JP2004097873A - Classification method for dredged earth and sand - Google Patents

Classification method for dredged earth and sand Download PDF

Info

Publication number
JP2004097873A
JP2004097873A JP2002259818A JP2002259818A JP2004097873A JP 2004097873 A JP2004097873 A JP 2004097873A JP 2002259818 A JP2002259818 A JP 2002259818A JP 2002259818 A JP2002259818 A JP 2002259818A JP 2004097873 A JP2004097873 A JP 2004097873A
Authority
JP
Japan
Prior art keywords
sand
water
muddy water
classification
sedimentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002259818A
Other languages
Japanese (ja)
Other versions
JP4258799B2 (en
Inventor
Yuichi Tani
谷 雄一
Noboru Inoashi
猪足 昇
Tsutae Senda
千田 伝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2002259818A priority Critical patent/JP4258799B2/en
Publication of JP2004097873A publication Critical patent/JP2004097873A/en
Application granted granted Critical
Publication of JP4258799B2 publication Critical patent/JP4258799B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To take out a sand component in dredged earth and sand efficiently by reduced energy to obtain the high quality sand component at a high recovery rate. <P>SOLUTION: A rough classification means 21, which separates dredged muddy water wherein dredged earth and sand containing the sand component and water are mixed into coarse particles and fine particles, is provided to a mud feed pipeline through which the muddy water is transported by a pump, and the muddy water stream in the pipeline is separated into muddy water low in sand content and muddy water high in sand content by the classification means. The separated muddy water low in sand content is sent to a sedimentation treatment basin 27 as it is while the muddy water high in sand content is sent in a classification treatment pipeline separate from the pipeline of the muddy water low in sand content, and a diluting water mixing means 23 is provided on the way of the pipeline. The mud feed pressure of the muddy water high in sand content is utilized by the means 23 to suck diluting water into the pipeline to mix the same with the muddy water, and the diluted muddy water high in sand content is sent to a sedimentation classification tank 22. The coarse particles are sedimented in the sedimentation classification tank 22 while the fine particles are allowed to flow along with water to separate the sand component. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、河川や港湾等における砂分を含む浚渫土砂から、主として砂分を取り出し、資源として利用可能にするための浚渫土砂の分級処理方法に関する。
【0002】
【従来の技術】
従来、浚渫土砂の処理は、臨海部等の埋立てに多く用いられてきたが、近年では産業構造の転換や環境問題への関心が高まるなかで、埋め立ての需要は減じており、浚渫土砂の処理場を安定して確保することが困難になりつつある。
【0003】
一方で、砂や砂利等の建設資材の採取量が減少しつつあり、環境に配慮した上で、これらの建設資材を安定して確保できる方法が求められている。
【0004】
そこで、浚渫した土砂の減容化を図るとともに、浚渫土砂より砂や砂利等の建設資材を分級して再利用することを目的とした浚渫土砂の処理方法が提案されている。
【0005】
この浚渫土砂の処理方法では、図7、図8に示すように、浚渫手段1から浚渫土砂と水とを混合させた浚渫泥水を攪拌機2aを有する混合槽2に送り、該混合槽2において浚渫泥水をよく撹拌させて泥水の濃度を均一化させ、その砂分を主体とした粗粒泥土と水とが混合した状態の泥水をポンプ3によって分級手段4に送り、この分級手段4で前記泥水を砂、砂利等の砂分と、シルト等のその他の成分とに分級させ、砂分を再利用可能な状態で取り出し、その他の成分は沈殿処理池5に送り込まれるようになっている。尚、この分級手段4には、図7に示すようなサイクロン付き振動篩や、図8に示すような沈殿槽(或いは沈殿水路)を利用して砂分を沈殿させるものが知られている。
【0006】
また、図9に示す如き分級装置10を利用して浚渫泥水を砂分等の粗粒分とシルト分等の細粒分とに分級して浚渫土砂を処理する方法(特公平5−58778号公報)も提案されている。
【0007】
この分級装置10は、浚渫手段に連結された輸送管内を上下で複数に仕切った複数の分級路11a,11b…を設け、その各分級路の下流側をそれぞれ異なる別の流路とすることによって、上側の分級路11a,11bには、シルト・粘土分等の粒子の細かいものが流れ、下側の分級路11cには粒子の粗い砂分等の殆どが流れるようになっている。従って、管路内をポンプ輸送により送られた浚渫泥水は、この分級装置10を通ることによって自動的に分級され、シルト分等の細粒分と砂分等の粗粒分とに分けて、浚渫土砂を処理することができるようになっている。
【0008】
【発明が解決しようとする課題】
しかし、上述のような従来の技術では、浚渫土砂中の砂、砂利等の砂分を取り出す為にサイクロン等の動力源を必要とする装置や、泥水を輸送するために多くのポンプ等を用いるものであるため、これらの装置やポンプを動作させるために大量のエネルギーを消費するという問題があった。
【0009】
また、浚渫土砂中より得られた砂分を、コンクリートの骨材等として再利用するためには、粘土質分を含まない純度の高いものが望まれるが、従来の例えば、沈殿水路を用いた分級方法等では、処理される浚渫土砂の割合に対して分級回収率を高くすると品質が悪くなり、品質を良くしようとすると回収率が低くなるという問題があった。
【0010】
本発明は、このような従来の技術の状況を鑑み、少ないエネルギーで効率良く浚渫土砂中の砂分を取り出すことができ、しかも高い回収率で高品質の砂分を得ることができる浚渫土砂の分級処理方法の提供を目的とする。
【0011】
【課題を解決するための手段】
上述の如き従来の問題を解決し、所期の目的を達成するための請求項1の発明は、砂分を含む浚渫土砂と水とが混合された浚渫泥水がポンプ輸送される送泥管路の途中に、粗粒分と細粒分とに分離させる粗分級手段を備え、該粗分級手段をもって前記送泥管内の浚渫泥水流を低含砂泥水と高含砂泥水とに分流させ、分流された低含砂泥水はそのまま沈澱処理池に送り、前記高含砂泥水を前記低含砂泥水とは別の分級処理用管路に送り込み、該管路の途中に希釈水混合手段を備え、該希釈水混合手段により、前記高含砂泥水の送泥圧を利用して該管路内に希釈水を吸引させて高含砂泥水に混合させ、希釈された高含砂泥水を沈殿分級槽に送り、該沈殿分級槽で粗粒成分を沈殿させるとともに細粒成分を水と共に流過させることにより砂分を分離させることを特徴とする。
【0012】
このように構成することによって、砂分濃度の高い高含砂泥水を希釈して砂分の沈殿を促進させるので、高品質の砂分を高い回収率で取り出すことができ、また、高含砂泥水の送泥圧を利用して管路内に希釈水を吸引させることで、少ないエネルギーで効率良く砂分を取り出すことができる。
【0013】
請求項2の発明は、請求項1の構成に加え、希釈水混合手段には、分級処理管路下流側を絞り込んだ噴出ノズルと、該噴出ノズルの周囲に希釈水を供給する希釈水供給部と、該希釈水供給部の下流側を絞り込んだ首部とし、該首部の下流側を拡開させたテーパ部とを備えたエダクターを使用し、前記分級管路上流側の高含砂泥水が前記噴出ノズルから吐出する際に生じる負圧によって希釈水を吸引し、テーパ部における拡散により高含砂泥水に希釈水を混合拡散させるようにしたことを特徴とする。
【0014】
このように構成することにより、希釈水混合手段のエジェクター効果、即ち噴出ノズルから高含砂泥水を噴出することによるポンプ効果によって、動力源を必要とするポンプ装置を用いなくとも、希釈水を吸引することができ、高含砂泥水の希釈が自動的、連続的に行われ、効率良く分級処理を行うことができる。更には、高含砂泥水を希釈するとともに洗浄する効果も得られるので、より高い品質の砂分を得ることができる。
【0015】
請求項3の発明は、請求項1又は2の構成に加え、希釈水は、低含砂泥水が送り込まれた沈澱処理池の表層水を使用することを特徴とする。
【0016】
このように構成することにより、特に希釈水を貯蔵しておく設備を設ける必要がなく、安価に処理することができる。
【0017】
請求項4の発明は、請求項1、2又は3の構成に加え、粗分級手段は、浚渫泥水を輸送する送泥管路の途中に、該送泥管路を上下に仕切って複数段の分級路を設け、下側の分級路の下流側を分級処理用管路に連通させたことを特徴とする。
【0018】
このように構成することにより、浚渫土砂中の砂分の量を減らすことなく、水量だけを減らすことができ、シルト分とともに砂分が流されることがないので、分級作業における砂分のロスが少なく、高い回収率で砂分等を取り出すことができる。
【0019】
請求項5の発明は、請求項1〜3又は4の構成に加え、沈殿分級槽は、希釈水混合手段によって希釈された高含砂泥水が流入される上流側に砂分沈殿部を備え、該砂分沈殿部の下流側端部に沈殿分級槽を上流側と下流側とに仕切る潜堰を上下流側に移動可能にしたことを特徴とする。
【0020】
このように構成することにより、必要とされる粒径の砂分を効率良く回収することができ、潜堰を移動可能にしたことで、沈殿分級槽内に堆積する砂分の粒径を調整することができる。
【0021】
【発明の実施の形態】
次に、本発明の実施の形態を図について説明する。
【0022】
図1は渫土砂の分級処理装置の概略を示している。
【0023】
この浚渫土砂の分級処理装置は、浚渫土砂と水とを混合した浚渫泥水を供給する浚渫手段20と、該浚渫泥水がポンプ輸送により輸送される送泥管路とを備え、その送泥管路の途中に粗分級手段21と、沈殿分級槽22とを設けて、段階的に分級を行い、最終的に浚渫土砂に含まれる砂分を再利用可能な状態で取り出すようになっている。
【0024】
また、この浚渫土砂の分級処理装置では、粗分級手段21と沈殿分級槽22との間に希釈水混合手段23を設け、粗分級手段21において分級された砂分を主体とした高含砂泥水に希釈水を混合し、高含砂泥水に含まれる砂分を沈殿し易い状態にして沈殿分級槽22に送り込むようになっている。
【0025】
浚渫手段20は、ポンプ浚渫船のように、浚渫土砂を水と混合された状態で取り込み、その浚渫土砂と水とが混合した浚渫泥水をそのままポンプ20aによって送泥管路に送り込むか、或いは、別の場所でグラブ浚渫等のように加水しないで浚渫された土砂を土運船等により分級処理現場に搬送し、この土砂を水と混合させて浚渫泥水としたものをポンプにより送泥管路に圧送するようになっている。
【0026】
粗分級手段21は、浚渫土砂を輸送する送泥管路の途中に、分級分岐管24を設けることによって送泥管路を上下に仕切って上下の分級路25,26を設け、上側分級路25の下流側を沈殿処理池27へ、下側分級路26の下流側を分級処理用管路へそれぞれ連通させている。
【0027】
分級分岐管24は、図2〜図4に示すように、円筒状の本体部28と、本体部28内を上下に仕切る仕切版29と、本体部28の仕切版下側流路30bと連通した状態に突設された円筒状の分岐筒部31と、本体部の仕切版下側流路30bの下流側開口部を閉鎖する誘導版32とを備えている。
【0028】
この分級分岐管24では、本体部内を仕切版29により上下に仕切っているので、シルトや粘土分を主体とした低含砂泥水が仕切版上側流路30aを流れ、砂分を主体とした高含砂泥水が仕切版下側流路30bを流れるようになっており、また、誘導版32によって本体部28の仕切版下側流路30bの下流側が閉鎖されているので、高含砂泥水は分岐筒部31側、即ち、分級処理管路へ流れ、該管路を通して希釈水混合手段23に送られるようになっている。
【0029】
尚、図中符号33,33…は、整流片であり、この整流片33,33…で仕切版下側流路30bの上流側開口を仕切ることによって、砂礫等によって仕切版下側管路30bが閉塞されるのを防止している。
【0030】
希釈水混合手段23には、エダクターを使用し、該エダクターは、図5に示すように、分級処理管路下流側を絞り込んだ噴出ノズル34と、噴出ノズルの周囲に希釈水を供給する希釈水供給部35と、希釈水供給部35の下流側を絞り込んだ首部とし、首部の下流側を拡開させたテーパ部36とを備えている。
【0031】
このエダクターは、噴出ノズル34より粗分級手段21から送り込まれた高含砂泥水をその送泥圧により吐出させることによって、吐出時に発生する負圧により希釈水供給部35内が減圧され、該希釈水供給部内に希釈水を吸引するとともに、噴出ノズル34から噴出された高含砂泥水と、吸引された希釈水とがテーパ部36における拡散により混合拡散されるようになっている。また、この希釈された高含砂泥水は、テーパ部36の下流側がテーパ状に拡開していることによって、下流側、即ち沈殿分級槽22側に向かって流れるようになっている。
【0032】
また、この希釈水混合手段23では、希釈水供給部36を低含砂泥水が送り込まれた沈殿処理池27の上部に連通させ、その沈殿処理池27の表層水を希釈水として吸引するようにしてもよい。
【0033】
沈殿分級槽22は、希釈水混合手段23によって希釈された高含砂泥水が流入される上流側に砂分沈殿部37を備え、砂分沈殿部37の下流側端部に沈殿分級槽22を上流側と下流側とに仕切る潜堰38を上下流側に移動可能に備えている。
【0034】
この沈殿分級槽22は、上流側にある砂分沈殿部37に高含砂泥水の粗粒成分である砂、砂礫等の砂分が沈殿されるとともに、下流側では高含砂泥水の細粒成分を水とともに潜堰38を越えて沈殿処理池27に流過させることにより砂分から分離させている。
【0035】
この砂分沈殿部37に堆積した砂分は、バックホー等の砂分回収手段39により取り出し、砂ストックヤード40に送るようになっている。また、沈殿分級槽22の手前の管路に開閉弁41を設けておき、開閉弁41を閉鎖し、沈殿分級槽22への高含砂泥水の流入を停止させて、砂分の回収を行うようにしてもよい。
【0036】
尚、図中の符号42はγ線密度計、43,43は電磁流量計であり、これらの計器より得られるデータを基に高含砂泥水の希釈濃度等を調節することができるようになっている。
【0037】
次に、上述の分級処理装置を使用した浚渫土砂の分級処理方法について説明する。
【0038】
まず、浚渫手段20から、浚渫土砂と水とを混合させた浚渫泥水をポンプ20aによって送泥管路に送り込む。
【0039】
この送泥管路をポンプ輸送される浚渫泥水は、送泥管路の途中に設けられた粗分級手段21を構成する分級分岐管24内を通る。このとき、シルト、粘土等の細粒分は管内全段面にわたり、略均一の濃度で流れ、一方、砂分等の粗粒分は管の下側に集中し、転摺動しながら流れるので、シルト等を主体とした低含砂泥水は仕切版上側流路30aを経て上側分級路25へ、砂分を主体とした高含砂泥水は、仕切版下側流路30bを経て下側分級路26、即ち分級処理用管路へそれぞれ送られる。従って、低含砂泥水は上側分級路25を通り沈殿処理池27に送り込まれ、高含砂泥水は下側分級路26を通って希釈水混合手段23に送り込まれる。
【0040】
下側分級路26を構成する送泥管内は、継続的に高含砂泥水が送り込まれて加圧状態となっているので、希釈水混合手段23に送り込まれた高含砂泥水は、加圧されて噴出ノズル34から吐出される。このとき、噴出ノズル34の周囲は、吐出する際に生じる負圧によって減圧され、希釈水供給部35に連通した沈殿処理池27よりその表層水が希釈水として吸引され、この表層水が噴出ノズル34より吐出された高含砂泥水とテーパ部36における拡散により混合拡散される。
【0041】
このように高含砂泥水を希釈することで、図6に示すように(図は分級分岐管の分岐率が50%:50%の場合)、分級されたことで砂分の濃度が高くなった高含砂泥水の母液(即ちシルトを含む水)の粘性係数μを下げることができ、ストークスの式で導かれるように、母液の粘性係数μが下がることによって、砂分粒子の沈降速度が大きくなり、砂分を分級されやすくすることができる。
【0042】
尚、ストークスの式とは、
v=1/18・g(ρ‘−ρ)・d/μ
で表される式を言い、vは粒子の終末沈降速度(cm/s)、gは重力加速度(cm/s)、ρ‘は粒子の密度(g/cm)、ρは媒体の密度(g/cm)、dは粒子の直径(cm)、μは母液の粘性係数(g/cm・s)である。
【0043】
そして、希釈された高含砂泥水は、沈殿分級槽22に送り込まれ、上流側で粗粒成分である砂、砂礫等の砂分を砂分沈殿部において沈殿させるとともに、下流側で細粒成分であるシルト、粘土質等を表層水とともにオーバーフローによって沈殿処理池27に排出する。
【0044】
最後に他の成分より分離された砂分をバックホー等の砂分回収手段によって回収し、砂ストックヤードに送る。
【0045】
尚、上述の実施例では、希釈水として沈殿処理池の表層水を用いる例について説明したが、これに限定されるものではなく、高含砂泥水より十分に濃度が低いものであればよい。
【0046】
【発明の効果】
上述のように、本発明に係る浚渫土砂の分級処理方法は、少ないエネルギーで効率良く、しかも、高品質の砂、砂礫等の砂分を高い回収率で得ることができる。
【0047】
また、希釈水として沈殿処理池の表層水を使用すれば、表層水を周辺水域等に排出する必要がなくなるので排水基準に適合した余水処理を行う必要もなく、安価に処理することができる。
【0048】
更に、浚渫手段以外の動力源を要する装置を必要とせずに高含砂泥水の希釈を自動的・連続的に行うことができ、エネルギー効率が向上する。更には、高含砂泥水を希釈するとともに洗浄する効果も得られるので、より高い品質の砂分を得ることができる。
【0049】
また、分級分岐管を用いれば、浚渫土砂中の砂分量を減らす事なく、水分量だけを減らすことができ、分級作業における砂分のロスが少なく、高い回収率で砂分等を取り出すことができ、従来に比べ相対的に砂分量を増加させることができる。
【図面の簡単な説明】
【図1】本発明に係る浚渫土砂の分級処理方法の概略を示すフロー図である。
【図2】図1中の分級分岐管を示す正面図である。
【図3】同上の縦断面図である。
【図4】同上のA−A線断面図である。
【図5】図1中の希釈水混合手段を示す縦断面図である。
【図6】同上の原理を説明する為のブロック図である。
【図7】従来の浚渫土砂の分級処理方法の一例の概略を示すフロー図である。
【図8】同上の他の一例の概略を示すフロー図である。
【図9】(a)は従来の分級装置の一例を示す正面図、(b)は同縦断面図である。
【符号の説明】
20 浚渫手段
20a ポンプ
21 粗分級手段
22 沈殿分級槽
23 希釈水混合手段
24 分級分岐管
25 上側分級路
26 下側分級路
27 沈殿処理池
28 本体部
29 仕切版
30a 仕切版上側流路
30b 仕切版下側流路
31 分岐筒部
32 誘導版
33 整流片
34 噴出ノズル
35 希釈水供給部
36 テーパ部
37 砂分沈殿部
38 潜堰
39 砂分回収手段
40 砂ストックヤード
41 開閉弁
42 γ線密度計
43 電磁流量計
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for classifying a dredged soil to mainly extract sand from dredged sand containing sand in a river, a port, or the like and to make it usable as a resource.
[0002]
[Prior art]
Conventionally, dredged soil treatment has often been used for land reclamation in coastal areas, but in recent years, as interest in environmental changes and industrial structure changes has increased, the demand for land reclamation has decreased. It is becoming difficult to secure a stable treatment plant.
[0003]
On the other hand, the amount of construction materials such as sand and gravel to be collected is decreasing, and there is a need for a method capable of stably securing these construction materials with consideration for the environment.
[0004]
Therefore, a method for treating dredged soil has been proposed for the purpose of reducing the volume of the dredged soil and classifying and reusing construction materials such as sand and gravel from the dredged soil.
[0005]
In this method for treating dredged soil, as shown in FIGS. 7 and 8, dredging mud mixed with dredged soil and water is sent from a dredging means 1 to a mixing tank 2 having a stirrer 2a. The muddy water is stirred well to make the muddy water concentration uniform, and the muddy water in which the coarse mud mainly composed of sand and water are mixed is sent to the classifying means 4 by the pump 3, and the muddy water is Is classified into sand such as sand and gravel, and other components such as silt. The sand is taken out in a reusable state, and the other components are sent to the sedimentation treatment tank 5. As the classifying means 4, a vibrating sieve with a cyclone as shown in FIG. 7 and a means for sedimenting sand using a sedimentation tank (or sedimentation channel) as shown in FIG. 8 are known.
[0006]
Also, a method of classifying dredged muddy water into coarse particles such as sand and fine particles such as silt using a classifying apparatus 10 as shown in FIG. 9 to treat dredged soil (Japanese Patent Publication No. 5-58778). Gazette) has also been proposed.
[0007]
The classifying device 10 is provided with a plurality of classifying paths 11a, 11b,... Dividing the inside of a transport pipe connected to the dredging means into a plurality of upper and lower sections, and by setting the downstream sides of the respective classifying paths to different different flow paths. Fine particles such as silt and clay flow through the upper classifiers 11a and 11b, and most of the coarse particles such as sand flow through the lower classifier 11c. Therefore, the dredged mud sent by pumping in the pipeline is automatically classified by passing through the classifier 10, and divided into fine particles such as silt and coarse particles such as sand. It can handle dredged soil.
[0008]
[Problems to be solved by the invention]
However, in the conventional technology as described above, sand in dredged soil, a device that requires a power source such as a cyclone to extract sand such as gravel, and many pumps and the like are used to transport muddy water Therefore, there is a problem that a large amount of energy is consumed to operate these devices and pumps.
[0009]
In addition, in order to reuse the sand obtained from the dredged soil as aggregate for concrete and the like, a high-purity one containing no clay is desired. In the classification method and the like, there is a problem that the quality is deteriorated when the classification recovery rate is increased with respect to the ratio of the dredged soil to be processed, and the recovery rate is reduced when the quality is improved.
[0010]
The present invention has been made in view of such a state of the art, and it is possible to efficiently extract sand in dredged soil with little energy and obtain a high-quality sand at a high recovery rate. The purpose is to provide a classification method.
[0011]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION In order to solve the conventional problems as described above and to achieve the intended purpose, the invention of claim 1 is directed to a mud feeding pipeline in which dredged mud mixed with dredged earth and sand containing sand is pumped. In the middle of the process, a coarse classification means for separating into coarse and fine particles is provided, and the dredged mud flow in the mud pipe is divided into a low and a high mud containing mud by the coarse classification means. The low sand-bearing mud water sent to the sedimentation treatment pond as it is, the high sand-bearing mud water is sent to a separate pipe for classification treatment from the low sand-bearing mud water, and a dilution water mixing means is provided in the middle of the pipeline. The dilution water mixing means draws dilution water into the pipeline by using the mud pressure of the high sand content muddy water and mixes it with the high sand content muddy water. To separate the sand content by precipitating coarse-grained components and passing fine-grained components together with water in the sedimentation classification tank. And characterized in that.
[0012]
With this configuration, the high-sand content mud with a high sand content is diluted to promote the sedimentation of the sand content, so that high-quality sand content can be taken out at a high recovery rate. By sucking dilution water into the pipeline using the muddy water sending pressure, sand can be efficiently extracted with little energy.
[0013]
According to a second aspect of the present invention, in addition to the configuration of the first aspect, the dilution water mixing means includes an ejection nozzle that narrows the downstream side of the classification processing pipe, and a dilution water supply unit that supplies dilution water around the ejection nozzle. And an eductor having a narrowed neck on the downstream side of the dilution water supply unit and a tapered portion that is expanded on the downstream side of the neck, and the high sand content muddy water on the upstream side of the classification pipe is used. It is characterized in that the dilution water is sucked by the negative pressure generated at the time of discharge from the ejection nozzle, and the dilution water is mixed and diffused into the high sand-containing muddy water by diffusion in the tapered portion.
[0014]
With this configuration, the diluting water is sucked without using a pump device that requires a power source by the ejector effect of the diluting water mixing means, that is, the pumping effect by jetting high sand content muddy water from the jet nozzle. The dilution of the high sand content mud can be performed automatically and continuously, and the classification process can be performed efficiently. Further, since the effect of diluting and washing the high-sand content muddy water is obtained, higher quality sand can be obtained.
[0015]
The invention of claim 3 is characterized in that, in addition to the structure of claim 1 or 2, the dilution water uses surface water of a sedimentation treatment pond into which low-sand content muddy water is fed.
[0016]
With this configuration, it is not necessary to provide a facility for storing the dilution water, and the processing can be performed at low cost.
[0017]
In the invention of claim 4, in addition to the constitution of claim 1, 2 or 3, the coarse classification means comprises a plurality of stages by vertically dividing the mud feeding pipe in the middle of the mud feeding pipe for transporting the dredged muddy water. A classification path is provided, and the downstream side of the lower classification path is communicated with a classification processing pipeline.
[0018]
With this configuration, it is possible to reduce only the amount of water without reducing the amount of sand in the dredged soil, and since the sand is not washed away with the silt, the loss of sand in the classification operation is reduced. Sand and the like can be taken out at a low and high recovery rate.
[0019]
The invention of claim 5 is, in addition to the configuration of claims 1 to 3 or 4, wherein the sedimentation classification tank includes a sand sedimentation section on the upstream side where the high-sand content muddy water diluted by the diluting water mixing means flows. At the downstream end of the sand sedimentation section, a submerged weir that separates the sedimentation classification tank into an upstream side and a downstream side is movable upstream and downstream.
[0020]
With this configuration, the sand having the required particle size can be efficiently collected, and the submerged weir can be moved to adjust the particle size of the sand deposited in the sedimentation classification tank. can do.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
[0022]
FIG. 1 shows an outline of a device for classifying sediment.
[0023]
The dredged sediment classification apparatus includes a dredging means 20 for supplying dredged mud mixed with dredged sediment and water, and a mud feed pipe through which the dredged mud is transported by pumping. A coarse classification means 21 and a sedimentation classification tank 22 are provided on the way to perform classification step by step, and finally, sand contained in the dredged soil is taken out in a reusable state.
[0024]
Further, in this dredged sediment classification apparatus, a diluting water mixing means 23 is provided between the coarse classification means 21 and the sedimentation classification tank 22, and the high sand content muddy water mainly composed of the sand classified by the coarse classification means 21. And the diluting water is mixed into the sedimentation tank 22 so that the sand contained in the high-sand-containing muddy water is easily precipitated.
[0025]
The dredging means 20 takes in dredged soil in a state of being mixed with water, like a pump dredge, and sends the dredged mud mixed with the dredged sediment and water as it is to the mud line by the pump 20a, or The dredged earth and sand is transported to the classifying site by a soil carrier, etc. without adding water as in the case of grab dredging, etc. It is designed to be pumped.
[0026]
The coarse classification means 21 is provided with a classification branch pipe 24 in the middle of a mud feeding pipe for transporting dredged soil, thereby dividing the mud feeding pipe up and down to provide upper and lower classifiers 25 and 26, and an upper classifier 25. Is connected to the sedimentation treatment tank 27, and the downstream side of the lower classification passage 26 is connected to the classification treatment pipeline.
[0027]
As shown in FIGS. 2 to 4, the classifying branch pipe 24 communicates with a cylindrical main body 28, a partition plate 29 for vertically dividing the inside of the main body 28, and a partition plate lower flow path 30 b of the main body 28. And a guide plate 32 for closing the downstream opening of the partition plate lower flow path 30b of the main body.
[0028]
In the classifying branch pipe 24, since the inside of the main body is vertically divided by the partition plate 29, low sand-containing muddy water mainly composed of silt or clay flows through the partition plate upper flow path 30a, and high water mainly composed of sand. Since the sand-containing muddy water flows through the partition plate lower flow path 30b, and the induction plate 32 closes the downstream side of the partition plate lower flow path 30b of the main body 28, the high sand-containing muddy water is removed. It flows to the branch cylinder 31 side, that is, to the classification processing pipeline, and is sent to the dilution water mixing means 23 through the pipeline.
[0029]
Reference numerals 33, 33 ... in the figure denote rectifying strips. The rectifying strips 33, 33 ... partition the upstream opening of the partition plate lower flow path 30b, so that the partition plate lower pipe line 30b is separated by gravel or the like. Is prevented from being blocked.
[0030]
As shown in FIG. 5, an eductor is used for the dilution water mixing means 23. The eductor includes an ejection nozzle 34 that narrows the downstream side of the classification processing pipeline, and a dilution water that supplies dilution water around the ejection nozzle. It has a supply section 35 and a tapered section 36 in which the downstream side of the dilution water supply section 35 is a narrowed neck and the downstream side of the neck is expanded.
[0031]
This eductor discharges the high sand content mud fed from the coarse classification means 21 from the jet nozzle 34 by the pressure of the mud, so that the pressure in the dilution water supply unit 35 is reduced by the negative pressure generated at the time of discharge, and the dilution is performed. The diluting water is sucked into the water supply unit, and the high sand content muddy water spouted from the spouting nozzle 34 and the sucked dilution water are mixed and diffused by the diffusion in the taper portion 36. The diluted high sand content muddy water flows toward the downstream side, that is, the sedimentation classification tank 22 side, because the downstream side of the tapered portion 36 is expanded in a tapered shape.
[0032]
In the dilution water mixing means 23, the dilution water supply unit 36 is communicated with the upper part of the sedimentation treatment pond 27 into which the low sand content muddy water has been sent, and the surface water of the sedimentation treatment pond 27 is sucked as dilution water. You may.
[0033]
The sedimentation classification tank 22 is provided with a sand sedimentation part 37 on the upstream side where the high sand content muddy water diluted by the dilution water mixing means 23 flows, and the sedimentation classification tank 22 is provided on the downstream end of the sand sedimentation part 37. A submerged weir 38 that divides into an upstream side and a downstream side is provided so as to be movable up and down.
[0034]
In the sedimentation classification tank 22, sand such as sand and gravels, which are coarse components of the high sand content mud, is settled in the sand sedimentation section 37 on the upstream side, and fine particles of the high sand content mud are downstream. The components are separated from the sand by flowing the components together with the water over the submerged weir 38 to the sedimentation treatment pond 27.
[0035]
The sand accumulated in the sand sedimentation section 37 is taken out by sand collecting means 39 such as a backhoe and sent to a sand stock yard 40. In addition, an on-off valve 41 is provided in a pipeline before the sedimentation classification tank 22, the on-off valve 41 is closed, and the inflow of high sand-containing muddy water into the sedimentation classification tank 22 is stopped to collect sand. You may do so.
[0036]
Reference numeral 42 in the figure denotes a γ-ray density meter, and reference numerals 43, 43 denote electromagnetic flowmeters, and the dilution concentration and the like of the high sand content muddy water can be adjusted based on data obtained from these meters. ing.
[0037]
Next, a method of classifying dredged soil using the above-described classifying apparatus will be described.
[0038]
First, dredging mud mixed with dredged soil and water is sent from the dredging means 20 to a mud feeding pipeline by a pump 20a.
[0039]
The dredged muddy water pumped through the mud feeding pipe passes through a classification branch pipe 24 constituting a coarse classification means 21 provided in the middle of the mud feeding pipe. At this time, fine particles such as silt and clay flow over the entire step surface in the pipe at a substantially uniform concentration, whereas coarse particles such as sand concentrate on the lower side of the pipe and flow while rolling and sliding. , Low mud containing mainly silt, etc., to the upper classifying passage 25 through the upper partition passage 30a, and high mud containing mud mainly containing sand passes through the lower passage 30b of the partition plate for lower classification. It is sent to a passage 26, that is, a classification treatment pipeline. Accordingly, the low sand content muddy water is sent to the sedimentation treatment tank 27 through the upper classification path 25, and the high sand content muddy water is sent to the dilution water mixing means 23 through the lower classification path 26.
[0040]
The inside of the mud pipe constituting the lower classifying passage 26 is continuously pressurized by the high sand content, and the high sand content mud sent to the dilution water mixing means 23 is pressurized. Then, it is discharged from the ejection nozzle 34. At this time, the pressure around the ejection nozzle 34 is reduced by the negative pressure generated at the time of discharge, and the surface water is sucked as dilution water from the sedimentation basin 27 communicating with the dilution water supply unit 35, and the surface water is discharged from the ejection nozzle 34. The mixture is mixed and diffused by the highly sandy and muddy water discharged from 34 and the diffusion in the tapered portion 36.
[0041]
By diluting the high sand content mud in this way, as shown in FIG. 6 (the figure shows the case where the branching ratio of the classification branch pipe is 50%: 50%), the concentration of the sand content increases due to the classification. The viscosity coefficient μ of the mother liquor (ie, water containing silt) can be reduced, and the viscosity coefficient μ of the mother liquor decreases, as derived from the Stokes equation. It becomes large, and the sand can be easily classified.
[0042]
The Stokes equation is
v = 1/18 · g (ρ′−ρ) · d 2 / μ
Where v is the terminal sedimentation velocity (cm / s), g is the gravitational acceleration (cm / s 2 ), ρ ′ is the density of the particles (g / cm 3 ), and ρ is the density of the medium. (G / cm 3 ), d is the particle diameter (cm), and μ is the viscosity coefficient (g / cm · s) of the mother liquor.
[0043]
The diluted highly sandy mud is fed into the sedimentation and classification tank 22, where the coarse components such as sand and gravel are settled in the sand sedimentation section on the upstream side, and the fine-grained components are separated on the downstream side. Is discharged into the sedimentation basin 27 by overflow along with surface water.
[0044]
Finally, the sand separated from the other components is collected by a sand collecting means such as a backhoe and sent to a sand stock yard.
[0045]
Note that, in the above-described embodiment, an example in which surface water of the sedimentation treatment pond is used as the dilution water is described. However, the present invention is not limited to this.
[0046]
【The invention's effect】
As described above, the method for classifying dredged soil according to the present invention can efficiently obtain high-quality sand, sand and gravel at a high recovery rate with little energy.
[0047]
In addition, if the surface water of the sedimentation treatment pond is used as the dilution water, there is no need to discharge the surface water to the surrounding water area and the like. .
[0048]
Further, the dilution of the high sand content mud can be performed automatically and continuously without the need for a device requiring a power source other than the dredging means, and the energy efficiency is improved. Further, since the effect of diluting and washing the high-sand content muddy water is obtained, higher quality sand can be obtained.
[0049]
In addition, if a classification branch pipe is used, it is possible to reduce only the water content without reducing the sand content in the dredged soil, the sand loss in the classification work is small, and the sand content can be taken out at a high recovery rate. Thus, the amount of sand can be relatively increased as compared with the related art.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an outline of a method for classifying dredged soil according to the present invention.
FIG. 2 is a front view showing a classification branch pipe in FIG. 1;
FIG. 3 is a longitudinal sectional view of the same.
FIG. 4 is a sectional view taken along line AA in FIG.
FIG. 5 is a longitudinal sectional view showing a dilution water mixing means in FIG. 1;
FIG. 6 is a block diagram for explaining the principle of the above.
FIG. 7 is a flowchart showing an outline of an example of a conventional dredged soil classification method.
FIG. 8 is a flowchart schematically showing another example of the above.
FIG. 9A is a front view showing an example of a conventional classifier, and FIG. 9B is a longitudinal sectional view of the same.
[Explanation of symbols]
Reference Signs List 20 dredging means 20a pump 21 coarse classification means 22 sedimentation classification tank 23 dilution water mixing means 24 classification branch pipe 25 upper classification path 26 lower classification path 27 sedimentation treatment tank 28 main body 29 partition plate 30a partition plate upper channel 30b partition plate Lower flow path 31 Branch cylinder part 32 Guide plate 33 Straightening piece 34 Jet nozzle 35 Dilution water supply part 36 Taper part 37 Sand sedimentation part 38 Submerged weir 39 Sand collection means 40 Sand stock yard 41 Open / close valve 42 Gamma ray density meter 43 Electromagnetic flow meter

Claims (5)

砂分を含む浚渫土砂と水とが混合された浚渫泥水がポンプ輸送される送泥管路の途中に、粗粒分と細粒分とに分離させる粗分級手段を備え、該粗分級手段をもって前記送泥管内の浚渫泥水流を低含砂泥水と高含砂泥水とに分流させ、分流された低含砂泥水はそのまま沈澱処理池に送り、前記高含砂泥水を前記低含砂泥水とは別の分級処理用管路に送り込み、該管路の途中に希釈水混合手段を備え、該希釈水混合手段により、前記高含砂泥水の送泥圧を利用して該管路内に希釈水を吸引させて高含砂泥水に混合させ、希釈された高含砂泥水を沈殿分級槽に送り、該沈殿分級槽で粗粒成分を沈殿させるとともに細粒成分を水と共に流過させることにより砂分を分離させることを特徴とする浚渫土砂の分級処理方法。In the middle of a mud feed pipe through which dredged muddy water mixed with dredged soil and sand containing sand is pumped, coarse classification means for separating into coarse particles and fine particles is provided, and the coarse classification means is provided. The dredged mud flow in the mud pipe is divided into low-sand muddy water and high-sand muddy water, and the divided low-sandy muddy water is sent to a sedimentation treatment pond as it is, and the high-sandy muddy water is mixed with the low-sandy muddy water. Is fed into another pipe line for classification treatment, and a dilution water mixing means is provided in the middle of the pipe line, and the dilution water mixing means dilutes into the pipe line by utilizing the feeding pressure of the high sand-containing muddy water. The water is sucked and mixed with the high sand content muddy water, and the diluted high sand content mud water is sent to the sedimentation classification tank, and the coarse component is precipitated in the sedimentation classification tank and the fine particle component is passed through with water. A method for classifying dredged earth and sand, comprising separating sand. 希釈水混合手段には、分級処理管路下流側を絞り込んだ噴出ノズルと、該噴出ノズルの周囲に希釈水を供給する希釈水供給部と、該希釈水供給部の下流側を絞り込んだ首部とし、該首部の下流側を拡開させたテーパ部とを備えたエダクターを使用し、前記分級管路上流側の高含砂泥水が前記噴出ノズルから吐出する際に生じる負圧によって希釈水を吸引し、テーパ部における拡散により高含砂泥水に希釈水を混合拡散させるようにした請求項1に記載の浚渫土砂の分級処理方法。The dilution water mixing means includes an ejection nozzle that narrows the downstream side of the classification processing pipeline, a dilution water supply unit that supplies dilution water around the ejection nozzle, and a neck that narrows the downstream side of the dilution water supply unit. Using an eductor having a tapered portion having a neck portion expanded at a downstream side thereof, and sucking dilution water by a negative pressure generated when the high sand content muddy water on the upstream side of the classification pipe is discharged from the jet nozzle. The method for classifying dredged soil according to claim 1, wherein the dilution water is mixed and diffused in the high sand content muddy water by diffusion in the tapered portion. 希釈水は、低含砂泥水が送り込まれた沈澱処理池の表層水を使用する請求項1又は2に記載の浚渫土砂の分級処理方法。3. The method for classifying dredged soil according to claim 1, wherein the dilution water uses surface water of a sedimentation treatment pond into which low sand content muddy water has been fed. 4. 粗分級手段は、浚渫泥水を輸送する送泥管路の途中に、該送泥管路を上下に仕切って複数段の分級路を設け、下側の分級路の下流側を分級処理用管路に連通させてなる請求項1、2又は3に記載の浚渫土砂の分級処理方法。The coarse classifying means is provided with a plurality of classifiers in the middle of a mud feeding pipe for transporting the dredged muddy water, by dividing the mud feeding pipe up and down, and providing a classifying treatment pipe downstream of the lower classifying pipe. The method for classifying dredged soil according to claim 1, 2 or 3, wherein the classification is performed. 沈殿分級槽は、希釈水混合手段によって希釈された高含砂泥水が流入される上流側に砂分沈殿部を備え、該砂分沈殿部の下流側端部に沈殿分級槽を上流側と下流側とに仕切る潜堰を上下流側に移動可能にした請求項1〜3又は4に記載の浚渫土砂の分級処理方法。The sedimentation classification tank is provided with a sand sedimentation part on the upstream side where the high-sand content muddy water diluted by the dilution water mixing means flows, and a sedimentation classification tank is provided at the downstream end of the sand sedimentation part on the upstream and downstream sides. 5. The method for classifying dredged soil according to claim 1, wherein the submerged weir partitioning from the side is movable to the upstream and downstream sides.
JP2002259818A 2002-09-05 2002-09-05 Classification method for dredged soil Expired - Lifetime JP4258799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002259818A JP4258799B2 (en) 2002-09-05 2002-09-05 Classification method for dredged soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002259818A JP4258799B2 (en) 2002-09-05 2002-09-05 Classification method for dredged soil

Publications (2)

Publication Number Publication Date
JP2004097873A true JP2004097873A (en) 2004-04-02
JP4258799B2 JP4258799B2 (en) 2009-04-30

Family

ID=32260707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002259818A Expired - Lifetime JP4258799B2 (en) 2002-09-05 2002-09-05 Classification method for dredged soil

Country Status (1)

Country Link
JP (1) JP4258799B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305549A (en) * 2005-03-29 2006-11-09 Hitachi Plant Technologies Ltd Method for separating debris and sand using stream trough
KR100704656B1 (en) * 2005-08-29 2007-04-06 김정기 Alcoholic drink using Sarcodon aspratnm and method thereof
JP2012158970A (en) * 2011-01-31 2012-08-23 Yutaka Shigekawa Water discharge controller by water emitted at high speed from shower nozzle
CN108355830A (en) * 2018-03-08 2018-08-03 中国矿业大学 A kind of fine sand resource recovering system and technique built in stone ore Tailings Dam

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305549A (en) * 2005-03-29 2006-11-09 Hitachi Plant Technologies Ltd Method for separating debris and sand using stream trough
KR100704656B1 (en) * 2005-08-29 2007-04-06 김정기 Alcoholic drink using Sarcodon aspratnm and method thereof
JP2012158970A (en) * 2011-01-31 2012-08-23 Yutaka Shigekawa Water discharge controller by water emitted at high speed from shower nozzle
CN108355830A (en) * 2018-03-08 2018-08-03 中国矿业大学 A kind of fine sand resource recovering system and technique built in stone ore Tailings Dam
CN108355830B (en) * 2018-03-08 2024-05-10 中国矿业大学 Fine sand resource recovery system and process in building stone mine tailing pond

Also Published As

Publication number Publication date
JP4258799B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
CN104884173B (en) Method for extracting heavy metal from hard rock and alluviation ore
CN208912333U (en) A kind of multistage multistage hydrocyclone separation technology device
JP2013017989A (en) Method and system for dredging sludge
JP4009180B2 (en) Suspended water separation treatment system
JP2001020318A (en) Waters purifying method and waters purifying system and dam soil discharging system
JP4258799B2 (en) Classification method for dredged soil
JP2013059755A (en) Grit cleaning apparatus
JP2005205251A (en) System and apparatus for classifying dredged soil by using pneumatic conveying system
US7513008B2 (en) Sand wand assembly
JP2002028698A (en) Method and device for separating soil and sand from drilled muddy water
US11911775B2 (en) Particle separation apparatus
CN104925993B (en) Sandstone processes flushing waste water processing system and method
KR100540516B1 (en) Method and apparatus for treating of dredging sediment
JP2001276898A (en) Treating equipment for dredged earth and sand
RU2530950C2 (en) Method and device for processing dredge spoils excavated by dredger
JP4931841B2 (en) Wet sorting device
CN112794606A (en) Muck treatment system and method for shield
RU2144430C1 (en) Method of processing mineral-containing mining mass
CN207244699U (en) Sludge treatment ship
JP2001276899A (en) Treating equipment for dredged earth and sand
JP7068123B2 (en) Pipe members, sand recovery systems, and sand recovery vessels
RU47771U1 (en) INSTALLATION OF ENRICHMENT OF USEFUL FOSSILS BASED ON THE VIBRATION HUB
JP4637570B2 (en) Method and system for dewatering sediment from dam lake
JP2001029995A (en) System for treating sand sediment of dam
JP2014091907A (en) System and method for separating mixture of sediment mixed with mixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4258799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term