JP2004358591A - Polishing tool and polishing method - Google Patents

Polishing tool and polishing method Download PDF

Info

Publication number
JP2004358591A
JP2004358591A JP2003158185A JP2003158185A JP2004358591A JP 2004358591 A JP2004358591 A JP 2004358591A JP 2003158185 A JP2003158185 A JP 2003158185A JP 2003158185 A JP2003158185 A JP 2003158185A JP 2004358591 A JP2004358591 A JP 2004358591A
Authority
JP
Japan
Prior art keywords
polishing
elastic
rotary shaft
tool
polishing tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003158185A
Other languages
Japanese (ja)
Inventor
Yoshio Sakai
由雄 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003158185A priority Critical patent/JP2004358591A/en
Publication of JP2004358591A publication Critical patent/JP2004358591A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing tool and a polishing method for uniformly and rapidly polishing a free curved surface such as a nonaxisymmetric aspheric surface while suppressing the occurrence of polishing unevenness. <P>SOLUTION: Polishing is performed using the polishing tool 1 having: a mounting rotary shaft body 4 coaxially mountable to a polishing tool rotating shaft 107 of a polishing device 100; an elastic polishing body 2 composed of an elastic material expanded in dome shape or formed in dome shape; and a supporting tool 3 freely rotatable around the mounting rotary shaft body 4 and supporting the elastic polishing body 2. It is preferable that the rotational center C1 of the mounting rotary shaft body 4 and the rotational center C2 of the supporting tool 4 have eccentricity δ. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、非軸対称非球面等の自由曲面を研磨ムラを抑制して迅速に鏡面研磨することができる研磨工具及び研磨方法に関する。
【0002】
【従来の技術】
NC制御の切削技術が進歩し、レンズ等の非軸対称非球面を切削により形成することが可能になってきている。光学製品では、創成した切削面を所望の平滑な光学鏡面に研磨する必要がある。近年、レンズの性能が向上し、鏡面研磨に対する形状精度や面精度の要求が厳しくなってきている。
【0003】
従来より、図3に示すような研磨装置100を用いる非軸対称非球面の研磨方法が知られている。この研磨方法は、ワーク110の被研磨面111の一部に当接する小さい球形の弾性研磨体で構成されるポリシングヘッド101を用いる。被研磨面の形状から最大の曲率を求め、この最大の曲率より大きい曲率を有するポリシングヘッド101を選択し、ポリシングヘッド101を回転させながら被研磨面111の一部に当て、ポリシングヘッド101を被研磨面111の法線方向に制御しつつ全体に走査させることによって、被研磨面111全体を研磨するものである。
【0004】
しかし、この部分研磨方法は、小さいポリシングヘッドにより被研磨面全体を研磨するため、長い研磨時間が必要となり、製造コストが高いという問題がある。
【0005】
また、特許文献1に示すように、非軸対称非球面の鏡面研磨には、ゴム状の弾性材で構成される中空ドーム状の研磨工具を用いることが行われている。研磨方法は、研磨工具の表面に研磨パッドを貼り付け、研磨工具の内部に圧縮空気を導入してドーム状部に張りを与え、スラリー状の研磨剤を供給して研磨工具と被研磨物とを共に回転させながらこれらを摺り合わせて鏡面研磨するものである。
【0006】
図4に示すように、弾性材で構成されるドーム状の弾性研磨体2を有する研磨工具200を前述した研磨装置100の球形のポリシングヘッド101と交換し、研磨工具200とワーク110の両方を回転させつつ被研磨面111に研磨工具200を圧着することにより、球形のポリシングヘッド101を用いる場合と比較して研磨工具200の接触面積が大きいため、非軸対称非球面を極めて迅速に研磨することが可能になった。
【0007】
【特許文献1】
特開平11−77503号公報
【0008】
【発明が解決しようとする課題】
しかしながら、弾性材で構成される中空ドーム状の弾性研磨体2を有する研磨工具200を用いた研磨では、被研磨面111の形状によっては研磨ムラが発生するという問題がある。発生した研磨ムラをなくすために、中空ドームの内圧を低下させた研磨工具200を用い、時間をかけて再研磨しなければならず、生産性の低下を招いている。
【0009】
本発明は、上記事情に鑑みてなされたもので、非軸対称非球面のような自由曲面を研磨ムラの発生を抑制して均一にしかも迅速に研磨することができる研磨工具を提供することを目的とする。
【0010】
また、本発明は、非軸対称非球面のような自由曲面を研磨ムラの発生を抑制して均一にしかも迅速に研磨することができる研磨方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者は、上記目的を達成するため、鋭意検討した結果、従来、研磨工具をワークの被研磨面に対して圧着させながら強制的に回転させて研磨していたことが研磨ムラの原因となっていたことを知見した。その知見に基づき、研磨装置の研磨工具を回転させる研磨工具回転軸と同軸に装着する装着部を弾性研磨体を支持する支持治具から切り離して装着回転軸体とし、支持治具を装着回転軸体の周りに自由に回転するように試みた。その結果、ワークを回転させ、弾性研磨体をワークの被研磨面に圧着させて研磨する際、被研磨面と弾性研磨体とが部分的に強く接触するときに、弾性研磨体を支持する支持治具が被研磨面と共に回転して逃げるため、弾性研磨体が被研磨面を無理に擦ることを防ぐことができる。これにより、弾性研磨体を強制的に回転させていた場合と比較して、部分的な研磨過剰を防止することができ、研磨ムラの発生を抑制して均一に研磨することができる。しかも、研磨工具の弾性ドームの接触面積が大きいため、研磨効率は良好であり、迅速に研磨することができる。
【0012】
支持治具の装着回転軸体回りの回転中心と装着回転軸体の回転中心とをずらして偏心させることによって、周速度がゼロで研磨できない回転中心が常に移動することになり、研磨効率を顕著に向上させることができる。
【0013】
被研磨面を研磨する弾性研磨体を、ドーム状に膨張するかあるいはドーム状に形成された弾性シートで構成すると、弾性研磨体の内圧や弾性シートの硬度等の研磨条件の幅が大きくなり、適切な研磨を行うことが可能となる。
【0014】
また、ドーム状の弾性研磨体の内圧を一定に保つために、ドーム状の弾性研磨体の中を密封空間に形成すると共に、密封空間の圧力を一定に保つ逆止弁を設けることが好ましい。
【0015】
研磨の際には研磨工具又はワークの一方を揺動させることによって、被研磨面全体を均一に研磨することが可能となる。
【0016】
従って、請求項1記載の発明は、研磨装置の研磨工具回転軸に対して装着可能な装着回転軸体と、ドーム状に膨張する又はドーム状に形成された弾性材で構成される弾性研磨体と、前記装着回転軸体回りに自由回転可能で前記弾性研磨体を支持する支持治具とを有することを特徴とする研磨工具を提供する。
【0017】
請求項2記載の発明は、請求項1記載の研磨工具において、前記装着回転軸体の回転中心と前記支持治具の回転中心とが偏心していることを特徴とする研磨工具を提供する。
【0018】
請求項3記載の発明は、請求項1又は2記載の研磨工具において、前記弾性研磨体が弾性シートで構成され、前記支持治具と前記弾性研磨体とが密封空間を形成することを特徴とする研磨工具を提供する。
【0019】
請求項4記載の発明は、請求項3記載の研磨工具において、前記密封空間と接続され、前記密封空間に加圧流体を導入すると共に、その密封を維持する逆止弁が前記支持治具に取り付けられていることを特徴とする研磨工具を提供する。
【0020】
請求項5記載の発明は、研磨装置の研磨工具回転軸に対して装着可能な装着回転軸体と、ドーム状に膨張する又はドーム状に形成された弾性材で構成される弾性研磨体と、前記装着回転軸体の回転中心と偏心している回転中心を中心として前記装着回転軸体回りに自由回転可能で前記弾性研磨体を支持する支持治具とを有する研磨工具の前記装着回転軸体を回転させつつ回転しているワークの被研磨面に前記弾性研磨体を当てながら研磨することを特徴とする研磨方法を提供する。
【0021】
請求項6記載の発明は、請求項5記載の研磨方法において、前記研磨工具又は前記ワークを揺動させながら研磨することを特徴とする研磨方法を提供する。
【0022】
【発明の実施の形態】
以下、本発明の研磨工具及び研磨方法の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。
【0023】
図1は、本発明の研磨工具の一実施形態を示す断面図である。この研磨工具1は、弾性研磨体2、弾性研磨体2を支持する支持治具3、支持治具3を回転可能に保持する装着回転軸体4を含む偏心カムフォロア5、及び逆止弁6を有する。
【0024】
弾性研磨体2は弾性シートで構成され、平らな円形のシート状の形状、又は、図1に示すように、リング状のフランジ部21が外周に設けられたドーム状部22を有する中空ドーム状の形状に成形されている。
【0025】
支持治具3は、ステンレススチール等の金属で構成され、円盤状の支持治具本体31と、支持治具本体31とは別体のリング状の押さえ部材32とで構成されている。押さえ部材32は、支持治具本体31の下面の外周面に図示しない圧着治具によって固定されるようになっている。
【0026】
弾性研磨体2の外周部又はフランジ部21が支持治具本体31の下面外周面とリング状の押さえ部材32との間に、いわばパッキンのように圧着されて支持治具本体31に取り付けられている。これにより、弾性研磨体2の外周部又はフランジ部21は支持治具本体31の下面に圧着し、弾性研磨体2と支持治具本体31との間の空間が密封空間7を形成できるようになっている。
【0027】
また、支持治具本体31を貫通して密封空間7内に圧力流体を導入する逆止弁6が設けられている。逆止弁6は密封空間7内の圧力流体の圧力を一定に保つ機能を有する。圧力流体を密封空間7内へ導入することにより、平らなシート状の弾性研磨体2を膨らませてドーム状に形成することができる。また、ドーム状に成形された弾性研磨体2に内圧で張りを与えてドーム状の形状を保持することができる。弾性シートで構成される中空の弾性研磨体2の曲率等の形状は圧力流体の圧力である程度変更することができる。
【0028】
このような研磨工具1の弾性研磨体2は、図1に示した弾性シートで構成され、圧力流体の内圧でドーム状の形状を保持するもの以外に、弾性素材をドーム状のブロックに形成したもの、ドーム状の弾性シートの中空部を他の弾性素材で充填したものなどでもよい。弾性シートの厚みは0.1〜10mm、特に0.2〜5mmの範囲が好ましく、JIS A硬さ(タイプAデュロメータ)10〜100、ヤング率10〜10N・cm−2、耐熱温度は100℃以上の物性値を備えるものが好ましい。弾性シートや弾性素材の材質は、天然ゴム、クロロプレンゴム、スチレン−ブタジエンゴム(SBR)、アクリロニトリル−ブタジエンゴム(NBR)、シリコンゴム、フッ素ゴム等のゴム、ポリエチレン、ナイロン等の熱可塑性樹脂、スチレン系、ウレタン系等の熱可塑性樹脂エラストマーを例示することができる。
【0029】
装着回転軸体4は、例えば偏心カムフォロア5のスタッドで構成されている。偏心カムフォロア5は、ネジ付スタッド(装着回転軸体)4に針状コロ51、図示しない保持器、側板52及び厚肉外輪53を組み込んだ転がり軸受けで、ネジ付スタッド4の回転中心C1と厚肉外輪53の回転中心C2とが偏心している構造である。この装着回転軸体(ネジ付スタッド)4は、円柱状乃至円筒状で、基端部に研磨装置の研磨工具を回転させる研磨工具回転軸に装着可能なネジ等が形成された装着部41を有し、先端に抜け止め防止のフランジ部42が形成され、フランジ部42と装着部41の間は、装着部41の回転中心C1と偏心した回転中心がC2の短軸円柱状のカム43を構成している。カム43の周囲には針状コロ51が配置され、針状コロ51は図示しない保持器で保持され、針状コロ51の外面を外輪53が回転可能に保持されている。針状コロ51の側方は側板52によって封止されている。従って、外輪53は装着回転軸体4のカム43の周りを針状コロ51を介して回転可能に保持されている。この外輪53は、ボルト54で支持治具本体31と同軸に固定されている。
【0030】
この研磨工具1の装着回転軸体4と支持治具3とは切り離され、装着回転軸体4が回転しても支持治具3は回転しない。支持治具3は装着回転軸体4回りに自由回転可能になっている。また、装着回転軸体4の回転中心C1と支持治具3の回転中心C2とはずれており、偏心量δを有している。従って、装着回転軸体4が回転することにより、支持治具3は偏心量δだけ微小の位置変動を生じ、微小振動するようになっている。
【0031】
偏心量δは偏心カムフォロア5の仕様により決定され、通常0.3mm〜1.6mmの範囲から選定できる。偏心量が大き過ぎると振動が生じるため、1mm程度が適当である。偏心させることによって、周速度がゼロで研磨できない回転中心を常に移動させて研磨効率を顕著に向上させることができる。
【0032】
この研磨工具1は、弾性研磨体2を強制的に回転させることができないため、この研磨工具1が用いられる研磨装置は、ワークを回転させる機構と装着回転軸体を回転させる機構を備える必要がある。使用できる研磨装置としては、これらの機構を備えれば、いずれの研磨装置でも使用可能である。
【0033】
例えば、図3に示したような研磨装置を用いるようにしてもよい。この研磨装置100は、4軸NC制御によりポリシング軸を被加工面111に対して法線方向に向くように制御して研磨するものである。ポリシングヘッド101は例えば球形の弾性体の表面に研磨パッドを貼り付けたものが用いられる。この研磨装置100は、ワーク110の水平方向の位置を制御するX軸テーブル102、ワーク110の傾きを制御する角度割り出しが可能なチルトテーブル103、ポリシングヘッド101の垂直方向の位置を制御するZ軸昇降機構104、ワーク110の回転位置を制御する回転テーブル105の4軸で研磨する。ポリシングヘッド101は、研磨工具回転軸107の回転に伴って回転しつつエアーシリンダ106の圧力制御により所定の荷重でワーク110に押し付けられながら被研磨面を研磨する。
【0034】
図2に示すように、例えば、この研磨装置100のポリシングヘッド101を本発明の研磨工具1に交換して使用することができる。研磨工具1の研磨工具回転軸107を垂直の下向きに配置し、密封空間7を所定の内圧に調整した研磨工具1の装着回転軸体4を研磨工具回転軸107に同軸で装着して研磨工具1を装着することができる。
【0035】
ワーク110の装着は、被研磨面111と反対側の面を研磨装置の回転テーブル105に装着するための加工治具120にワックス等の接合材121を介して接合し、加工治具120を回転テーブル105にボルトなどで固定して行うことができる。
【0036】
研磨装置100のNC制御により、回転テーブル105を所定の回転数で回転させながら、X軸テーブル102の水平方向の位置を制御し、チルトテーブル103の傾斜を制御し、Z軸昇降機構104で研磨工具1の垂直方向の位置を制御し、研磨工具回転軸107を所定の回転数で回転させながらエアーシリンダ106の圧力制御により所定の荷重でワーク110に押し付け、ノズル130より研磨剤を含むスラリーを被研磨面111に供給して研磨を行うことができる。
【0037】
このような研磨装置100に研磨工具1を用いると、ワーク110を所定の回転数で回転させ、水平方向の位置を制御すると共に、垂直方向からの傾斜を制御し、研磨工具1を偏心量δだけ微小振動させながら研磨工具1をワーク110に押し当てて研磨することができる。
【0038】
ワーク110を回転させながら研磨するため、被研磨面111が球面や軸対称非球面の場合には研磨工具1を被研磨面111の法線方向に制御することができる。非軸対称非球面の場合、厳密には法線制御はできないが、法線制御に近い制御を行うことができる。
【0039】
また、ワーク110を回転させながらワーク110を単純に揺動させ、そのときの被研磨面111の頂面が弾性研磨体2の中心近傍に当たるようにワーク110の水平方向の位置と研磨工具1の垂直方向の位置を調整するように研磨装置100を制御してもよい。ワーク110に揺動運動を与えることによって、図2に示すような大きな曲率の被研磨面111を有するレンズ110でも均一に被研磨面111全体を研磨することが可能になる。
【0040】
この場合、弾性研磨体2に与える内圧は、例えば0.2〜1.2kgf/cm、装着回転軸体4の回転数は、例えば10〜200rpm/min、ワーク110の回転数は、例えば10〜200rpm/min、研磨圧力は、例えば1〜8kgfの研磨条件で研磨することができる。
【0041】
研磨工具1の弾性研磨体2は自由回転するため、弾性研磨体2が被研磨面111の一部と強く接触する場合、強制回転させていたときにはそのまま擦り合わせるために強く当たる部分を強く研磨して研磨ムラを発生させていたのに対し、弾性研磨体2は自由回転により被研磨面111と共に回転し、無理に擦れ合うことを防止することができる。その結果、研磨ムラの発生は強制的に弾性研磨体を回転させていた場合と比較して顕著に抑制される。
【0042】
また、上記研磨方法は、弾性研磨体2の接触面積が球形のポリシングヘッド101を用いる場合と比較して極めて広いため、研磨速度が非常に速い。しかも、弾性研磨体2が装着回転軸体4の回転に伴って偏心量δだけ微小振動し、研磨効率が劣る弾性研磨体2の回転中心を常に位置を変えながら研磨するため、研磨効率が良好である。
【0043】
その結果、本発明の研磨工具1を用いる研磨方法は、研磨時間が極めて短くて済み、通常1〜20分程度の研磨時間で研磨ムラのない鏡面研磨を得ることが可能である。
【0044】
研磨の際に弾性研磨体2は、被研磨面111の形状により、被研磨面111の一部に当接するようにしてもよく、あるいは被研磨面111全体に当接するようにしてもよい。
【0045】
また、弾性研磨体2の表面に研磨パッドを貼り付け、研磨パッドを介して研磨するようにしてもよく、あるいは弾性研磨体2で直接研磨するようにしてもよい。また、弾性研磨体2表面に研磨剤を接着して研磨するようにしてもよい。
【0046】
本発明の研磨工具1及び研磨方法の対象となる被研磨面としては、鏡面研磨を必要とするあらゆるものが研磨対象となる。例えば、球面、軸対称非球面、非軸対称非球面などの曲面を有する各種のレンズの凸面や凹面、金型、光学製品などが対象となり、材質としてはプラスチック、ガラス、超硬、鋼など制限はない。
【0047】
上記説明では、逆止弁を用いて密封空間内の圧力を一定に保つようにしていたが、装着回転軸体の中心に圧力流体を導入できる通路を設け、圧力流体側と連通させることにより、密封空間内を一定の圧力に維持するようにしてもよい。
【0048】
また、上記説明では、ワークを揺動させるように説明しているが、研磨工具を揺動させるようにしてもよい。更に、支持治具の回転中心と装着回転軸体の回転中心とが偏心するように説明していたが、支持治具と装着回転軸体とが分離されていればよく、必ずしも偏心させる必要はない。
【0049】
[実施例]
ワークは、材質がショットS−3で外径が100mmφの光学ガラスレンズの凸面側を#2000レジンボンド砥石を用いた超精密研削盤による精密研削加工で表面粗さの平均値Raが0.068μmの非球面に加工し、裏面を同じ砥石で平面に加工した後、光学鏡面(表面粗さの平均値Ra:0.003μm)にしたものを用い、その凸面を被研磨面とした。
【0050】
この光学ガラスレンズの裏面の平面をドライヤーで溶かしたワックス(エレクトロンワックス)を使用して加工治具120に接着した。
【0051】
研磨剤は、酸化セリウム(セロックス:平均粒径1μm)を用い、純水を希釈液として比重1.07±0.01のスラリーに調製した。
【0052】
<比較例>
図4に示したように、従来の研磨工具を用いた。この研磨工具200は、研磨装置の研磨工具回転軸107に装着する装着部201が円盤状の支持治具本体202に固定されている。その他の弾性研磨体2を支持する構造や逆止弁6が設けられている構造に違いはない。
【0053】
弾性研磨体2は、厚さ1mm、硬度HS90のNBRゴムシートが120Rのドーム状に形成されたものを用いた。弾性研磨体の上に厚さ0.8mmのセリウムシートの研磨布を貼り付けた。
【0054】
研磨装置100は、X軸テーブル102の往復運動、チルトテーブル103の揺動運動、回転テーブル105の回転運動及びZ軸昇降機構104の昇降運動の制御を行った。装着部201と支持治具本体202とが固定されているため、研磨工具回転軸107の回転が研磨工具200の回転に直結し、研磨工具200に強制回転運動を与えて研磨を行った。
【0055】
研磨条件は、研磨工具回転数:30rpm、ワーク回転数:60rpm、研磨荷重:3.5kgf、研磨時間:5minで行った。
【0056】
研磨後の光学ガラスレンズの凸面の表面粗さの平均値Raは0.0161μmであった。研磨面はほぼ鏡面となっていたが、レンズ中心10mmから40mmの範囲に設計形状からかけ離れたうねりがあり、水銀灯検査を実施すると円周方向にリング状の影があり、中心から外周に至る形状が不連続である状態であった。
【0057】
<実施例1>
比較例1で研磨を行ったレンズを図1に示した本発明の研磨工具1を用いて研磨を行った。研磨工具1の偏心量δは1mmである。
【0058】
弾性研磨体2は、比較例と同一であり、厚さ1mm、硬度HS90のNBRゴムシートが120Rのドーム状に形成されたものを用いた。弾性研磨体の上に厚さ0.8mmのセリウムシートの研磨布を貼り付けた。
【0059】
研磨方法は、比較例と同じく、X軸テーブル102の往復運動、チルトテーブル103の揺動運動、回転テーブル105の回転運動、Z軸昇降機構104の昇降運動の制御を行い、研磨工具の装着回転軸体4に回転運動を与えて研磨を行った。
【0060】
研磨条件は、装着回転軸体回転数:30rpm、ワーク回転数:60rpm、研磨荷重:3.5kgf、研磨時間:3minで行った。
【0061】
研磨後の光学ガラスレンズの凸面の表面粗さの平均値Raは0.0033μmであった。リング状の影は無くなり、裏面の平面側とほぼ同等の光学鏡面が得られた。
【0062】
<実施例2>
被加工物は、材質がショットS−3で外径が100mmφの光学ガラスレンズの凸面側を#2000レジンボンド砥石を用いた超精密研削盤による精密研削加工で表面粗さの平均値Raが0.069μmの非球面に加工し、裏面を同じ砥石で平面に加工した後、光学鏡面(表面粗さの平均値Ra:0.003μm)にしたものを用い、その凸面を被研磨面とした。
【0063】
実施例1と同じ弾性研磨体を用い、実施例1と同じNC研磨装置を用い、同じ研磨剤を用い、同一の研磨条件で研磨時間:7minで行った。その結果、研磨後の光学ガラスレンズの凸面の表面粗さの平均値Raは0.0035μmであった。リング状の影は無くなり、裏面の平面側とほぼ同等の光学鏡面が得られた。
【0064】
【発明の効果】
本発明の研磨工具は、自由回転の弾性研磨体としたことにより、非軸対称非球面のような自由曲面を研磨ムラの発生を抑制して均一にしかも迅速に研磨することができる。
【0065】
また、本発明の研磨方法は、非軸対称非球面のような自由曲面を研磨ムラの発生を抑制して均一にしかも迅速に研磨することができる。
【図面の簡単な説明】
【図1】本発明の研磨工具の一実施形態を示す断面図である。
【図2】本発明の研磨工具をNC制御の研磨装置に取り付けて研磨を行う方法を説明する概略構成図である。
【図3】NC制御の研磨装置を示す概略構成図である。
【図4】NC制御の研磨装置に従来の研磨工具を取り付けて研磨を行う方法を説明する概略構成図である。
【符号の説明】
1:研磨工具
2:弾性研磨体
21:フランジ部
22:ドーム状部
3:支持治具
31:支持治具本体
32:押さえ部材
4:装着回転軸体
5:偏心カムフォロア
51:針状コロ
53:外輪
100:研磨装置
101:ポリシングヘッド
102:X軸テーブル
103:チルトテーブル
104:Z軸昇降機構
105:回転テーブル
107:研磨工具回転軸
110:ワーク
111:被研磨面
120:加工治具
130:ノズル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polishing tool and a polishing method capable of rapidly polishing a free-form surface such as a non-axisymmetric aspheric surface to a mirror surface while suppressing polishing unevenness.
[0002]
[Prior art]
NC control cutting technology has advanced, and it has become possible to form non-axisymmetric aspheric surfaces such as lenses by cutting. In optical products, it is necessary to polish the created cut surface to a desired smooth optical mirror surface. In recent years, the performance of lenses has been improved, and the requirements for shape accuracy and surface accuracy for mirror polishing have become strict.
[0003]
Conventionally, a polishing method for a non-axisymmetric aspheric surface using a polishing apparatus 100 as shown in FIG. 3 is known. This polishing method uses a polishing head 101 made of a small spherical elastic polishing body that comes into contact with a part of a surface 111 to be polished of a work 110. The maximum curvature is determined from the shape of the surface to be polished, a polishing head 101 having a curvature larger than the maximum curvature is selected, and the polishing head 101 is rotated while the polishing head 101 is rotated. The entire surface to be polished 111 is polished by scanning the entire surface while controlling in the normal direction of the polished surface 111.
[0004]
However, in this partial polishing method, since the entire surface to be polished is polished by a small polishing head, there is a problem that a long polishing time is required and the manufacturing cost is high.
[0005]
As shown in Patent Document 1, a hollow dome-shaped polishing tool made of a rubber-like elastic material is used for mirror polishing of a non-axisymmetric aspheric surface. In the polishing method, a polishing pad is attached to the surface of the polishing tool, compressed air is introduced into the polishing tool to give tension to the dome portion, and a slurry-type abrasive is supplied to the polishing tool and the object to be polished. These are rubbed together with each other while rotating them together to perform mirror polishing.
[0006]
As shown in FIG. 4, the polishing tool 200 having the dome-shaped elastic polishing body 2 made of an elastic material is replaced with the spherical polishing head 101 of the polishing apparatus 100 described above, and both the polishing tool 200 and the work 110 are replaced. By pressing the polishing tool 200 against the surface 111 to be polished while rotating, the contact area of the polishing tool 200 is larger than when the spherical polishing head 101 is used. It became possible.
[0007]
[Patent Document 1]
JP-A-11-77503
[Problems to be solved by the invention]
However, in polishing using the polishing tool 200 having the hollow dome-shaped elastic polishing body 2 made of an elastic material, there is a problem that polishing unevenness occurs depending on the shape of the surface to be polished 111. In order to eliminate the generated polishing unevenness, the polishing tool 200 in which the internal pressure of the hollow dome has been reduced must be re-polished over a long period of time, resulting in a decrease in productivity.
[0009]
The present invention has been made in view of the above circumstances, and provides a polishing tool capable of uniformly and quickly polishing a free-form surface such as a non-axisymmetric aspheric surface while suppressing the occurrence of polishing unevenness. Aim.
[0010]
Another object of the present invention is to provide a polishing method capable of uniformly and quickly polishing a free-form surface such as a non-axisymmetric aspheric surface while suppressing the occurrence of uneven polishing.
[0011]
[Means for Solving the Problems]
The present inventor, in order to achieve the above object, as a result of intensive studies, conventionally, the polishing tool was forced to rotate while being pressed against the surface to be polished of the work, and the cause of polishing unevenness. I knew that it had become. Based on the knowledge, the mounting part that is mounted coaxially with the polishing tool rotation axis that rotates the polishing tool of the polishing device is separated from the support jig that supports the elastic polishing body to form a mounting rotary shaft, and the support jig is mounted on the mounting rotary shaft. Tried to rotate freely around the body. As a result, when the work is rotated and the elastic polishing body is pressed against the surface to be polished of the work and polished, when the surface to be polished and the elastic polishing body are in partial strong contact, the support for supporting the elastic polishing body is provided. Since the jig rotates with the surface to be polished and escapes, it is possible to prevent the elastic polishing body from forcibly rubbing the surface to be polished. Thereby, compared with the case where the elastic polishing body is forcibly rotated, partial excessive polishing can be prevented, and the occurrence of polishing unevenness can be suppressed, and uniform polishing can be performed. Moreover, since the contact area of the elastic dome of the polishing tool is large, the polishing efficiency is good and the polishing can be performed quickly.
[0012]
By displacing the center of rotation of the supporting jig around the rotating shaft and the center of rotation of the rotating shaft to be eccentric, the rotating center where the peripheral speed is zero and polishing is not possible always moves, and the polishing efficiency is remarkable. Can be improved.
[0013]
When the elastic polishing body for polishing the surface to be polished is formed of an elastic sheet that expands in a dome shape or is formed in a dome shape, a range of polishing conditions such as the internal pressure of the elastic polishing body and the hardness of the elastic sheet increases. Appropriate polishing can be performed.
[0014]
In order to keep the internal pressure of the dome-shaped elastic polishing body constant, it is preferable to form a sealed space inside the dome-shaped elastic polishing body and provide a check valve for keeping the pressure in the sealed space constant.
[0015]
By swinging one of the polishing tool and the workpiece during polishing, the entire surface to be polished can be uniformly polished.
[0016]
Therefore, the invention according to claim 1 is an elastic polishing body composed of a mounting rotary shaft body that can be mounted on a polishing tool rotary shaft of a polishing apparatus, and an elastic material that expands in a dome shape or is formed in a dome shape. And a support jig that is freely rotatable around the mounting rotary shaft and supports the elastic polishing body.
[0017]
According to a second aspect of the present invention, there is provided the polishing tool according to the first aspect, wherein a rotation center of the mounting rotary shaft and a rotation center of the support jig are eccentric.
[0018]
A third aspect of the present invention is the polishing tool according to the first or second aspect, wherein the elastic polishing body is formed of an elastic sheet, and the support jig and the elastic polishing body form a sealed space. To provide a polishing tool.
[0019]
According to a fourth aspect of the present invention, in the polishing tool according to the third aspect, a check valve connected to the sealed space, for introducing a pressurized fluid into the sealed space and maintaining the sealed state is provided on the support jig. An abrasive tool is provided that is mounted.
[0020]
According to a fifth aspect of the present invention, there is provided a mounting rotary shaft body that can be mounted on a polishing tool rotary shaft of a polishing apparatus, and an elastic polishing body formed of an elastic material that expands in a dome shape or is formed in a dome shape, The mounting rotary shaft of the polishing tool having a support jig that can freely rotate around the mounting rotary shaft and supports the elastic polishing body around a rotation center that is eccentric to the rotation center of the mounting rotary shaft. A polishing method characterized in that polishing is performed while applying the elastic polishing body to a surface to be polished of a rotating work while being rotated.
[0021]
According to a sixth aspect of the present invention, there is provided the polishing method according to the fifth aspect, wherein the polishing is performed while swinging the polishing tool or the work.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a polishing tool and a polishing method of the present invention will be described, but the present invention is not limited to the following embodiments.
[0023]
FIG. 1 is a sectional view showing one embodiment of the polishing tool of the present invention. This polishing tool 1 includes an eccentric cam follower 5 including an elastic polishing body 2, a support jig 3 for supporting the elastic polishing body 2, a mounting rotary shaft 4 for rotatably holding the support jig 3, and a check valve 6. Have.
[0024]
The elastic polishing body 2 is made of an elastic sheet and has a flat circular sheet shape or a hollow dome shape having a dome-shaped portion 22 provided with a ring-shaped flange portion 21 on the outer periphery as shown in FIG. It is formed in the shape of.
[0025]
The support jig 3 is made of metal such as stainless steel, and includes a disk-shaped support jig body 31 and a ring-shaped pressing member 32 separate from the support jig body 31. The holding member 32 is fixed to the outer peripheral surface of the lower surface of the support jig body 31 by a crimping jig (not shown).
[0026]
The outer peripheral portion or the flange portion 21 of the elastic polishing body 2 is pressed between the outer peripheral surface of the lower surface of the support jig main body 31 and the ring-shaped pressing member 32 like a packing so as to be attached to the support jig main body 31. I have. Thereby, the outer peripheral portion or the flange portion 21 of the elastic polishing body 2 is pressed against the lower surface of the support jig main body 31 so that the space between the elastic polishing body 2 and the support jig main body 31 can form the sealed space 7. Has become.
[0027]
Further, a check valve 6 that penetrates the support jig body 31 and introduces a pressure fluid into the sealed space 7 is provided. The check valve 6 has a function of keeping the pressure of the pressurized fluid in the sealed space 7 constant. By introducing the pressurized fluid into the sealed space 7, the flat sheet-like elastic polishing body 2 can be expanded and formed into a dome shape. In addition, tension can be applied to the elastic polishing body 2 formed in a dome shape by an internal pressure to maintain the dome shape. The shape, such as the curvature, of the hollow elastic polishing body 2 formed of the elastic sheet can be changed to some extent by the pressure of the pressure fluid.
[0028]
The elastic polishing body 2 of such a polishing tool 1 is constituted by the elastic sheet shown in FIG. 1 and is formed by forming an elastic material into a dome-shaped block other than the one that retains the dome shape by the internal pressure of the pressure fluid. Or a dome-shaped elastic sheet whose hollow portion is filled with another elastic material. The thickness of the elastic sheet is preferably 0.1 to 10 mm, particularly preferably 0.2 to 5 mm, JIS A hardness (type A durometer) 10 to 100, Young's modulus 10 2 to 10 3 N · cm −2 , heat resistance temperature Preferably have physical properties of 100 ° C. or higher. The elastic sheet or elastic material is made of natural rubber, chloroprene rubber, styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), rubber such as silicone rubber, fluorine rubber, thermoplastic resin such as polyethylene, nylon, or styrene. And urethane-based thermoplastic resin elastomers.
[0029]
The mounting rotary shaft 4 is formed of, for example, a stud of an eccentric cam follower 5. The eccentric cam follower 5 is a rolling bearing in which a needle-shaped roller 51, a retainer (not shown), a side plate 52, and a thick outer ring 53 are incorporated in a threaded stud (mounting rotary shaft) 4. This is a structure in which the rotation center C2 of the meat outer ring 53 is eccentric. The mounting rotary shaft (stud with screw) 4 has a cylindrical or cylindrical shape, and has a mounting portion 41 formed with a screw or the like that can be mounted on a polishing tool rotary shaft for rotating a polishing tool of a polishing device at a base end portion. A flange portion 42 is formed at the front end to prevent slipping, and a short-axis cylindrical cam 43 having a rotation center C2 eccentric to the rotation center C1 of the mounting portion 41 is provided between the flange portion 42 and the mounting portion 41. Make up. A needle roller 51 is arranged around the cam 43, and the needle roller 51 is held by a retainer (not shown), and an outer ring 53 is rotatably held on the outer surface of the needle roller 51. The sides of the needle rollers 51 are sealed by side plates 52. Therefore, the outer ring 53 is rotatably held around the cam 43 of the mounting rotary shaft 4 via the needle roller 51. The outer ring 53 is coaxially fixed to the support jig main body 31 with bolts 54.
[0030]
The mounting rotary shaft 4 of the polishing tool 1 is separated from the support jig 3, and the support jig 3 does not rotate even if the mounting rotary shaft 4 rotates. The support jig 3 is freely rotatable around the mounting rotary shaft 4. The center of rotation C1 of the mounting rotary shaft 4 and the center of rotation C2 of the support jig 3 are deviated from each other, and have an eccentricity δ. Accordingly, the rotation of the mounting rotary shaft 4 causes the support jig 3 to slightly change its position by the amount of eccentricity δ, thereby causing minute vibration.
[0031]
The amount of eccentricity δ is determined by the specifications of the eccentric cam follower 5 and can be generally selected from the range of 0.3 mm to 1.6 mm. If the amount of eccentricity is too large, vibration occurs, so that about 1 mm is appropriate. By eccentricity, the center of rotation at which the peripheral speed is zero and which cannot be polished is constantly moved, and the polishing efficiency can be significantly improved.
[0032]
Since the polishing tool 1 cannot forcibly rotate the elastic polishing body 2, the polishing apparatus using the polishing tool 1 needs to include a mechanism for rotating the work and a mechanism for rotating the mounting rotary shaft. is there. Any polishing apparatus can be used as long as these mechanisms are provided.
[0033]
For example, a polishing apparatus as shown in FIG. 3 may be used. The polishing apparatus 100 performs polishing by controlling the polishing axis in a normal direction with respect to the processing surface 111 by four-axis NC control. As the polishing head 101, for example, a polishing head with a polishing pad attached to the surface of a spherical elastic body is used. The polishing apparatus 100 includes an X-axis table 102 for controlling a horizontal position of a work 110, a tilt table 103 for controlling an inclination of the work 110, and a Z-axis for controlling a vertical position of a polishing head 101. Polishing is performed on four axes of a lifting table 104 and a rotary table 105 that controls the rotation position of the work 110. The polishing head 101 grinds the surface to be polished while being pressed by the pressure control of the air cylinder 106 against the workpiece 110 with a predetermined load while rotating with the rotation of the polishing tool rotating shaft 107.
[0034]
As shown in FIG. 2, for example, the polishing head 101 of the polishing apparatus 100 can be used by replacing it with the polishing tool 1 of the present invention. The polishing tool rotating shaft 107 of the polishing tool 1 is arranged vertically downward, and the mounting rotary shaft body 4 of the polishing tool 1 in which the sealed space 7 is adjusted to a predetermined internal pressure is mounted coaxially on the polishing tool rotating shaft 107. 1 can be mounted.
[0035]
The work 110 is mounted by joining a surface opposite to the surface to be polished 111 to a processing jig 120 for mounting on a rotary table 105 of a polishing apparatus via a bonding material 121 such as wax, and rotating the processing jig 120. It can be fixed to the table 105 with bolts or the like.
[0036]
The NC control of the polishing apparatus 100 controls the horizontal position of the X-axis table 102 while controlling the tilt of the tilt table 103 while rotating the rotary table 105 at a predetermined number of revolutions. The vertical position of the tool 1 is controlled, and while the polishing tool rotating shaft 107 is rotated at a predetermined rotation speed, the polishing tool is pressed against the work 110 with a predetermined load by the pressure control of the air cylinder 106. It can be supplied to the surface to be polished 111 to perform polishing.
[0037]
When the polishing tool 1 is used in such a polishing apparatus 100, the work 110 is rotated at a predetermined number of rotations to control the position in the horizontal direction and the inclination from the vertical direction, so that the eccentric amount δ Polishing can be performed by pressing the polishing tool 1 against the work 110 while only slightly vibrating.
[0038]
Since the workpiece 110 is polished while rotating, the polishing tool 1 can be controlled in the normal direction of the polished surface 111 when the polished surface 111 is a spherical surface or an axisymmetric aspheric surface. In the case of a non-axisymmetric aspherical surface, strictly normal control cannot be performed, but control close to normal control can be performed.
[0039]
Further, the work 110 is simply swung while rotating the work 110, and the horizontal position of the work 110 and the position of the polishing tool 1 are adjusted so that the top surface of the surface to be polished 111 is near the center of the elastic polishing body 2. The polishing apparatus 100 may be controlled so as to adjust the position in the vertical direction. By imparting a swinging motion to the work 110, even the lens 110 having the polished surface 111 having a large curvature as shown in FIG. 2 can uniformly polish the entire polished surface 111.
[0040]
In this case, the internal pressure applied to the elastic polishing body 2 is, for example, 0.2 to 1.2 kgf / cm 2 , the rotation speed of the mounting rotary shaft 4 is, for example, 10 to 200 rpm / min, and the rotation speed of the work 110 is, for example, 10 The polishing can be performed under the polishing conditions of, for example, 1 to 8 kgf at a polishing pressure of 1 to 8 kgf.
[0041]
Since the elastic polishing body 2 of the polishing tool 1 rotates freely, when the elastic polishing body 2 comes into strong contact with a part of the surface to be polished 111, the part that strongly hits the part to be rubbed as it is during forced rotation is strongly polished. In contrast to the occurrence of polishing unevenness, the elastic polishing body 2 rotates together with the surface to be polished 111 by free rotation, and it is possible to prevent the elastic polishing body 2 from forcibly rubbing. As a result, the occurrence of polishing unevenness is significantly suppressed as compared with the case where the elastic polishing body is forcibly rotated.
[0042]
Further, in the above polishing method, the contact area of the elastic polishing body 2 is extremely large as compared with the case where the spherical polishing head 101 is used, so that the polishing rate is extremely high. In addition, since the elastic polishing body 2 slightly vibrates by the amount of eccentricity δ with the rotation of the mounting rotary shaft body 4, polishing is performed while constantly changing the position of the rotation center of the elastic polishing body 2, which is inferior in polishing efficiency. It is.
[0043]
As a result, in the polishing method using the polishing tool 1 of the present invention, the polishing time is extremely short, and mirror polishing without polishing unevenness can be obtained with a polishing time of usually about 1 to 20 minutes.
[0044]
At the time of polishing, the elastic polishing body 2 may be in contact with a part of the polished surface 111 or may be in contact with the entire polished surface 111 depending on the shape of the polished surface 111.
[0045]
Further, a polishing pad may be attached to the surface of the elastic polishing body 2 and polished through the polishing pad, or may be polished directly by the elastic polishing body 2. Further, an abrasive may be adhered to the surface of the elastic abrasive body 2 for polishing.
[0046]
As the surface to be polished to be polished by the polishing tool 1 and the polishing method of the present invention, anything requiring mirror polishing is polished. For example, convex and concave surfaces of various lenses having curved surfaces such as spherical surfaces, axisymmetric aspheric surfaces, and non-axisymmetric aspheric surfaces, molds, optical products, etc. are applicable, and materials such as plastic, glass, carbide, and steel are limited. There is no.
[0047]
In the above description, the pressure in the sealed space is kept constant by using the check valve.However, by providing a passage through which the pressure fluid can be introduced at the center of the mounting rotary shaft, and communicating with the pressure fluid side, The inside of the sealed space may be maintained at a constant pressure.
[0048]
Further, in the above description, the work is described as swinging, but the polishing tool may be swinging. Furthermore, the description has been made such that the rotation center of the support jig and the rotation center of the mounting rotary shaft are eccentric. However, it is sufficient that the support jig and the mounting rotary shaft are separated from each other, and it is not always necessary to perform eccentricity. Absent.
[0049]
[Example]
The workpiece is made of a shot S-3 material, and the convex side of an optical glass lens having an outer diameter of 100 mmφ is precision ground by an ultraprecision grinder using a # 2000 resin bond grindstone, and the average surface roughness Ra is 0.068 μm. After processing the back surface into a flat surface with the same grindstone, an optical mirror surface (average surface roughness Ra: 0.003 μm) was used, and the convex surface was used as the surface to be polished.
[0050]
The flat surface on the back surface of the optical glass lens was bonded to the processing jig 120 using wax (electron wax) melted with a dryer.
[0051]
The polishing slurry was prepared using cerium oxide (cerox: average particle diameter: 1 μm) and a specific gravity of 1.07 ± 0.01 using pure water as a diluent.
[0052]
<Comparative example>
As shown in FIG. 4, a conventional polishing tool was used. In this polishing tool 200, a mounting portion 201 mounted on a polishing tool rotating shaft 107 of a polishing apparatus is fixed to a disk-shaped support jig main body 202. There is no difference in the structure for supporting the elastic polishing body 2 and the structure in which the check valve 6 is provided.
[0053]
The elastic abrasive body 2 used was an NBR rubber sheet having a thickness of 1 mm and a hardness of HS90 formed in a 120R dome shape. A cerium sheet polishing cloth having a thickness of 0.8 mm was stuck on the elastic polishing body.
[0054]
The polishing apparatus 100 controlled the reciprocating motion of the X-axis table 102, the swinging motion of the tilt table 103, the rotating motion of the rotary table 105, and the elevating motion of the Z-axis elevating mechanism 104. Since the mounting part 201 and the support jig body 202 are fixed, the rotation of the polishing tool rotation shaft 107 is directly connected to the rotation of the polishing tool 200, and the polishing tool 200 is given a forcible rotational motion to perform polishing.
[0055]
Polishing conditions were as follows: polishing tool rotation speed: 30 rpm, workpiece rotation speed: 60 rpm, polishing load: 3.5 kgf, polishing time: 5 min.
[0056]
The average value Ra of the convex surface roughness of the polished optical glass lens was 0.0161 μm. The polished surface was almost a mirror surface, but there was undulation far away from the designed shape in the range of the lens center from 10 mm to 40 mm, and when inspected by a mercury lamp, there was a ring-shaped shadow in the circumferential direction, and the shape from the center to the outer periphery Was discontinuous.
[0057]
<Example 1>
The lens polished in Comparative Example 1 was polished using the polishing tool 1 of the present invention shown in FIG. The amount of eccentricity δ of the polishing tool 1 is 1 mm.
[0058]
The elastic abrasive body 2 was the same as the comparative example, and used an NBR rubber sheet having a thickness of 1 mm and a hardness of HS90 formed in a 120R dome shape. A cerium sheet polishing cloth having a thickness of 0.8 mm was stuck on the elastic polishing body.
[0059]
The polishing method controls the reciprocating motion of the X-axis table 102, the swinging motion of the tilt table 103, the rotating motion of the rotary table 105, and the vertical motion of the Z-axis elevating mechanism 104, as in the comparative example. Polishing was performed by giving a rotating motion to the shaft body 4.
[0060]
Polishing conditions were as follows: the rotational speed of the mounted rotary shaft: 30 rpm, the rotational speed of the workpiece: 60 rpm, the polishing load: 3.5 kgf, and the polishing time: 3 min.
[0061]
The average value Ra of the surface roughness of the convex surface of the optical glass lens after polishing was 0.0033 μm. The ring-shaped shadow disappeared, and an optical mirror surface almost equivalent to the flat surface on the back surface was obtained.
[0062]
<Example 2>
The workpiece has a mean surface roughness Ra of 0 when the convex side of an optical glass lens having a material of shot S-3 and an outer diameter of 100 mmφ is precision ground by an ultra-precision grinder using a # 2000 resin bond grindstone. After processing into a 0.069 μm aspherical surface and processing the back surface into a flat surface with the same grindstone, an optical mirror surface (average surface roughness Ra: 0.003 μm) was used, and the convex surface was used as the surface to be polished.
[0063]
Using the same elastic polishing body as in Example 1, using the same NC polishing apparatus as in Example 1, and using the same polishing agent, polishing was performed under the same polishing conditions with a polishing time of 7 min. As a result, the average value Ra of the surface roughness of the convex surface of the optical glass lens after polishing was 0.0035 μm. The ring-shaped shadow disappeared, and an optical mirror surface almost equivalent to the flat surface on the back surface was obtained.
[0064]
【The invention's effect】
Since the polishing tool of the present invention is a free-rotating elastic polishing body, a free-form surface such as a non-axisymmetric aspheric surface can be uniformly and rapidly polished while suppressing the occurrence of polishing unevenness.
[0065]
Further, the polishing method of the present invention can uniformly and rapidly polish a free-form surface such as a non-axisymmetric aspheric surface while suppressing the occurrence of polishing unevenness.
[Brief description of the drawings]
FIG. 1 is a sectional view showing one embodiment of a polishing tool of the present invention.
FIG. 2 is a schematic configuration diagram illustrating a method of performing polishing by attaching the polishing tool of the present invention to an NC control polishing apparatus.
FIG. 3 is a schematic configuration diagram showing an NC-controlled polishing apparatus.
FIG. 4 is a schematic configuration diagram illustrating a method for performing polishing by attaching a conventional polishing tool to a polishing apparatus controlled by NC;
[Explanation of symbols]
1: polishing tool 2: elastic polishing body 21: flange portion 22: dome-shaped portion 3: support jig 31: support jig body 32: holding member 4: mounting rotary shaft 5: eccentric cam follower 51: needle-like roller 53: Outer ring 100: Polishing device 101: Polishing head 102: X-axis table 103: Tilt table 104: Z-axis elevating mechanism 105: Rotary table 107: Polishing tool rotary shaft 110: Work 111: Polished surface 120: Processing jig 130: Nozzle

Claims (6)

研磨装置の研磨工具回転軸に対して装着可能な装着回転軸体と、ドーム状に膨張する又はドーム状に形成された弾性材で構成される弾性研磨体と、前記装着回転軸体回りに自由回転可能で前記弾性研磨体を支持する支持治具とを有することを特徴とする研磨工具。A mounting rotary shaft body that can be mounted on a polishing tool rotary shaft of a polishing apparatus, an elastic polishing body formed of an elastic material that expands in a dome shape or is formed in a dome shape, and is free to rotate around the mounting rotary shaft body. A polishing jig comprising: a rotatable support jig for supporting the elastic polishing body. 請求項1記載の研磨工具において、
前記装着回転軸体の回転中心と前記支持治具の回転中心とが偏心していることを特徴とする研磨工具。
The polishing tool according to claim 1,
A polishing tool, wherein a rotation center of the mounting rotary shaft and a rotation center of the support jig are eccentric.
請求項1又は2記載の研磨工具において、
前記弾性研磨体が弾性シートで構成され、前記支持治具と前記弾性研磨体とが密封空間を形成することを特徴とする研磨工具。
The polishing tool according to claim 1 or 2,
The polishing tool, wherein the elastic polishing body is formed of an elastic sheet, and the support jig and the elastic polishing body form a sealed space.
請求項3記載の研磨工具において、
前記密封空間と接続され、前記密封空間に加圧流体を導入すると共に、その密封を維持する逆止弁が前記支持治具に取り付けられていることを特徴とする研磨工具。
The polishing tool according to claim 3,
A polishing tool, wherein a check valve connected to the sealed space, for introducing a pressurized fluid into the sealed space and maintaining the seal is attached to the support jig.
研磨装置の研磨工具回転軸に対して装着可能な装着回転軸体と、ドーム状に膨張する又はドーム状に形成された弾性材で構成される弾性研磨体と、前記装着回転軸体の回転中心と偏心している回転中心を中心として前記装着回転軸体回りに自由回転可能で前記弾性研磨体を支持する支持治具とを有する研磨工具の前記装着回転軸体を回転させつつ回転しているワークの被研磨面に前記弾性研磨体を当てながら研磨することを特徴とする研磨方法。A mounting rotary shaft body that can be mounted on a polishing tool rotary shaft of a polishing apparatus, an elastic polishing body formed of an elastic material that expands in a dome shape or is formed in a dome shape, and a rotation center of the mounting rotary shaft body And a support jig that is freely rotatable around the mounting rotary shaft body about a rotation center that is eccentric and supports the elastic polishing body. The workpiece rotating while rotating the mounting rotary shaft body of the polishing tool. Polishing while applying the elastic polishing body to the surface to be polished. 請求項5記載の研磨方法において、
前記研磨工具又は前記ワークを揺動させながら研磨することを特徴とする研磨方法。
The polishing method according to claim 5,
A polishing method, wherein the polishing is performed while swinging the polishing tool or the work.
JP2003158185A 2003-06-03 2003-06-03 Polishing tool and polishing method Withdrawn JP2004358591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003158185A JP2004358591A (en) 2003-06-03 2003-06-03 Polishing tool and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003158185A JP2004358591A (en) 2003-06-03 2003-06-03 Polishing tool and polishing method

Publications (1)

Publication Number Publication Date
JP2004358591A true JP2004358591A (en) 2004-12-24

Family

ID=34051682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003158185A Withdrawn JP2004358591A (en) 2003-06-03 2003-06-03 Polishing tool and polishing method

Country Status (1)

Country Link
JP (1) JP2004358591A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107070A (en) * 2007-10-30 2009-05-21 Nagaoka Univ Of Technology Method and device for lapping
KR100930226B1 (en) * 2007-12-27 2009-12-09 한밭대학교 산학협력단 Lens polishing machine
CN103144005A (en) * 2013-03-19 2013-06-12 西安交通大学苏州研究院 Surface contact polishing device and method for spherical or planar optical element
CN103722465A (en) * 2014-01-21 2014-04-16 南通天盛新能源科技有限公司 Glass substrate surface bath polishing device for biochips
JP2021053778A (en) * 2019-10-01 2021-04-08 株式会社コシナ Processing method of aspherical convex lens and processing system
CN113681455A (en) * 2021-09-16 2021-11-23 河南航天液压气动技术有限公司 Grinding and polishing tool
CN115091305A (en) * 2022-07-19 2022-09-23 苏州贝亚特精密自动化机械有限公司 Valve core grinding machine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107070A (en) * 2007-10-30 2009-05-21 Nagaoka Univ Of Technology Method and device for lapping
KR100930226B1 (en) * 2007-12-27 2009-12-09 한밭대학교 산학협력단 Lens polishing machine
CN103144005A (en) * 2013-03-19 2013-06-12 西安交通大学苏州研究院 Surface contact polishing device and method for spherical or planar optical element
CN103722465A (en) * 2014-01-21 2014-04-16 南通天盛新能源科技有限公司 Glass substrate surface bath polishing device for biochips
JP2021053778A (en) * 2019-10-01 2021-04-08 株式会社コシナ Processing method of aspherical convex lens and processing system
JP7359425B2 (en) 2019-10-01 2023-10-11 株式会社コシナ Aspherical convex lens processing system
CN113681455A (en) * 2021-09-16 2021-11-23 河南航天液压气动技术有限公司 Grinding and polishing tool
CN113681455B (en) * 2021-09-16 2023-07-04 河南航天液压气动技术有限公司 Grinding and polishing tool
CN115091305A (en) * 2022-07-19 2022-09-23 苏州贝亚特精密自动化机械有限公司 Valve core grinding machine

Similar Documents

Publication Publication Date Title
KR100581708B1 (en) Polishing method and polishing device
JP2001338901A (en) Process method and equipment for planarization, and method for manufacturing semiconductor device
US20070087670A1 (en) Polishing method
JP3734878B2 (en) Wafer polishing equipment
JP2712782B2 (en) Polishing spindle
JP2004358591A (en) Polishing tool and polishing method
JPH06270052A (en) Mirror surface polishing device for semiconductor wafer
JP5033066B2 (en) Polishing apparatus and polishing method for workpiece outer periphery
JP6369649B1 (en) Film wrap processing equipment
JP5074015B2 (en) Surface processing method and surface processing apparatus
JP2004261904A (en) Method and device for superfinishing bearing track surface
JP4046177B2 (en) Device wafer edge polishing apparatus and polishing method
JP4229582B2 (en) Grinding and polishing equipment
JP2004351574A (en) Precise polishing tool and precise polishing method
JP4050835B2 (en) Lens processing method
JP2001054862A (en) Polishing fixture and curved face polishing method using it
JP4307674B2 (en) Wafer polishing equipment
JP2002254305A (en) Polishing head
JP2004042220A (en) Lens centering method, lens working method, and lens
JPH01268032A (en) Method and apparatus for wafer polishing
CN101352825A (en) Grindding device
JP2005111629A (en) Polishing tool, polishing device using the same, and polishing method
JPH1199454A (en) Polishing device and polishing method
JP2006159398A (en) Elastic polishing tool and polishing method using this tool
JP2002283226A (en) Polishing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905