JP6911547B2 - Super finishing method for grooves and manufacturing method for bearings - Google Patents

Super finishing method for grooves and manufacturing method for bearings Download PDF

Info

Publication number
JP6911547B2
JP6911547B2 JP2017113335A JP2017113335A JP6911547B2 JP 6911547 B2 JP6911547 B2 JP 6911547B2 JP 2017113335 A JP2017113335 A JP 2017113335A JP 2017113335 A JP2017113335 A JP 2017113335A JP 6911547 B2 JP6911547 B2 JP 6911547B2
Authority
JP
Japan
Prior art keywords
grindstone
groove
cross
curvature
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017113335A
Other languages
Japanese (ja)
Other versions
JP2018202578A (en
Inventor
健 海老名
健 海老名
敬 本間
敬 本間
修史 上西
修史 上西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2017113335A priority Critical patent/JP6911547B2/en
Publication of JP2018202578A publication Critical patent/JP2018202578A/en
Application granted granted Critical
Publication of JP6911547B2 publication Critical patent/JP6911547B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

本発明は、それぞれが円弧形の断面形状を有する複数の曲面部を組み合わせて構成された溝の超仕上げ方法、及び、軸受の製造方法に関する。 The present invention relates to a method for superfinishing a groove formed by combining a plurality of curved surfaces each having an arcuate cross-sectional shape, and a method for manufacturing a bearing.

一般的な深溝玉軸受では、軌道輪の周面に存在する軌道溝は、単一円弧形の断面形状を有する。このような軌道溝の表面に、加工の最終段階で超仕上げを施す場合、従来の一般的な超仕上げ方法では、軌道輪を自身の中心軸を中心として回転させながら、軌道溝の表面に砥石を押し付けた状態で、この砥石を、軌道溝の断面形状の曲率中心を揺動中心として揺動させる。これにより、軌道溝の表面を磨き上げ、軌道溝の表面粗さを向上させる。 In a general deep groove ball bearing, the raceway groove existing on the peripheral surface of the raceway ring has a single arcuate cross-sectional shape. When superfinishing the surface of such a raceway groove at the final stage of processing, in the conventional general superfinishing method, a grindstone is applied to the surface of the raceway groove while rotating the raceway ring around its own central axis. The grindstone is oscillated with the center of curvature of the cross-sectional shape of the raceway groove as the oscillating center. As a result, the surface of the track groove is polished to improve the surface roughness of the track groove.

一方、4点接触玉軸受では、軌道輪の周面に存在する軌道溝は、曲率中心が異なる位置に存在する2つの円弧を組み合わせて構成された、ゴシックアーク形の断面形状を有する。すなわち、4点接触玉軸受の軌道溝は、それぞれが円弧形の断面形状を有し、かつ、それぞれの断面形状の曲率中心が異なる位置に存在する、2つの曲面部を組み合わせて構成された表面を有している。このような軌道溝の表面に、加工の最終段階で超仕上げを施す場合、従来の一般的な超仕上げ方法では、2つの曲面部ごとに、一般的な深溝玉軸受の軌道溝の場合と同様の方法で超仕上げを施していた。すなわち、従来の一般的な超仕上げ方法では、一方の曲面部に施す超仕上げと、他方の曲面部に施す超仕上げとを、別工程で行っていた。 On the other hand, in the four-point contact ball bearing, the raceway groove existing on the peripheral surface of the raceway ring has a Gothic arc-shaped cross-sectional shape formed by combining two arcs having different centers of curvature. That is, the raceway grooves of the four-point contact ball bearings are formed by combining two curved surface portions, each of which has an arc-shaped cross-sectional shape and whose center of curvature of each cross-sectional shape exists at a different position. Has a surface. When superfinishing the surface of such a raceway groove at the final stage of processing, the conventional general superfinishing method is the same as the case of a raceway groove of a general deep groove ball bearing for each of two curved surfaces. It was super-finished by the method of. That is, in the conventional general super-finishing method, the super-finishing applied to one curved surface portion and the super-finishing applied to the other curved surface portion are performed in separate steps.

このため、4点接触玉軸受の軌道溝の加工ラインには、一方の曲面部に超仕上げを施すための設備と、他方の曲面部に超仕上げを施すための設備とが、それぞれ必要となり、一般的な深溝玉軸受の軌道溝の加工ラインに比べて、設備コストが高くなっていた。 For this reason, the processing line for the raceway groove of the four-point contact ball bearing requires equipment for super-finishing one curved surface portion and equipment for super-finishing the other curved surface portion, respectively. The equipment cost was higher than that of a general deep groove ball bearing raceway groove processing line.

このような不都合を解消できる発明として、特開2003−260650号公報には、4点接触玉軸受の軌道溝の表面を構成する2つの曲面部に、1工程で超仕上げを施す方法が記載されている。特開2003−260650号公報に記載された超仕上げ方法は、2つの砥石部を有する1個の砥石を使用し、軌道溝の周方向に対して傾斜した揺動軸心を中心として砥石を揺動させながら、一方の砥石部により一方の曲面部に超仕上げを施し、他方の砥石部により他方の曲面部に超仕上げを施すものである。 As an invention capable of eliminating such inconvenience, Japanese Patent Application Laid-Open No. 2003-260650 describes a method of superfinishing two curved surfaces constituting the surface of a raceway groove of a four-point contact ball bearing in one step. ing. The super-finishing method described in Japanese Patent Application Laid-Open No. 2003-260650 uses one grindstone having two grindstone portions, and rocks the grindstone around a swing axis inclined with respect to the circumferential direction of the raceway groove. While moving, one grindstone portion gives a super finish to one curved surface portion, and the other grindstone portion gives a super finish to the other curved surface portion.

特開2003−260650号公報Japanese Unexamined Patent Publication No. 2003-260650

特開2003−260650号公報に記載された超仕上げ方法では、2つの砥石部の揺動軌跡は、2つの曲面部の断面形状に近似はするものの、2つの曲面部の断面形状と同一にはならないため、2つの曲面部に高精度な超仕上げを施すことが難しい。 In the superfinishing method described in JP-A-2003-260650, the swing loci of the two grindstone portions are similar to the cross-sectional shapes of the two curved surface portions, but are not the same as the cross-sectional shapes of the two curved surface portions. Therefore, it is difficult to apply a highly accurate super finish to the two curved surfaces.

本発明は、上述のような事情に鑑みてなされたものであり、その目的は、それぞれが円弧形の断面形状を有する複数の曲面部を組み合わせて構成された溝の表面に、1工程で高精度な超仕上げを施すことができる方法を提供することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to cover the surface of a groove formed by combining a plurality of curved surface portions each having an arcuate cross-sectional shape in one step. It is to provide a method capable of applying a highly accurate super finish.

本発明の溝の超仕上げ方法は、周面と、該周面に形成され、それぞれが円弧形の断面形状を有する複数の曲面部を組み合わせて構成された表面を有する溝とを備えるワークを、該ワークの中心軸を中心として回転させながら、前記複数の曲面部のうちの何れの曲面部の幅寸法よりも小さい幅寸法を有する砥石の先端面を前記溝の表面に押し付けた状態で、前記砥石を該砥石の揺動軸心を中心として揺動させることにより前記砥石の先端面を前記ワークの軸方向に関して前記溝の表面の一方側端部と他方側端部との間で往復移動させ、かつ、前記複数の曲面部のうち、互いに隣り合う2つの曲面部のうちの何れか一方の曲面部から他方の曲面部に前記砥石の先端面を移動させる際に、前記揺動軸心を前記何れか一方の曲面部の断面形状の曲率中心の位置から前記他方の曲面部の断面形状の曲率中心の位置に移動させる。 The groove superfinishing method of the present invention comprises a work having a peripheral surface and a groove having a surface formed on the peripheral surface and formed by combining a plurality of curved surfaces each having an arcuate cross-sectional shape. While rotating around the central axis of the work, the tip surface of the grindstone having a width dimension smaller than the width dimension of any of the curved surface portions of the plurality of curved surface portions is pressed against the surface of the groove. By swinging the grindstone around the swing axis of the grindstone, the tip surface of the grindstone is reciprocated between one side end portion and the other side end portion of the surface of the groove with respect to the axial direction of the work. The swing axis is moved when the tip surface of the grindstone is moved from one of the two curved surfaces adjacent to each other to the other curved surface of the plurality of curved surfaces. Is moved from the position of the center of curvature of the cross-sectional shape of one of the curved surfaces to the position of the center of curvature of the cross-sectional shape of the other curved surface.

本発明の溝の超仕上げ方法では、前記何れか一方の曲面部から前記他方の曲面部に前記砥石の先端面を移動させる際に、これらの2つの曲面部の接続部で前記砥石の先端面の移動を、一旦停止させることなく、又は、一旦停止させた状態で、前記揺動軸心を前記何れか一方の曲面部の断面形状の曲率中心の位置から前記他方の曲面部の断面形状の曲率中心の位置に移動させることができる。 In the groove superfinishing method of the present invention, when the tip surface of the grindstone is moved from one of the curved surface portions to the other curved surface portion, the tip surface of the grindstone is connected at the connecting portion of these two curved surface portions. The movement of the swing axis is changed from the position of the center of curvature of the cross-sectional shape of one of the curved surfaces to the cross-sectional shape of the other curved surface without stopping or once stopped. It can be moved to the position of the center of curvature.

本発明の溝の超仕上げ方法では、前記砥石を、前記揺動軸心を中心として、一定の揺動周波数で揺動させながら、前記揺動軸心を前記何れか一方の曲面部の断面形状の曲率中心の位置から前記他方の曲面部の断面形状の曲率中心の位置に移動させることができる。 In the groove super-finishing method of the present invention, the grindstone is oscillated at a constant oscillating frequency around the oscillating axis, and the oscillating axis is oscillated by the cross-sectional shape of one of the curved surfaces. It is possible to move from the position of the center of curvature of the above to the position of the center of curvature of the cross-sectional shape of the other curved surface portion.

本発明の製造方法の対象となる軸受は、周面と、該周面に形成され、それぞれが円弧形の断面形状を有する複数の曲面部を組み合わせて構成された表面を有する軌道溝とを備え、かつ、前記軌道溝に超仕上げが施されている軌道輪を含んで構成されている。
特に、本発明の軸受の製造方法では、前記軌道溝の超仕上げを、本発明の溝の超仕上げ方法により行う。
The bearing to be the target of the manufacturing method of the present invention has a peripheral surface and a raceway groove having a surface formed by combining a plurality of curved surfaces formed on the peripheral surface and each having an arcuate cross-sectional shape. It is configured to include a raceway ring that is provided and the raceway groove is super-finished.
In particular, in the bearing manufacturing method of the present invention, the raceway groove is super-finished by the groove super-finishing method of the present invention.

本発明の溝の超仕上げ方法及び軸受の製造方法によれば、それぞれが円弧形の断面形状を有する複数の曲面部を組み合わせて構成された溝の表面に、1工程で高精度な超仕上げを施すことができる。 According to the groove super-finishing method and the bearing manufacturing method of the present invention, the surface of the groove formed by combining a plurality of curved surface portions each having an arc-shaped cross-sectional shape is super-finished with high accuracy in one step. Can be applied.

図1は、実施の形態の第1例に関する、4点接触玉軸受を構成する内輪の半部断面図である。FIG. 1 is a half cross-sectional view of an inner ring constituting a four-point contact ball bearing according to the first example of the embodiment. 図2は、図1の上端部の左右方向中間部を取り出して示す拡大図である。FIG. 2 is an enlarged view showing an intermediate portion in the left-right direction of the upper end portion of FIG. 図3は、実施の形態の第1例の超仕上げ装置の略斜視図である。FIG. 3 is a schematic perspective view of the super finishing device of the first example of the embodiment. 図4は、実施の形態の第1例の超仕上げ装置を構成する砥石ホルダに保持された砥石を、内輪の軌道溝の表面に押し付けた状態を示す断面図である。FIG. 4 is a cross-sectional view showing a state in which the grindstone held by the grindstone holder constituting the superfinishing apparatus of the first example of the embodiment is pressed against the surface of the raceway groove of the inner ring. 図5は、実施の形態の第1例の超仕上げ装置を構成する砥石の先端部を拡大して示す断面図である。FIG. 5 is an enlarged cross-sectional view showing a tip portion of a grindstone constituting the superfinishing apparatus of the first example of the embodiment. 図6は、実施の形態の第1例の超仕上げ方法を実施する際の砥石の動きを説明するための断面図である。FIG. 6 is a cross-sectional view for explaining the movement of the grindstone when carrying out the superfinishing method of the first example of the embodiment. 図7は、実施の形態の第1例の超仕上げ装置を構成する砥石の移動条件を説明するための断面図である。FIG. 7 is a cross-sectional view for explaining the moving conditions of the grindstone constituting the superfinishing apparatus of the first example of the embodiment. 図8(A)は、実施の形態の第1例の超仕上げ方法を実施する際の砥石の揺動角度の時間的変化を表す線図であり、図8(B)は、図8(A)の砥石の揺動中心位置の時間的変化を表す線図であり、図8(C)は、図8(A)の砥石の揺動中心位置の移動速度の時間的変化を表す線図である。FIG. 8 (A) is a diagram showing a temporal change in the swing angle of the grindstone when the superfinishing method of the first example of the embodiment is carried out, and FIG. 8 (B) is a diagram showing FIG. 8 (A). ) Is a diagram showing the temporal change of the swing center position of the grindstone, and FIG. 8 (C) is a diagram showing the temporal change of the moving speed of the swing center position of the grindstone of FIG. 8 (A). be. 図9は、実施の形態の第2例に関する、アンギュラ玉軸受を構成する内輪の部分断面図である。FIG. 9 is a partial cross-sectional view of the inner ring constituting the angular contact ball bearing according to the second example of the embodiment. 図10は、実施の形態の第3例の超仕上げ方法を実施する際の砥石の揺動角度の時間的変化を表す線図である。FIG. 10 is a diagram showing a temporal change in the swing angle of the grindstone when the superfinishing method of the third example of the embodiment is carried out.

[実施の形態の第1例]
実施の形態の第1例について、図1〜図8を用いて説明する。
本例は、4点接触玉軸受の製造方法に関するもので、この4点接触玉軸受を構成する軌道輪である内輪1の軌道溝(内輪軌道)2に超仕上げを施す方法に特徴がある。このため、以下、この特徴部分を中心に説明する。
[First Example of Embodiment]
A first example of the embodiment will be described with reference to FIGS. 1 to 8.
This example relates to a method for manufacturing a four-point contact ball bearing, and is characterized by a method of superfinishing the raceway groove (inner ring raceway) 2 of the inner ring 1 which is a raceway ring constituting the four-point contact ball bearing. Therefore, this feature portion will be mainly described below.

まず、図1及び図2を用いて、内輪1の構成を説明する。内輪1は、軸受鋼などの硬質金属製で、全体を円筒状に構成されており、外周面と、該外周面に形成された円環状の軌道溝2とを備えている。軌道溝2の断面形状は、曲率中心が異なる位置に存在する2つの円弧を組み合わせて構成された、ゴシックアーク形である。すなわち、軌道溝2は、それぞれが円弧形の断面形状を有し、かつ、それぞれの断面形状の曲率中心Oa、Ob(図2参照)が異なる位置に存在する、2つの曲面部3a、3bを組み合わせて構成された表面を有している。 First, the configuration of the inner ring 1 will be described with reference to FIGS. 1 and 2. The inner ring 1 is made of a hard metal such as bearing steel and is formed in a cylindrical shape as a whole, and includes an outer peripheral surface and an annular raceway groove 2 formed on the outer peripheral surface. The cross-sectional shape of the raceway groove 2 is a Gothic arc shape formed by combining two arcs having different centers of curvature. That is, each of the raceway grooves 2 has an arcuate cross-sectional shape, and the curvature centers O a and Ob (see FIG. 2) of the respective cross-sectional shapes are present at different positions. It has a surface composed of a combination of 3b and 3b.

内輪1の中心軸線C1と直交し、かつ、軌道溝2の軸方向中央部を通る仮想平面をS1とした場合に、2つの曲面部3a、3bの接続部は、仮想平面S1上に存在している。また、2つの曲面部3a、3bの断面形状は、仮想平面S1を挟んで鏡面対称になっている。すなわち、内輪1の軸方向に関して仮想平面S1よりも一方側に位置する一方の曲面部3aの断面形状の曲率中心Oaは、内輪1の軸方向に関して仮想平面S1よりも他方側に位置しており、内輪1の軸方向に関して仮想平面S1よりも他方側に位置する他方の曲面部3bの断面形状の曲率中心Obは、内輪1の軸方向に関して仮想平面S1よりも一方側に位置している。また、一方の曲面部3aの断面形状の曲率中心Oaと、他方の曲面部3bの断面形状の曲率中心Obとは、内輪1の中心軸線C1からの径方向距離が等しく、かつ、仮想平面S1からの軸方向距離がいずれもL/2で等しくなっている。また、一方の曲面部3aの断面形状の曲率半径Raと、他方の曲面部3bの断面形状の曲率半径Rbとは、互いに等しくなっている(Ra=Rb)。なお、内輪1の軸方向に関して一方側とは、図1、図2、図4、図6、図7における左側であり、内輪1の軸方向に関して他方側とは、図1、図2、図4、図6、図7における右側である。また、軌道溝2の表面には、後述する本例の超仕上げ方法により、超仕上げが施されている。 Perpendicular to the center axis C 1 of the inner ring 1, and, when a virtual plane passing through the axial center portion of the track groove 2 is set to S 1, 2 two curved portions 3a, connections 3b, the virtual plane S 1 above Exists in. Further, the two curved portions 3a, 3b of the cross-sectional shape is adapted to mirror symmetrical with respect to the imaginary plane S 1. That is, the center of curvature O a cross-sectional shape of one of the curved surface portion 3a located also one side than the virtual plane S 1 with respect to the axial direction of the inner ring 1 is located on the other side of the imaginary plane S 1 with respect to the axial direction of the inner ring 1 and is, the center of curvature O b of the cross-sectional shape of the other of the curved portion 3b positioned on the other side of the imaginary plane S 1 with respect to the axial direction of the inner ring 1, one side than the virtual plane S 1 with respect to the axial direction of the inner ring 1 Is located in. Further, a curvature center O a cross-sectional shape of one of the curved surface portion 3a, and the center of curvature O b of the cross-sectional shape of the other of the curved portion 3b, equal radial distance from the central axis C 1 of the inner ring 1, and, The axial distances from the virtual plane S 1 are all equal at L / 2. Further, the curvature radius R a of the cross-sectional shape of one of the curved surface portion 3a, and the radius of curvature R b of the cross-sectional shape of the other of the curved portion 3b, are equal to each other (R a = R b). The one side in the axial direction of the inner ring 1 is the left side in FIGS. 1, 2, 4, 6, and 7, and the other side in the axial direction of the inner ring 1 is FIG. 1, FIG. 2, FIG. 4, the right side in FIGS. 6 and 7. Further, the surface of the track groove 2 is super-finished by the super-finishing method of this example described later.

なお、本例の製造対象となる4点接触玉軸受は、内輪1の他、軌道輪である外輪と、複数個の玉とを備えている。前記外輪は、内周面と、該内周面に形成されたゴシックアーク形の断面形状を有する円環状の軌道溝(外輪軌道)とを有している。前記複数個の玉は、内輪1の軌道溝2と前記外輪の軌道溝との間に転動自在に配置されている。 The four-point contact ball bearing to be manufactured in this example includes an inner ring 1, an outer ring which is a raceway ring, and a plurality of balls. The outer ring has an inner peripheral surface and an annular raceway groove (outer ring raceway) having a Gothic arc-shaped cross-sectional shape formed on the inner peripheral surface. The plurality of balls are rotatably arranged between the raceway groove 2 of the inner ring 1 and the raceway groove 2 of the outer ring.

つぎに、図3〜図5を用いて、軌道溝2の表面に超仕上げを施すための超仕上げ装置について説明する。超仕上げ装置は、工場の床面などに固定される基台5と、Xステージ6と、支柱7と、Zステージ8と、揺動軸9と、砥石ホルダ10と、砥石11と、スピンドル装置12と、制御装置13とを備える。 Next, a super-finishing device for super-finishing the surface of the track groove 2 will be described with reference to FIGS. 3 to 5. The super-finishing device includes a base 5, an X stage 6, a support 7, a Z stage 8, a swing shaft 9, a grindstone holder 10, a grindstone 11, and a spindle device, which are fixed to the floor of a factory. 12 and a control device 13.

Xステージ6は、基台5の上面に、水平面内の一方向であるX方向に関する移動を可能に支持されている。基台5に対するXステージ6のX方向に関する移動は、サーボモータ14を駆動源として、高精度に行えるようになっている。 The X stage 6 is supported on the upper surface of the base 5 so as to be able to move in the X direction, which is one direction in the horizontal plane. The movement of the X stage 6 with respect to the base 5 in the X direction can be performed with high accuracy by using the servomotor 14 as a drive source.

支柱7は、Xステージ6の上面から上方に伸長するように配置されており、この状態で、Xステージ6に固定されている。 The columns 7 are arranged so as to extend upward from the upper surface of the X stage 6, and are fixed to the X stage 6 in this state.

Zステージ8は、支柱7に対し、上下方向であるZ方向に関する移動を可能に支持されている。支柱7に対するZステージ8のZ方向に関する移動は、サーボモータ15を駆動源として、高精度に行えるようになっている。 The Z stage 8 is supported with respect to the support column 7 so as to be able to move in the Z direction, which is the vertical direction. The movement of the Z stage 8 with respect to the support column 7 in the Z direction can be performed with high accuracy by using the servomotor 15 as a drive source.

揺動軸9は、Zステージ8に対し、自身の中心軸線である揺動軸心C9を中心とする回動、すなわち揺動を可能に支持されている。揺動軸9の揺動軸心C9の方向は、水平面内でX方向に対して直角な方向であるY方向と一致している。Zステージ8に対する揺動軸9の揺動軸心C9を中心とする揺動は、揺動軸9に対して直接又は無端ベルト、歯車機構などを介して連結されたサーボモータ16を駆動源として、高精度に行えるようになっている。 The swing shaft 9 is supported with respect to the Z stage 8 so as to be able to rotate, that is, swing around the swing axis C 9, which is its own central axis. The direction of the swing axis C 9 of the swing shaft 9 coincides with the Y direction, which is a direction perpendicular to the X direction in the horizontal plane. The swing around the swing axis C 9 of the swing shaft 9 with respect to the Z stage 8 is driven by a servomotor 16 directly connected to the swing shaft 9 or via an endless belt, a gear mechanism, or the like. As a result, it can be performed with high accuracy.

砥石ホルダ10は、揺動軸9の先端部に固定されており、ばね式、空気圧式などのシリンダ17を有している。シリンダ17の中心軸線C17は、揺動軸9の揺動軸心C9と直交している。 The grindstone holder 10 is fixed to the tip of the swing shaft 9 and has a spring-type, pneumatic-type or other cylinder 17. Center axis C 17 of the cylinder 17 is perpendicular to the pivot axis C 9 of the rocking shaft 9.

砥石11は、結合剤としてビトリファイドを用いたビトリファイド砥石であり、砥石ホルダ10のシリンダ17に組み付けられている。この状態で、砥石11は、シリンダ17の中心軸線C17方向の変位を可能とされている。揺動軸9の揺動軸心C9と直交する仮想平面内、すなわちX−Z平面内における砥石11の先端面18の幅寸法W18は、内輪1の軌道溝2の表面を構成する曲面部3a、3bのそれぞれの幅寸法W3a、W3bよりも小さい。また、X−Z平面内における砥石11の先端面18の断面形状は、砥石11の先端側が凸となる円弧形である。また、該円弧の曲率半径R18は、軌道溝2の表面を構成する曲面部3a、3bの断面形状の曲率半径Ra、Rbよりも小さい。なお、本発明を実施する場合、砥石11として、結合剤としてレジンボンドを用いた弾性砥石であるレジンボンド砥石など、他の種類の結合剤を用いた砥石を採用することもできる。 The grindstone 11 is a vitrified grindstone using vitrified as a binder, and is assembled to the cylinder 17 of the grindstone holder 10. In this state, the grindstone 11 is capable of being displaced in the direction of the central axis C 17 of the cylinder 17. The width dimension W 18 of the tip surface 18 of the grindstone 11 in the virtual plane orthogonal to the swing axis C 9 of the swing shaft 9 , that is, in the XZ plane is a curved surface forming the surface of the raceway groove 2 of the inner ring 1. It is smaller than the width dimensions W 3a and W 3b of the portions 3a and 3b, respectively. Further, the cross-sectional shape of the tip surface 18 of the grindstone 11 in the XZ plane is an arc shape in which the tip side of the grindstone 11 is convex. Further, the radius of curvature R 18 of the arc is smaller than the radius of curvature R a and R b of the cross-sectional shape of the curved surface portions 3a and 3b forming the surface of the raceway groove 2. When carrying out the present invention, as the grindstone 11, a grindstone using another type of binder, such as a resin bond grindstone which is an elastic grindstone using a resin bond as a binder, can also be adopted.

スピンドル装置12は、基台5に支持されており、駆動軸19を有している。駆動軸19は、駆動軸19の中心線である駆動軸心C19を中心とする回転駆動が可能である。駆動軸19の駆動軸心C19の方向は、X方向と一致している。駆動軸19の駆動軸心C19と、シリンダ17の中心軸線C17とは、Y方向と直交する共通の仮想平面内に存在している。 The spindle device 12 is supported by the base 5 and has a drive shaft 19. The drive shaft 19 can be rotationally driven around the drive shaft center C 19 , which is the center line of the drive shaft 19. The direction of the drive axis C 19 of the drive shaft 19 coincides with the X direction. The drive axis C 19 of the drive shaft 19 and the central axis C 17 of the cylinder 17 exist in a common virtual plane orthogonal to the Y direction.

制御装置13は、軌道溝2の表面に超仕上げを施す際に、スピンドル装置12及びサーボモータ14〜16の駆動制御を行うことにより、砥石11及び揺動軸9の位置や動きなどを制御するためのものである。 The control device 13 controls the positions and movements of the grindstone 11 and the swing shaft 9 by controlling the drive of the spindle device 12 and the servomotors 14 to 16 when the surface of the raceway groove 2 is superfinished. It is for.

具体的には、制御装置13は、スピンドル装置12の駆動制御を行うこと、すなわち、駆動軸心C19を中心とする駆動軸19の回転を制御することにより、駆動軸19の先端部に装着される内輪1の回転を制御可能である。
また、制御装置13は、サーボモータ14の駆動制御を行うこと、すなわち、X方向に関するXステージ6の位置や動きを制御することにより、X方向に関する砥石11及び揺動軸9の位置や動きを制御可能である。
加えて、制御装置13は、サーボモータ15の駆動制御を行うこと、すなわち、Z方向に関するZステージ8の位置や動きを制御することにより、Z方向に関する砥石11及び揺動軸9の位置や動きを制御可能である。
さらに、制御装置13は、サーボモータ16の駆動制御を行うこと、すなわち、揺動軸心C9を中心とする揺動軸9の揺動方向の位置及び動きを制御することにより、揺動軸心C9を中心とする砥石11の揺動方向の位置及び動きを制御可能である。
Specifically, the control device 13 is mounted on the tip of the drive shaft 19 by controlling the drive of the spindle device 12, that is, by controlling the rotation of the drive shaft 19 about the drive shaft center C 19. It is possible to control the rotation of the inner ring 1.
Further, the control device 13 controls the drive of the servomotor 14, that is, by controlling the position and movement of the X stage 6 in the X direction, the position and movement of the grindstone 11 and the swing shaft 9 in the X direction. It is controllable.
In addition, the control device 13 controls the drive of the servomotor 15, that is, by controlling the position and movement of the Z stage 8 in the Z direction, the position and movement of the grindstone 11 and the swing shaft 9 in the Z direction. Can be controlled.
Further, the control device 13 controls the drive of the servomotor 16, that is, controls the position and movement of the swing shaft 9 about the swing axis C 9 in the swing direction. The position and movement of the grindstone 11 around the center C 9 in the swing direction can be controlled.

特に、本例では、制御装置13は、サーボモータ14〜16の駆動を同期して制御することにより、揺動軸心C9を中心として砥石11を揺動させながら、揺動軸心C9の位置をX−Z平面内で移動させることが可能である。 In particular, in this example, the control device 13 controls the driving of the servomotors 14 to 16 in synchronization with the swing axis C 9 while swinging the grindstone 11 around the swing axis C 9. It is possible to move the position of in the XZ plane.

つぎに、図3〜図5に加えて、図6〜図8を参照しながら、上記の超仕上げ装置により、軌道溝2の表面に超仕上げを施す方法について説明する。 Next, a method of superfinishing the surface of the track groove 2 by the above superfinishing device will be described with reference to FIGS. 6 to 8 in addition to FIGS. 3 to 5.

まず、準備工程として、超仕上げ装置にワークとなる内輪1をセットする。すなわち、スピンドル装置12の駆動軸19の駆動軸心C19と内輪1の中心軸線C1とが同軸となるように、駆動軸19の先端部に内輪1を装着する。 First, as a preparatory process, the inner ring 1 to be a work is set in the super finishing device. That is, as the central axis C 1 of the drive axis C 19 and the inner ring 1 of the drive shaft 19 of the spindle device 12 is coaxial, mounting the inner ring 1 to the distal end of the drive shaft 19.

超仕上げ装置に内輪1をセットした後、スピンドル装置12の駆動軸19を回転させることにより、内輪1を内輪1の中心軸線C1を中心として回転させる。また、このように内輪1を回転させながら、図4及び図6に示すように、内輪1の軌道溝2の表面に砥石11の先端面18を押し付けた状態で、揺動軸心C9を中心として砥石11を揺動させる。これにより、砥石11の先端面18を、内輪1の軸方向であるX方向に関して、軌道溝2の表面の一方側端部と他方側端部との間で繰り返し往復移動させることによって、軌道溝2の表面に超仕上げを施す。 After setting the inner ring 1 in the superfinishing device, the drive shaft 19 of the spindle device 12 is rotated to rotate the inner ring 1 about the central axis C 1 of the inner ring 1. Further, while rotating the inner ring 1 in this way, as shown in FIGS. 4 and 6, the swing axis C 9 is pressed in a state where the tip surface 18 of the grindstone 11 is pressed against the surface of the raceway groove 2 of the inner ring 1. The grindstone 11 is swung as a center. As a result, the tip surface 18 of the grindstone 11 is repeatedly reciprocated between one side end portion and the other side end portion of the surface of the raceway groove 2 with respect to the X direction which is the axial direction of the inner ring 1, thereby causing the raceway groove. Super finish the surface of 2.

具体的には、砥石11の先端面18を、X方向に関して、軌道溝2の表面の一方側端部から他方側端部に向けて移動させる際には、まず、図6(A)→図6(B)→図6(C)の順に示すように、揺動軸心C9を曲率中心Oaに一致させた状態で、該揺動軸心C9を中心として砥石11を揺動させることにより、砥石11の先端面18を、X方向に関して、一方の曲面部3aの一方側端部から他方側端部まで、すなわち、一方の曲面部3aと他方の曲面部3bとの接続部まで移動させる。ついで、図6(C)→図6(D)→図6(E)の順に示すように、一方の曲面部3aと他方の曲面部3bとの接続部で砥石11の先端面18の移動を一旦停止させた状態で、揺動軸心C9を、曲率中心Oaの位置から曲率中心Obの位置まで移動させる、すなわち、揺動軸心C9を曲率中心Obに一致させる。そして、この状態で、図6(E)→図6(F)→図6(G)の順に示すように、揺動軸心C9を中心として砥石11を揺動させることにより、砥石11の先端面18を、X方向に関して、他方の曲面部3bの一方側端部から他方側端部に向けて移動させる。 Specifically, when moving the tip surface 18 of the grindstone 11 from one side end to the other side of the surface of the raceway groove 2 in the X direction, first, FIG. 6A → FIG. 6 (B) → as shown in the order of FIG. 6 (C), the the pivot axis C 9 in a state that is aligned with the center of curvature O a, swinging the grindstone 11 around the rocking Dojikukokoro C 9 As a result, the tip surface 18 of the grindstone 11 is extended in the X direction from one side end portion of one curved surface portion 3a to the other side end portion, that is, to the connecting portion between one curved surface portion 3a and the other curved surface portion 3b. Move. Then, as shown in the order of FIG. 6 (C) → FIG. 6 (D) → FIG. 6 (E), the tip surface 18 of the grindstone 11 is moved at the connecting portion between one curved surface portion 3a and the other curved surface portion 3b. once in a state of stopping, the pivot axis C 9, it is moved from the position of the center of curvature O a to the position of the center of curvature O b, i.e., to match the pivot axis C 9 to the center of curvature O b. Then, in this state, as shown in the order of FIG. 6 (E) → FIG. 6 (F) → FIG. 6 (G), the grindstone 11 is swung around the swing axis C 9 to cause the grindstone 11 to swing. The tip surface 18 is moved from one end of the other curved surface 3b toward the other end in the X direction.

反対に、砥石11の先端面18を、X方向に関して、軌道溝2の表面の他方側端部から一方側端部に向けて移動させる際には、図6(G)→図6(F)→図6(E)の順に示すように、揺動軸心C9を曲率中心Obに一致させた状態で、該揺動軸心C9を中心として砥石11を揺動させることにより、砥石11の先端面18を、X方向に関して、他方の曲面部3bの他方側端部から一方側端部まで、すなわち、他方の曲面部3bと一方の曲面部3aとの接続部まで移動させる。ついで、図6(E)→図6(D)→図6(C)の順に示すように、他方の曲面部3bと一方の曲面部3aとの接続部で砥石11の先端面18の移動を一旦停止させた状態で、揺動軸心C9を、曲率中心Obの位置から曲率中心Oaの位置まで移動させる、すなわち、揺動軸心C9を曲率中心Oaに一致させる。そして、この状態で、図6(C)→図6(B)→図6(A)の順に示すように、揺動軸心C9を中心として砥石11を揺動させることにより、砥石11の先端面18を、X方向に関して、一方の曲面部3aの他方側端部から一方側端部に向けて移動させる。 On the contrary, when the tip surface 18 of the grindstone 11 is moved from the other side end portion of the surface of the raceway groove 2 toward the one side end portion in the X direction, FIG. 6 (G) → FIG. 6 (F). → as shown in the order of FIG. 6 (E), the state in which the oscillation axis C 9 to coincide with the center of curvature O b, by swinging the grindstone 11 around the rocking Dojikukokoro C 9, grindstone The tip surface 18 of 11 is moved in the X direction from the other side end portion to the one side end portion of the other curved surface portion 3b, that is, to the connecting portion between the other curved surface portion 3b and the one curved surface portion 3a. Then, as shown in the order of FIG. 6 (E) → FIG. 6 (D) → FIG. 6 (C), the tip surface 18 of the grindstone 11 is moved at the connection portion between the other curved surface portion 3b and the one curved surface portion 3a. once in a state of stopping, the pivot axis C 9, is moved from the position of the center of curvature O b to the position of the center of curvature O a, i.e., to match the pivot axis C 9 to the center of curvature O a. Then, in this state, as shown in the order of FIG. 6 (C) → FIG. 6 (B) → FIG. 6 (A), the grindstone 11 is swung around the swing axis C 9 to cause the grindstone 11 to swing. The tip surface 18 is moved from the other side end portion of one curved surface portion 3a toward the one side end portion in the X direction.

本例では、以上のように、砥石11の先端面18を、X方向に関して、軌道溝2の表面の一方側端部から他方側端部に向けて移動させる動作と、砥石11の先端面18を、X方向に関して、軌道溝2の表面の他方側端部から一方側端部に向けて移動させる動作とを、繰り返し交互に行うことによって、軌道溝2の表面に超仕上げを施す。なお、この際に軌道溝2の表面に対する砥石11の先端面18の押し付け力(接触圧)は、シリンダ17から砥石11に付与される、ばね式、空気圧式などの力によって、ほぼ一定(所定の範囲の大きさ)に保たれるようになっている。 In this example, as described above, the operation of moving the tip surface 18 of the grindstone 11 from one side end to the other end of the surface of the raceway groove 2 in the X direction, and the tip surface 18 of the grindstone 11. Is repeatedly and alternately moved from the other side end portion of the surface of the raceway groove 2 toward the one side end portion in the X direction to superfinish the surface of the raceway groove 2. At this time, the pressing force (contact pressure) of the tip surface 18 of the grindstone 11 against the surface of the raceway groove 2 is substantially constant (predetermined) by a force such as a spring type or a pneumatic type applied to the grindstone 11 from the cylinder 17. The size of the range of) is maintained.

さらに、本例では、以上のような軌道溝2の表面の超仕上げを、砥石11を揺動軸心C9を中心として一定の揺動周波数で揺動させながら行う。すなわち、本例では、図6(A)〜図6(C)に示すように、又は、図6(E)〜図6(G)に示すように、砥石11の先端面18を何れかの曲面部3a、3bで移動させる動作だけでなく、図6(C)→図6(D)→図6(E)の順に示すように、又は、図6(E)→図6(D)→図6(C)の順に示すように、揺動軸心C9を2つの曲率中心Oa、Ob間で移動させる動作も、砥石11を揺動軸心C9を中心として一定の揺動周波数で揺動させながら行う。このために、本例では、砥石11の先端面18が一方の曲面部3aから他方の曲面部3bに乗り移る際、又は、砥石11の先端面18が他方の曲面部3bから一方の曲面部3aに乗り移る際に、一方の曲面部3aと他方の曲面部3bとの接続部で砥石11の先端面18の移動が一旦停止する速度で、揺動軸心C9を2つの曲率中心Oa、Ob間で移動させる。 Further, in this example, the super-finishing of the surface of the raceway groove 2 as described above is performed while swinging the grindstone 11 around the swing axis C 9 at a constant swing frequency. That is, in this example, as shown in FIGS. 6 (A) to 6 (C), or as shown in FIGS. 6 (E) to 6 (G), the tip surface 18 of the grindstone 11 is used. Not only the operation of moving the curved surfaces 3a and 3b, but also as shown in the order of FIG. 6 (C) → FIG. 6 (D) → FIG. 6 (E), or FIG. 6 (E) → FIG. 6 (D) → as shown in the order of FIG. 6 (C), the the pivot axis C 9 2 single curvature center O a, O b operation of moving between also the constant grindstone 11 around the oscillation axis C 9 swings Perform while swinging at the frequency. Therefore, in this example, when the tip surface 18 of the grindstone 11 is transferred from one curved surface portion 3a to the other curved surface portion 3b, or when the tip surface 18 of the grindstone 11 is transferred from the other curved surface portion 3b to one curved surface portion 3a. At a speed at which the movement of the tip surface 18 of the grindstone 11 temporarily stops at the connection portion between the curved surface portion 3a on one side and the curved surface portion 3b on the other side, the swing axis C 9 is set to the two centers of curvature O a . moving between O b.

ここで、図6に示したような砥石11の動きを実現するための各種条件について、図7を用いて具体的に説明する。なお、図7では、モデルを一般化するために、軌道溝2の表面を構成する2つの曲面部3a、3bの断面形状の曲率中心Oa、Obの径方向位置を互いに異ならせ、かつ、2つの曲面部3a、3bの断面形状の曲率半径Ra、Rbを互いに異ならせている。 Here, various conditions for realizing the movement of the grindstone 11 as shown in FIG. 6 will be specifically described with reference to FIG. 7. In FIG. 7, in order to generalize the model, with different two curved portions 3a constituting the surface of the raceway groove 2, the center of curvature O a and 3b of the cross-sectional shape, the radial position of the O b to each other and The radii of curvature R a and R b of the cross-sectional shapes of the two curved surfaces 3a and 3b are different from each other.

まず、前提条件は、次の通りである。
<前提条件>
砥石11の揺動周波数 : f[Hz]
砥石11の揺動角度の変化範囲 : +α〜−α[rad]
砥石11の揺動角速度ω : ω=4・α・f[rad/sec]
曲率中心Oa、Ob間の距離 : L[mm]
曲面部3a、3b同士の接続部から見た曲率中心Oa、Ob間の角度 : θ[rad]
First, the preconditions are as follows.
<Prerequisites>
Swing frequency of grindstone 11: f [Hz]
Range of change in the swing angle of the grindstone 11: + α to −α [rad]
Swing angular velocity of grindstone 11 ω: ω = 4 · α · f [rad / sec]
Center of curvature O a, the distance between O b: L [mm]
Curved surface portion 3a, the center of curvature O a as viewed from the connection portion of 3b with each other, the angle between O b: θ [rad]

曲率中心Oa、Ob間での揺動軸心C9の移動条件は、次の通りである。
<移動条件>
曲率中心Oa、Ob間での揺動軸心C9の移動時間t : t=θ/ω[sec]
曲率中心Oa、Ob間での揺動軸心C9の移動速度v : v=L/t[mm/sec]
なお、砥石11は、シリンダ17によって軌道溝2の表面に付勢されているため、揺動軸心C9が曲率中心Oa、Ob間で移動することに伴って、砥石11の揺動半径が変化しても、軌道溝2の表面に対する砥石11の先端面18の押し付け状態は、常に維持される。
Center of curvature O a, movement conditions of pivot axis C 9 between O b is as follows.
<Movement conditions>
Movement time of the swing axis C 9 between the centers of curvature O a and Ob b : t = θ / ω [sec]
Center of curvature O a, the moving speed of the pivot axis C 9 between O b v: v = L / t [mm / sec]
Incidentally, the grindstone 11, because it is biased to the surface of the raceway groove 2 by the cylinder 17, with the possible pivot axis C 9 moves between the center of curvature O a, O b, the swing of the grinding 11 Even if the radius changes, the pressing state of the tip surface 18 of the grindstone 11 against the surface of the raceway groove 2 is always maintained.

したがって、以上のような<前提条件>及び<移動条件>に基づいて、制御装置13による制御を実行すれば、図6に示したような砥石11の動きを実現することができる。なお、図8は、本例の超仕上げ方法を実施する場合の、砥石11の「揺動角度の時間的変化」と、砥石11の揺動軸心C9の位置の時間的変化である「揺動中心位置の時間的変化」と、砥石11の揺動軸心C9の移動速度vの時間的変化である「揺動中心位置移動速度の時間的変化」との関係を示している。 Therefore, if the control device 13 executes the control based on the above <preconditions> and <movement conditions>, the movement of the grindstone 11 as shown in FIG. 6 can be realized. Note that FIG. 8 shows a “temporal change in the swing angle” of the grindstone 11 and a temporal change in the position of the swing axis C 9 of the grindstone 11 when the superfinishing method of this example is carried out. The relationship between "the temporal change of the swing center position" and "the temporal change of the swing center position movement speed" which is the temporal change of the movement speed v of the swing axis C 9 of the grindstone 11 is shown.

なお、本例では、2つの曲面部3a、3bの断面形状の曲率中心Oa、Obの径方向位置が互いに等しく、かつ、2つの曲面部3a、3bの断面形状の曲率半径Ra、Rbが互いに等しい。このため、揺動軸心C9が曲率中心Oa、Ob間で移動する際に、この揺動軸心C9の移動速度vは、揺動軸心C9を中心とする砥石11の先端面18の周方向速度とほぼ等しくなる。 In this example, the two curved portions 3a, and 3b of the cross-sectional shape curvature center O a, the radial position of the O b are equal to each other, and two curved portions 3a, and 3b cross section curvature radius R a, R b are equal to each other. Therefore, when the pivot axis C 9 moves between the center of curvature O a, O b, the moving velocity v of the pivot axis C 9 is a grinding wheel 11 about the pivot axis C 9 It is almost equal to the circumferential speed of the tip surface 18.

以上のように、本例の溝の超仕上げ方法によれば、それぞれが円弧形の断面形状を有し、かつ、それぞれの断面形状の曲率中心Oa、Obが異なる位置に存在する、2つの曲面部3a、3bを組み合わせて構成された軌道溝2の表面に、1工程で高精度な超仕上げを施すことができる。 As described above, according to the superfinishing process of the grooves of this embodiment, each having an arcuate cross-sectional shape, and the curvature center O a of the respective cross-sectional shape, present in the O b are different positions, The surface of the track groove 2 formed by combining the two curved surface portions 3a and 3b can be super-finished with high accuracy in one step.

すなわち、本例では、一方の曲面部3aに超仕上げを施す際、すなわち、砥石11の先端面18を一方の曲面部3aで移動させる際には、一方の曲面部3aの断面形状の曲率中心Oaに揺動軸心C9を一致させた状態で、該揺動軸心C9を中心として砥石11を揺動させる。また、他方の曲面部3bに超仕上げを施す際、すなわち、砥石11の先端面18を他方の曲面部3bで移動させる際には、他方の曲面部3bの断面形状の曲率中心Obに揺動軸心C9を一致させた状態で、該を中心として砥石11を揺動させる。このため、一方の曲面部3aに超仕上げを施す際には、砥石11の先端面18の揺動軌跡が一方の曲面部3aの断面形状と同一になり、他方の曲面部3bに超仕上げを施す際には、砥石11の先端面18の揺動軌跡が他方の曲面部3bの断面形状と同一になる。したがって、2つの曲面部3a、3bに高精度な超仕上げを施すことができる。 That is, in this example, when superfinishing one curved surface portion 3a, that is, when moving the tip surface 18 of the grindstone 11 by one curved surface portion 3a, the center of curvature of the cross-sectional shape of one curved surface portion 3a. O a a pivot axis C 9 in a state of being matched to, swinging the grindstone 11 around the rocking Dojikukokoro C 9. Further, when performing a super-finish on the other of the curved portion 3b, i.e., when moving the distal end surface 18 of the grinding 11 at the other of the curved portion 3b, rocking the center of curvature O b of the cross-sectional shape of the other of the curved portion 3b With the center of motion C 9 aligned, the grindstone 11 is swung around the center. Therefore, when superfinishing one curved surface portion 3a, the swing locus of the tip surface 18 of the grindstone 11 becomes the same as the cross-sectional shape of one curved surface portion 3a, and the other curved surface portion 3b is superfinished. At the time of application, the swing locus of the tip surface 18 of the grindstone 11 becomes the same as the cross-sectional shape of the other curved surface portion 3b. Therefore, the two curved surface portions 3a and 3b can be subjected to high-precision super-finishing.

また、本例では、軌道溝2の表面に押し付けた砥石11の先端面18が、砥石11の揺動に伴って、2つの曲面部3a、3bの接続部を軸方向に通過するため、この接続部にも高精度の超仕上げを施すことができる。 Further, in this example, the tip surface 18 of the grindstone 11 pressed against the surface of the track groove 2 passes through the connecting portions of the two curved surface portions 3a and 3b in the axial direction as the grindstone 11 swings. High-precision super-finishing can also be applied to the connection part.

なお、4点接触玉軸受の場合、2つの曲面部3a、3bの接続部に対して、玉が転がり接触することはない。但し、2つの曲面部3a、3bの接続部に高精度の超仕上げを施して、この接続部の表面粗さを向上させれば、使用時に、この接続部に応力が作用した場合でも、この接続部の表面を起点として亀裂などの損傷が生じる可能性を低くすることができる。 In the case of a four-point contact ball bearing, the balls do not roll and contact the connecting portions of the two curved surface portions 3a and 3b. However, if the connecting portions of the two curved surface portions 3a and 3b are subjected to high-precision super-finishing to improve the surface roughness of the connecting portions, even if stress acts on the connecting portions during use, this connection portion can be used. It is possible to reduce the possibility of damage such as cracks starting from the surface of the connecting portion.

一方、従来の超仕上げ方法のように、一方の曲面部3aに施す超仕上げと、他方の曲面部3bに施す超仕上げとを、別工程で行う場合には、軌道溝2の表面に押し付けた砥石11の先端面18が、砥石11の揺動に伴って、2つの曲面部3a、3bの接続部を軸方向に通過することはない。このため、この接続部に超仕上げを施すことができず、この接続部の表面粗さを向上させることができない。 On the other hand, when the super-finishing applied to one curved surface portion 3a and the super-finishing applied to the other curved surface portion 3b are performed in different steps as in the conventional super-finishing method, they are pressed against the surface of the raceway groove 2. The tip surface 18 of the grindstone 11 does not pass through the connecting portions of the two curved surface portions 3a and 3b in the axial direction as the grindstone 11 swings. Therefore, the connection portion cannot be super-finished, and the surface roughness of the connection portion cannot be improved.

また、本例では、砥石11として、軌道溝2の表面に超仕上げを施す際に殆ど弾性変形しない、ビトリファイド砥石を使用している。このため、前工程で行われた研削加工によって、軌道溝2の表面にビビリと呼ばれる斑模様の表面荒れが生じている場合でも、この表面荒れを、ビトリファイド砥石による超仕上げによって、大幅に改善することができる。 Further, in this example, as the grindstone 11, a vitrified grindstone that hardly elastically deforms when the surface of the track groove 2 is superfinished is used. Therefore, even if the surface of the raceway groove 2 has a mottled surface roughness called chatter due to the grinding process performed in the previous step, this surface roughness is significantly improved by super-finishing with a vitrified grindstone. be able to.

なお、本発明を実施する場合には、上述した実施の形態の第1例の変形例として、軌道溝2の表面に超仕上げを施す際に、砥石11の動きを次のように制御することもできる。 When carrying out the present invention, as a modification of the first example of the above-described embodiment, the movement of the grindstone 11 is controlled as follows when the surface of the track groove 2 is superfinished. You can also do it.

すなわち、実施の形態の第1例では、砥石11の先端面18を、軌道溝2の表面の一方側端部から他方側端部に向けて(他方側端部から一方側端部に向けて)移動させる際に、一方の曲面部3aと他方の曲面部3bとの接続部で砥石11の先端面18の移動を一旦停止させた状態で、揺動軸心C9を曲率中心Oaの位置(Obの位置)から曲率中心Obの位置(Oaの位置)まで移動させる制御を行っている。ただし、本発明を実施する場合には、この際に、揺動軸心C9を曲率中心Oaの位置(Obの位置)から曲率中心Obの位置(Oaの位置)まで移動させる動作を、砥石11の先端面18が一方の曲面部3aと他方の曲面部3bとの接続部に到達する少し前から開始し、砥石11の先端面18が該接続部に到達した時点で終了させる制御を行うこともできる。すなわち、該接続部で砥石11の先端面18の移動を一旦停止させることなく、砥石11の先端面18が該接続部を通過する際に、砥石11の先端面18の移動速度(曲面部を幅方向に移動する速度)が実質的に変化しないようにする制御を行なうこともできる。 That is, in the first example of the embodiment, the tip surface 18 of the grindstone 11 is directed from one side end portion to the other side end portion of the surface of the raceway groove 2 (from the other side end portion to the one side end portion). ) When moving, with the movement of the tip surface 18 of the grindstone 11 temporarily stopped at the connecting portion between the curved surface portion 3a on one side and the curved surface portion 3b on the other side, the swing axis C 9 is moved to the center of curvature O a . control is performed to move from the position (the position of the O b) to the position of the center of curvature O b (position of O a). However, when practicing the present invention, in this case, moving the pivot axis C 9 from the position of the center of curvature O a (position of the O b) to the position of the center of curvature O b (position of O a) The operation starts shortly before the tip surface 18 of the grindstone 11 reaches the connection portion between the one curved surface portion 3a and the other curved surface portion 3b, and ends when the tip surface 18 of the grindstone 11 reaches the connection portion. It is also possible to control the operation. That is, when the tip surface 18 of the grindstone 11 passes through the connection portion without temporarily stopping the movement of the tip surface 18 of the grindstone 11 at the connection portion, the moving speed of the tip surface 18 of the grindstone 11 (curved surface portion). It is also possible to control so that the speed of movement in the width direction) does not substantially change.

通常、軌道溝2の表面の形状は、切削加工と研削加工とによって決定され、その後に行われる超仕上加工は、軌道溝2の表面の面粗さを整えるために行われる。適切に行われた超仕上加工では削り代は極めて小さく、軌道溝2の表面の形状を変化させることはない。この点に関して、上述した変形例では、砥石11の先端面18が一方の曲面部3a(他方の曲面部3b)を幅方向に移動している最中に、揺動軸心C9の移動が行われる。ただし、該揺動軸心C9の移動中も、一方の曲面部3a(他方の曲面部3b)に対する砥石11の先端面18の接触圧は、シリンダ17による砥石11の付勢によって、適切な大きさ(所定の範囲の大きさ)に規制される。このため、揺動軸心C9の移動中も、一方の曲面部3a(他方の曲面部3b)に対する超仕上げを適切に行うことができる。 Usually, the shape of the surface of the track groove 2 is determined by cutting and grinding, and the super-finishing process performed thereafter is performed to adjust the surface roughness of the surface of the track groove 2. In the super-finishing process performed properly, the cutting allowance is extremely small, and the shape of the surface of the track groove 2 is not changed. Regarding this point, in the above-described modified example, the swing axis C 9 is moved while the tip surface 18 of the grindstone 11 is moving on one curved surface portion 3a (the other curved surface portion 3b) in the width direction. Will be done. However, even while the swing axis C 9 is moving, the contact pressure of the tip surface 18 of the grindstone 11 with respect to one curved surface portion 3a (the other curved surface portion 3b) is appropriate due to the urging of the grindstone 11 by the cylinder 17. It is regulated by size (size within a predetermined range). Therefore, even while the swing axis C 9 is moving, it is possible to appropriately perform superfinishing on one curved surface portion 3a (the other curved surface portion 3b).

なお、上述した変形例を実施する場合に、揺動軸心C9の移動中に揺動半径が小さくなるときは、サーボモータ16を制御することにより砥石11の揺動速度(揺動周波数)を小さくして、砥石11の先端面18の移動速度が実質的に変化しないようにするのが好ましい。 In the case of carrying out the above-mentioned modification , when the swing radius becomes small while the swing axis C 9 is moving, the swing speed (swing frequency) of the grindstone 11 is controlled by controlling the servomotor 16. Is preferably reduced so that the moving speed of the tip surface 18 of the grindstone 11 does not substantially change.

何れにしても、上述した変形例では、実施の形態の第1例の場合と同様、砥石11の先端面18を軌道溝2の表面の一方側端部と他方側端部との間で往復移動させる動作を行っている間中、基本的には砥石11の先端面18が押し付けられている曲面部の断面形状の曲率中心に揺動軸心C9を一致させ、何れか一方の曲面部から他方の曲面部に砥石11の先端面18を移動させる際にのみ、揺動軸心C9を前記何れか一方の曲面部の断面形状の曲率中心の位置から前記他方の曲面部の断面形状の曲率中心の位置まで移動させる制御を行う。 In any case, in the above-described modification, the tip surface 18 of the grindstone 11 is reciprocated between one side end portion and the other side end portion of the surface of the raceway groove 2 as in the case of the first example of the embodiment. During the moving operation, basically, the swing axis C 9 is aligned with the center of curvature of the cross-sectional shape of the curved surface portion on which the tip surface 18 of the grindstone 11 is pressed, and one of the curved surface portions is used. Only when the tip surface 18 of the grindstone 11 is moved from the to the other curved surface portion, the swing axis C 9 is moved from the position of the center of curvature of the cross-sectional shape of the other curved surface portion to the cross-sectional shape of the other curved surface portion. Controls the movement to the position of the center of curvature of.

[実施の形態の第2例]
実施の形態の第2例について、図9を用いて説明する。
本例は、アンギュラ玉軸受の製造方法に関するもので、このアンギュラ玉軸受を構成する軌道輪である内輪4の軌道溝(内輪軌道)2aに超仕上げを施す方法に特徴がある。このため、以下、この特徴部分を中心に説明する。
[Second Example of Embodiment]
A second example of the embodiment will be described with reference to FIG.
This example relates to a method for manufacturing an angular contact ball bearing, and is characterized by a method of superfinishing the raceway groove (inner ring raceway) 2a of the inner ring 4 which is a raceway ring constituting the angular contact ball bearing. Therefore, this feature portion will be mainly described below.

内輪4は、軸受鋼などの硬質金属製で、全体を円筒状に構成されており、外周面と、該外周面に形成された円環状の軌道溝2aとを備えている。軌道溝2aの断面形状は、曲率中心が異なる位置に存在する3つの円弧を組み合わせて構成された複合曲線形である。すなわち、軌道溝2aは、それぞれが円弧形の断面形状を有し、かつ、それぞれの断面形状の曲率中心Oc、Od、Oeが異なる位置に存在する、3つの曲面部3c、3d、3eを組み合わせて構成された表面を有している。また、本例では、互いに隣り合う2つの曲面部3c、3dの接続部において、これらの曲面部3c、3dの断面形状の端部は、互いに共通の接線を有している。このため、これらの曲面部3c、3dは、互いに滑らかに接続されている。また、互いに隣り合う2つの曲面部3d、3eの接続部においても、これらの曲面部3d、3eの断面形状の端部は、互いに共通の接線を有している。このため、これらの曲面部3d、3eも、互いに滑らかに接続されている。軌道溝2aの表面には、後述する方法により、超仕上げが施されている。 The inner ring 4 is made of a hard metal such as bearing steel and is formed in a cylindrical shape as a whole, and includes an outer peripheral surface and an annular raceway groove 2a formed on the outer peripheral surface. The cross-sectional shape of the raceway groove 2a is a composite curved shape formed by combining three arcs having different centers of curvature. That is, the raceway grooves 2a, each having an arc cross-sectional shape, and the curvature center O c of the respective cross-sectional shape, O d, O e is in different positions, three curved portions 3c, 3d It has a surface composed of a combination of 3e and 3e. Further, in this example, in the connecting portions of the two curved surface portions 3c and 3d adjacent to each other, the end portions of the cross-sectional shapes of the curved surface portions 3c and 3d have a common tangent line to each other. Therefore, these curved surface portions 3c and 3d are smoothly connected to each other. Further, even in the connecting portions of the two curved surface portions 3d and 3e adjacent to each other, the end portions of the cross-sectional shapes of the curved surface portions 3d and 3e have a common tangent line to each other. Therefore, these curved surface portions 3d and 3e are also smoothly connected to each other. The surface of the track groove 2a is super-finished by a method described later.

なお、本例の製造対象となるアンギュラ玉軸受は、内輪4の他、軌道輪である外輪と、複数個の玉とを備えている。前記外輪は、内周面と、該内周面に形成されたアンギュラ型の軌道溝(外輪軌道)とを有している。前記複数個の玉は、内輪4の軌道溝2aと前記外輪の軌道溝との間に転動自在に配置されている。 The angular contact ball bearing to be manufactured in this example includes an inner ring 4, an outer ring which is a raceway ring, and a plurality of balls. The outer ring has an inner peripheral surface and an angular type raceway groove (outer ring raceway) formed on the inner peripheral surface. The plurality of balls are rotatably arranged between the raceway groove 2a of the inner ring 4 and the raceway groove of the outer ring.

本例でも、このようなアンギュラ玉軸受を製造する際には、上述した実施の形態の第1例の変形例の場合と同様の方法により、内輪4の軌道溝2aの表面に対して超仕上げを施す。このため、軌道溝2aの表面全体、すなわち、3つの曲面部3c、3d、3eと、互いに隣り合う2つの曲面部3c、3dの接続部と、互いに隣り合う2つの曲面部3d、3eの接続部とのそれぞれに、1工程で高精度な超仕上げを施すことができる。 Also in this example, when manufacturing such an angular contact ball bearing, the surface of the raceway groove 2a of the inner ring 4 is super-finished by the same method as in the case of the modified example of the first example of the above-described embodiment. To give. Therefore, the entire surface of the track groove 2a, that is, the three curved surface portions 3c, 3d, 3e, the connecting portions of the two curved surface portions 3c, 3d adjacent to each other, and the two curved surface portions 3d, 3e adjacent to each other are connected. High-precision super-finishing can be applied to each part in one process.

内輪4を含んで構成されるアンギュラ玉軸受では、負荷されるアキシアル荷重の変化に伴って、軌道溝2aの表面に対する玉の転がり接触部が軸方向に移動する。このため、軌道溝2aの表面のうち、互いに隣り合う2つの曲面部3c、3dの接続部や、互いに隣り合う2つの曲面部3d、3eの接続部にも、玉が転がり接触する可能性がある。したがって、本例では、これらの接続部の表面粗さを良好にして、軌道溝2aの表面の転がり疲れ寿命を長くすることができる。
その他の構成及び作用は、実施の形態の第1例の変形例の場合と同様である。
In the angular contact ball bearing including the inner ring 4, the rolling contact portion of the ball with respect to the surface of the raceway groove 2a moves in the axial direction as the axial load applied changes. Therefore, on the surface of the track groove 2a, there is a possibility that the ball may roll and contact the connecting portions of the two curved surface portions 3c and 3d adjacent to each other and the connecting portions of the two curved surface portions 3d and 3e adjacent to each other. be. Therefore, in this example, the surface roughness of these connecting portions can be improved, and the rolling fatigue life of the surface of the raceway groove 2a can be extended.
Other configurations and operations are the same as in the case of the modified example of the first example of the embodiment.

[実施の形態の第3例]
実施の形態の第3例について、図10を用いて説明する。
本例では、軌道溝2の表面に超仕上げを施す際の、揺動軸心C9を中心とする砥石11(図2参照)の揺動運動の仕方が、実施の形態の第1例の場合と若干異なる。
[Third example of the embodiment]
A third example of the embodiment will be described with reference to FIG.
In this example, the method of swinging the grindstone 11 (see FIG. 2) centered on the swinging axis C 9 when superfinishing the surface of the track groove 2 is the first example of the embodiment. Slightly different from the case.

すなわち、実施の形態の第1例では、軌道溝2の表面に超仕上げを施す際に、砥石11を、図10に二点鎖線Pで示すように、揺動軸心C9を中心として一定の揺動周波数fで揺動させていた。これに対して、本例では、軌道溝2の表面に超仕上げを施す際に、砥石11を、図10に実線Qで示すように、揺動軸心C9を中心とする揺動方向に関して細かく振動させながら、揺動軸心C9を中心として一定の揺動周波数fで揺動させる。 That is, in the first example of the embodiment, when the surface of the track groove 2 is super-finished, the grindstone 11 is constant about the swing axis C 9 as shown by the alternate long and short dash line P in FIG. It was oscillated at the oscillating frequency f of. On the other hand, in this example, when the surface of the track groove 2 is super-finished, the grindstone 11 is subjected to the swing direction centered on the swing axis C 9 as shown by the solid line Q in FIG. While vibrating finely, it is oscillated at a constant oscillating frequency f around the oscillating axis C 9.

このため、本例では、実施の形態の第1例の場合に比べて、単位時間当たりの研磨量を増大させることができる。したがって、超仕上げ装置の機械的応答性や電気的応答性により、前記揺動周波数fを大きくすることができない場合でも、軌道溝2の表面に超仕上げを施す時間を短くすることができる。
その他の構成及び作用は、上述した実施の形態の第1例の場合と同様である。
Therefore, in this example, the amount of polishing per unit time can be increased as compared with the case of the first example of the embodiment. Therefore, even if the swing frequency f cannot be increased due to the mechanical responsiveness and the electrical responsiveness of the superfinishing device, the time for superfinishing the surface of the raceway groove 2 can be shortened.
Other configurations and operations are the same as in the case of the first example of the above-described embodiment.

なお、本発明は、上述したそれぞれの実施の形態を、相互に矛盾を生じない限りにおいて、適宜組み合わせて実施することができる。 In addition, the present invention can be carried out by appropriately combining the above-described embodiments as long as they do not cause mutual contradiction.

本発明の溝の超仕上げ方法は、それぞれが円弧形の断面形状を有する複数の曲面部を組み合わせて構成された表面を有する溝であれば、4点接触玉軸受、アンギュラ玉軸受などの玉軸受を構成する内輪の外周面に形成された軌道溝に限らず、各種ワークの周面に形成された溝に対して実施することができる。
たとえば、本発明の溝の超仕上げ方法は、4点接触玉軸受、アンギュラ玉軸受などの玉軸受を構成する外輪の内周面に存在する軌道溝や、ボールねじ装置を構成するボールねじ軸の外周面に形成されたボールねじ溝や、ボールねじ装置を構成するボールナットの内周面に形成されたボールナット溝に対して実施することもできる。
本発明の溝の超仕上げ方法を、ボールねじ溝又はボールナット溝に対して実施する場合には、ワークであるボールねじ軸又はボールナットを、自身の中心軸を中心として回転させ、かつ、砥石に対して軸方向に移動させながら、ボールねじ溝又はボールナット溝の表面に砥石を押し付けた状態で砥石を揺動させる。
また、本発明に関して、溝の表面を構成する曲面部が3つ以上存在する場合には、これらの曲面部の断面形状の曲率中心は、すべてが異なる位置に存在している必要はなく、互いに隣り合う曲面部の断面形状の曲率中心が異なる位置に存在していれば良い。
The method for superfinishing a groove of the present invention is a ball such as a four-point contact ball bearing or an angular contact ball bearing as long as the groove has a surface formed by combining a plurality of curved surface portions each having an arc-shaped cross-sectional shape. This can be applied not only to the raceway grooves formed on the outer peripheral surface of the inner ring constituting the bearing, but also to the grooves formed on the peripheral surface of various workpieces.
For example, the groove superfinishing method of the present invention includes a raceway groove existing on the inner peripheral surface of an outer ring constituting a ball bearing such as a four-point contact ball bearing and an angular ball bearing, and a ball screw shaft constituting a ball screw device. It can also be applied to a ball screw groove formed on the outer peripheral surface or a ball nut groove formed on the inner peripheral surface of the ball nut constituting the ball screw device.
When the method for superfinishing a groove of the present invention is applied to a ball screw groove or a ball nut groove, the ball screw shaft or ball nut, which is a work piece, is rotated about its own central shaft, and a grindstone is used. While moving in the axial direction with respect to the ball, the grindstone is swung in a state where the grindstone is pressed against the surface of the ball screw groove or the ball nut groove.
Further, according to the present invention, when there are three or more curved surface portions constituting the surface of the groove, the centers of curvature of the cross-sectional shapes of these curved surface portions do not have to all exist at different positions, and they do not have to exist at different positions. It suffices that the centers of curvature of the cross-sectional shapes of the adjacent curved surfaces exist at different positions.

1 内輪
2、2a 軌道溝
3a〜3e 曲面部
4 内輪
5 基台
6 Xステージ
7 支柱
8 Zステージ
9 揺動軸
10 砥石ホルダ
11 砥石
12 スピンドル装置
13 制御装置
14 サーボモータ
15 サーボモータ
16 サーボモータ
17 シリンダ
18 先端面
19 駆動軸
1 Inner ring 2, 2a Track groove 3a to 3e Curved surface part 4 Inner ring 5 Base 6 X stage 7 Strut 8 Z stage 9 Swing shaft 10 Grindstone holder 11 Grindstone 12 Spindle device 13 Control device 14 Servo motor 15 Servo motor 16 Servo motor 17 Cylinder 18 Tip surface 19 Drive shaft

Claims (5)

周面と、該周面に形成され、それぞれが円弧形の断面形状を有する複数の曲面部を組み合わせて構成された表面を有する溝とを備えるワークを、該ワークの中心軸を中心として回転させながら、前記複数の曲面部のうちの何れの曲面部の幅寸法よりも小さい幅寸法を有する砥石の先端面を前記溝の表面に押し付けた状態で、前記砥石を該砥石の揺動軸心を中心として揺動させることにより前記砥石の先端面を前記ワークの軸方向に関して前記溝の表面の一方側端部と他方側端部との間で往復移動させ、かつ、前記複数の曲面部のうち、互いに隣り合う2つの曲面部のうちの何れか一方の曲面部から他方の曲面部に前記砥石の先端面を移動させる際に、前記揺動軸心を前記何れか一方の曲面部の断面形状の曲率中心の位置から前記他方の曲面部の断面形状の曲率中心の位置に移動させる、溝の超仕上げ方法。 A work having a peripheral surface and a groove having a surface formed by combining a plurality of curved surfaces formed on the peripheral surface and each having an arcuate cross-sectional shape is rotated about the central axis of the work. While pressing the tip surface of the grindstone having a width dimension smaller than the width dimension of any of the curved surface portions among the plurality of curved surface portions against the surface of the groove, the grindstone is moved to the swing axis of the grindstone. By swinging around the center, the tip surface of the grindstone is reciprocated between one side end portion and the other side end portion of the surface of the groove with respect to the axial direction of the work, and the plurality of curved surface portions. When the tip surface of the grindstone is moved from one of the two curved surfaces adjacent to each other to the other curved surface, the swing axis is set to the cross section of the one of the curved surfaces. A method for superfinishing a groove, in which the position of the center of curvature of the shape is moved to the position of the center of curvature of the cross-sectional shape of the other curved surface portion. 前記何れか一方の曲面部から前記他方の曲面部に前記砥石の先端面を移動させる際に、これらの2つの曲面部の接続部で前記砥石の先端面の移動を一旦停止させることなく、前記揺動軸心を前記何れか一方の曲面部の断面形状の曲率中心の位置から前記他方の曲面部の断面形状の曲率中心の位置に移動させる、請求項1に記載した溝の超仕上げ方法。 When the tip surface of the grindstone is moved from one of the curved surfaces to the other curved surface, the movement of the tip surface of the grindstone is not temporarily stopped at the connecting portion of these two curved surfaces. The method for superfinishing a groove according to claim 1, wherein the swing axis is moved from the position of the center of curvature of the cross-sectional shape of one of the curved surfaces to the position of the center of curvature of the cross-sectional shape of the other curved surface. 前記何れか一方の曲面部から前記他方の曲面部に前記砥石の先端面を移動させる際に、これらの2つの曲面部の接続部で前記砥石の先端面の移動を一旦停止させた状態で、前記揺動軸心を前記何れか一方の曲面部の断面形状の曲率中心の位置から前記他方の曲面部の断面形状の曲率中心の位置に移動させる、請求項1に記載した溝の超仕上げ方法。 When the tip surface of the grindstone is moved from one of the curved surfaces to the other curved surface, the movement of the tip surface of the grindstone is temporarily stopped at the connecting portion of these two curved surfaces. The method for superfinishing a groove according to claim 1, wherein the swing axis is moved from the position of the center of curvature of the cross-sectional shape of one of the curved surfaces to the position of the center of curvature of the cross-sectional shape of the other curved surface. .. 前記砥石を前記揺動軸心を中心として一定の揺動周波数で揺動させながら、前記揺動軸心を前記何れか一方の曲面部の断面形状の曲率中心の位置から前記他方の曲面部の断面形状の曲率中心の位置に移動させる、請求項1〜3のうちの何れか1項に記載した溝の超仕上げ方法。 While swinging the grindstone around the swing axis at a constant swing frequency, the swing axis is moved from the position of the center of curvature of the cross-sectional shape of one of the curved surfaces to the other curved surface. The method for superfinishing a groove according to any one of claims 1 to 3, wherein the groove is moved to the position of the center of curvature of the cross-sectional shape. 周面と、該周面に形成され、それぞれが円弧形の断面形状を有する複数の曲面部を組み合わせて構成された表面を有する軌道溝とを備え、かつ、前記軌道溝に超仕上げが施されている軌道輪を含んで構成された軸受の製造方法であって、前記軌道溝の超仕上げを、請求項1〜4のうちの何れか1項に記載した溝の超仕上げ方法により行う軸受の製造方法。 The raceway groove is provided with a peripheral surface and a raceway groove having a surface formed by combining a plurality of curved surface portions each having an arc-shaped cross-sectional shape, and the raceway groove is super-finished. This is a method for manufacturing a bearing including a raceway ring, wherein the raceway groove is superfinished by the groove superfinishing method according to any one of claims 1 to 4. Manufacturing method.
JP2017113335A 2017-06-08 2017-06-08 Super finishing method for grooves and manufacturing method for bearings Active JP6911547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017113335A JP6911547B2 (en) 2017-06-08 2017-06-08 Super finishing method for grooves and manufacturing method for bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017113335A JP6911547B2 (en) 2017-06-08 2017-06-08 Super finishing method for grooves and manufacturing method for bearings

Publications (2)

Publication Number Publication Date
JP2018202578A JP2018202578A (en) 2018-12-27
JP6911547B2 true JP6911547B2 (en) 2021-07-28

Family

ID=64956019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017113335A Active JP6911547B2 (en) 2017-06-08 2017-06-08 Super finishing method for grooves and manufacturing method for bearings

Country Status (1)

Country Link
JP (1) JP6911547B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112296866B (en) * 2019-08-02 2024-08-06 青岛泰德轴承科技股份有限公司 Spindle channel grinding device in shaft-connected bearing
CN112405323B (en) * 2019-08-21 2024-08-06 青岛泰德轴承科技股份有限公司 Grinding device for outer ring of shaft-connected bearing
CN114178946B (en) * 2021-12-16 2022-09-06 南通山口动能科技有限公司 Bearing inner race channel superfinishing machine
CN114770380B (en) * 2022-04-21 2023-06-30 洛阳轴承研究所有限公司 Control method for bearing machining and method for determining grinding wheel feeding amount
CN114871694A (en) * 2022-04-25 2022-08-09 无锡宝晟精密轴承制造有限公司 Four-point contact ball bearing processing technology for microscope turntable
CN114952435B (en) * 2022-04-27 2023-08-11 洛阳轴承研究所有限公司 Control method for bearing machining and method for determining grinding quantity
KR102580741B1 (en) * 2023-02-22 2023-09-20 주식회사 터보링크 Bearing pad of fluid lubrication bearing and ball pivot polishing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3861659B2 (en) * 2001-11-08 2006-12-20 日本精工株式会社 Super finishing method of gothic arc groove
JP2003260650A (en) * 2002-03-04 2003-09-16 Koyo Seiko Co Ltd Super finishing method of groove, and grinding wheel for super finishing
JP5609904B2 (en) * 2012-02-24 2014-10-22 日本精工株式会社 Super finishing equipment
CN103978413A (en) * 2014-05-29 2014-08-13 贵州虹山虹飞轴承有限责任公司 Bearing groove finishing reinforcing method

Also Published As

Publication number Publication date
JP2018202578A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
JP6911547B2 (en) Super finishing method for grooves and manufacturing method for bearings
WO2021031631A1 (en) Grinding and polishing apparatus and method supporting controllable force/position and capable of automatically adapting to different surface profiles
JP2010139032A (en) Machine component, rolling element for rolling bearing, bearing ring, and method for super-finishing the same
JP2004322307A (en) Superfinishing device and method, rolling element, and rolling bearing
JP4576255B2 (en) Tool whetstone shape creation method
JPH0493169A (en) Polishing spindle
JP4812488B2 (en) Super finishing method of roller bearing raceway
CN210997939U (en) Force/position controllable surface type self-adaptive grinding and polishing device
WO2006104130A1 (en) Superfinishing grind stone and superfinishing method using the same
JP4812489B2 (en) Super finishing machine for roller bearing races
JP4110396B2 (en) Super finishing method and super finishing device for bearing raceway surface
JP2002254293A (en) Method and device for superfinishing raceway surface of ball bearing
JP4389554B2 (en) Super finishing equipment
JPH02256452A (en) Method and device for holding roller segment
KR100448249B1 (en) Free surface processing tool
JP2018144124A (en) Machining device
US6589103B2 (en) Device for the finishing treatment of shaft workpieces
JP5852596B2 (en) Grinding apparatus and grinding method
JP3855744B2 (en) Superfinishing method and apparatus
JP3868661B2 (en) Centerless grinding method and centerless grinding apparatus for spherical workpiece
JPS6052246A (en) Polishing machine
JP2002192450A (en) Machining method and machining device for rolling element for toroidal continuously variable transmission
JP2012066326A (en) Film lapping device, outside joint member of constant velocity universal joint, hub ring of wheel bearing device, and film lapping method
JP4078909B2 (en) Super finishing equipment
JP6006144B2 (en) Lens processing apparatus, lens processing method, and lens processing tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210621

R150 Certificate of patent or registration of utility model

Ref document number: 6911547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150