JP2004351574A - Precise polishing tool and precise polishing method - Google Patents

Precise polishing tool and precise polishing method Download PDF

Info

Publication number
JP2004351574A
JP2004351574A JP2003153203A JP2003153203A JP2004351574A JP 2004351574 A JP2004351574 A JP 2004351574A JP 2003153203 A JP2003153203 A JP 2003153203A JP 2003153203 A JP2003153203 A JP 2003153203A JP 2004351574 A JP2004351574 A JP 2004351574A
Authority
JP
Japan
Prior art keywords
polishing
elastic
polished
precision
polishing body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003153203A
Other languages
Japanese (ja)
Inventor
Yoshio Sakai
由雄 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003153203A priority Critical patent/JP2004351574A/en
Publication of JP2004351574A publication Critical patent/JP2004351574A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a precise polishing tool and a precision polishing method capable of rapidly polishing a nonaxisymmetric and aspheric surface with high surface precision. <P>SOLUTION: With the usage of the precise polishing tool 1 having an elastic polishing body 3 expanded in a shape of a dome or formed in the shape of the dome, a surface to be polished and the elastic polishing body 3 are respectively rotated while pressing the elastic polishing body 3 onto almost all the surface to be polished, and a slurry type polishing agent 10 is supplied to the elastic polishing body 3 to polish the surface to be polished. A surface roughness average value Ra of the elastic polishing body 3 is preferably 0.1 μm or less. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、レンズなどの表面を鏡面に仕上げる精密研磨工具及び精密研磨方法に関する。
【0002】
【従来の技術】
NC制御の切削技術が進歩し、レンズ等の非軸対称非球面を切削により形成することが可能になってきている。光学製品では、創成した切削面を所望の平滑な光学鏡面に研磨する必要がある。近年、レンズの性能が向上し、鏡面研磨に対する形状精度や面精度の要求が厳しくなってきている。
【0003】
従来より、特許文献1に示すように、非軸対称非球面の鏡面研磨には、ゴム状の弾性材で構成される中空ドーム状のポリシャヘッドを用いることが行われている。研磨方法は、ポリシャヘッドの表面に研磨パッドを貼り付け、ポリシャヘッドの内部に圧縮空気を導入してドーム状部に張りを与え、スラリー状の研磨剤を供給してポリシャヘッドと被研磨物とを回転させながらこれらを摺り合わせて鏡面研磨するものである。
【0004】
また、被研磨物の被研磨面の一部に当接する小さいドーム状の弾性研磨体を用いる部分研磨方法が知られている。この部分研磨方法は、被研磨面の形状から最大の曲率を求め、この最大の曲率より大きい曲率を有するドーム状の弾性研磨体を選択し、弾性研磨体を回転させながら被研磨面の一部に当て、弾性研磨体を被研磨面全体に走査させることによって、被研磨面全体を研磨するものである。
【0005】
【特許文献1】
特開平11−77503号公報
【0006】
【発明が解決しようとする課題】
しかしながら、弾性材で構成される中空ドーム状のポリシャヘッドの表面に研磨パッドを貼り付けて行う研磨では、非軸対称非球面の形状追随性に優れるが、例えば表面粗さが2nm程度の高い面精度に仕上げることができないという問題点がある。
【0007】
また、部分研磨方法は、小さいポリシングヘッドにより研磨面全体を研磨するため、長い研磨時間が必要となり、製造コストが高いという問題がある。
【0008】
本発明は、上記問題点に鑑みてなされたもので、非軸対称非球面に対して高い面精度の研磨を迅速に行うことができる精密研磨工具を提供することを目的とする。
【0009】
また、本発明は、非軸対称非球面に対して高い面精度の研磨を迅速に行うことができる精密研磨方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者は、上記目的を達成するため鋭意検討した結果、特許文献1に示されている弾性材で構成される中空ドーム状のポリシャヘッドの表面に研磨パッドを貼り付けて行う従来の研磨方法で期待する表面粗さの光学鏡面が得られなかったのは、研磨パッドに原因があると考えた。従来、研磨パッドの表面をサンドペーパーなどで修正し、その後、研磨作業を行うことにより、所望の光学鏡面が得られる場合があったが、非効率であった。この研磨パッドは、通常花びら形で、研磨液の保持等の機能を有し、研磨パッドの突出した花びらの間の隙間は、砥粒や水の供給と、研磨くずを排出する通路として機能し、鏡面研磨には必要な部材であると考えられていた。
【0011】
ところが、研磨パッドを貼らず、弾性材で構成される中空ドーム状のポリシャヘッドを直接被研磨面に当てて研磨を行ったところ、このポリシャヘッドは研磨剤を保持する機能を期待できないにもかかわらず、期待する表面粗さの光学鏡面が得られることを見出した。また、研磨により得られる表面粗さは弾性研磨体の表面粗さが影響し、弾性研磨体の表面粗さの平均値Raを0.1μm以下とすることにより、十分面精度が良い光学鏡面を形成できることを見出した。かかる研磨方法は、被研磨面のほぼ全体にドーム状の弾性研磨体を押し当てながら研磨することにより、弾性研磨体が被研磨面の曲面に追随変形しながら被研磨面全体を均一に研磨するため、部分研磨方法と比べて極めて研磨速度が速い。
【0012】
被研磨面を研磨する部分である弾性研磨体を、ドーム状に膨張させるかあるいはドーム状に形成された弾性シートで構成すると、弾性研磨体の内圧や弾性シートの硬度等の研磨条件の幅が大きくなり、適切な研磨を行うことが可能となる。
【0013】
また、ドーム状の弾性研磨体の内圧を一定に保つために、ドーム状の弾性研磨体の中を密封空間に形成すると共に、密封空間の圧力を一定に保つ逆止弁を設けることが好ましい。
【0014】
また、研磨剤の平均粒径は5nm〜5μmの範囲とすることが好ましい。
【0015】
従って、請求項1記載の発明は、ドーム状に膨張する又はドーム状に形成された弾性材で構成される、表面粗さの平均値Raが0.1μm以下の弾性研磨体と、前記弾性研磨体を支持すると共に、研磨装置のチャックに取り付けられる装着部を備える支持治具とを有することを特徴とする精密研磨工具を提供する。
【0016】
請求項2記載の発明は、請求項1記載の精密研磨工具において、前記弾性研磨体が弾性シートで構成され、前記支持治具と前記弾性研磨体とが密封空間を形成することを特徴とする精密研磨工具を提供する。
【0017】
請求項3記載の発明は、請求項2記載の精密研磨工具において、前記密封空間と接続され、前記密封空間に加圧流体を導入すると共に、その密封を維持する逆止弁が前記支持治具に取り付けられていることを特徴とする精密研磨工具を提供する。
【0018】
請求項4記載の発明は、ドーム状に膨張した又はドーム状に形成された弾性研磨体に被研磨面を押し当てながら、前記被研磨面及び前記弾性研磨体をそれぞれ回転させ、スラリー状の研磨剤を前記弾性研磨体に供給して前記被研磨面を研磨することを特徴とする精密研磨方法を提供する。
【0019】
請求項5記載の発明は、請求項4記載の精密研磨方法において、前記弾性研磨体の表面粗さの平均値Raが0.1μm以下であることを特徴とする精密研磨方法を提供する。
【0020】
請求項6記載の発明は、請求項4記載の精密研磨方法において、前記研磨剤の平均粒径が5nm〜5μmであることを特徴とする精密研磨方法を提供する。
【0021】
請求項7記載の発明は、請求項4〜6いずれかに記載の精密研磨方法において、前記弾性研磨体が、弾性シートで構成され、圧力流体で前記弾性シートの内面に圧力を加え、前記弾性シートに張りを与えながら研磨することを特徴とする精密研磨方法を提供する。
【0022】
【発明の実施の形態】
以下、本発明の精密研磨工具及び精密研磨方法の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。
【0023】
図1は、本発明の精密研磨工具の一実施形態とこれを用いた精密研磨方法を説明する断面図である。
【0024】
この精密研磨工具1は、支持治具2に弾性研磨体3が取り付けられている構造を有する。支持治具2は、ステンレススチール等の金属で構成され、円盤状の支持治具本体21と、研磨装置に取り付けるために支持治具本体2の下面中央部に一体に設けられている装着部22と、支持治具本体21とは別体のリング状の押さえ部材23とで構成されている。押さえ部材23は、支持治具本体21の上面の外周面に図示しない圧着治具によって固定されるようになっている。
【0025】
弾性研磨体3は弾性シートで構成され、平らな円形のシート状の形状、又は、図1に示すように、リング状のフランジ部31が外周に設けられたドーム状部32を有する中空ドーム状の形状に成形されている。弾性研磨体3の外周部又はフランジ部31が支持治具本体21の上面外周面とリング状の押さえ部材23との間に、いわばパッキンのように圧着されて支持治具本体21に取り付けられている。これにより、弾性研磨体3の外周部又はフランジ部31は支持治具本体21の上面に圧着し、弾性研磨体3と支持治具本体21との間の空間が密封空間4を形成できるようになっている。
【0026】
また、支持治具本体21を貫通してこの密封空間4内に圧力流体を導入する配管5が設けられ、この配管5には逆止弁6が設けられている。逆止弁6は密封空間4内の圧力流体の圧力を一定に保つ機能を有する。圧力流体を密封空間4内へ導入することにより、平らなシート状の弾性研磨体3を膨らませてドーム状に形成することができる。また、ドーム状に成形された弾性研磨体3に張りを与えてドーム状の形状を保持することができる。弾性シートで構成される中空の弾性研磨体3は圧力流体の圧力でその形状をある程度変更することができる。
【0027】
このような精密研磨工具1の弾性研磨体3は、図1に示した弾性シートで構成され、圧力流体の内圧でドーム状の形状を保持するもの以外に、弾性素材をドーム状のブロックに形成したもの、ドーム状の弾性シートの中空部を他の弾性素材で充填したものなどでもよい。弾性シートの厚みは0.1〜10mm、特に0.2〜5mmの範囲が好ましく、JIS A硬さ(タイプAデュロメータ)10〜100、ヤング率10〜10N・cm−2、耐熱温度は100℃以上の物性値を備えるものが好ましい。弾性シートや弾性素材の材質は、天然ゴム、クロロプレンゴム、スチレン−ブタジエンゴム(SBR)、アクリロニトリル−ブタジエンゴム(NBR)、シリコンゴム、フッ素ゴム等のゴム、ポリエチレン、ナイロン等の熱可塑性樹脂、スチレン系、ウレタン系等の熱可塑性樹脂エラストマーを例示することができる。
【0028】
また、本発明の精密研磨工具1においては、弾性研磨体3の外表面の表面粗さの平均値Raは0.1μm以下、好ましくは、0.09μm以下とする。表面粗さの平均値Raは低いほどよい。弾性研磨体3の表面粗さがこれより粗いと、被研磨面を十分な面精度で研磨することが困難となる。弾性研磨体の表面粗さをこのような表面粗さとするためには、例えば弾性シートを成形する金型の表面粗さを0.1μm以下として金型の表面粗さを弾性シートに転写する方法や、弾性シートの表面を研磨する方法を採用することができる。なお、弾性研磨体は研磨体として使用中に表面が摩耗して上記表面粗さとなる場合がある。
【0029】
本発明で用いる弾性研磨体3としては、被研磨面より大面積であることが好ましい。これにより、被研磨面のほぼ全面に弾性研磨体3を当接させて研磨することが可能となる。また、弾性研磨体の面積を被研磨面の面積よりも大面積とすることにより、弾性研磨体の自転の周速度を速くして研磨速度を向上させると共に、弾性研磨体の形状追随性を向上させることができる。弾性研磨体のドーム状部の直径は、被研磨面の直径の1.1〜10倍、好ましくは1.5〜5倍程度の大きさとすることが望ましい。
【0030】
本発明の精密研磨工具1及び精密研磨方法の対象となる被研磨面としては、鏡面研磨を必要とするあらゆるものが研磨対象となる。例えば、球面、軸対称非球面、非軸対称非球面などの曲面を有する各種のレンズの凸面や凹面、金型、光学製品などが対象となり、材質としてはプラスチック、ガラス、超硬、鋼など制限はない。
【0031】
この精密研磨工具1を用いる精密研磨方法について説明する。図1に示すように、所定の厚さ、硬度、ドームの曲率等を選択した弾性研磨体3を支持治具2に装着する。弾性研磨体3と支持治具本体2との間の密封空間4に逆止弁6を介して配管5から圧縮空気等の所定の圧力の圧力流体を導入する。そのときの圧力流体の圧力は弾性研磨体3が被研磨物7の被研磨面の全体に均一に当たるように選定する。弾性研磨体3に研磨パッドを貼り付けない。密封空間4が所定の圧力になったときに圧力流体の導入を止め、精密研磨工具1を研磨装置のチャックに装着部22を介して装着する。
【0032】
一方の被研磨物7は、例えばワックス等の接合材を介して被研磨面と反対側の面を装着治具8に固定し、研磨装置のチャックに装着治具8を介して装着する。
【0033】
そして、被研磨物7の被研磨面のほぼ全面に弾性研磨体3を直接押し当て、被研磨物7又は精密研磨工具1に所定の荷重を加えて研磨圧力を与えながら精密研磨工具1を所定の回転数で回転させつつ、被研磨物7を所定の回転数で回転させて相互に擦り合わせ、ノズル9から研磨剤を含むスラリー10を弾性研磨体3の表面に供給しながら研磨を行う。
【0034】
この場合、弾性研磨体3に与える内圧は、例えば0.2〜1.2kgf/cm、弾性研磨体3の回転数は、例えば10〜200rpm/min、被研磨物7の回転数は、例えば10〜100rpm/min、研磨圧力は、例えば1〜8kgfの研磨条件で研磨することができる。
【0035】
本発明の精密研磨工具1は、表面粗さが所定の弾性研磨体1を用いて被研磨物7の被研磨面のほぼ全体に弾性研磨体3を押し付けながら、被研磨面及び弾性研磨体3をそれぞれ回転させ、スラリー状の研磨剤を弾性研磨体3に供給して被研磨面を研磨することにより、弾性研磨体3が被研磨面の曲面に追随して例えば表面粗さの平均値Raが2〜10nm程度の鏡面研磨面を迅速に得ることができる。
【0036】
研磨パッドを介さずに表面が滑らかな弾性研磨体3を用いて極めて高い面精度に迅速に研磨できる理由は、明確ではない。表面粗さ計で測定された弾性研磨体を構成するゴムシートの表面粗さの平均値Raは、概ね0.0786μm〜0.0857μm程度であるが、研磨に使っていないものでは概ね0.5μm〜1.5μmの突起や凹みが存在する。研磨に使用したものでは表面粗さの平均値Raは、0.064μm程度に低下し、概ね0.25μm〜0.5μmの細かい凹凸が存在する。この細かい凹凸が平均粒径1μm程度の研磨剤を保持すると共に、削られた微粒子の通り道になっていると考えられる。
【0037】
この精密研磨工具1を取り付ける研磨装置としては、被研磨物7に所定の回転数で回転駆動させる手段と、精密研磨工具1を所定の回転数で回転駆動させる手段と、精密研磨工具1と被研磨物7とを所定の研磨圧力で密着させる加圧手段とを有するものであればよい。
【0038】
例えば、図2に示すNC制御の部分研磨装置100のポリシングヘッド101を本発明の精密研磨工具1で置き換えるようにしてもよい。この部分研磨装置100は、4軸NC制御によりポリシング軸を加工面に対して法線方向に向くように制御して研磨するものである。ポリシングヘッド101は例えば球形の弾性体の表面に研磨パッドを貼り付けたものが用いられる。この部分研磨装置100は、ワークの水平方向の位置を制御するX軸テーブル102、ワーク110の傾きを制御する角度割り出しが可能なチルトテーブル103、ポリシャヘッド101の垂直方向の位置を制御するZ軸昇降機構104、ワーク110の回転位置を制御する回転テーブル105の4軸で研磨する。ポリシングヘッド101はエアーシリンダ106の圧力制御により所定の荷重でワーク110に押し付けられながら回転駆動される。
【0039】
例えば、この部分研磨装置100のポリシングヘッド101を本発明の精密研磨工具1に交換し、チルトテーブル103は水平にし、ポリシングヘッド101の回転軸を垂直方向にしてワーク110を所定の回転数で回転させると共に、精密研磨工具1を所定の回転数で回転させながら所定の荷重でワークに押し付ける方法で研磨することができる。
【0040】
上記精密研磨工具の説明では、逆止弁を用いて密封空間内の圧力を一定に保つようにしていたが、装着部の中心に圧力流体を導入できる通路を設け、圧力流体側と連通させることにより、密封空間内を一定の圧力に維持するようにしてもよい。また、上記説明では、被研磨面のほぼ全面に弾性研磨体を当てながら研磨するように説明しているが、被研磨面の一部に弾性研磨体を当てながら研磨するようにしてもよい。
【0041】
【実施例】
図2に示したNC制御の部分研磨装置のポリシャヘッドを本発明の精密研磨工具に交換して研磨を行った。
【0042】
<実施例1>
被加工物は、材質がショットS−3で外径が40φの光学ガラスレンズの凸面側を研削装置で非球面加工し、凹面側を球面加工し更に光学鏡面(表面粗さの平均値Ra:0.003μm)にしたものを用い、その凸面を被研磨面とした。
【0043】
この光学ガラスレンズの凹面側をワックスを使用してドライヤーで溶かして装着治具に接着した。
【0044】
弾性研磨体3は、厚さ1mm、硬度HS90のNBRゴムシートが120Rのドーム状に形成されたものを用いた。このゴムシートの表面粗さの平均値Raは0.0786〜0.0857μm程度である。
【0045】
研磨剤は、酸化セリウム(セロックス平均粒径1μm)を用い、純水を希釈液として比重1.07±0.01のスラリーに調製した。
【0046】
研磨条件は、ポリシャ回転数:30rpm、ワーク回転数:60rpm、研磨荷重:3.5kgf、研磨時間:5minで行った。
【0047】
研磨後の光学ガラスレンズの凸面の表面粗さの平均値Raは0.0027μmであった。3時間使用した弾性研磨体の表面粗さの平均値Raは0.064μm程度であった。
【0048】
<比較例1>
実施例1と同じ弾性研磨体を用いて、その表面に研磨パッドとして厚さ0.8mmのセリウムシートを貼り付けたものを用いた。
【0049】
実施例1と同じNC研磨装置を用い、同じ研磨剤を用い、同一の研磨条件で同一の時間研磨を行った。
【0050】
研磨後の光学ガラスレンズの凸面の表面粗さRaは0.0193μmであった。
【0051】
<実施例2>
被加工物は、材質がBK−7で外径が40φの光学ガラスレンズの凸面側を研削装置で非球面加工し、凹面側を球面加工し更に光学鏡面(表面粗さの平均値Ra:0.003μm)にしたものを用い、その凸面を被研磨面とした。
【0052】
実施例1と同じ弾性研磨体を用い、実施例1と同じNC研磨装置を用い、同じ研磨剤を用い、同一の研磨条件で同一の時間研磨を行った。その結果、研磨後の光学ガラスレンズの凸面の表面粗さの平均値Raは0.0077μmであった。
【0053】
<比較例2>
実施例2と同じ被加工物を用い、比較例1と同様に研磨パッドとして厚さ0.8mmのセリウムシートを貼り付けた弾性研磨体を用い、実施例1と同じNC研磨装置を用い、同じ研磨剤を用い、同一の研磨条件で同一の時間研磨を行った。その結果、研磨後の光学ガラスレンズの凸面の表面粗さの平均値Raは0.0114μmであった。
【0054】
<実施例3>
被加工物は、材質がBK−7で外径が28φの光学ガラスレンズの凸面側を研削装置で非球面加工し、凹面側を研削装置で球面加工し更に光学鏡面(表面粗さ平均値Ra:0.003μm)にしたものを用い、その凸面を被研磨面とした。
【0055】
実施例1と同じ弾性研磨体を用い、実施例1と同じNC研磨装置を用い、同じ研磨剤を用い、同一の研磨条件で同一の時間研磨を行った。その結果、研磨後の光学ガラスレンズの凸面の表面粗さの平均値Raは0.0068μmであった。
【0056】
<比較例3>
実施例3と同じ被加工物を用い、比較例1と同様に研磨パッドとして厚さ0.8mmのセリウムシートを貼り付けた弾性研磨体を用い、実施例1と同じNC研磨装置を用い、同じ研磨剤を用い、同一の研磨条件で同一の時間研磨を行った。その結果、研磨後の光学ガラスレンズの凸面の表面粗さの平均値Raは0.0161μmであった。
【0057】
【発明の効果】
本発明の精密研磨工具は、研磨パッドを介さずに弾性研磨体で直接被研磨面を研磨することにより、高い面精度の研磨面を迅速に得ることができる。
【0058】
本発明の精密研磨方法は、研磨パッドを介さずに弾性研磨体で直接被研磨面を研磨することにより、高い面精度の研磨面を迅速に得ることができる。
【図面の簡単な説明】
【図1】本発明の精密研磨工具の一実施形態とこれを用いた精密研磨方法を説明する断面図である。
【図2】NC制御の部分研磨装置の概要を示す概略構成図である。
【符号の説明】
1:精密研磨工具
2:支持治具
21:支持治具本体
22:装着部
23:押さえ治具
3:弾性研磨体
4:密封空間
5:配管
6:逆止弁
7:被研磨物
8:装着治具
9:ノズル
10:研磨剤を含むスラリー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a precision polishing tool and a precision polishing method for finishing a surface of a lens or the like to a mirror surface.
[0002]
[Prior art]
NC control cutting technology has advanced, and it has become possible to form non-axisymmetric aspheric surfaces such as lenses by cutting. In optical products, it is necessary to polish the created cut surface to a desired smooth optical mirror surface. In recent years, the performance of lenses has been improved, and the requirements for shape accuracy and surface accuracy for mirror polishing have become strict.
[0003]
Conventionally, as shown in Patent Document 1, a hollow dome-shaped polisher head made of a rubber-like elastic material has been used for mirror polishing of a non-axisymmetric aspheric surface. In the polishing method, a polishing pad is attached to the surface of the polisher head, compressed air is introduced into the polisher head to give tension to the dome-shaped portion, and a slurry-like abrasive is supplied to the polisher head and the object to be polished. These are rubbed together while rotating to effect mirror polishing.
[0004]
Further, a partial polishing method using a small dome-shaped elastic polishing body that is in contact with a part of a surface to be polished of a polishing object is known. In this partial polishing method, a maximum curvature is obtained from the shape of the surface to be polished, a dome-shaped elastic polishing body having a curvature larger than the maximum curvature is selected, and a part of the surface to be polished is rotated while rotating the elastic polishing body. Then, the entire surface to be polished is polished by scanning the entire surface to be polished with the elastic polishing body.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. H11-77503
[Problems to be solved by the invention]
However, in the polishing performed by attaching a polishing pad to the surface of a hollow dome-shaped polisher head made of an elastic material, a non-axisymmetric aspheric surface is excellent in shape followability, but for example, a surface having a high surface roughness of about 2 nm. There is a problem that it cannot be finished with high accuracy.
[0007]
Further, the partial polishing method has a problem that a long polishing time is required because the entire polishing surface is polished by a small polishing head, and the manufacturing cost is high.
[0008]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a precision polishing tool capable of rapidly polishing a non-axisymmetric aspheric surface with high surface accuracy.
[0009]
Another object of the present invention is to provide a precision polishing method capable of rapidly polishing a non-axisymmetric aspheric surface with high surface accuracy.
[0010]
[Means for Solving the Problems]
The inventor of the present invention has conducted intensive studies to achieve the above object, and as a result, a conventional polishing method in which a polishing pad is attached to the surface of a hollow dome-shaped polisher head made of an elastic material disclosed in Patent Document 1 The reason that the optical mirror surface having the expected surface roughness could not be obtained was considered to be due to the polishing pad. Conventionally, a desired optical mirror surface may be obtained by modifying the surface of a polishing pad with sandpaper or the like and then performing a polishing operation, but this is inefficient. This polishing pad is usually in the form of a petal and has a function of holding a polishing liquid and the like, and a gap between protruding petals of the polishing pad functions as a passage for supplying abrasive grains and water and discharging polishing waste. It was considered to be a necessary member for mirror polishing.
[0011]
However, when the polishing was performed by directly applying a hollow dome-shaped polisher head made of an elastic material to the surface to be polished without attaching a polishing pad, this polisher head could not be expected to have a function of holding an abrasive. It was found that an optical mirror surface having the expected surface roughness was obtained. In addition, the surface roughness obtained by polishing is affected by the surface roughness of the elastic polishing body, and by setting the average value Ra of the surface roughness of the elastic polishing body to 0.1 μm or less, an optical mirror surface having sufficiently high surface accuracy can be obtained. It has been found that it can be formed. In this polishing method, the polishing is performed while pressing the dome-shaped elastic abrasive body against almost the entire surface to be polished, so that the elastic abrasive body uniformly deforms the entire surface to be polished while deforming following the curved surface of the surface to be polished. Therefore, the polishing rate is extremely high as compared with the partial polishing method.
[0012]
When the elastic polishing body, which is the portion for polishing the surface to be polished, is expanded in a dome shape or is formed of an elastic sheet formed in a dome shape, the range of polishing conditions such as the internal pressure of the elastic polishing body and the hardness of the elastic sheet is reduced. It becomes large, and appropriate polishing can be performed.
[0013]
In order to keep the internal pressure of the dome-shaped elastic polishing body constant, it is preferable to form a sealed space inside the dome-shaped elastic polishing body and provide a check valve for keeping the pressure in the sealed space constant.
[0014]
The average particle size of the abrasive is preferably in the range of 5 nm to 5 μm.
[0015]
Therefore, the invention according to claim 1 is characterized in that the elastic polishing body is made of an elastic material which expands in a dome shape or is formed in a dome shape and has an average surface roughness Ra of 0.1 μm or less; And a support jig provided with a mounting portion attached to a chuck of the polishing apparatus.
[0016]
According to a second aspect of the present invention, in the precision polishing tool according to the first aspect, the elastic polishing body is formed of an elastic sheet, and the support jig and the elastic polishing body form a sealed space. Provide precision polishing tools.
[0017]
According to a third aspect of the present invention, in the precision polishing tool according to the second aspect, a check valve connected to the sealed space, for introducing a pressurized fluid into the sealed space and maintaining the sealed state is provided on the support jig. Provided is a precision polishing tool that is attached to a polishing tool.
[0018]
According to a fourth aspect of the present invention, the surface to be polished and the elastic polishing body are respectively rotated while pressing the surface to be polished against the elastic polishing body expanded or formed into a dome shape, and the slurry-like polishing is performed. A precision polishing method, characterized in that a polishing agent is supplied to the elastic polishing body to polish the surface to be polished.
[0019]
According to a fifth aspect of the present invention, there is provided the precision polishing method according to the fourth aspect, wherein an average value Ra of the surface roughness of the elastic polishing body is 0.1 μm or less.
[0020]
The invention according to claim 6 provides the precision polishing method according to claim 4, wherein the abrasive has an average particle diameter of 5 nm to 5 μm.
[0021]
According to a seventh aspect of the present invention, in the precision polishing method according to any one of the fourth to sixth aspects, the elastic polishing body is formed of an elastic sheet, and a pressure is applied to an inner surface of the elastic sheet by a pressure fluid to thereby form the elastic polishing body. Provided is a precision polishing method characterized by polishing while applying tension to a sheet.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the precision polishing tool and the precision polishing method of the present invention will be described, but the present invention is not limited to the following embodiments.
[0023]
FIG. 1 is a cross-sectional view illustrating a precision polishing tool according to an embodiment of the present invention and a precision polishing method using the tool.
[0024]
This precision polishing tool 1 has a structure in which an elastic polishing body 3 is attached to a support jig 2. The support jig 2 is made of a metal such as stainless steel, and has a disk-shaped support jig main body 21 and a mounting portion 22 provided integrally with a lower surface center of the support jig main body 2 to be attached to a polishing apparatus. And a ring-shaped pressing member 23 separate from the supporting jig main body 21. The pressing member 23 is fixed to the outer peripheral surface of the upper surface of the support jig body 21 by a crimping jig (not shown).
[0025]
The elastic polishing body 3 is made of an elastic sheet and has a flat circular sheet shape or a hollow dome shape having a dome-shaped portion 32 provided with a ring-shaped flange portion 31 on the outer periphery as shown in FIG. It is formed in the shape of. The outer peripheral portion or the flange portion 31 of the elastic polishing body 3 is press-fitted like a packing between the outer peripheral surface of the upper surface of the support jig body 21 and the ring-shaped pressing member 23 so as to be attached to the support jig body 21. I have. Thereby, the outer peripheral portion or the flange portion 31 of the elastic polishing body 3 is pressed against the upper surface of the support jig main body 21 so that the space between the elastic polishing body 3 and the support jig main body 21 can form the sealed space 4. Has become.
[0026]
In addition, a pipe 5 that penetrates the support jig body 21 and introduces a pressure fluid into the sealed space 4 is provided, and the pipe 5 is provided with a check valve 6. The check valve 6 has a function of keeping the pressure of the pressurized fluid in the sealed space 4 constant. By introducing the pressurized fluid into the sealed space 4, the flat sheet-like elastic polishing body 3 can be expanded and formed into a dome shape. In addition, the elastic polishing body 3 formed in a dome shape can be given tension to maintain the dome shape. The shape of the hollow elastic abrasive body 3 composed of an elastic sheet can be changed to some extent by the pressure of the pressure fluid.
[0027]
The elastic polishing body 3 of such a precision polishing tool 1 is formed of the elastic sheet shown in FIG. 1 and is formed of an elastic material in a dome-shaped block in addition to a dome-shaped shape maintained by the internal pressure of the pressure fluid. Or a dome-shaped elastic sheet whose hollow portion is filled with another elastic material. The thickness of the elastic sheet is preferably 0.1 to 10 mm, particularly preferably 0.2 to 5 mm, JIS A hardness (type A durometer) 10 to 100, Young's modulus 10 2 to 10 3 N · cm −2 , heat resistance temperature Preferably have physical properties of 100 ° C. or higher. The elastic sheet or elastic material is made of natural rubber, chloroprene rubber, styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), rubber such as silicone rubber, fluorine rubber, thermoplastic resin such as polyethylene, nylon, or styrene. And urethane-based thermoplastic resin elastomers.
[0028]
Further, in the precision polishing tool 1 of the present invention, the average value Ra of the surface roughness of the outer surface of the elastic polishing body 3 is 0.1 μm or less, preferably 0.09 μm or less. The lower the average value Ra of the surface roughness, the better. If the surface roughness of the elastic polishing body 3 is rougher than this, it becomes difficult to polish the surface to be polished with sufficient surface accuracy. In order to set the surface roughness of the elastic polishing body to such a surface roughness, for example, a method of transferring the surface roughness of the mold to the elastic sheet by setting the surface roughness of the mold for forming the elastic sheet to 0.1 μm or less. Alternatively, a method of polishing the surface of the elastic sheet can be employed. The surface of the elastic abrasive body may be worn during use as the abrasive body, resulting in the above surface roughness.
[0029]
The elastic polishing body 3 used in the present invention preferably has a larger area than the surface to be polished. This makes it possible to perform polishing by bringing the elastic polishing body 3 into contact with almost the entire surface to be polished. In addition, by making the area of the elastic polishing body larger than the area of the surface to be polished, the peripheral speed of the rotation of the elastic polishing body is increased to improve the polishing speed, and the shape following property of the elastic polishing body is improved. Can be done. It is desirable that the diameter of the dome-shaped portion of the elastic polishing body be 1.1 to 10 times, preferably 1.5 to 5 times the diameter of the surface to be polished.
[0030]
As the surface to be polished to be subjected to the precision polishing tool 1 and the precision polishing method of the present invention, anything requiring mirror polishing is to be polished. For example, convex and concave surfaces of various lenses having curved surfaces such as spherical surfaces, axisymmetric aspheric surfaces, and non-axisymmetric aspheric surfaces, molds, optical products, etc. are applicable, and materials such as plastic, glass, carbide, and steel are limited. There is no.
[0031]
A precision polishing method using the precision polishing tool 1 will be described. As shown in FIG. 1, the elastic polishing body 3 having a predetermined thickness, hardness, dome curvature, and the like selected is mounted on the support jig 2. A pressure fluid such as compressed air is introduced from a pipe 5 into a sealed space 4 between the elastic polishing body 3 and the support jig body 2 via a check valve 6 through a check valve 6. The pressure of the pressure fluid at that time is selected so that the elastic polishing body 3 uniformly contacts the entire surface of the workpiece 7 to be polished. A polishing pad is not attached to the elastic polishing body 3. When the pressure in the sealed space 4 reaches a predetermined pressure, the introduction of the pressure fluid is stopped, and the precision polishing tool 1 is mounted on the chuck of the polishing apparatus via the mounting portion 22.
[0032]
One of the objects to be polished 7 is fixed to the mounting jig 8 on the side opposite to the surface to be polished via a bonding material such as wax, and mounted on the chuck of the polishing apparatus via the mounting jig 8.
[0033]
Then, the elastic polishing body 3 is directly pressed onto almost the entire surface to be polished of the object 7 to be polished, and a predetermined load is applied to the object 7 or the precision polishing tool 1 to apply the polishing pressure to the predetermined position. The object to be polished 7 is rotated at a predetermined number of revolutions while rotating at a predetermined number of revolutions, and rubs against each other. Polishing is performed while a slurry 10 containing an abrasive is supplied from the nozzle 9 to the surface of the elastic abrasive body 3.
[0034]
In this case, the internal pressure applied to the elastic polishing body 3 is, for example, 0.2 to 1.2 kgf / cm 2 , the rotation speed of the elastic polishing body 3 is, for example, 10 to 200 rpm / min, and the rotation speed of the workpiece 7 is, for example, The polishing can be performed under the polishing conditions of 10 to 100 rpm / min and the polishing pressure of, for example, 1 to 8 kgf.
[0035]
The precision polishing tool 1 of the present invention uses the elastic polishing body 1 having a predetermined surface roughness and presses the elastic polishing body 3 on almost the entire surface to be polished of the work 7 to be polished. Are rotated to supply a slurry-like abrasive to the elastic polishing body 3 to polish the surface to be polished, so that the elastic polishing body 3 follows the curved surface of the surface to be polished, for example, the average value Ra of the surface roughness. Can quickly obtain a mirror-polished surface of about 2 to 10 nm.
[0036]
The reason why the polishing can be rapidly performed with extremely high surface accuracy using the elastic polishing body 3 having a smooth surface without using a polishing pad is not clear. The average value Ra of the surface roughness of the rubber sheet constituting the elastic abrasive body measured by the surface roughness meter is about 0.0786 μm to 0.0857 μm, but about 0.5 μm for those not used for polishing. There are protrusions and depressions of up to 1.5 μm. In the one used for polishing, the average value Ra of the surface roughness is reduced to about 0.064 μm, and fine irregularities of about 0.25 μm to 0.5 μm are present. It is considered that the fine irregularities hold the abrasive having an average particle size of about 1 μm and are a path for the cut fine particles.
[0037]
As a polishing apparatus to which the precision polishing tool 1 is attached, means for rotating the workpiece 7 at a predetermined rotation speed, means for rotating the precision polishing tool 1 at a predetermined rotation speed, What is necessary is just to have a pressurizing means for bringing the polishing object 7 into close contact with the predetermined polishing pressure.
[0038]
For example, the polishing head 101 of the NC controlled partial polishing apparatus 100 shown in FIG. 2 may be replaced with the precision polishing tool 1 of the present invention. This partial polishing apparatus 100 performs polishing by controlling the polishing axis so as to be directed in the normal direction to the processing surface by 4-axis NC control. As the polishing head 101, for example, a polishing head with a polishing pad attached to the surface of a spherical elastic body is used. The partial polishing apparatus 100 includes an X-axis table 102 for controlling the horizontal position of the work, a tilt table 103 for controlling the inclination of the work 110, and a Z-axis for controlling the vertical position of the polisher head 101. Polishing is performed on four axes of a lifting table 104 and a rotary table 105 that controls the rotation position of the work 110. The polishing head 101 is driven to rotate while being pressed against the work 110 with a predetermined load by pressure control of the air cylinder 106.
[0039]
For example, the polishing head 101 of the partial polishing apparatus 100 is replaced with the precision polishing tool 1 of the present invention, the tilt table 103 is set horizontal, and the rotation axis of the polishing head 101 is set in the vertical direction, and the work 110 is rotated at a predetermined rotation speed. At the same time, the polishing can be performed by a method in which the precision polishing tool 1 is pressed against a workpiece with a predetermined load while being rotated at a predetermined rotation speed.
[0040]
In the description of the precision polishing tool, a check valve is used to keep the pressure in the sealed space constant.However, a passage that can introduce a pressure fluid is provided at the center of the mounting portion, and a communication with the pressure fluid side is provided. Thereby, the inside of the sealed space may be maintained at a constant pressure. In the above description, the polishing is performed while applying the elastic polishing body to almost the entire surface to be polished. However, the polishing may be performed while applying the elastic polishing body to a part of the surface to be polished.
[0041]
【Example】
Polishing was performed by replacing the polisher head of the NC controlled partial polishing apparatus shown in FIG. 2 with the precision polishing tool of the present invention.
[0042]
<Example 1>
The workpiece is made of an optical glass lens having a shot S-3 and an outer diameter of 40φ, and the convex side of the optical glass lens is aspherically processed by a grinding device, the concave side is spherically processed, and the optical mirror surface (average surface roughness Ra: 0.003 μm), and the convex surface was used as the surface to be polished.
[0043]
The concave side of this optical glass lens was melted with a drier using wax and bonded to a mounting jig.
[0044]
As the elastic abrasive body 3, an NBR rubber sheet having a thickness of 1 mm and a hardness of HS90 formed in a 120R dome shape was used. The average value Ra of the surface roughness of the rubber sheet is about 0.0786 to 0.0857 μm.
[0045]
The abrasive was prepared as a slurry having a specific gravity of 1.07 ± 0.01 using cerium oxide (cerox average particle diameter 1 μm) and pure water as a diluent.
[0046]
Polishing conditions were as follows: polisher rotation speed: 30 rpm, work rotation speed: 60 rpm, polishing load: 3.5 kgf, polishing time: 5 min.
[0047]
The average value Ra of the surface roughness of the convex surface of the optical glass lens after polishing was 0.0027 μm. The average value Ra of the surface roughness of the elastic polishing body used for 3 hours was about 0.064 μm.
[0048]
<Comparative Example 1>
The same elastic polishing body as in Example 1 was used, and a cerium sheet having a thickness of 0.8 mm was attached as a polishing pad to the surface thereof.
[0049]
Polishing was performed using the same NC polishing apparatus and the same polishing agent as in Example 1 under the same polishing conditions and for the same time.
[0050]
The surface roughness Ra of the convex surface of the optical glass lens after polishing was 0.0193 μm.
[0051]
<Example 2>
The workpiece is made of an optical glass lens having a material of BK-7 and an outer diameter of 40φ. The convex side is aspherically processed by a grinding device, the concave side is spherically processed, and the optical mirror surface (average surface roughness Ra: 0) .003 μm), and the convex surface was used as the surface to be polished.
[0052]
Polishing was performed using the same elastic polishing body as in Example 1, using the same NC polishing apparatus as in Example 1, using the same abrasive, and under the same polishing conditions for the same time. As a result, the average surface roughness Ra of the convex surface of the optical glass lens after polishing was 0.0077 μm.
[0053]
<Comparative Example 2>
Using the same workpiece as in Example 2, using an elastic polishing body to which a cerium sheet having a thickness of 0.8 mm was adhered as a polishing pad as in Comparative Example 1, using the same NC polishing apparatus as in Example 1, Polishing was performed under the same polishing conditions for the same time using an abrasive. As a result, the average value Ra of the surface roughness of the convex surface of the optical glass lens after polishing was 0.0114 μm.
[0054]
<Example 3>
The workpiece is made of an optical glass lens having a material of BK-7 and an outer diameter of 28φ, the convex side of which is aspherically processed by a grinder, the concave side of which is spherically processed by a grinder, and the optical mirror surface (surface roughness average Ra). : 0.003 μm), and the convex surface was used as the surface to be polished.
[0055]
Polishing was performed using the same elastic polishing body as in Example 1, using the same NC polishing apparatus as in Example 1, using the same abrasive, and under the same polishing conditions for the same time. As a result, the average value Ra of the convex surface roughness of the optical glass lens after polishing was 0.0068 μm.
[0056]
<Comparative Example 3>
Using the same workpiece as in Example 3, using an elastic polishing body to which a cerium sheet having a thickness of 0.8 mm was adhered as a polishing pad as in Comparative Example 1, using the same NC polishing apparatus as in Example 1, Polishing was performed under the same polishing conditions for the same time using an abrasive. As a result, the average value Ra of the convex surface roughness of the polished optical glass lens was 0.0161 μm.
[0057]
【The invention's effect】
ADVANTAGE OF THE INVENTION The precision polishing tool of this invention can obtain | require a highly polished surface with high surface precision quickly by directly grind | polishing a to-be-polished surface with an elastic polishing body, without a polishing pad.
[0058]
According to the precision polishing method of the present invention, a polished surface with high surface accuracy can be quickly obtained by directly polishing the surface to be polished with an elastic polishing body without using a polishing pad.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a precision polishing tool according to an embodiment of the present invention and a precision polishing method using the same.
FIG. 2 is a schematic configuration diagram illustrating an outline of an NC-controlled partial polishing apparatus.
[Explanation of symbols]
1: precision polishing tool 2: support jig 21: support jig main body 22: mounting portion 23: holding jig 3: elastic polishing body 4: sealed space 5: piping 6: check valve 7, polishing object 8: mounting Jig 9: Nozzle 10: Slurry containing abrasive

Claims (7)

ドーム状に膨張する又はドーム状に形成された弾性材で構成される、表面粗さの平均値Raが0.1μm以下の弾性研磨体と、前記弾性研磨体を支持すると共に、研磨装置のチャックに取り付けられる装着部を備える支持治具とを有することを特徴とする精密研磨工具。An elastic polishing body having an average surface roughness Ra of 0.1 μm or less, which is formed of an elastic material that expands in a dome shape or is formed in a dome shape; a chuck for the polishing device that supports the elastic polishing body; And a support jig having a mounting part attached to the tool. 請求項1記載の精密研磨工具において、
前記弾性研磨体が弾性シートで構成され、前記支持治具と前記弾性研磨体とが密封空間を形成することを特徴とする精密研磨工具。
The precision polishing tool according to claim 1,
The precision polishing tool, wherein the elastic polishing body is formed of an elastic sheet, and the support jig and the elastic polishing body form a sealed space.
請求項2記載の精密研磨工具において、
前記密封空間と接続され、前記密封空間に加圧流体を導入すると共に、その密封を維持する逆止弁が前記支持治具に取り付けられていることを特徴とする精密研磨工具。
The precision polishing tool according to claim 2,
A precision polishing tool connected to the sealed space, wherein a check valve for introducing a pressurized fluid into the sealed space and maintaining the seal is attached to the support jig.
ドーム状に膨張した又はドーム状に形成された弾性研磨体に被研磨面を押し当てながら、前記被研磨面及び前記弾性研磨体をそれぞれ回転させ、スラリー状の研磨剤を前記弾性研磨体に供給して前記被研磨面を研磨することを特徴とする精密研磨方法。The surface to be polished and the elastic polishing body are rotated while pressing the surface to be polished against the elastic polishing body expanded or shaped like a dome, and a slurry-like abrasive is supplied to the elastic polishing body. And polishing the surface to be polished. 請求項4記載の精密研磨方法において、
前記弾性研磨体の表面粗さの平均値Raが0.1μm以下であることを特徴とする精密研磨方法。
In the precision polishing method according to claim 4,
A precision polishing method, wherein the average value Ra of the surface roughness of the elastic polishing body is 0.1 μm or less.
請求項4記載の精密研磨方法において、
前記研磨剤の平均粒径が5nm〜5μmであることを特徴とする精密研磨方法。
In the precision polishing method according to claim 4,
A precision polishing method, wherein the abrasive has an average particle size of 5 nm to 5 μm.
請求項4〜6いずれかに記載の精密研磨方法において、
前記弾性研磨体が、弾性シートで構成され、圧力流体で前記弾性シートの内面に圧力を加え、前記弾性シートに張りを与えながら研磨することを特徴とする精密研磨方法。
The precision polishing method according to any one of claims 4 to 6,
The precision polishing method, wherein the elastic polishing body is formed of an elastic sheet, and a pressure is applied to an inner surface of the elastic sheet with a pressure fluid to grind the elastic sheet while applying tension thereto.
JP2003153203A 2003-05-29 2003-05-29 Precise polishing tool and precise polishing method Withdrawn JP2004351574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153203A JP2004351574A (en) 2003-05-29 2003-05-29 Precise polishing tool and precise polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153203A JP2004351574A (en) 2003-05-29 2003-05-29 Precise polishing tool and precise polishing method

Publications (1)

Publication Number Publication Date
JP2004351574A true JP2004351574A (en) 2004-12-16

Family

ID=34048224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153203A Withdrawn JP2004351574A (en) 2003-05-29 2003-05-29 Precise polishing tool and precise polishing method

Country Status (1)

Country Link
JP (1) JP2004351574A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102581743A (en) * 2012-02-21 2012-07-18 宁波大学 Method for polishing aspheric optical part
CN108972162A (en) * 2018-08-06 2018-12-11 大连理工大学 A kind of sapphire dome plunge grinding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102581743A (en) * 2012-02-21 2012-07-18 宁波大学 Method for polishing aspheric optical part
CN108972162A (en) * 2018-08-06 2018-12-11 大连理工大学 A kind of sapphire dome plunge grinding method

Similar Documents

Publication Publication Date Title
KR100581708B1 (en) Polishing method and polishing device
JP4681024B2 (en) Glasses lens polishing method
KR102413618B1 (en) Method for shaping and finishing a workpiece
US6929534B2 (en) Polisher and polishing method
US20070087670A1 (en) Polishing method
JP2001338901A (en) Process method and equipment for planarization, and method for manufacturing semiconductor device
US20050202754A1 (en) Method, apparatus, and tools for precision polishing of lenses and lens molds
JP2002263995A (en) Method and device for grinding spherical surface
US3889426A (en) Optical lens generating machine having an air rotatable spherical bearing workpiece holder
JP2004358591A (en) Polishing tool and polishing method
JP2004351574A (en) Precise polishing tool and precise polishing method
JP2002263998A (en) Polisher and method of polishing
JP4387708B2 (en) Polishing method and manufacturing method for plastic spectacle lens
JP2001054862A (en) Polishing fixture and curved face polishing method using it
JPH09239666A (en) Smoothing tool
JP2004237437A (en) Lap tool and method of manufacturing lap tool and method of polishing optical part
JP2006159398A (en) Elastic polishing tool and polishing method using this tool
JP2002144205A (en) Polishing device and manufacturing method for optical member
JP2001113452A (en) Aspheric surface polishing tool
JP2006055964A (en) Smoothing tool
JP2002187063A (en) Grinding method and smoothing method for forming die
JP2000326212A (en) Apparatus and method for flatly grinding semiconductor board
JPH1170453A (en) Polishing tool
JP2001353650A (en) Polisher, and method and device of polishing optical component using it
JPH11207599A (en) Aspherical abrasive tool

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801