JP2004098267A - Polishing tool, polishing device, and polishing precess - Google Patents

Polishing tool, polishing device, and polishing precess Download PDF

Info

Publication number
JP2004098267A
JP2004098267A JP2002267549A JP2002267549A JP2004098267A JP 2004098267 A JP2004098267 A JP 2004098267A JP 2002267549 A JP2002267549 A JP 2002267549A JP 2002267549 A JP2002267549 A JP 2002267549A JP 2004098267 A JP2004098267 A JP 2004098267A
Authority
JP
Japan
Prior art keywords
polishing
thin film
elastic thin
film head
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002267549A
Other languages
Japanese (ja)
Inventor
Kazuhiko Ito
伊藤 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002267549A priority Critical patent/JP2004098267A/en
Publication of JP2004098267A publication Critical patent/JP2004098267A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To control the shape of an elastic head at a polishing tool or the like at a real time during processing. <P>SOLUTION: For the elastic tool body section of the polishing tool, both ends of a cylindrical elastic thin film head section 1 is hermetically sealed and retained by a pair of retention plates 2, the elastic thin film head section 1 is maintained in a predetermined external shape by the controllable pressure of a gas supplied from the outside of the device through a gas supply channel 11a provided inside a rotation shaft 11 which is a main tool spindle rotated by a motor 16. The external shape of the elastic thin film head section 1 can be changed in processing according to the local radius of curvature at a lens to be processed W1 by adjusting the distance between the two retention plates 2, 3 by a hydraulic cylinder 19. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、微細砥粒を分散させた溶液(研磨液)中に被加工物を浸して、被加工物と研磨工具とが接触することのないように微小間隔を保った状態で研磨工具を回転させ、ニップ部に発生した液流によって被加工物に微細砥粒を衝突させて被加工物の表面を滑らかに仕上げるいわゆる非接触研磨に用いられる研磨工具、研磨装置および研磨方法に関するものである。
【0002】
【従来の技術】
上記の非接触研磨はEEM(Elastic Emission Machining)と呼ばれる研磨方法であって、レンズ、ミラーなどの光学部品の加工では、ポリウレタン球や、内部に気体を封入した弾性薄膜部材が研磨工具として用いられてきた(特開平9−85613号公報、特開平9−85614号公報参照)。
【0003】
例えば、図6に示すように、ポリウレタン球等の弾性体101を一体的に支持するコア102をネジ部材103によって回転軸111の先端に固定し、回転軸111を、筐体112に保持された一対のベアリング113、114によって回転支持させ、カップリング115によって回転軸111の後端をモータ116に接続して、研磨液に浸した弾性体101を高速回転させる。
【0004】
弾性体101を回転軸111に固定するためのコア102は、アルミやSUS材で構成され、コア102の周りにポリウレタン樹脂を創生したものの外形を、研削加工などの機械加工手段を用いて一定の曲率半径を有する球形状に加工することで弾性体101を形成する。
【0005】
治具120に保持された被加工物W0 と、弾性工具本体部である球状の弾性体101とのニップ部における間隔は通常数μm以下なので、弾性体101の真球度は前記間隔以下に加工する必要がある。また、前記弾性体101の材質はポリウレタン球等を選定した段階で固定される。
【0006】
他方、内部に気体を封入した弾性薄膜部材を研磨工具として用いる研磨装置においては、加工する光学部品の光学面形状に適した曲率半径になるように弾性薄膜部材内部に気体を封入し、逆止弁により内部圧力を保持することで外形形状を保つ構成となっている。
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来の技術によれば、ポリウレタンなどの弾性体を用いた中実の回転工具は、加工時の被加工物と球状の弾性工具本体部との間隔が通常数μm以下であることを考慮すると、弾性工具本体部の真球度は前記間隔以下に加工する必要があり、材料の性質上、弾性体の形状精度を保証することが困難となってくる。
【0008】
また、弾性体は材質を選定した段階で固定され、工具外形も製作した時点で固定されるため、工具回転による流体圧によって弾性変形する弾性工具本体部の変形領域(加工領域)は、被加工面形状つまり被加工面の局所曲率半径に基づいて変動することになり、このために均一な加工ができなくなり、面粗さの分布が生じる結果となる。
【0009】
他方、内部に気体を封入した弾性薄膜部材を弾性工具本体部とする研磨工具においては、封入気体の圧力を予め設定することで一定の曲率半径を保つことを想定しているため、被加工物が球面の場合は、その曲率半径に適した工具曲率半径を設定することで、最適な加工が可能となる。しかし、近年、光学部品に求められる性能も高精度化する傾向にあり、非球面形状からさらには自由曲面へと表面形状が複雑化してきているために以下のような問題がある。
【0010】
つまり、さらなる高精度化に伴って非球面量も増大する傾向にあり、数百μmに及ぶようになってきている。また、被加工面の局所曲率半径を見ても一つの光学部品内で100mmから数千mmに及んでおり、一定の工具曲率半径で加工を行うと、局所的に加工能力が低下する箇所が生じる。従って、被加工物の加工面全面に対して、サブナノメートルの粗さに均一に加工することが困難となっている。
【0011】
本発明は上記従来の技術の有する未解決の課題に鑑みてなされたものであり、被加工面の局所形状に合わせて研磨工具との間のニップ部における加工領域を加工中にリアルタイムに制御自在に構成することで、光学部品等の自由曲面を高精度で均一に、しかも効率良く研磨することのできる研磨工具、研磨装置および研磨方法を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
上記目的を達成するため、本発明の研磨工具は、互いに対向する一対の円盤部材と、前記一対の円盤部材によって両端を密封保持された筒状の弾性薄膜ヘッド部と、モータによって回転する工具主軸に対して前記一対の円盤部材を結合する結合手段とを有し、前記工具主軸に設けられた気体供給流路を通って気体供給手段から供給される制御自在な気体圧によって前記弾性薄膜ヘッド部が所定の外形形状を維持し、被加工物との間に研磨砥粒を含んだ研磨液を流入させて非接触研磨加工を行うためのニップ部を形成することを特徴とする。
【0013】
両円盤部材の間隔を変化させるための調整手段が設けられているとよい。
【0014】
調整手段が、一方の円盤部材を他方の円盤部材に向かって進退させる油圧シリンダを有するとよい。
【0015】
本発明の研磨装置は、軸方向に延在する気体供給流路を有する工具主軸と、前記工具主軸を回転駆動するモータと、前記工具主軸上で互いに対向する一対の円盤部材および前記一対の円盤部材によって両端を密封保持された筒状の弾性薄膜ヘッド部を備えた弾性工具本体部と、前記弾性工具本体部を前記工具主軸に結合する結合手段と、前記工具主軸の前記気体供給流路を経て前記弾性工具本体部の前記弾性薄膜ヘッド部に制御自在な気体圧を供給する気体供給手段とを有し、前記気体供給流路を経て供給される前記気体圧によって前記弾性薄膜ヘッド部が所定の外形形状を維持し、被加工物との間に研磨砥粒を含んだ研磨液を流入させて非接触研磨加工を行うためのニップ部を形成することを特徴とする。
【0016】
工具主軸上に、気体供給流路に供給される気体圧の漏れを防ぐためのラビリンスシール構造が設けられているとよい。
【0017】
本発明の研磨方法は、互いに対向する一対の円盤部材によって両端を密封保持された筒状の弾性薄膜ヘッド部を備えた弾性工具本体部を工具主軸によって回転させ、被加工物との間のニップ部に発生する研磨液の液流によって非接触研磨加工を行う研磨方法であって、前記工具主軸に設けられた気体供給流路を経て気体供給手段から前記弾性薄膜ヘッド部に供給される制御自在な気体圧によって前記弾性薄膜ヘッド部を所定の外形形状に維持することを特徴とする。
【0018】
気体供給手段から供給される気体圧を制御することで、前記弾性薄膜ヘッド部の外形形状を加工中に変化させるとよい。
【0019】
両円盤部材の間隔を調整手段によって制御することで、弾性薄膜ヘッドの外形形状を加工中に変化させてもよい。
【0020】
弾性薄膜ヘッド部に供給される気体圧または両円盤部材の間隔またはその両方を制御することで、弾性薄膜ヘッド部の外形形状を被加工物の局所形状に応じて変化させるとよい。
【0021】
【作用】
上記研磨工具によれば、例えば、弾性薄膜ヘッド部の内圧を一定に保ちながら両端の円盤部材の間隔を調整することで、工具剛性を変化させることなくニップ部の加工領域の大きさを被加工物の局所曲率半径に合わせて、加工中にリアルタイムで拡大または縮小できるため、非球面レンズ等の自由曲面を高精度で均一にしかも効率よく加工することができる。
【0022】
【発明の実施の形態】
本発明の実施の形態を図面に基づいて説明する。
【0023】
図1は一実施の形態による研磨装置を示すもので、これは、筒状の薄膜からなる弾性薄膜ヘッド部1の両端を、それぞれ一対の互いに対向する円盤部材である第1、第2の保持プレート2、3に密封保持させた弾性工具本体部を有し、結合手段であるネジ部材4によって保持プレート2を回転軸11の先端に固定し、回転軸11を、筐体12に保持された一対のベアリング13、14によって回転支持させ、カップリング15によって回転軸11の後端をモータ16に接続し、研磨砥粒を含む研磨液に浸した上記弾性工具本体部を高速回転させる。
【0024】
回転軸11は、モータ16のモータ軸にカップリング15を介して連結されている、例えば外径φ30mmの工具主軸である。
【0025】
回転軸11には、その先端部から弾性薄膜ヘッド部1内に気体を導通させるための気体供給流路11aが全長の2/3の位置まで設けられており、反対側の軸端部の流路終端部分には、気体供給流路11aと外表面を結ぶ楕円状の貫通穴11bが設けられている。
【0026】
回転軸11の外表面には、ラビリンスシール構造を形成するための、例えば5μmのクリアランスを確保できる内径を有するシール部材17が設けられており、その側面には気体供給流路11aに貫通穴11bを介して制御自在な気体圧を供給するための気体供給手段である気体供給ライン18が接続されている。
【0027】
シール部材17は、回転軸11を保持する両ベアリング13、14を保持する筐体12に固定保持されており、筐体12は治具20に保持された被加工物である被加工レンズW1 に対して相対角度を任意に設定できるようにチルティングユニット21に連結されている。チルティングユニット21は、ボイスコイル22を介して移動ステージ23から懸下され、上下方向にチルティングユニット21以下の研磨ヘッドユニットを支持しており、研磨ヘッドユニットの自重をキャンセルする機能を有している。
【0028】
また、加工時には、弾性薄膜ヘッド部1の回転により研磨液との間に動圧が発生するが、ボイスコイル22によりこの動圧に反する荷重を加える構造となっている。さらに、ボイスコイル22を懸下する移動ステージ23は、ガイド24に沿って移動し、研磨ヘッドユニット全体を前後左右に移動、揺動させることが可能となっている。
【0029】
気体供給ライン18から供給される気体はドライエアーで、シール部材17に設けられた図示しない開口部を経て、回転軸11に設けられた貫通穴11bから回転軸11内の気体供給流路11aを通り、2つの保持プレート2、3と弾性薄膜ヘッド部1で構成される弾性工具本体部の内部空間に気体圧を供給する。
【0030】
弾性薄膜ヘッド部1は、例えば、肉厚2mmのゴム膜であり、両保持プレート2、3の間に挟持される構成となっている。2つの保持プレート2、3は、回転方向にずれないように弾性薄膜ヘッド部1の内部で3本の規制キー5a、5b、5cにより回転方向に固定されている。そして弾性薄膜ヘッド部1は、回転軸11の内部に導通された気体供給流路11aから供給される気体圧により、例えば、0.3MPaの内圧がかけられて所望の曲率を有する外形形状に膨張維持される。
【0031】
第1の保持プレート2は、ネジ部材4により回転軸11のスラスト方向に固定されており、第2の保持プレート3は、回転軸11上をスラスト方向に摺動可能となっており、第2の保持プレート3と回転軸11との摺動部分には、O−リングが配設され、両保持プレート2、3と弾性薄膜ヘッド部1とで構成される空間に供給されているエアーをシールする構造となっている。
【0032】
また、第2の保持プレート3にはスラストベアリング19aが固定されている。このスラストベアリング19aは、回転軸11には非接触になるように中心に例えばφ35の貫通穴を有する調整手段である油圧シリンダ19のシリンダヘッドの端面に接触している。油圧シリンダ19は、その外周を筐体12に固定保持され、油圧シリンダ19の側面には、作動油の供給・排出を行うオイルライン19b、19c経路が筐体12を通って外部に貫通しており、ここから不図示の圧力源に接続を行う。この油圧シリンダ19によって、第2の保持プレート3が、第1の保持プレート2との間隔を伸縮するように移動する。
【0033】
第1の保持プレート2と第2の保持プレート3の標準設定間隔は例えば20mmに設定され、最大40mmの間隔まで広げられるように第2の保持プレート3の稼動ストロークを確保してある。
【0034】
図2の(a)は、両保持プレート2、3の間隔を20mmに設定し、弾性薄膜ヘッド部1内の気体圧である内圧を0.3MPaかけた場合の研磨工具による加工状態を示す。このとき弾性薄膜ヘッド部1の曲率半径は30mmとなる。弾性薄膜ヘッド部1は、研磨液中で被加工レンズW の加工面上で回転軸11により900rpmで回転しながら接近し、そのニップ部には弾性薄膜ヘッド部1の連れまわりにより周辺の研磨液に流れが発生し、弾性薄膜ヘッド部1と被加工レンズW の間に流体圧が発生する。この流体圧と、図1に示す筐体12に対して一定荷重を与えるボイスコイル22により被加工面に発生する法線力が釣り合うことにより、ニップ部に1μm程度の隙間が生じた状態になっている。
【0035】
このとき、隙間に発生する流体圧とボイスコイル22による押し付け力により、内圧0.3MPaがかかっている弾性薄膜部1の被加工面との対応部分が弾性変形し、被加工面に沿ったニップ部に、周囲に比べて指数関数的に圧力が増大する加工領域が形成されることとなる。これは、図2に示す断面に対して垂直な奥行き方向にも長さを持った楕円形状をした加工領域である。この加工領域は、弾性薄膜ヘッド部1の内圧の制御や、油圧シリンダ19の駆動によって第2の保持プレート3を移動させることで、工具回転中であっても任意に変化させることができる。
【0036】
図2の(b)は、内圧を一定に保ち、両保持プレート2、3の間隔を30mmに拡大した場合の加工領域の変化を示す。このように、保持プレート2、3の間隔が広がることによって、弾性薄膜ヘッド部1の外形曲率が大きくなり平坦化する。すなわち、被加工面に対応する加工領域を図2の(a)の場合に比べて広くすることができる。
【0037】
非球面レンズのように、位置により曲率半径が変化する光学部品等の被加工物に対して、上記のような弾性薄膜ヘッド部1の曲率を自由に小さくしたり大きくしたりできる研磨工具を使用すれば、被加工面の曲率の大きい場所では、弾性薄膜ヘッド部1の保持プレート2、3の間隔を広げて大きな曲率に設定することで加速速度を速くして加工効率を上げ、被加工面の曲率の小さい場所では、弾性薄膜ヘッド部1の曲率を小さく設定することができるため、被加工物の局所曲率半径に合わせて砥粒を供給する加工領域を最大限に活用するとともに、加工領域における砥粒の供給量を均一に保つことで、最終面粗さを高精度かつ均一に、しかも効率良く仕上げることが可能となるものである。
【0038】
図3の(a)、(b)、(c)は、内圧を0.3MPaと一定にした状態で、保持プレート2、3の間の間隔をそれぞれ10mm、20mm、30mmに変化させた場合の弾性薄膜ヘッド部1の曲率変化を説明する図である。保持プレート2、3の間隔を標準の20mmよりも狭くして10mmに設定した場合は、20mmの時よりも弾性薄膜ヘッド部1の曲率が小さくなり、被加工面における流体圧発生領域が狭くなり、従って加工領域も狭くなる。逆に、保持プレート2、3の間隔を30mmと広くした場合は、間隔が20mmの場合よりも弾性薄膜ヘッド部1の曲率は大きくなり、被加工面における流体圧発生領域が広くなり加工領域も拡大する。
【0039】
図4の(a)、(b)、(c)は、それぞれ、図3の(a)、(b)、(c)に示す保持プレート間隔での加工状態をヘッド先端から見たものである。弾性薄膜ヘッド部1が、回転軸11の回転により矢印Rで示す方向に回転すると、弾性薄膜ヘッド部1と被加工面の間にそれぞれ矢印A1 、B1 、A2 、B2 、A3 、B3 で示す流体の流れが発生する。保持プレート2、3の間隔が10mm、20mm、30mmと広くなるにしたがって、被加工面と弾性薄膜ヘッド部1とのニップ部が長くなり、加工領域が広くなっている。
【0040】
また、弾性薄膜ヘッド部1に装置外部からの気体圧を気体供給ライン18によって供給し、回転軸11との間はラビリンスシール構造によってシールすることで、回転軸11を回転させた状態、すなわち研磨工具による加工中に弾性薄膜ヘッド部1の内部の気体圧を調整することが可能であるから、気体圧の増減により加工中の研磨工具の外形曲率の大小を調整することで、非球面レンズなど曲率半径が局所的に変化する光学部品の研摩加工においても、局所形状に適した工具径に自在に制御し、加工領域を最大限に効率的に利用することが可能となり、加工効率を大幅に向上できる。なお、弾性薄膜ヘッド部1の内圧と遠心力および弾性膜剛性との釣り合いにより、膨らんだ後の外形形状の真円度は保証されることになる。
【0041】
例えば図5に示すように、保持プレート2、3の間の間隔を20mmに保ち、弾性薄膜ヘッド部1の内圧を0.1MPa、0.3MPa、0.5MPaに変化させると、図5の(a)、(b)、(c)に示すように弾性薄膜ヘッド部1の膨張量が変化し、内圧の増加とともに加工領域が小さくなる。
【0042】
本実施の形態によれば、弾性薄膜ヘッド部を保持する回転軸に気体供給流路を設けて、ラビリンスシール構造によってシールすることで、加工中に弾性薄膜ヘッド部の内圧を制御し、弾性薄膜ヘッド部の曲率や工具剛性をリアルタイムで制御することが可能となる。
【0043】
また、弾性薄膜ヘッド部の内圧と保持プレート間隔を同時に制御することで、弾性薄膜ヘッド部の外形形状および工具剛性を変化させ、ワーク(被加工物)とのニップ部で発生する流体圧や加工領域の寸法を研磨加工中であっても自在に制御することができる。
【0044】
これにより、場所により変化する非球面の研磨加工においても、局所曲率半径に適応した工具形状による最適ニップ形状で加工できるようになり、加工効率の向上とともに均一かつ高精度な仕上げ粗さの実現が可能となる。
【0045】
【発明の効果】
本発明は上述のとおり構成されているので、以下に記載するような効果を奏する。
【0046】
研磨工具のヘッド部を構成する一対の保持プレート間に弾性薄膜で覆われた空間を設け、外部からドライエアー等を供給して剛性を持たせることで、加工中に弾性薄膜ヘッド部の曲率および剛性をリアルタイムに制御して、レンズ等ワークとの対向部で発生する加工領域を自在に制御することができる。これにより、場所によって変化する非球面の局所曲率半径に適応した最適ニップ形状で加工できるようになり、除去能率の向上とともに均一な仕上げ粗さを実現することが可能となる。
【0047】
また、内圧と保持プレート間隔を同時に制御することで、弾性薄膜ヘッド部の外形形状および内圧による剛性、すなわちニップ部の形状と工具剛性をそれぞれ任意に制御することができる。これによって、研磨加工の除去能率と仕上げ精度をより一層向上させることができる。
【図面の簡単な説明】
【図1】一実施の形態による研磨装置を示す模式断面図である。
【図2】保持プレート間隔を調整した場合の加工領域の変化を説明する図である。
【図3】保持プレート間隔を3段階に調整した場合の具体例を示す図である。
【図4】図3の具体例を別の方向からみた立面図である。
【図5】保持プレート間隔を一定に保ち、内圧のみを3段階に変化させた具体例を説明する図である。
【図6】一従来例を示す模式断面図である。
【符号の説明】
1  弾性薄膜ヘッド部
2、3  保持プレート
5a、5b、5c  規制キー
11  回転軸
11a  気体供給流路
12  筐体
13、14  ベアリング
16  モータ
17  シール部材
19  油圧シリンダ
20  治具
21  チルティングユニット
22  ボイスコイル
23  移動ステージ
24  ガイド
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polishing tool in which a workpiece is immersed in a solution (polishing liquid) in which fine abrasive grains are dispersed, and the polishing tool is kept at a minute interval so that the workpiece does not come into contact with the polishing tool. The present invention relates to a polishing tool, a polishing apparatus, and a polishing method used for so-called non-contact polishing in which fine abrasive grains are caused to collide with a workpiece by rotating a liquid flow generated in a nip portion to smoothly finish the surface of the workpiece. .
[0002]
[Prior art]
The non-contact polishing is a polishing method called EEM (Elastic Emission Machining). In the processing of optical components such as lenses and mirrors, polyurethane spheres or elastic thin film members in which gas is enclosed are used as polishing tools. (See Japanese Patent Application Laid-Open Nos. 9-85613 and 9-85614).
[0003]
For example, as shown in FIG. 6, a core 102 integrally supporting an elastic body 101 such as a polyurethane sphere is fixed to a tip of a rotating shaft 111 by a screw member 103, and the rotating shaft 111 is held by a housing 112. The elastic body 101 immersed in the polishing liquid is rotated at a high speed by being rotatably supported by a pair of bearings 113 and 114 and connecting the rear end of the rotating shaft 111 to a motor 116 by a coupling 115.
[0004]
A core 102 for fixing the elastic body 101 to the rotating shaft 111 is made of aluminum or SUS material, and the outer shape of a polyurethane resin created around the core 102 is fixed using a machining process such as grinding. The elastic body 101 is formed by processing into a spherical shape having a radius of curvature of.
[0005]
And the workpiece W 0 held by the jig 120, since the spacing at the nip portion between the elastic member 101 of the spherical is an elastic tool body such normally less than the number of [mu] m, sphericity of the elastic member 101 is below the distance Need to be processed. The material of the elastic body 101 is fixed at the stage when a polyurethane sphere or the like is selected.
[0006]
On the other hand, in a polishing apparatus using an elastic thin film member filled with gas as a polishing tool, a gas is sealed inside the elastic thin film member so as to have a radius of curvature suitable for the optical surface shape of an optical component to be processed, and a check is made. The external pressure is maintained by holding the internal pressure by a valve.
[0007]
[Problems to be solved by the invention]
However, according to the above-mentioned conventional technology, a solid rotary tool using an elastic body such as polyurethane requires that the space between the workpiece and the spherical elastic tool body during processing is usually several μm or less. Considering this, it is necessary to process the sphericity of the elastic tool main body to be equal to or less than the above-mentioned interval, and it is difficult to guarantee the shape accuracy of the elastic body due to the nature of the material.
[0008]
In addition, since the elastic body is fixed at the stage of selecting the material and the outer shape of the tool is also fixed at the time of manufacturing, the deformation area (machining area) of the elastic tool main body elastically deformed by the fluid pressure due to the rotation of the tool is processed. It varies based on the surface shape, that is, the local radius of curvature of the surface to be processed, which makes it impossible to perform uniform processing and results in a distribution of surface roughness.
[0009]
On the other hand, in a polishing tool in which an elastic thin film member in which a gas is enclosed is used as an elastic tool main body, it is assumed that a constant radius of curvature is maintained by presetting the pressure of the enclosed gas. When is a spherical surface, optimal machining can be performed by setting a tool radius of curvature suitable for the radius of curvature. However, in recent years, the performance required for optical components has also tended to be higher in precision, and the surface shape has become more complicated from an aspherical shape to a free-form surface, thus causing the following problems.
[0010]
In other words, the amount of aspherical surface also tends to increase with further improvement in accuracy, and the amount of aspherical surface has reached several hundred μm. In addition, even when looking at the local radius of curvature of the surface to be processed, it ranges from 100 mm to several thousand mm in one optical component, and when processing is performed with a constant tool radius of curvature, there are locations where the processing capacity is locally reduced. Occurs. Therefore, it is difficult to uniformly process the entire processing surface of the workpiece to a sub-nanometer roughness.
[0011]
The present invention has been made in view of the above-mentioned unresolved problems of the conventional technology, and a processing area in a nip portion between a polishing tool and a polishing tool can be controlled in real time during processing according to a local shape of a surface to be processed. It is an object of the present invention to provide a polishing tool, a polishing apparatus, and a polishing method that can polish a free-form surface of an optical component or the like with high accuracy and uniformity and efficiently.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, a polishing tool according to the present invention includes a pair of disk members facing each other, a cylindrical elastic thin film head portion whose both ends are sealed and held by the pair of disk members, and a tool spindle rotated by a motor. Coupling means for coupling the pair of disk members to each other, and the elastic thin film head section is controlled by a controllable gas pressure supplied from a gas supply means through a gas supply passage provided on the tool spindle. Is characterized in that a predetermined outer shape is maintained, and a nip portion for performing a non-contact polishing process by flowing a polishing liquid containing abrasive grains between the workpiece and a workpiece is formed.
[0013]
Adjusting means for changing the distance between the two disk members may be provided.
[0014]
Preferably, the adjusting means has a hydraulic cylinder for moving one disk member toward and away from the other disk member.
[0015]
The polishing apparatus of the present invention includes a tool spindle having a gas supply flow path extending in the axial direction, a motor for rotating and driving the tool spindle, a pair of disk members facing each other on the tool spindle, and the pair of disks. An elastic tool main body having a cylindrical elastic thin film head portion whose both ends are sealed and held by members, coupling means for coupling the elastic tool main body to the tool spindle, and the gas supply flow path of the tool spindle. Gas supply means for supplying a controllable gas pressure to the elastic thin film head portion of the elastic tool main body portion via the gas supply passage. Is characterized in that the outer shape is maintained, and a nip portion for performing non-contact polishing is formed by flowing a polishing liquid containing abrasive grains between the workpiece and a workpiece.
[0016]
A labyrinth seal structure for preventing leakage of the gas pressure supplied to the gas supply channel may be provided on the tool spindle.
[0017]
The polishing method according to the present invention comprises rotating a resilient tool body provided with a cylindrical resilient thin film head, both ends of which are sealed and held by a pair of disk members opposed to each other, by a tool spindle, thereby forming a nip between the resilient tool body and a workpiece. A polishing method for performing non-contact polishing by a flow of a polishing liquid generated in a portion, wherein the polishing is controllably supplied from a gas supply means to the elastic thin film head portion through a gas supply passage provided in the tool spindle. The elastic thin film head is maintained in a predetermined outer shape by a suitable gas pressure.
[0018]
By controlling the gas pressure supplied from the gas supply means, the outer shape of the elastic thin film head may be changed during processing.
[0019]
The outer shape of the elastic thin film head may be changed during processing by controlling the distance between the two disk members by the adjusting means.
[0020]
By controlling the gas pressure supplied to the elastic thin film head and / or the distance between the two disk members, the outer shape of the elastic thin film head may be changed according to the local shape of the workpiece.
[0021]
[Action]
According to the above polishing tool, for example, by adjusting the interval between the disc members at both ends while keeping the internal pressure of the elastic thin film head constant, the size of the processing area of the nip portion can be processed without changing the tool rigidity. Since it can be enlarged or reduced in real time during processing according to the local radius of curvature of the object, a free-form surface such as an aspherical lens can be processed uniformly and efficiently with high accuracy.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
[0023]
FIG. 1 shows a polishing apparatus according to an embodiment, in which first and second holding members, which are a pair of mutually opposing disk members, respectively hold both ends of an elastic thin film head portion 1 formed of a cylindrical thin film. It has an elastic tool main body sealed and held by the plates 2 and 3, and the holding plate 2 is fixed to the tip of the rotating shaft 11 by a screw member 4 as a coupling means, and the rotating shaft 11 is held by the housing 12. The rotating tool 11 is rotatably supported by a pair of bearings 13 and 14, the rear end of the rotating shaft 11 is connected to a motor 16 by a coupling 15, and the elastic tool body immersed in a polishing liquid containing abrasive grains is rotated at high speed.
[0024]
The rotating shaft 11 is, for example, a tool main shaft having an outer diameter of φ30 mm connected to the motor shaft of the motor 16 via the coupling 15.
[0025]
The rotary shaft 11 is provided with a gas supply flow path 11a for conducting gas from the tip to the inside of the elastic thin film head 1 up to the position of 2/3 of the total length. An elliptical through hole 11b connecting the gas supply channel 11a and the outer surface is provided at the end of the road.
[0026]
On the outer surface of the rotating shaft 11, a seal member 17 having an inner diameter capable of securing a clearance of, for example, 5 μm for forming a labyrinth seal structure is provided. A gas supply line 18 is connected as a gas supply means for supplying a controllable gas pressure through the gas supply line.
[0027]
The seal member 17 is fixedly held by a housing 12 that holds both bearings 13 and 14 that hold the rotating shaft 11. The housing 12 is a processing lens W 1 that is a processing object held by a jig 20. Is connected to the tilting unit 21 so that the relative angle can be set arbitrarily. The tilting unit 21 is suspended from the moving stage 23 via the voice coil 22, supports the polishing head units below the tilting unit 21 in the vertical direction, and has a function of canceling the own weight of the polishing head unit. ing.
[0028]
Further, during processing, a dynamic pressure is generated between the elastic thin film head portion 1 and the polishing liquid by rotation of the elastic thin film head portion 1, but the voice coil 22 applies a load against the dynamic pressure. Further, the moving stage 23 that suspends the voice coil 22 moves along the guide 24, and can move and swing the entire polishing head unit back and forth, right and left.
[0029]
The gas supplied from the gas supply line 18 is dry air, passes through an opening (not shown) provided in the seal member 17, and passes through a gas supply passage 11 a in the rotation shaft 11 from a through hole 11 b provided in the rotation shaft 11. Thus, gas pressure is supplied to the internal space of the elastic tool main body composed of the two holding plates 2 and 3 and the elastic thin film head 1.
[0030]
The elastic thin-film head 1 is, for example, a rubber film having a thickness of 2 mm, and is sandwiched between the holding plates 2 and 3. The two holding plates 2 and 3 are fixed in the rotation direction by three regulating keys 5a, 5b and 5c inside the elastic thin film head 1 so as not to shift in the rotation direction. The elastic thin film head 1 expands into an outer shape having a desired curvature by applying an internal pressure of, for example, 0.3 MPa by the gas pressure supplied from the gas supply channel 11 a conducted inside the rotating shaft 11. Will be maintained.
[0031]
The first holding plate 2 is fixed in the thrust direction of the rotating shaft 11 by a screw member 4, and the second holding plate 3 is slidable on the rotating shaft 11 in the thrust direction. An O-ring is provided at a sliding portion between the holding plate 3 and the rotating shaft 11 to seal air supplied to a space formed by the holding plates 2 and 3 and the elastic thin film head 1. It has a structure to do.
[0032]
Further, a thrust bearing 19a is fixed to the second holding plate 3. The thrust bearing 19a is in contact with the end face of the cylinder head of the hydraulic cylinder 19, which is an adjusting means having a through hole of, for example, φ35 at the center so as not to contact the rotating shaft 11. The outer periphery of the hydraulic cylinder 19 is fixedly held to the housing 12, and oil lines 19 b and 19 c for supplying and discharging hydraulic oil pass through the housing 12 to the outside on the side surface of the hydraulic cylinder 19. From here, connection to a pressure source (not shown) is made. The second holding plate 3 is moved by the hydraulic cylinder 19 so as to expand and contract the space between the second holding plate 3 and the first holding plate 2.
[0033]
The standard setting interval between the first holding plate 2 and the second holding plate 3 is set to, for example, 20 mm, and the operating stroke of the second holding plate 3 is secured so as to be widened to a maximum of 40 mm.
[0034]
FIG. 2A shows a state of machining by the polishing tool when the interval between the holding plates 2 and 3 is set to 20 mm and the internal pressure which is the gas pressure in the elastic thin film head 1 is applied to 0.3 MPa. At this time, the radius of curvature of the elastic thin film head 1 is 30 mm. Polishing around the elastic thin-film head portion 1, the rotary shaft 11 on the working surface of the workpiece lens W 1 with the polishing liquid approaches while rotating at 900 rpm, by around brought elastic thin-film head portion 1 in the nip flow occurs in the liquid, the fluid pressure is generated between the elastic thin-film head portion 1 of the workpiece lens W 1. This fluid pressure is balanced with the normal force generated on the surface to be processed by the voice coil 22 for applying a constant load to the housing 12 shown in FIG. 1, so that a gap of about 1 μm is formed in the nip portion. ing.
[0035]
At this time, due to the fluid pressure generated in the gap and the pressing force of the voice coil 22, a portion corresponding to the surface to be processed of the elastic thin film portion 1 to which the internal pressure of 0.3 MPa is applied is elastically deformed, and a nip along the surface to be processed is formed. In the portion, a processing region in which the pressure increases exponentially as compared with the surroundings is formed. This is an elliptical processing region having a length also in the depth direction perpendicular to the cross section shown in FIG. This processing area can be arbitrarily changed even during the rotation of the tool by controlling the internal pressure of the elastic thin film head unit 1 or moving the second holding plate 3 by driving the hydraulic cylinder 19.
[0036]
FIG. 2B shows the change in the processing area when the internal pressure is kept constant and the interval between the two holding plates 2 and 3 is enlarged to 30 mm. As described above, by increasing the distance between the holding plates 2 and 3, the external curvature of the elastic thin film head 1 is increased and the elastic thin film head 1 is flattened. That is, the processing region corresponding to the surface to be processed can be made wider than in the case of FIG.
[0037]
For a workpiece such as an optical component whose curvature radius changes depending on the position, such as an aspherical lens, use a polishing tool capable of freely reducing or increasing the curvature of the elastic thin film head 1 as described above. Then, in places where the curvature of the surface to be processed is large, the interval between the holding plates 2 and 3 of the elastic thin film head portion 1 is increased to set a large curvature, thereby increasing the acceleration speed to increase the processing efficiency and increasing the processing efficiency. In a place where the curvature is small, the curvature of the elastic thin film head portion 1 can be set small, so that the machining area for supplying abrasive grains in accordance with the local radius of curvature of the workpiece is utilized to the utmost. By keeping the supply amount of the abrasive grains uniform in the above, it is possible to finish the final surface roughness with high accuracy and uniformity, and efficiently.
[0038]
FIGS. 3A, 3B and 3C show the case where the distance between the holding plates 2 and 3 is changed to 10 mm, 20 mm and 30 mm, respectively, with the internal pressure kept constant at 0.3 MPa. FIG. 3 is a diagram illustrating a change in curvature of an elastic thin film head unit 1. When the distance between the holding plates 2 and 3 is set to 10 mm, which is smaller than the standard value of 20 mm, the curvature of the elastic thin film head 1 becomes smaller than that of the case of 20 mm, and the fluid pressure generation area on the surface to be processed becomes narrower. Therefore, the processing area is also reduced. Conversely, when the distance between the holding plates 2 and 3 is widened to 30 mm, the curvature of the elastic thin film head 1 becomes larger than when the distance is 20 mm, and the fluid pressure generation region on the surface to be processed is widened and the processing region is also large. Expanding.
[0039]
FIGS. 4A, 4B, and 4C show machining states at the holding plate intervals shown in FIGS. 3A, 3B, and 3C, respectively, as viewed from the tip of the head. . When the elastic thin film head 1 rotates in the direction indicated by the arrow R due to the rotation of the rotating shaft 11, arrows A 1 , B 1 , A 2 , B 2 , and A 3 are provided between the elastic thin film head 1 and the surface to be processed. , fluid flow indicated by B 3 is produced. As the distance between the holding plates 2 and 3 increases to 10 mm, 20 mm, and 30 mm, the nip portion between the surface to be processed and the elastic thin film head portion 1 becomes longer, and the processing region becomes wider.
[0040]
Further, a gas pressure from the outside of the apparatus is supplied to the elastic thin film head unit 1 through a gas supply line 18, and the space between the elastic thin film head unit 1 and the rotating shaft 11 is sealed by a labyrinth seal structure. Since it is possible to adjust the gas pressure inside the elastic thin film head unit 1 during processing by the tool, by adjusting the magnitude of the external curvature of the polishing tool being processed by increasing or decreasing the gas pressure, an aspheric lens or the like can be adjusted. Even in the polishing of optical components whose radius of curvature changes locally, the tool diameter can be freely controlled to suit the local shape, and the processing area can be used as efficiently as possible. Can be improved. The roundness of the outer shape after the expansion is guaranteed by the balance between the internal pressure of the elastic thin film head 1 and the centrifugal force and the elastic film rigidity.
[0041]
For example, as shown in FIG. 5, when the interval between the holding plates 2 and 3 is maintained at 20 mm and the internal pressure of the elastic thin film head 1 is changed to 0.1 MPa, 0.3 MPa, and 0.5 MPa, (FIG. As shown in (a), (b), and (c), the amount of expansion of the elastic thin film head portion 1 changes, and the processing area becomes smaller as the internal pressure increases.
[0042]
According to the present embodiment, by providing a gas supply flow path on the rotating shaft holding the elastic thin film head and sealing it with a labyrinth seal structure, the internal pressure of the elastic thin film head is controlled during processing, and the elastic thin film The curvature and tool rigidity of the head can be controlled in real time.
[0043]
In addition, by simultaneously controlling the internal pressure of the elastic thin film head and the spacing between the holding plates, the external shape and tool rigidity of the elastic thin film head are changed, and the fluid pressure generated at the nip with the work (workpiece) and the machining The size of the region can be freely controlled even during polishing.
[0044]
As a result, even in the polishing process of aspherical surface that changes depending on the place, it is possible to process with the optimal nip shape by the tool shape adapted to the local radius of curvature, and to achieve the uniform and high precision finish roughness while improving the processing efficiency It becomes possible.
[0045]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
[0046]
By providing a space covered with an elastic thin film between a pair of holding plates constituting the head portion of the polishing tool and supplying dry air or the like from outside to have rigidity, the curvature of the elastic thin film head portion during processing and By controlling the rigidity in real time, it is possible to freely control a processing area generated in a portion facing a workpiece such as a lens. As a result, it is possible to perform machining with an optimum nip shape adapted to the local radius of curvature of the aspheric surface that varies depending on the location, and it is possible to improve the removal efficiency and realize uniform finish roughness.
[0047]
Further, by simultaneously controlling the internal pressure and the holding plate interval, the outer shape of the elastic thin film head and the rigidity due to the internal pressure, that is, the shape of the nip portion and the tool rigidity can be arbitrarily controlled. Thereby, the removal efficiency and finishing accuracy of the polishing process can be further improved.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing a polishing apparatus according to an embodiment.
FIG. 2 is a diagram illustrating a change in a processing area when a holding plate interval is adjusted.
FIG. 3 is a diagram showing a specific example in a case where a holding plate interval is adjusted in three stages.
FIG. 4 is an elevational view of the specific example of FIG. 3 viewed from another direction.
FIG. 5 is a diagram illustrating a specific example in which the holding plate interval is kept constant and only the internal pressure is changed in three stages.
FIG. 6 is a schematic sectional view showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Elastic thin film head part 2, 3 Holding plate 5a, 5b, 5c Restriction key 11 Rotation shaft 11a Gas supply channel 12 Housing 13, 14 Bearing 16 Motor 17 Seal member 19 Hydraulic cylinder 20 Jig 21 Tilting unit 22 Voice coil 23 Moving stage 24 Guide

Claims (11)

互いに対向する一対の円盤部材と、前記一対の円盤部材によって両端を密封保持された筒状の弾性薄膜ヘッド部と、モータによって回転する工具主軸に対して前記一対の円盤部材を結合する結合手段とを有し、前記工具主軸に設けられた気体供給流路を通って気体供給手段から供給される制御自在な気体圧によって前記弾性薄膜ヘッド部が所定の外形形状を維持し、被加工物との間に研磨砥粒を含んだ研磨液を流入させて非接触研磨加工を行うためのニップ部を形成することを特徴とする研磨工具。A pair of disk members facing each other, a cylindrical elastic thin-film head portion whose both ends are sealed and held by the pair of disk members, and coupling means for coupling the pair of disk members to a tool spindle rotated by a motor. The elastic thin film head section maintains a predetermined outer shape by a controllable gas pressure supplied from a gas supply means through a gas supply flow path provided on the tool main shaft, and is provided with a workpiece. A polishing tool characterized by forming a nip portion for performing a non-contact polishing process by flowing a polishing liquid containing polishing abrasive grains therebetween. 両円盤部材の間隔を変化させるための調整手段が設けられていることを特徴とする請求項1記載の研磨工具。2. The polishing tool according to claim 1, further comprising an adjusting means for changing a distance between the two disk members. 調整手段が、一方の円盤部材を他方の円盤部材に向かって進退させる油圧シリンダを有することを特徴とする請求項2記載の研磨工具。3. The polishing tool according to claim 2, wherein the adjusting means has a hydraulic cylinder for moving one disk member toward and away from the other disk member. 軸方向に延在する気体供給流路を有する工具主軸と、前記工具主軸を回転駆動するモータと、前記工具主軸上で互いに対向する一対の円盤部材および前記一対の円盤部材によって両端を密封保持された筒状の弾性薄膜ヘッド部を備えた弾性工具本体部と、前記弾性工具本体部を前記工具主軸に結合する結合手段と、前記工具主軸の前記気体供給流路を経て前記弾性工具本体部の前記弾性薄膜ヘッド部に制御自在な気体圧を供給する気体供給手段とを有し、前記気体供給流路を経て供給される前記気体圧によって前記弾性薄膜ヘッド部が所定の外形形状を維持し、被加工物との間に研磨砥粒を含んだ研磨液を流入させて非接触研磨加工を行うためのニップ部を形成することを特徴とする研磨装置。A tool spindle having a gas supply channel extending in the axial direction, a motor for rotating and driving the tool spindle, and a pair of disk members facing each other on the tool spindle and both ends sealed and held by the pair of disk members An elastic tool main body having a cylindrical elastic thin film head, coupling means for coupling the elastic tool main body to the tool spindle, and the elastic tool main body via the gas supply flow path of the tool spindle. Gas supply means for supplying a controllable gas pressure to the elastic thin film head portion, the elastic thin film head portion maintains a predetermined outer shape by the gas pressure supplied through the gas supply flow path, A polishing apparatus, wherein a nip portion for performing a non-contact polishing process is formed by flowing a polishing liquid containing polishing grains between the workpiece and a workpiece. 両円盤部材の間隔を変化させるための調整手段が設けられていることを特徴とする請求項4記載の研磨装置。5. The polishing apparatus according to claim 4, further comprising adjusting means for changing a distance between the two disk members. 調整手段が、一方の円盤部材を他方に向かって進退させる油圧シリンダを有することを特徴とする請求項5記載の研磨装置。The polishing apparatus according to claim 5, wherein the adjusting means has a hydraulic cylinder for moving one disk member toward and away from the other. 工具主軸上に、気体供給流路に供給される気体圧の漏れを防ぐためのラビリンスシール構造が設けられていることを特徴とする請求項4ないし6いずれか1項記載の研磨装置。The polishing apparatus according to any one of claims 4 to 6, wherein a labyrinth seal structure for preventing leakage of gas pressure supplied to the gas supply flow path is provided on the tool spindle. 互いに対向する一対の円盤部材によって両端を密封保持された筒状の弾性薄膜ヘッド部を備えた弾性工具本体部を工具主軸によって回転させ、被加工物との間のニップ部に発生する研磨液の液流によって非接触研磨加工を行う研磨方法であって、前記工具主軸に設けられた気体供給流路を経て気体供給手段から前記弾性薄膜ヘッド部に供給される制御自在な気体圧によって前記弾性薄膜ヘッド部を所定の外形形状に維持することを特徴とする研磨方法。An elastic tool main body having a cylindrical elastic thin film head portion whose both ends are sealed and held by a pair of disk members opposed to each other is rotated by a tool spindle, and polishing liquid generated in a nip portion between the elastic tool main body and a workpiece. A polishing method for performing non-contact polishing by a liquid flow, wherein the elastic thin film is controlled by a controllable gas pressure supplied from a gas supply unit to the elastic thin film head portion through a gas supply passage provided on the tool spindle. A polishing method comprising maintaining a head portion in a predetermined outer shape. 気体供給手段から供給される気体圧を制御することで、前記弾性薄膜ヘッド部の外形形状を加工中に変化させることを特徴とする請求項8記載の研磨方法。9. The polishing method according to claim 8, wherein the outer shape of the elastic thin film head portion is changed during processing by controlling a gas pressure supplied from a gas supply unit. 両円盤部材の間隔を調整手段によって制御することで、弾性薄膜ヘッドの外形形状を加工中に変化させることを特徴とする請求項8記載の研磨方法。9. The polishing method according to claim 8, wherein the outer shape of the elastic thin film head is changed during processing by controlling the distance between the two disk members by adjusting means. 弾性薄膜ヘッド部に供給される気体圧または両円盤部材の間隔またはその両方を制御することで、弾性薄膜ヘッド部の外形形状を被加工物の局所形状に応じて変化させることを特徴とする請求項8記載の研磨方法。The external shape of the elastic thin film head portion is changed according to the local shape of the workpiece by controlling the gas pressure supplied to the elastic thin film head portion and / or the interval between the two disk members. Item 10. The polishing method according to Item 8.
JP2002267549A 2002-09-13 2002-09-13 Polishing tool, polishing device, and polishing precess Pending JP2004098267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002267549A JP2004098267A (en) 2002-09-13 2002-09-13 Polishing tool, polishing device, and polishing precess

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002267549A JP2004098267A (en) 2002-09-13 2002-09-13 Polishing tool, polishing device, and polishing precess

Publications (1)

Publication Number Publication Date
JP2004098267A true JP2004098267A (en) 2004-04-02

Family

ID=32266010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002267549A Pending JP2004098267A (en) 2002-09-13 2002-09-13 Polishing tool, polishing device, and polishing precess

Country Status (1)

Country Link
JP (1) JP2004098267A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102922389A (en) * 2012-11-16 2013-02-13 厦门大学 Polishing device and polishing method of aspheric optical element
CN103056744A (en) * 2012-12-18 2013-04-24 中国人民解放军国防科学技术大学 Polishing device with two swing shafts for high-gradient aspheric optical parts
CN105563271A (en) * 2015-12-21 2016-05-11 中国科学院长春光学精密机械与物理研究所 Tool wheels used for elastic emission machining
CN107175559A (en) * 2017-03-30 2017-09-19 中国工程物理研究院激光聚变研究中心 A kind of hydrodynamic polishing method and device
CN112247810A (en) * 2020-10-27 2021-01-22 河南水利与环境职业学院 Three-dimensional polishing device based on mechanical polishing
US11951594B2 (en) 2018-01-18 2024-04-09 Mitsubishi Heavy Industries Compressor Corporation Polishing tool for narrow part, method of manufacturing polishing tool, polishing method, and method of manufacturing impeller

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102922389A (en) * 2012-11-16 2013-02-13 厦门大学 Polishing device and polishing method of aspheric optical element
CN103056744A (en) * 2012-12-18 2013-04-24 中国人民解放军国防科学技术大学 Polishing device with two swing shafts for high-gradient aspheric optical parts
CN105563271A (en) * 2015-12-21 2016-05-11 中国科学院长春光学精密机械与物理研究所 Tool wheels used for elastic emission machining
CN107175559A (en) * 2017-03-30 2017-09-19 中国工程物理研究院激光聚变研究中心 A kind of hydrodynamic polishing method and device
US11951594B2 (en) 2018-01-18 2024-04-09 Mitsubishi Heavy Industries Compressor Corporation Polishing tool for narrow part, method of manufacturing polishing tool, polishing method, and method of manufacturing impeller
CN112247810A (en) * 2020-10-27 2021-01-22 河南水利与环境职业学院 Three-dimensional polishing device based on mechanical polishing

Similar Documents

Publication Publication Date Title
Zhu et al. Compliant grinding and polishing: A review
CN101564824B (en) Method and device for polishing magneto-rheological inclined shaft
JP6911547B2 (en) Super finishing method for grooves and manufacturing method for bearings
KR20060063921A (en) Pressure feed grinding of amlcd substrate edges
JP2827540B2 (en) Polishing spindle
JP2004098267A (en) Polishing tool, polishing device, and polishing precess
US6338574B1 (en) Bearing mechanism, hard disk drive mechanism and polygon mirror drive mechanism using the bearing mechanism, and method for manufacturing herringbone groove portions of dynamic-pressure bearing
JP2007098541A (en) Polishing tool and polish method
JP2004308726A (en) Hydrostatic bearing device and double-head grinding device
JP3840154B2 (en) Lens centering method, lens processing method and lens
JP2004358591A (en) Polishing tool and polishing method
JP4073117B2 (en) Grinding and polishing holding device
JPH0751903A (en) Main spindle device of machine tool
JP2006218558A (en) Polishing tool, polishing device, and polishing method
JP4143563B2 (en) Work holding device and double-sided processing device
JP2010188438A (en) Workpiece holder and polishing device
JP2016137553A (en) Polishing apparatus and polishing method
JP2001150321A (en) Polishing tool retaining device and polishing device and setting method of fulclum height of slide member
JPH0821435A (en) Spindle device using dynamic pressure bearing
JP2000117607A (en) Grinding tool
JP2006167823A (en) Spindle device
JPS6328552A (en) Nonspherical face machining method
JP2001025949A (en) Grinding tool
KR100414907B1 (en) High Speed Spindle System Used Hybrid Air Bearing
JPH0623663A (en) Super smoothing non-contact polishing method and device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060411