher fatty acid-based lubricant in a warm state.
{Circle around (1)} The warm state referred to in the present invention differs depending on the raw material powder, higher fatty acid-based lubricant and the like used, and it seems difficult to uniformly define a specific temperature. To put it bluntly, the temperature range is such that the effect of reducing the ejection force can be obtained even when high-pressure molding is performed. However, according to the inventor's experience, it is sufficient that at least the temperature of the portion where the inner surface of the mold contacts the raw material powder (contact portion temperature) is in a warm state of 100 to 225 ° C, more preferably 100 to 180 ° C. . If optimization is performed for each active metal powder, for example, when the active metal element is Ti, it is better to set the contact portion temperature to 130 to 160 ° C. If the active metal element is Al, it is better to set the contact portion temperature to 100 to 160 ° C.
Such a warm state can be achieved by heating at least one of the mold and the raw material powder. By heating both of them to substantially the same temperature, a more stable warm state can be obtained.
[0047]
{Circle around (2)} In the case of the present invention, there is no upper limit on the molding pressure. To be sure, it is within a range where the mold and the molding apparatus are not damaged or broken. Therefore, even at a high molding pressure (about 2500 MPa) which cannot be considered in ordinary powder molding, particularly molding of active metal powder, powder molding can be performed without any problem. However, the molding pressure is preferably 392 to 2000 MPa, and more preferably 588 to 1568 MPa, as a range in which sufficient high density can be obtained and productivity can be improved. If the molding pressure is less than the lower limit (392 MPa), a high-density powder molded body cannot be obtained, and is at a level that can be achieved by the conventional powder molding method without using the powder molding method of the present invention. In the case of the present invention, the lower limit of the molding pressure can be 686 MPa or more, and furthermore, 784 MPa or more.
[0048]
In order to optimize the molding pressure for each active metal powder, for example, when the active metal element is Ti, the molding pressure may be 500 to 2500 MPa, and more preferably 784 to 1568 MPa. If the active metal element is Al, it is better to set the molding pressure to 392 to 2500 MPa, and more preferably 588 to 1568 MPa.
[0049]
(3) Next, the relationship between the molding pressure and the ejection force will be described.
In the case of ordinary powder molding, the higher the molding pressure, the greater the extraction power when extracting the powder compact from the mold. However, in the case of the present invention, although the density of the powder compact is increased by increasing the molding pressure, the ejection force hardly changes or is only slightly increased. Moreover, the ejection force in the case of the present invention is reduced to about 1/10 as compared with the case where the conventional powder molding method is used.
For example, when the molding pressure in the molding step is 784 MPa or more, the output in the extraction step is 10 MPa or less. This does not change even if the molding pressure is 980 MPa or more, 1176 MPa or more, or 1372 MPa or more. More specifically, the output power is 5 MPa or less, and further 3 MPa or less.
[0050]
Looking at each active metal powder, when the active metal element is Ti, the molding pressure is 784 MPa or more, and the ejection force is 10 MPa or less, and further 3 MPa or less. When the active metal element is Al, the molding pressure is 392 MPa or more, the ejection force is 5 MPa or less, and further, the molding pressure is 588 MPa or more, and the ejection force is 1 MPa or less.
In the case of the present invention, when looking at the pressure ratio of the ejection force to the molding pressure, the change in the ejection force is small, so that the pressure ratio tends to decrease with an increase in the molding pressure.
[0051]
(5) Other
{Circle around (1)} The mold in the present invention may be made of high-speed steel (high-speed tool steel) or cemented carbide. The inner surface of the mold may be subjected to a TiN coating treatment or the like. The smaller the surface roughness of the inner surface of the mold, the more effective it is in reducing the frictional force between the mold and the powder compact, and the better the surface roughness and dimensional accuracy of the obtained powder compact.
[0052]
{Circle over (2)} The powder compact of the present invention and the metal sintered compact obtained by sintering the powder compact have a high density very close to the true density, and therefore have excellent mechanical properties such as strength. Therefore, it can be used as a structural member as well as various members.
[0053]
In particular, the effectiveness of the powder compact and the metal sintered compact obtained by the present invention using Ti as the active metal element is very large. Conventionally, in various fields such as aviation, space, and military, titanium alloys that are lightweight and have high strength (that is, have excellent specific strength) have been frequently used. However, in general, titanium alloys are rarely applied to mass-produced consumer products. In particular, there has never been a case in which a titanium alloy is applied as a substitute for a mass-produced part that frequently uses steel materials. If a titanium alloy is used, its production cost becomes extremely high, and it is not suitable for mass-produced parts requiring low cost. The biggest factor that raises the manufacturing cost is not only the raw material cost but also the secondary processing cost when processing the material into each member because the shape of the titanium alloy material is limited, is very high. is there.
[0054]
On the other hand, if the powder molding method of the present invention is used, a member made of a titanium alloy that is lightweight and has excellent strength and the like can be obtained without substantially incurring high secondary processing costs. Can be replaced with titanium alloy from conventional steel.
As such, there are, for example, automobile parts, various sporting goods, tools and the like which require all strengths. More specifically, in the case of an automobile part, an automobile engine part such as an engine valve, a valve retainer, a valve lifter, a piston pin, a valve guide, a connecting rod, a rocker arm and the like can be mentioned. Power transmission system components such as gears, drive shafts, and CVT blocks are also included. In the case of sports equipment, golf clubs such as drivers, irons, and putters are typical.
[0055]
By the way, the molding of a cylindrical member (such as an extruded billet), a piston pin, a valve guide, a valve retainer, a connecting rod, a CVT block, an iron, a putter, and the like are performed by using the powder molding method of the present invention in addition to the conventional molding method. It becomes possible by applying a forming method or the like.
Molding of engine valves, valve lifters, rocker arms, gears, drive shafts, golf shoes, etc. is possible by applying the powder molding method and molding method of the present invention to advanced molding methods such as CNC press. Become.
[0056]
【Example】
The present invention will be described more specifically with reference to examples.
(1) Example
(1) Raw material powder
At the time of mixing the raw material powders, first, five kinds of powders were prepared. That is, pure titanium powder (manufactured by WUYI: average particle size: 42 μm), pure aluminum powder (manufactured by Fukuda Metal Foil Powder Co., average particle size: 30 μm), Al-6% Zn-2% Mg-1.5% Cu alloy powder (Manufactured by Sumitomo Light Metal Co., Ltd .: average particle size 35 μm), Al 3 V powder (manufactured by Nippon Denko: average particle size 20 μm), TiB 2 It is a powder (manufactured by Nippon Shinmetal Co., Ltd .: average particle size 3.5 μm). The unit of the alloy composition is mass% (the same applies hereinafter). TiB 2 The powder corresponds to the hard particle powder in the present invention.
Next, these powders were used alone or mixed appropriately to prepare active metal powders having the five compositions shown in Table 1.
[0057]
(2) Preparation of mold lubricant
As a surfactant, polyoxyethylene nonyl phenyl ether (EO) 6, (EO) 10 and borate ester Emalbon T-80 were prepared. These three surfactants were mixed at a ratio of 1: 1: 1 and contained at a ratio of 1.5% by volume of the surfactant to 100% by volume of water (dispersion liquid). Further, an antifoaming agent antifoam was added thereto at a ratio of 0.1% by volume. 25 g of lithium stearate (LiSt) powder was dispersed in 100 cc of water containing the surfactant. This LiSt has a melting point of about 225 ° C. and an average particle size of 20 μm.
[0058]
Next, this dispersion was subjected to a fine pulverization treatment with a ball mill type pulverizer (Teflon-coated steel balls) for 100 hours. The stock solution after the pulverization was diluted with water and an ethyl alcohol-based solvent. The ratio at this time was 14 parts by volume of water and 5 parts by volume of an ethyl alcohol-based solvent with respect to 1 part by volume of the stock solution. This means that 25% by volume of the alcohol solvent was added to water. Thus, a mold lubricant to be applied to the inner surface of the mold was obtained.
[0059]
(3) Mold
A mold made of cemented carbide having a cylindrical cavity (φ23.000 ± 0.005 × 50 mm) and upper and lower punches made of high-speed steel were prepared. The inner surface of this mold was previously subjected to a TiN coating treatment, and the surface roughness was set to 0.4Z. A band heater was wound around the mold so that heating could be performed as appropriate.
[0060]
▲ 4 ▼ Molding
The mold and each raw material powder were heated to 150 ° C. The heating of the raw material powder was performed by an oven (electric furnace) in the air atmosphere.
The above-mentioned mold lubricant was sprayed onto the inner surface of the mold at a mold temperature of 150 ° C. with a spray gun for 1 cm. 3 / Uniformly at a rate of about / s. Thus, a lubricant film having a thickness of about 1.5 μm was formed on the inner surface of the mold (coating step).
[0061]
The heated various raw material powders were filled in the mold (filling step). Then, the molding pressure was appropriately changed within the range of 392 to 1568 MPa, and warm pressure molding was performed (molding step). The molding pressure at that time is also shown in Table 1.
By driving the punch, each molded powder body was extracted from the mold (extraction step). The extraction power at this time was also measured.
[0062]
5) Sintering
Regarding the powder compact made of titanium-based powder, sintering was also performed at 1300 ° C. for 4 hours in a vacuum (sintering step).
[0063]
(2) Comparative example
As a comparative example, a powder compact formed at room temperature using the pure titanium powder and the pure aluminum powder was prepared. At this time, the commercially available dry fluorine lubricant Unon S was used as a mold lubricant and spray-coated on the inner surface of the mold in the same manner as in the example. The molding pressure was basically within a range where damage to the mold due to galling or the like did not occur. The molding pressure at that time is also shown in Table 1.
[0064]
(3) Measurement
With respect to the powder compacts obtained in the above Examples and Comparative Examples, the compact densities and ejection powers were determined, respectively. The results are shown in Table 1. Table 1 also shows the ratio of the density of each compact to the true density (relative density ratio). Note that the true density is a density obtained for a smelting material having the same composition as the composition of each raw material powder. The compact density is obtained by measuring the weight and dimensions of each compact and calculating from the measured values.
The extraction output was determined by measuring the extraction load using a load cell and dividing the extraction load by the side area of the powder compact.
Further, for the metal sintered body, a dimensional change due to the sintering process was also determined from dimensions measured before and after the sintering process. The sintered body density was measured by the Archimedes method.
[0065]
(4) Evaluation
A. Powder compaction of titanium raw material powder
(1) Pure titanium powder
Sample No. 1 in Table 1. 1-1 to 1-6, sample no. C1-1 to C1-3 and FIGS. 1 to 4 show the respective properties when the pure titanium powder was molded at various molding pressures.
As is evident from the above, in the warm-formed embodiment, high-pressure forming exceeding 1,500 MPa was realized for pure titanium powder, which is an active metal powder. And a very high-density powder molding method was obtained.
Specifically, the relative density ratio of the powder compact greatly exceeded the conventional maximum level of 85%, and reached 98 to 99%, and a powder compact having a true density was obtained.
[0066]
In Table 1 and FIG. 1, etc., the relative density ratio is used as an index of the compact density because the true density varies depending on the composition. This is for objectively evaluating the ratio. The same applies to the sintered body density.
[0067]
As is clear from FIG. 2, in the case of the present example, the ejection force hardly changed despite the molding pressure being significantly increased. In addition, since the molding pressure exceeded 600 MPa, the ejection force became a very low value of 5 MPa or less. In addition, when the output power exceeded 784 MPa, the extraction power became almost constant at an extremely low value of about 2.5 MPa.
On the other hand, in the comparative example molded at room temperature, the molding pressure was at most 588 MPa, and the mold was seized. The relative density ratio of the obtained powder compact did not reach even 85% at most. In addition, in the case of molding at room temperature, the ejection force sharply increased almost in proportion to the increase in the molding pressure.
[0068]
As is apparent from FIG. 3, the density of the compact increases with the increase of the molding pressure, and the density of the sintered compact increases accordingly. In particular, in this example, when a powder compact having a compacting pressure of 1176 MPa or more was sintered, the density of the sintered compact increased to almost the true density.
Moreover, as can be seen from FIG. 4, in the case of the present embodiment, the dimensional change before and after sintering was as small as about 1 to 3%. On the other hand, in the case of the comparative example formed at room temperature, since the density of the original compact itself was low, the dimensional change before and after sintering was considerably large, 4 to 10%.
[0069]
(2) In the case of titanium alloy powder
Pure titanium powder and Al 3 Alloy powder mixed with V powder and TiB 2 TiB mixed with powder 2 Table 1 shows the characteristics of each of the alloy mixed powders when molded at various molding pressures. 2-1 to 2-3, sample no. The results are shown in FIGS.
[0070]
First, when a mixed powder having an alloy composition of Ti-6Al-4V was warm compacted, a very high compact density and a sintered compact density were obtained as in the case of the pure titanium powder. In particular, the sintered body density was stabilized at an extremely high value of about 99.5% relative density ratio. Further, the output at that time was stable at a very low value of about 1 MPa or less.
[0071]
Next, TiB which is a hard particle powder is added to the alloy mixed powder. 2 When the powder obtained by mixing the powders was subjected to pressure molding, sufficiently high compact density and sintered compact density and sufficiently low ejection force were obtained. For example, when the molding pressure was 1176 MPa, the relative density ratio of the powder compact reached 94%, and the relative density ratio of the metal sintered compact reached 99%. At that time, the output of the powder compact was 5 MPa or less in each case.
Also, as can be seen from FIG. 2 Is 6% by mass, a peculiar phenomenon that the ejection force decreases as the molding pressure increases.
[0072]
However, TiB 2 Although it depends on the amount of powder mixed, TiB 2 When the powder was mixed, the respective densities were slightly lower and the ejection force was slightly higher when viewed at the same molding pressure than when the powder was not mixed. Needless to say, all of these values are significantly superior to those at room temperature.
FIG. 7 also shows that the density of each of the present examples is higher than that of the conventional example (the case of molding at 392 MPa by the CIP method).
[0073]
B. Powder compaction of aluminum raw material powder
(1) Pure aluminum powder
Sample No. 1 in Table 1. 4-1 to 4-7, sample no. C2-1 to C2-3 and FIGS. 8 and 9 show the respective characteristics when the pure aluminum powder was molded at various molding pressures.
The overall tendency was the same as in the case of the pure titanium powder, and the powder compact according to this example had a very high density.
However, in the case of this embodiment, the ejection force was as small as about 1 MPa or less regardless of the molding pressure. That is, even when the molding pressure was low (392 MPa in this example), the ejection force was low. This is presumably because, as can be seen from the outer diameter in Table 1, the outer diameter of the powder molded body after the extraction was substantially equal to or slightly smaller than the inner diameter of the mold. However, such a tendency is not observed in the comparative example formed at room temperature, as can be seen from Table 1 and FIG.
[0074]
(2) In the case of aluminum alloy powder
The properties of the alloy powder (only one kind) having an alloy composition of Al-6Zn-2Mg-1.5Cu when molded at various molding pressures are shown in Sample No. 1 of Table 1. 5-1 to 5-3 and shown in FIGS. 10 and 11. The overall trend was similar to that of pure aluminum powder.
[0075]
However, when viewed at the same molding pressure, in the case of this alloy powder, the compact density was slightly lower and the ejection force was slightly higher than in the case of the pure aluminum powder. This is presumably because the alloy powder was composed of particles having higher strength than the pure aluminum powder, and the compressibility was reduced. Nevertheless, the relative density ratio of the powder compact reached 94% or more, indicating that a powder compact having a sufficiently high density was obtained. Needless to say, all of these values are far superior to those at room temperature.
[0076]
C. Metal sintered body with increased content of hard particles
TiB 2 As the content of Ni increases, a sintered metal body having high rigidity and high strength can be obtained. 2 In general, as the content of N increases, moldability and sinterability decrease. Therefore, TiB 2 Was newly increased to 12% by mass, and the moldability and sinterability according to the present invention were evaluated.
[0077]
The test material according to the embodiment of the present invention is TiB 2 Except for the sample amount, It produced under the same conditions as 3-3. That is, the powder is molded at a mold temperature of 150 ° C. and a molding pressure of 1568 MPa, and then sintered at 1300 ° C. The test material as a comparative example was obtained by molding a raw material powder having the same composition by the above-mentioned room temperature molding (molding pressure: 588 MPa) and sintering it at 1300 ° C.
Here, FIGS. 12 and 13 show how the relative density ratio and the dimensional change rate of the test material change when the sintering time is changed. By the way, in each drawing, 20 vol% TiB is represented by 12 mass% TiB. 2 Is changed to 20% by volume of TiB by sintering.
[0078]
First, as can be seen from FIG. 12, in the case of the example, a sufficiently high sintered body having a relative density ratio close to 100% was obtained by sintering for an extremely short time. On the other hand, in the case of the comparative example, a long sintering time was required to increase the relative density ratio of the sintered body. In addition, in the conventional manufacturing method as in the comparative example, even if the raw material powder is pulverized, when the hard particles are dispersed in a large amount in the raw material powder, the powder formability and sinterability are remarkably inferior. A high density sintered body cannot be obtained.
[0079]
Next, as can be seen from FIG. 13, in the case of the example, the dimensional change rate was extremely small and stable at about 2% even when the sintering time was long. On the other hand, in the case of the comparative example, the dimensional change rate was greatly reduced with the sintering time and was not stable.
As described above, according to the examples of the present invention, it has been clarified that a metal sintered body having high density and excellent dimensional stability can be obtained, which has not been achieved in the past.
[0080]
D. Mechanical Properties of Sintered Metal with Hard Particles Dispersed
TiB 2 , A tensile strength, a rigidity, a fatigue strength, and the like were evaluated for a test material obtained by powder molding and sintering of a raw material powder containing.
The composition of the raw material powder used at this time was as follows: Same as 3-3. The test materials of the examples are sample Nos. Manufactured similarly to 3-3. However, the shape was a 10 × 10 × 55 mm bending test piece shape. The test material of the comparative example was obtained by sintering a powder compact of the same shape that was CIP-molded at 392 MPa at 1300 ° C. The case where the sintering time was 4 hours was Comparative Example 1 and the case where the sintering time was 16 hours was Comparative Example 2. Each of the obtained test materials was processed into a tensile test piece and a rotating bending fatigue test piece, and the mechanical properties of each test piece were evaluated. The results are shown in FIG. 14 and FIG. Incidentally, 10 vol% TiB is shown in each figure because 6 mass% of TiB 2 Was changed to 10% by volume of TiB by sintering.
[0081]
As is clear from FIGS. 14 and 15, the sintered body of the example has a very high relative density ratio of the sintered body to the sintered body of the comparative example, and any one of the tensile strength, elongation and fatigue strength. In particular, it was confirmed that the material was excellent.
[0082]
E. FIG. Regarding the surface analysis result of the powder compact according to the present invention
Sample No. 1 in Table 1. 1-4 (when the raw material powder is pure Ti) and sample Nos. The surface of the powder compact shown in 4-5 (when the raw material powder was pure Ti) was subjected to surface analysis by TOF-SIMS (Time of Flight Secondary Ion Mass Spectrometer). FIGS. 16 and 17 show the respective secondary ion images obtained as a result.
[0083]
From these, it was confirmed in each case that the distribution of stearic acid was closer to the distribution of Ti or Al than the distribution of Li. This suggests that, during the molding step according to the present example, a mechanochemical reaction occurred, and a new metal soap film that appeared to be titanium stearate or aluminum stearate was formed on the surface of each powder compact. Seems to be doing.
[0084]
[Table 1]
Figure 2004100035

[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a molding pressure and a green body density (relative density ratio) when room temperature molding and warm molding are performed using pure titanium powder.
FIG. 2 is a graph showing the relationship between molding pressure and ejection force at that time.
FIG. 3 is a graph showing a relationship between a molding pressure of pure titanium powder and a relative density ratio of a metal sintered body obtained by sintering the obtained powder molded body.
FIG. 4 is a graph showing a relationship between a molding pressure of pure titanium powder and a dimensional change rate during sintering of a powder compact.
FIG. 5 is a graph showing the relationship between compacting pressure and compact density (relative density ratio) when warm-forming titanium alloy powder.
FIG. 6 is a graph showing the relationship between molding pressure and ejection force at that time.
FIG. 7 is a graph showing a relationship between a molding pressure of a titanium alloy powder and a relative density ratio of a metal sintered body obtained by sintering the obtained powder molded body.
FIG. 8 is a graph showing the relationship between molding pressure and compact density (relative density ratio) when compacting at room temperature and during warm compaction using pure aluminum powder.
FIG. 9 is a graph showing the relationship between molding pressure and ejection force at that time.
FIG. 10 is a graph showing the relationship between the molding pressure and the compact density (relative density ratio) when room temperature compaction and warm compaction are performed using pure aluminum powder and aluminum alloy powder.
FIG. 11 is a graph showing the relationship between molding pressure and ejection force at that time.
FIG. 12 is a graph showing a relationship between a sintering time of a non-sinterable material and a relative density ratio.
FIG. 13 is a graph showing the relationship between the sintering time of the hardly sinterable material and the dimensional change.
FIG. 14 is a bar graph comparing differences in relative density ratio, tensile strength, and elongation due to differences in manufacturing conditions.
FIG. 15 is a graph comparing differences in fatigue strength due to differences in manufacturing conditions.
FIG. 16 is a secondary ion image obtained by observing the surface of a powder compact made of pure Ti powder by TOF-SIMS.
FIG. 17 is a secondary ion image obtained by observing the surface of a powder compact made of pure Al powder by TOF-SIMS.

Claims (35)

金型の内面に高級脂肪酸系潤滑剤を塗布する塗布工程と、
該塗布工程後の金型内へ活性金属元素を主成分とする原料粉末を充填する充填工程と、
該充填工程後の原料粉末を温間状態で加圧して粉末成形体とする成形工程と、
該成形工程後の粉末成形体を該金型内から抜き出す抜出工程とからなり、
得られた該粉末成形体が高密度であることを特徴とする粉末成形方法。
An application step of applying a higher fatty acid-based lubricant to the inner surface of the mold,
A filling step of filling a raw material powder containing an active metal element as a main component into the mold after the coating step,
Pressing the raw material powder after the filling step in a warm state to form a powder compact,
An extraction step of extracting the powder compact after the molding step from the mold,
A powder molding method, characterized in that the obtained powder compact has a high density.
前記活性金属元素はチタン(Ti)である請求項1に記載の粉末成形方法。The powder molding method according to claim 1, wherein the active metal element is titanium (Ti). 前記原料粉末には、さらに、アルミニウム(Al)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、スカンジウム(Sc)、クロム(Cr)、鉄(Fe)、モリブデン(Mo)、錫(Sn)、タングステン(W)、マンガン(Mn)、ニッケル(Ni)、銅(Cu)、ケイ素(Si)、炭素(C)、ホウ素(B)、窒素(N)または酸素(O)が含まれる請求項2に記載の粉末成形方法。The raw material powder further includes aluminum (Al), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), scandium (Sc), chromium (Cr), iron ( Fe), molybdenum (Mo), tin (Sn), tungsten (W), manganese (Mn), nickel (Ni), copper (Cu), silicon (Si), carbon (C), boron (B), nitrogen ( The powder molding method according to claim 2, wherein N) or oxygen (O) is contained. 前記原料粉末は、純チタン粉末、チタン合金粉末またはチタン化合物粉末からなる請求項2に記載の粉末成形方法。The powder molding method according to claim 2, wherein the raw material powder comprises a pure titanium powder, a titanium alloy powder, or a titanium compound powder. 前記活性金属元素はAlである請求項1に記載の粉末成形方法。The method of claim 1, wherein the active metal element is Al. 前記原料粉末には、さらに、Cu、マグネシウム(Mg)、Mn、Zr、ストロンチウム(Sr)、Ni、Cr、Fe、Mo、Sn、Si、C、B、NまたはOが含まれる請求項5に記載の粉末成形方法。6. The raw material powder according to claim 5, further comprising Cu, magnesium (Mg), Mn, Zr, strontium (Sr), Ni, Cr, Fe, Mo, Sn, Si, C, B, N or O. The powder molding method as described in the above. 前記原料粉末は、純アルミニウム粉末、アルミニウム合金粉末またはアルミニウム化合物粉末からなる請求項5に記載の粉末成形方法。The powder molding method according to claim 5, wherein the raw material powder is made of a pure aluminum powder, an aluminum alloy powder, or an aluminum compound powder. 前記原料粉末は、炭化物、ホウ化物、窒化物または酸化物からなる硬質粒子粉末が混合された混合粉末である請求項1に記載の粉末成形方法。The powder molding method according to claim 1, wherein the raw material powder is a mixed powder in which hard particle powders made of carbide, boride, nitride, or oxide are mixed. 前記活性金属元素はTiであり、
前記粉末成形体の見掛け上の密度である成形体密度は、前記原料粉末の組成から定る真密度の85%以上である請求項1に記載の粉末成形方法。
The active metal element is Ti;
The powder molding method according to claim 1, wherein a molded body density, which is an apparent density of the powder molded body, is 85% or more of a true density determined from a composition of the raw material powder.
前記活性金属元素はAlであり、
前記粉末成形体の見掛け上の密度である成形体密度は、前記原料粉末の組成から定る真密度の90%以上である請求項1に記載の粉末成形方法。
The active metal element is Al;
The powder molding method according to claim 1, wherein a molded body density, which is an apparent density of the powder molded body, is 90% or more of a true density determined from a composition of the raw material powder.
前記成形工程は、少なくとも前記金型の内面と前記原料粉末とが接触する部分の温度である接触部分温度を100〜225℃の温間状態としつつ、成形圧力を392MPa以上として温間加圧成形する工程である請求項1に記載の粉末成形方法。In the molding step, the molding pressure is set to 392 MPa or more while the contact part temperature, which is the temperature of the part where the inner surface of the mold contacts the raw material powder, is at least 100 to 225 ° C. The powder molding method according to claim 1, wherein the method is a step of carrying out. 前記活性金属元素はTiであり、
前記接触部分温度は100〜225℃で、前記成形圧力は500〜2500MPaとする請求項11に記載の粉末成形方法。
The active metal element is Ti;
The powder molding method according to claim 11, wherein the contact portion temperature is 100 to 225C, and the molding pressure is 500 to 2500 MPa.
前記活性金属元素はAlであり、
前記接触部分温度は100〜225℃で、前記成形圧力は392〜2500MPaとする請求項11に記載の粉末成形方法。
The active metal element is Al;
The powder molding method according to claim 11, wherein the contact portion temperature is 100 to 225 ° C, and the molding pressure is 392 to 2500 MPa.
前記成形工程の成形圧力が784MPa以上のときに、前記抜出工程の抜出力が10MPa以下である請求項1に記載の粉末成形方法。The powder molding method according to claim 1, wherein when the molding pressure in the molding step is 784 MPa or more, the extraction output in the extraction step is 10 MPa or less. 前記活性金属元素はTiであり、
前記成形圧力は784MPa以上で、前記抜出力は10MPa以下である請求項14に記載の粉末成形方法。
The active metal element is Ti;
The powder molding method according to claim 14, wherein the molding pressure is 784 MPa or more, and the ejection force is 10 MPa or less.
前記活性金属元素はAlであり、
前記成形圧力は392MPa以上で、前記抜出力は5MPa以下である請求項14に記載の粉末成形方法。
The active metal element is Al;
The powder molding method according to claim 14, wherein the molding pressure is 392 MPa or more, and the ejection force is 5 MPa or less.
前記成形圧力に対する前記抜出力の圧力比が、該成形圧力の増加に対して減少傾向にある請求項14に記載の粉末成形方法。The powder molding method according to claim 14, wherein a pressure ratio of the ejection force to the molding pressure tends to decrease with an increase in the molding pressure. 前記塗布工程は、界面活性剤を含む分散液に分散させた粉末状の高級脂肪酸系潤滑剤を、加熱された前記金型の内面に噴霧する工程である請求項1に記載の粉末成形方法。2. The powder molding method according to claim 1, wherein the applying step is a step of spraying a powdered higher fatty acid-based lubricant dispersed in a dispersion liquid containing a surfactant onto the heated inner surface of the mold. 3. 前記分散液は、水またはアルコール系溶媒からなる請求項18に記載の粉末成形方法。19. The method according to claim 18, wherein the dispersion comprises water or an alcohol solvent. 前記分散液は、水と1〜50体積%のアルコール系溶媒とを混合した混合液からなる請求項18に記載の粉末成形方法。19. The powder molding method according to claim 18, wherein the dispersion comprises a mixture of water and 1 to 50% by volume of an alcohol solvent. 前記加熱された金型の金型温度は、前記分散液の沸点以上で前記高級脂肪酸系潤滑剤の融点未満である請求項18に記載の粉末成形方法。19. The powder molding method according to claim 18, wherein a mold temperature of the heated mold is equal to or higher than a boiling point of the dispersion and lower than a melting point of the higher fatty acid-based lubricant. 前記高級脂肪酸系潤滑剤は、高級脂肪酸のリチウム塩、カルシウム塩または亜鉛塩を主成分とする金属塩からなる請求項1または18に記載の粉末成形方法。19. The powder molding method according to claim 1, wherein the higher fatty acid-based lubricant comprises a metal salt containing a lithium salt, a calcium salt or a zinc salt of a higher fatty acid as a main component. 前記高級脂肪酸系潤滑剤は、最大粒径が30μm以下である請求項18に記載の粉末成形方法。The powder molding method according to claim 18, wherein the higher fatty acid-based lubricant has a maximum particle size of 30 µm or less. 前記成形工程は、前記高級脂肪酸系潤滑剤とは別の前記活性金属元素を含む新たな金属石鹸の被膜が前記粉末成形体の表面に形成される工程である請求項1に記載の粉末成形方法。The powder molding method according to claim 1, wherein the molding step is a step of forming a new metal soap film containing the active metal element different from the higher fatty acid-based lubricant on the surface of the powder molded body. . 前記活性金属元素はTiであり、
前記金属石鹸は高級脂肪酸のTi塩である請求項24に記載の粉末成形方法。
The active metal element is Ti;
The powder molding method according to claim 24, wherein the metal soap is a Ti salt of a higher fatty acid.
前記活性金属元素はAlであり、
前記金属石鹸は高級脂肪酸のAl塩である請求項24に記載の粉末成形方法。
The active metal element is Al;
The powder molding method according to claim 24, wherein the metal soap is an Al salt of a higher fatty acid.
金型の内面に高級脂肪酸系潤滑剤を塗布する塗布工程と、
該塗布工程後の金型内へ活性金属元素を主成分とする原料粉末を充填する充填工程と、
該充填工程後の原料粉末を温間状態で加圧して粉末成形体とする成形工程と、
該成形工程後の粉末成形体を該金型内から抜き出す抜出工程とを経て得られ、
前記活性金属元素はTiであり、
前記粉末成形体の見掛け上の密度である成形体密度は、前記原料粉末の組成から定る真密度の85%以上の高密度であることを特徴とする粉末成形体。
An application step of applying a higher fatty acid-based lubricant to the inner surface of the mold,
A filling step of filling a raw material powder containing an active metal element as a main component into the mold after the coating step,
Pressing the raw material powder after the filling step in a warm state to form a powder compact,
An extraction step of extracting the powder compact after the molding step from the mold,
The active metal element is Ti;
A powder compact, wherein a compact density, which is an apparent density of the powder compact, is a high density of 85% or more of a true density determined from a composition of the raw material powder.
金型の内面に高級脂肪酸系潤滑剤を塗布する塗布工程と、
該塗布工程後の金型内に活性金属元素を主成分とする原料粉末を充填する充填工程と、
該充填工程後の原料粉末を温間状態で加圧して粉末成形体とする成形工程と、
該成形工程後の粉末成形体を該金型内から抜き出す抜出工程とを経て得られ、
前記活性金属元素はAlであり、
前記粉末成形体の見掛け上の密度である成形体密度は、前記原料粉末の組成から定る真密度の90%以上の高密度であることを特徴とする粉末成形体。
An application step of applying a higher fatty acid-based lubricant to the inner surface of the mold,
A filling step of filling a raw material powder containing an active metal element as a main component in the mold after the coating step,
Pressing the raw material powder after the filling step in a warm state to form a powder compact,
An extraction step of extracting the powder compact after the molding step from the mold,
The active metal element is Al;
A powder compact, wherein a compact density, which is an apparent density of the powder compact, is 90% or more of a true density determined from a composition of the raw material powder.
金型の内面に高級脂肪酸系潤滑剤を塗布する塗布工程と、
該塗布工程後の金型内へ活性金属元素を主成分とする原料粉末を充填する充填工程と、
該充填工程後の原料粉末を温間状態で加圧して粉末成形体とする成形工程と、
該成形工程後の粉末成形体を該金型内から抜き出す抜出工程と、
該抜出工程後の粉末成形体を加熱して金属焼結体とする焼結工程とからなり、
得られた該金属焼結体が高密度であることを特徴とする金属焼結体の製造方法。
An application step of applying a higher fatty acid-based lubricant to the inner surface of the mold,
A filling step of filling a raw material powder containing an active metal element as a main component into the mold after the coating step,
Pressing the raw material powder after the filling step in a warm state to form a powder compact,
An extraction step of extracting the powder compact after the molding step from the mold;
A sintering step of heating the powder compact after the extraction step to form a metal sintered body,
A method for producing a metal sintered body, wherein the obtained metal sintered body has a high density.
金型の内面に高級脂肪酸系潤滑剤を塗布する塗布工程と、
該塗布工程後の金型内へ活性金属元素を主成分とする原料粉末を充填する充填工程と、
該充填工程後の原料粉末を温間状態で加圧して粉末成形体とする成形工程と、
該成形工程後の粉末成形体を該金型内から抜き出す抜出工程と、
該抜出工程後の粉末成形体を加熱して金属焼結体とする焼結工程とを経て得られ、
前記活性金属元素はTiであり、
前記金属焼結体の見掛け上の密度である焼結体密度は、前記原料粉末の組成から定る真密度の85%以上の高密度であることを特徴とする金属焼結体。
An application step of applying a higher fatty acid-based lubricant to the inner surface of the mold,
A filling step of filling a raw material powder containing an active metal element as a main component into the mold after the coating step,
Pressing the raw material powder after the filling step in a warm state to form a powder compact,
An extraction step of extracting the powder compact after the molding step from the mold;
Heating the powder molded body after the extraction step to obtain a metal sintered body,
The active metal element is Ti;
A metal sintered body, wherein a sintered body density, which is an apparent density of the metal sintered body, is a high density of 85% or more of a true density determined from a composition of the raw material powder.
金型の内面に高級脂肪酸系潤滑剤を塗布する塗布工程と、
該塗布工程後の金型内へ活性金属元素を主成分とする原料粉末を充填する充填工程と、
該充填工程後の原料粉末を温間状態で加圧して粉末成形体とする成形工程と、
該成形工程後の粉末成形体を該金型内から抜き出す抜出工程と、
該抜出工程後の粉末成形体を加熱して金属焼結体とする焼結工程とを経て得られ、
前記活性金属元素はAlであり、
前記金属焼結体の見掛け上の密度である焼結体密度は、前記原料粉末の組成から定る真密度の90%以上の高密度であることを特徴とする金属焼結体。
An application step of applying a higher fatty acid-based lubricant to the inner surface of the mold,
A filling step of filling a raw material powder containing an active metal element as a main component into the mold after the coating step,
Pressing the raw material powder after the filling step in a warm state to form a powder compact,
An extraction step of extracting the powder compact after the molding step from the mold;
Heating the powder molded body after the extraction step to obtain a metal sintered body,
The active metal element is Al;
The sintered metal density, which is an apparent density of the sintered metal body, is a high density of 90% or more of a true density determined from a composition of the raw material powder.
活性金属元素を主成分とした金属素材の表面および/または成形加工金型の加工面に高級脂肪酸系潤滑剤を塗布する塗布工程と、
該成形加工金型により該金属素材を温間状態で成形加工する成形加工工程と、
からなることを特徴とする成形加工方法。
An application step of applying a higher fatty acid-based lubricant to a surface of a metal material mainly containing an active metal element and / or a processing surface of a molding die;
A forming step of forming the metal material in a warm state by the forming die;
A molding method characterized by comprising:
前記塗布工程は、加熱した前記金属素材を前記高級脂肪酸系潤滑剤を分散させた分散液中に浸漬するディップ法、または、加熱した該金属素材若しくは前記成形加工金型へ該高級脂肪酸系潤滑剤を分散させた分散液を吹付けるスプレー法により行われる工程である請求項32に記載の成形加工方法。The coating step is a dipping method in which the heated metal material is immersed in a dispersion in which the higher fatty acid-based lubricant is dispersed, or the higher fatty acid-based lubricant is applied to the heated metal material or the molding die. 33. The molding method according to claim 32, wherein the step is performed by a spraying method of spraying a dispersion liquid in which is dispersed. 前記成形加工工程は、鍛造、圧延、押出し、引抜き、転造、コイニング、サイジングまたは再圧縮のいずれかの加工を行う工程である請求項32に記載の成形加工方法。33. The forming method according to claim 32, wherein the forming step is a step of performing any one of forging, rolling, extrusion, drawing, rolling, coining, sizing, and recompression. 活性金属元素を主成分とした金属素材の表面および/または成形加工金型の加工面に高級脂肪酸系潤滑剤を塗布する塗布工程と、
該成形加工金型により該金属素材を温間状態で成形加工する成形加工工程とを経て得られることを特徴とする成形加工部材。
An application step of applying a higher fatty acid-based lubricant to a surface of a metal material mainly containing an active metal element and / or a processing surface of a molding die;
And a forming step of forming the metal material in a warm state by the forming die.
JP2003166642A 2002-07-17 2003-06-11 Powder molded body, powder molding method, sintered metal body and method for producing the same Expired - Fee Related JP3945455B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003166642A JP3945455B2 (en) 2002-07-17 2003-06-11 Powder molded body, powder molding method, sintered metal body and method for producing the same
US10/615,939 US20040013558A1 (en) 2002-07-17 2003-07-10 Green compact and process for compacting the same, metallic sintered body and process for producing the same, worked component part and method of working

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002208092 2002-07-17
JP2003166642A JP3945455B2 (en) 2002-07-17 2003-06-11 Powder molded body, powder molding method, sintered metal body and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005315095A Division JP2006132000A (en) 2002-07-17 2005-10-28 Green compact and process for compacting the same

Publications (2)

Publication Number Publication Date
JP2004100035A true JP2004100035A (en) 2004-04-02
JP3945455B2 JP3945455B2 (en) 2007-07-18

Family

ID=30447649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003166642A Expired - Fee Related JP3945455B2 (en) 2002-07-17 2003-06-11 Powder molded body, powder molding method, sintered metal body and method for producing the same

Country Status (2)

Country Link
US (1) US20040013558A1 (en)
JP (1) JP3945455B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270141A (en) * 2008-05-01 2009-11-19 Daido Steel Co Ltd METHOD FOR PRODUCING Ti-Al BASED ALLOY TARGET MATERIAL
CN101886188A (en) * 2010-04-08 2010-11-17 厦门大学 Beta titanium alloy and preparation method thereof
WO2012060452A1 (en) * 2010-11-04 2012-05-10 アイダエンジニアリング株式会社 High density molding method and high density molding device for mixed powder
CN104694787A (en) * 2015-03-09 2015-06-10 苏州圣谱拉新材料科技有限公司 Cermet material for mechanical equipment and preparation method thereof
US9469898B2 (en) 2002-07-23 2016-10-18 Entegris, Inc. Method and apparatus to help promote contact of gas with vaporized material
CN107904440A (en) * 2017-11-23 2018-04-13 北京工业大学 A kind of high-temperature titanium alloy material and preparation method thereof
US10385452B2 (en) 2012-05-31 2019-08-20 Entegris, Inc. Source reagent-based delivery of fluid with high material flux for batch deposition
US10895010B2 (en) 2006-08-31 2021-01-19 Entegris, Inc. Solid precursor-based delivery of fluid utilizing controlled solids morphology
CN112695227A (en) * 2020-12-21 2021-04-23 重庆新启派电子科技有限公司 High-purity alloy composite material

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1520645B1 (en) * 2003-10-02 2011-12-07 Hitachi Powdered Metals Co., Ltd. Manufacturing method of sinter forged aluminium parts with high strength
US20080101977A1 (en) * 2005-04-28 2008-05-01 Eason Jimmy W Sintered bodies for earth-boring rotary drill bits and methods of forming the same
US9428822B2 (en) 2004-04-28 2016-08-30 Baker Hughes Incorporated Earth-boring tools and components thereof including material having hard phase in a metallic binder, and metallic binder compositions for use in forming such tools and components
US20050211475A1 (en) 2004-04-28 2005-09-29 Mirchandani Prakash K Earth-boring bits
US20060024140A1 (en) * 2004-07-30 2006-02-02 Wolff Edward C Removable tap chasers and tap systems including the same
US7513320B2 (en) * 2004-12-16 2009-04-07 Tdy Industries, Inc. Cemented carbide inserts for earth-boring bits
US8637127B2 (en) 2005-06-27 2014-01-28 Kennametal Inc. Composite article with coolant channels and tool fabrication method
US7687156B2 (en) 2005-08-18 2010-03-30 Tdy Industries, Inc. Composite cutting inserts and methods of making the same
US7776256B2 (en) * 2005-11-10 2010-08-17 Baker Huges Incorporated Earth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies
US7597159B2 (en) * 2005-09-09 2009-10-06 Baker Hughes Incorporated Drill bits and drilling tools including abrasive wear-resistant materials
US8002052B2 (en) 2005-09-09 2011-08-23 Baker Hughes Incorporated Particle-matrix composite drill bits with hardfacing
US7703555B2 (en) 2005-09-09 2010-04-27 Baker Hughes Incorporated Drilling tools having hardfacing with nickel-based matrix materials and hard particles
US7997359B2 (en) 2005-09-09 2011-08-16 Baker Hughes Incorporated Abrasive wear-resistant hardfacing materials, drill bits and drilling tools including abrasive wear-resistant hardfacing materials
US7802495B2 (en) * 2005-11-10 2010-09-28 Baker Hughes Incorporated Methods of forming earth-boring rotary drill bits
US7784567B2 (en) * 2005-11-10 2010-08-31 Baker Hughes Incorporated Earth-boring rotary drill bits including bit bodies comprising reinforced titanium or titanium-based alloy matrix materials, and methods for forming such bits
US7807099B2 (en) 2005-11-10 2010-10-05 Baker Hughes Incorporated Method for forming earth-boring tools comprising silicon carbide composite materials
US8770324B2 (en) 2008-06-10 2014-07-08 Baker Hughes Incorporated Earth-boring tools including sinterbonded components and partially formed tools configured to be sinterbonded
US7913779B2 (en) 2005-11-10 2011-03-29 Baker Hughes Incorporated Earth-boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum-based alloy matrix materials, and methods for forming such bits
US8312941B2 (en) 2006-04-27 2012-11-20 TDY Industries, LLC Modular fixed cutter earth-boring bits, modular fixed cutter earth-boring bit bodies, and related methods
CA2662966C (en) 2006-08-30 2012-11-13 Baker Hughes Incorporated Methods for applying wear-resistant material to exterior surfaces of earth-boring tools and resulting structures
US8007922B2 (en) 2006-10-25 2011-08-30 Tdy Industries, Inc Articles having improved resistance to thermal cracking
US7775287B2 (en) * 2006-12-12 2010-08-17 Baker Hughes Incorporated Methods of attaching a shank to a body of an earth-boring drilling tool, and tools formed by such methods
US7841259B2 (en) * 2006-12-27 2010-11-30 Baker Hughes Incorporated Methods of forming bit bodies
US8152687B2 (en) 2007-01-24 2012-04-10 Torotrack (Development) Limited Powdered metal variator components
US7846551B2 (en) 2007-03-16 2010-12-07 Tdy Industries, Inc. Composite articles
CN102112642B (en) * 2008-06-02 2013-11-06 Tdy工业有限责任公司 Cemented carbide-metallic alloy composites
US8790439B2 (en) 2008-06-02 2014-07-29 Kennametal Inc. Composite sintered powder metal articles
US7703556B2 (en) 2008-06-04 2010-04-27 Baker Hughes Incorporated Methods of attaching a shank to a body of an earth-boring tool including a load-bearing joint and tools formed by such methods
US7985371B2 (en) * 2008-06-24 2011-07-26 Gerald Martino Titanium connecting rod
US8298479B2 (en) * 2008-06-24 2012-10-30 Gerald Martino Machined titanium connecting rod and process
US8261632B2 (en) 2008-07-09 2012-09-11 Baker Hughes Incorporated Methods of forming earth-boring drill bits
US20100028190A1 (en) * 2008-07-31 2010-02-04 Gm Global Technology Operations, Inc. Method of making powder metal parts using shock loading
US8025112B2 (en) 2008-08-22 2011-09-27 Tdy Industries, Inc. Earth-boring bits and other parts including cemented carbide
US8322465B2 (en) 2008-08-22 2012-12-04 TDY Industries, LLC Earth-boring bit parts including hybrid cemented carbides and methods of making the same
US8272816B2 (en) 2009-05-12 2012-09-25 TDY Industries, LLC Composite cemented carbide rotary cutting tools and rotary cutting tool blanks
US8201610B2 (en) 2009-06-05 2012-06-19 Baker Hughes Incorporated Methods for manufacturing downhole tools and downhole tool parts
US8308096B2 (en) 2009-07-14 2012-11-13 TDY Industries, LLC Reinforced roll and method of making same
US9643236B2 (en) * 2009-11-11 2017-05-09 Landis Solutions Llc Thread rolling die and method of making same
WO2011146760A2 (en) 2010-05-20 2011-11-24 Baker Hughes Incorporated Methods of forming at least a portion of earth-boring tools, and articles formed by such methods
US8490674B2 (en) 2010-05-20 2013-07-23 Baker Hughes Incorporated Methods of forming at least a portion of earth-boring tools
CA2799906A1 (en) 2010-05-20 2011-11-24 Baker Hughes Incorporated Methods of forming at least a portion of earth-boring tools, and articles formed by such methods
WO2011152359A1 (en) * 2010-05-31 2011-12-08 東邦チタニウム株式会社 Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same
US8800848B2 (en) 2011-08-31 2014-08-12 Kennametal Inc. Methods of forming wear resistant layers on metallic surfaces
US9016406B2 (en) 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits
TW201410362A (en) * 2012-04-23 2014-03-16 Aida Eng Ltd Device for high-density molding and method for high-density molding of mixed powder, and high-density three-layer-structured powder compact
US10315264B2 (en) 2013-01-29 2019-06-11 General Electric Company Joining process and joined article
CN103714200A (en) * 2013-12-16 2014-04-09 华南理工大学 Specimen size design method for ultrasonic and tension-compression fatigue test of iron-based powder metallurgical material
RU2583556C2 (en) * 2014-09-16 2016-05-10 Публичное Акционерное Общество "Корпорация Всмпо-Ависма" Sparingly alloyed titanium alloy
JP2017011158A (en) * 2015-06-24 2017-01-12 株式会社ジェイテクト Magnet manufacturing method and magnet
CN106498230A (en) * 2016-10-25 2017-03-15 林海英 A kind of titanium alloy and preparation method thereof
CN108070747A (en) * 2016-11-14 2018-05-25 镇江市润州金山金属粉末厂 A kind of high performance vanadium strontium alloy
CN106893897B (en) * 2017-02-27 2018-04-10 广东省材料与加工研究所 A kind of heat-resistant rare earth aluminium alloy conductor and its manufacture method
CN109913715A (en) * 2019-04-16 2019-06-21 吴江市新申铝业科技发展有限公司 It is a kind of for producing the preparation method of the aluminium alloy extrusions of solar energy frame
CN110684914A (en) * 2019-10-25 2020-01-14 佛山市三水瑞晟通金属制品有限公司 High-strength high-hardness aluminum alloy and preparation method thereof
CN111014683B (en) * 2019-12-05 2021-04-23 中南大学 Heat treatment process for 3D printing of scandium-containing zirconium-aluminum alloy
CN111378870B (en) * 2020-04-22 2021-08-06 江苏大学 SPS sintering titanium-based composite material and preparation method thereof
CN111766184B (en) * 2020-06-30 2023-07-25 吉林大学 Method for measuring particle size distribution of titanium hydride powder compact
CN112063897A (en) * 2020-09-25 2020-12-11 毛祖林 Aluminum alloy and preparation method thereof

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3366479A (en) * 1965-04-28 1968-01-30 Alloys Res & Mfg Corp Powder metallurgy
US3471270A (en) * 1965-09-01 1969-10-07 Gen Electric Composite material and method for making
BE717646A (en) * 1968-07-05 1969-01-06
US3871877A (en) * 1970-07-08 1975-03-18 Sinteral Corp Producing aluminum powder compacts
US3787205A (en) * 1972-05-30 1974-01-22 Int Nickel Co Forging metal powders
US4177069A (en) * 1977-04-09 1979-12-04 Showa Denko K.K. Process for manufacturing sintered compacts of aluminum-base alloys
CA1230761A (en) * 1982-07-12 1987-12-29 Fumio Kiyota Heat-resistant, wear-resistant, and high-strength aluminum alloy powder and body shaped therefrom
US5256608A (en) * 1988-09-20 1993-10-26 The Dow Chemical Company High hardness, wear resistant materials
US4955798B1 (en) * 1988-10-28 1999-03-30 Nuova Merisinter S P A Process for pretreating metal powder in preparation for compacting operations
US5053192A (en) * 1988-12-20 1991-10-01 Merzhanov Alexandr G Method for making products from powdered materials
EP0484931B1 (en) * 1990-11-09 1998-01-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Sintered powdered titanium alloy and method for producing the same
US5682591A (en) * 1994-08-24 1997-10-28 Quebec Metal Powders Limited Powder metallurgy apparatus and process using electrostatic die wall lubrication
JP2849710B2 (en) * 1996-08-27 1999-01-27 工業技術院長 Powder forming method of titanium alloy
US6190605B1 (en) * 1997-04-09 2001-02-20 Zenith Sintered Products, Inc. Dry die wall lubrication
CA2265098A1 (en) * 1998-03-12 1999-09-12 Abdelouahab Ziani Method for producing aluminum alloy powder compacts
CN1097639C (en) * 1998-07-21 2003-01-01 株式会社丰田中央研究所 Titanium-based composition material, method for producing the same and engine valve
WO2001032337A1 (en) * 1999-10-29 2001-05-10 Kawasaki Steel Corporation Lubricating agent for mold at elevated temperature, iron-based powder composition for elevated temperature compaction with lubricated mold and high density formed product from iron-based powder composition, and method for producing high density iron-based sintered compact
JP3309970B2 (en) * 1999-12-14 2002-07-29 株式会社豊田中央研究所 Molding method of powder compact
JP4228547B2 (en) * 2000-03-28 2009-02-25 Jfeスチール株式会社 Lubricant for mold lubrication and method for producing high-density iron-based powder compact
US6325964B1 (en) * 2000-09-18 2001-12-04 New Century Technology Co., Ltd. Method of manufacturing high-density titanium alloy article
JP3644591B2 (en) * 2000-10-23 2005-04-27 日立粉末冶金株式会社 Die for powder molding and powder molding method using the same
EP1270708B1 (en) * 2001-06-13 2005-10-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Pressurizing forming process and pressurized-and-formed member
US6664018B2 (en) * 2002-04-23 2003-12-16 Xerox Corporation In-situ method of forming zinc stearate dispersion and use thereof in toners
US20050084407A1 (en) * 2003-08-07 2005-04-21 Myrick James J. Titanium group powder metallurgy

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9469898B2 (en) 2002-07-23 2016-10-18 Entegris, Inc. Method and apparatus to help promote contact of gas with vaporized material
US10465286B2 (en) 2002-07-23 2019-11-05 Entegris, Inc. Method and apparatus to help promote contact of gas with vaporized material
US10895010B2 (en) 2006-08-31 2021-01-19 Entegris, Inc. Solid precursor-based delivery of fluid utilizing controlled solids morphology
JP2009270141A (en) * 2008-05-01 2009-11-19 Daido Steel Co Ltd METHOD FOR PRODUCING Ti-Al BASED ALLOY TARGET MATERIAL
CN101886188A (en) * 2010-04-08 2010-11-17 厦门大学 Beta titanium alloy and preparation method thereof
WO2012060452A1 (en) * 2010-11-04 2012-05-10 アイダエンジニアリング株式会社 High density molding method and high density molding device for mixed powder
US10385452B2 (en) 2012-05-31 2019-08-20 Entegris, Inc. Source reagent-based delivery of fluid with high material flux for batch deposition
CN104694787A (en) * 2015-03-09 2015-06-10 苏州圣谱拉新材料科技有限公司 Cermet material for mechanical equipment and preparation method thereof
CN107904440A (en) * 2017-11-23 2018-04-13 北京工业大学 A kind of high-temperature titanium alloy material and preparation method thereof
CN112695227A (en) * 2020-12-21 2021-04-23 重庆新启派电子科技有限公司 High-purity alloy composite material

Also Published As

Publication number Publication date
JP3945455B2 (en) 2007-07-18
US20040013558A1 (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP3945455B2 (en) Powder molded body, powder molding method, sintered metal body and method for producing the same
US10035190B2 (en) Multilevel parts from agglomerated spherical metal powder
SE0950007A1 (en) New process
CN112846198B (en) Nanoparticle reinforced metal matrix composite material and preparation method thereof
WO2001043900A1 (en) Powder green body forming method
SE541758C2 (en) Iron-based alloy powder for powder metallurgy, and sinter-forged member
CN109702185A (en) A kind of aluminum matrix composite press forging and preparation method thereof
JP4397425B1 (en) Method for producing Ti particle-dispersed magnesium-based composite material
RU2329121C2 (en) Powder on iron basis
RU2333075C2 (en) Method of parts manufacturing on basis of iron by means of pressing at higher pressures
EP1640469A1 (en) Iron base sintered alloy exhibiting high surface densification and high surface hardness, and method for production thereof
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
JP2006132000A (en) Green compact and process for compacting the same
US7662209B2 (en) Iron-based powder
CN104674073B (en) A kind of POWDER METALLURGY ALUMINIUM ALLOYS material and preparation method thereof
JP4999283B2 (en) Iron-based powder for powder metallurgy
CN112166001A (en) Powder mixture for powder metallurgy and method for producing same
CN113718150B (en) Alloy roller for continuous induction type quick quenching furnace and manufacturing method thereof
JP6450213B2 (en) Warm forming method
JPH03100136A (en) Aluminum alloy material for die
JP2023079888A (en) Method of producing green compact and method of manufacturing sintered body
CN116904824A (en) Antiwear WC-Co hard alloy and preparation method thereof
JPH0873975A (en) Sintered compact of aluminum alloy powder having low coefficient of friction and its production
JPH03100137A (en) Aluminum alloy material for die

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees