JP2004097201A - Decorative moss medium - Google Patents

Decorative moss medium Download PDF

Info

Publication number
JP2004097201A
JP2004097201A JP2003064149A JP2003064149A JP2004097201A JP 2004097201 A JP2004097201 A JP 2004097201A JP 2003064149 A JP2003064149 A JP 2003064149A JP 2003064149 A JP2003064149 A JP 2003064149A JP 2004097201 A JP2004097201 A JP 2004097201A
Authority
JP
Japan
Prior art keywords
moss
dimensional network
network structure
medium
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003064149A
Other languages
Japanese (ja)
Inventor
Sadao Nishibori
西堀 貞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ain Kk Sogo Kenkyusho
Original Assignee
Ain Kk Sogo Kenkyusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ain Kk Sogo Kenkyusho filed Critical Ain Kk Sogo Kenkyusho
Priority to JP2003064149A priority Critical patent/JP2004097201A/en
Publication of JP2004097201A publication Critical patent/JP2004097201A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/22Improving land use; Improving water use or availability; Controlling erosion

Abstract

<P>PROBLEM TO BE SOLVED: To set up a decorative moss medium in the open air. <P>SOLUTION: The decorative moss medium 1 is applied not only to the open air but within doors and comprises a thermoplastic resin molded product having a spring structure equipped with a panel-like net structure 2 formed by fusing at spots where large numbers of continuous strands comprising the thermoplastic resin are meandering and three dimensionally and irregularly crossing. A liquid moss solution 3 containing moss and a moss-curing material is applied onto the surface of the three dimensional structure 2 by a brush 4. The decorative moss medium 1 is used by solely putting the same in a vessel 6 with water. After a while, the moss 7 grows on the surface. An object such as a stone 9 or the like is preferably put in a concave part 8 formed by machine tool or the like. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、鑑賞用苔培地、詳しくは、水を入れた容器に入れて苔の姿態を鑑賞する鑑賞用苔培地に関する。
【0002】
【従来の技術】
従来、観賞用の培地体としては下記の特許文献が知られている。
【特許文献1】特開平10−84768号公報
特許文献1には、苔や藻の発生を抑制した培地体、鑑賞用植物、栽培装置及び栽培方法を提供するため、植物(10)が植え付けられる通水性及び通気性を有する本体部(4)の外表面部の一部を撥水面(6)とした培地体(2)であって、この培地体の撥水面(6)によって水分がはじかれる結果、藻や苔の繁殖や微生物の発生が防止でき、撥水面を清浄に維持することが記載されている。
【特許文献2】特開10−327673号公報
特許文献2は、給水の手間が大幅に削減でき、自然の趣を十分にかもしだすことのできる鉢植を提供するため、貯水鉢1に、下部が貯水鉢1に貯留された水Wに浸漬された状態で、自然石や擬岩、木の切り株等からなる塊状植生基盤2が設置されている。この塊状植生基盤2の表面の複数の植生土嚢部21には土壌物質あるいは水苔等が詰められ、植物3が植え付けられている。塊状植生基盤2の下面部に形成されたポンプ室22には給水ポンプ4が配置され、この給水ポンプ4に接続された給水管6がポンプ室22から上方へ延びる給水孔23を通って塊状植生基盤2の上部に導出されている。貯水鉢1に貯留された水Wは、ポンプ室22から給水ポンプ4で揚水されて給水管6により塊状植生基盤2の上部に放水され、各植生土嚢部21を経由して水路25を流れ、貯水鉢1に流れ落ちることが記載されている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来のものでは、鑑賞者が培地に手を加えて自己の好みに合わせて加工することが難しいという問題がある。また、前記の特許文献1の考え方は、苔は、撥水面を汚す厄介物扱いをされていて、鑑賞用とはなりえないようなものであった。また、乾燥防止のためミストノズル36から水分を供給しなければならず、栽培の手間が大変であり、コストが高くなり、手軽に鑑賞できないという問題がある。また特許文献2の考え方は、塊状植生基盤2の表面全体に、苔3’を植え付けても良く、この場合、塊状植生基盤2が吸水性を有する軽石や多孔質の焼き物あるいは木の切り株等からなるものについては問題ないが、吸水性に乏しい材質からなるものにおいては、表面に土粒子等を付着させて保水性を与えることによって、水路25を流れる水Wの一部がしみ込むようにし、苔3’の生育を促進することができる旨は記載されており、栽培の手間が大変であり、コストが高くなり、手軽に鑑賞できないという問題がある。
【0004】
そこで、本発明者は、前記従来技術の持つ不都合を鋭意検討したところ、前記従来技術の発想を転換し、立体網状構造体を活用することを着想し、立体網状構造体に苔を予め塗布するか、あるいは、予め立体網状構造体の空隙に苔を充填してから面方向から立体網状構造体を圧縮して、空隙率を外力によって強制的に減少させて厚みを減少させ、立体網状構造体の内部構造を密に変化させれば、苔が立体網状構造体の線条体に確実に捕捉されて、鑑賞用苔培地を簡易に設置することが使用可能であり、苔の流出を防止できるということに着目し、本願発明をなしたものである。
【0005】
即ち、請求項1記載の発明は、熱可塑性樹脂よりなる連続線条体の多数本が曲がりくねりながら三次元に不規則に交差する部分において融着されてなる立体網状構造体を備え、該立体網状構造体に苔を固定することを特徴とする鑑賞用苔培地である。
【0006】
請求項1によると、鑑賞用苔培地を屋内又は屋外に設置すると、雨水等によって、苔は生育する。連続線条がランダムなループを形成し、連続線条同士が接触絡合するという特徴的な構造に苔がマッチすることから、苔を網状構造体で包み込んで大きく育てることができる。苔は他の植物と違い、根と呼ばれる通同組織が無く空気中から水分、養分を吸収して育つので、土壌を必要とせず、乾燥に強く、屋内、屋外問わずに成長できる。
【0007】
本発明の鑑賞用苔培地による効果は次の通りである。
(1)鑑賞用苔培地は立体網状構造体であって加工が容易であり、鑑賞者に好みに合わせて、溝を形成したりする等、形状の自由度が大きく利点は大である。
(2)鑑賞用苔培地中の苔は、立体網状構造体を構成する互いに絡み合った多数本の連続線条体の空隙内にしっかりと保持されるので、屋外に設置する場合、雨水などの流水による苔の流出を抑えることができる。
(3)苔には水の吸収機能と水保持機能があるので、水分の蒸散を抑え、水分を保持する効果がある。
(4)容器に水を入れて鑑賞用苔培地を載せるだけであり、後は容器に水を補給するだけでよいので、灌水・施肥・刈り込み等の維持管理がほんとど不要のため、管理が非常に容易であり、ランニングコストもかからず、極めて経済性が高い。屋外は、乾燥しやすく土もなくそして熱せられやすい所であるが、苔は、乾燥しても枯れず、仮死状態になっても雨水が供給されれば即座に再生する。特に、スナゴケ・ハイゴケは乾燥に非常に強く、そのため他の植物では生物層形成が困難な屋外で使用できる。
(5)立体網状構造体は空隙を備えた熱可塑性樹脂であるので、軽量で丈夫な立体網状構造体に土壌をほとんど必要としない苔が内蔵されるので、全体として超軽量である。このため、取り扱いが容易であり、コストも大幅に低減できる。
(6)鑑賞用苔培地を廃棄するにあたり産業廃棄物として簡単な処理で再生できるので、リサイクル性に優れている。土・粘土・砂・ワラくず・古紙等の苔養生材をバランスよく調整し、化学合成材を使用せず、苔を鑑賞用苔培地に固定した優秀な生物生長基盤である。
(7)立体網状構造体を圧縮した場合には、屋外用に好適であり、苔の風、雨などによる飛散が少ないので、商品寿命が長くなる。強風の場所では圧縮を強く行うことで対応可能である。
【0008】
ところで、「苔」にはスナゴケ、ハイゴケを含むことが好ましい。スナゴケとハイゴケの2種混合による効果としては、鑑賞用苔培地は各段階の遷位相の環境下における初期時に、特徴ある生態系を示すこれら2種の代表的な苔を混ぜ合わせ固定化することができる。この2種を混合して固定することによって一般家庭にも生物成長基盤を普及させることができる。多数の苔の中から無機的な環境下(乾性・砂質一次遷移の初期段階の相観)に先駆的に繁殖することで知られているスナゴケ(ギボウシゴケ科)のみならず、遷移相が進行し若干の種子根系土壌を含む有機的な環境下(乾性・砂質一次、二次遷移における草原期相から陽樹林期相)に繁殖するハイゴケ(ハイゴケ科)を選択したものである。これにより他の植物種に発展させることもできる。更に、製造が容易であり、安定した生産製造システムを完成させることができる。これにより、これまで難しいとされてきた鑑賞用培地の量産化を構築できる効果がある。
【0009】
「苔」とともに必要により「苔養生材」を立体網状構造体に入れても良い。土、不織布(小片化したもの)が好ましい。その他、砂、藁屑・おが屑・バーク・椰子ガラ等の植物繊維材、シラスバルーン等の火山灰材料、古紙等のうちのグループから少なくとも1つを選択したものが好ましい。これに苔(スナゴケ、ハイゴケ)を混ぜ、この混合物を立体網状構造体に振りかける等によって構造体の中に入れ、面方向からプレス成形する方法が好ましい。ここでシラスバルーンとは、微粉状の火山性鉱物(火山ガラス)を選別、乾燥し高温で熱処理することにより、粒子が発泡し、微細な中空バルーンとなったものをベース材に配合したものである。肥料を混ぜてもよい。
【0010】
立体網状構造体の密度分布は、一様でもよいし、複数層に密度を変化させてもよい。例えば、上層を疎とし、下層を密とするもの等が挙げられる。
【0011】
請求項2の鑑賞用苔培地は、前記立体網状構造体の厚みが5mm〜100mmであることが好ましい。
【0012】
請求項3の鑑賞用苔培地は、前記立体網状構造体に凹部を形成し、該凹部に石を嵌め込むことが好ましい。これにより、苔と石との組み合わせによる鑑賞性が高まり商品に付加価値が高まる。
【0013】
請求項4の鑑賞用苔培地は、前記立体網状構造体に凹部を形成し、該凹部に植物を土とともに植えることが好ましい。これにより盆栽よりも手軽に植物栽培を行うことができる。
【0014】
請求項5の鑑賞用苔培地は、前記立体網状構造体がプレス機で押圧成形されたことが好ましい。
【0015】
請求項6の鑑賞用苔培地は、前記立体網状構造体が面方向に圧縮されて、空隙率を減少させ、前記空隙に充填した苔が前記立体網状構造体内に固定されることが好ましい。
面方向に圧縮することで立体網状構造体の厚みが減少して省スペースの利点が生じる。立体網状構造体は面方向に圧縮されるので、苔と苔養生材が立体網状構造体の空隙内にしっかりと保持され、屋外でも、風雨、雨水などの流水による苔の流出を抑えることができる。なお、立体網状構造体を面方向に圧縮する際は、多少、熱を加えてもよい。面方向の両側から圧縮し、苔が外部に出て行かないことが好ましい。
【0016】
請求項7の鑑賞用苔培地は、立体網状構造体の圧縮前の空隙率が80%〜99%であり圧縮後の空隙率が30%〜80%であることが好ましい。
この鑑賞用苔培地は、前記立体網状構造体の空隙率が80%〜99%であることを特徴とする請求項1に記載の鑑賞用苔培地が好ましい。圧縮前の空隙率は、好ましくは、80%〜99%、嵩密度は0.01〜0.18g/cmが好ましい。圧縮後の空隙率は、好ましくは、30〜80%、特に好ましくは、50〜60%、嵩密度は0.18〜0.63g/cmが好ましく、特に0.36〜0.45g/cmが好ましく。ここで、立体網状構造体は、上記の空隙率を有する部分を少なくとも一部は有する趣旨である。例えば、立体網状構造体の全体が前記の空隙率の範囲にある場合、立体網状構造体の一部が前記の空隙率の範囲にある場合のいずれの場合も含む。
【0017】
請求項8の鑑賞用苔培地は、前記立体網状構造体の線径が0.5mm〜3mmであることが好ましい。線径は、特に好ましくは、0.7mm〜2mmである。さらに、上層の苔が抜け落ちても、下層の苔が上面に出てきて成長するので、商品寿命が長い。
【0018】
請求項9の鑑賞用苔培地は、前記立体網状構造体が熱可塑性樹脂で構成され、嵩密度0.18〜0.27g/cm、空隙率70〜80%であり、苔前記立体網状構造体に固定してなることが好ましい。
立体網状構造体の中に苔と苔養生材を、上から押えて圧着させることが好ましい。苔を水で濡らすと前記立体網状構造体に付き易くなる。立体網状構造体を疎(空隙率が高い)にしておけば、付着しやすくなる。
【0019】
【発明の実施の形態】
以下、本発明の一実施形態を図面を用いて説明するが、本発明はこれによって限定されるものではない。
図1乃至図3に示す鑑賞用苔培地1は、屋外、屋内問わずに適用されるものであり、熱可塑性樹脂よりなる連続線条体の多数本が曲がりくねりながら三次元に不規則に交差する部分において融着されてなるパネル状の立体網状構造体2を備えるスプリング構造樹脂成形品であって、この立体網状構造体2に、図4に示す通り、苔3と必要により苔養生材を固定したものである。網状構造体2の表面に置いて上から押えて圧着させることが好ましい。水で苔3を濡らすと付き易くなる。苔3を糸で巻きつけることも好ましい。
【0020】
図1に示す通り、水5を入れた容器6内に鑑賞用苔培地1を置くだけ使用できる。しばらくすると、表面に苔7が成長してくる。図2及び図3に示す通り、凹部8を工作機等によって形成し、その凹部8に石9等のオブジェを置くものでも良い。
【0021】
また図3に代えて、図5及び図6に示す通り、立体網状構造体2の空隙には苔10と苔養生材11とを入れて、立体網状構造体2を面方向に圧縮し(図4、5参照)、空隙率を減少させ、前記空隙に保持した苔10と苔養生材11とを風雨によって流れないように封入し、屋外において使用可能な強度と成形性を備えるものでもよい。鑑賞用苔培地1の製造方法は、まず、図5に示す通り、立体網状構造体2に対して苔10及び苔養生材11を振りかけて揺さぶる等の適宜の充填方法で、立体網状構造体2内に分散して配置させる。次に図6に示す通り、ローラ12で前記の立体網状構造体2を圧縮する。これにより立体網状構造体2の空隙率が減少し、苔11及び苔養生材12が外部に漏れないないようにできる。圧縮後の嵩密度が0.63〜0.18g/cm、空隙率30〜80%が好ましい。
【0022】
[立体網状構造体2の説明]
本実施形態の鑑賞用苔培地1に適用される立体網状構造体2は、図7に示す通り熱可塑性樹脂を原料又は主原料とする連続線条112(以下、単に線条112ともいう)からなる線条集合体113である。この線条集合体113は、複数の線条112のループの隣接する線条相互をランダムに接触絡合集合させ内部に所定の空隙を備える立体網状構造体である。なお、立体網状構造体2の製造方法については後述する。
【0023】
立体網状構造体2の諸元は次の通りである。
(1)苔3を立体網状構造体2に入れて圧縮する場合
圧縮前
空隙率  80〜99%
嵩密度  0.18〜0.01g/cm
圧縮後
空隙率  30〜80%、好ましくは、50〜60%
嵩密度  0.63〜0.18g/cm、好ましくは、0.45〜0.36g/cm
(2)立体網状構造体2に入れて圧縮せずに苔3を付着させる場合
空隙率  70〜80%
嵩密度  0.27〜0.18g/cm
【0024】
立体網状構造体2の線条の線径(直径)は、中実線条の場合、0.3〜3.0mm、好ましくは、0.7〜2.0mmである。中実の線条にあっては、線径0.3mm以下では、線条に腰が無くなり、融着部が多くなって空隙率が低下する。3.0mm以上では、線条に腰がありすぎ、ループが形成されず、苔3の着床が悪い。中空線条の場合、1.0〜3.0mm、好ましくは、1.5〜2.0mm、特に好ましくは、0.9〜1.3mmである。中空の線条にあっては、1.0〜3.0mm、好ましくは、1.5〜2.0mmである。中空率は10%〜80%が好ましい。中空率が10%以下、80%以上では、苔3の着床が悪い等の不都合が生じる。
厚さは、5mm〜100mm、好ましくは、20〜40mmである。長さ及び幅は適宜寸法でよい。
【0025】
網状体としての弾性と強度を維持し、重量を軽減するため、空隙率は上記範囲が好ましい。
[空隙率(%)]=(1−[嵩密度]/[樹脂の密度])×100
【0026】
中実の線条と中空の線条の混合比が、中実:中空=0〜50:50〜100であることが好ましい。
【0027】
立体網状構造体2の原料となる熱可塑性樹脂は、特に、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂が好ましい。酢酸ビニル樹脂(以下VACと記す)、エチレン酢酸ビニル共重合体(以下EVAと記す)又は、スチレン・ブタジエン・スチレン共重合体(以下SBSと記す)等が好ましく、これらを混合したものでもよい。また、ポリオレフィン系樹脂は再生樹脂であっても良い。
【0028】
熱可塑性樹脂が、ポリオレフィン系樹脂と、酢酸ビニル樹脂、酢ビエチレン共重合体、又はスチレンブタジエンスチレンとの混合物から成ることが好ましい。PE,PP等のポリオレフィン系樹脂と、VAC、EVA又はSBSとの混合物(例えば、熱可塑性エラストマー)を原料として成形された立体構造体である立体網状構造体2が好ましい。
【0029】
ポリオレフィン系樹脂と酢酸ビニル樹脂又はエチレン酢酸ビニル共重合体の酢酸ビニルの混合比は、70〜97重量%:3〜30重量%、好ましくは80〜90重量%:10〜20重量%であることが好ましい。
VAC又はEVAが3重量%以下であると反発弾性が低下し、30重量%以上になると熱的特性が低下する。
【0030】
ポリオレフィン系樹脂とスチレンブタジエンスチレンの混合比は、50〜97重量%:3〜50重量%、好ましくは70〜90重量%:10〜30重量%であることが好ましい。
【0031】
[スプリング構造樹脂成形装置115]
次に、上記立体網状構造体2の製造装置の一例であるスプリング構造樹脂成形装置115について説明する。図8、図9に示す通り、押出成形機120はホッパー121を備え、ホッパー121より投入した熱可塑性樹脂を、所定温度で溶融混錬し、成形ダイ(金型)122に備えられた、所定径の多数のノズル123から所定の押出速度において溶融した熱可塑性樹脂の線条112からなる線条集合体113を押し出し、引取機124により引き取るものである。
【0032】
引取機124の引取ロール125,125は水槽126内の水中に設置されている。この引取ロール125,125は、それぞれ、上下一対のローラに1枚の無端ベルト128が掛けられたものである。水槽126は給水バルブ126a及び排水バルブ126bを備えている。立体網状構造体2は、線条集合体113の線条112がループ状にランダムに成形され、ループ同士が部分的に絡合接触して溶着して水中で固化し、巻取ロール129,129により立体網状構造体2として取り出されるものである。
【0033】
図9に示す通り、引き取りに際し、立体構造体である立体網状構造体2を引取ロール125,125で折り曲げることが困難な場合には、嵩密度の粗い部分を作ることによってその部位で折り曲げ、水中から引き上げることもできる。切断装置130は、取り出された立体網状構造体2を適宜長さに切断するものである。ループ成形装置150は、金型122から吐出した溶融した連続線条112のうち外周側面部の連続線条が水槽126の水面に触れる前にその厚さを絞込んで立体網状構造体2の表層の密度を高めるとともに、ループを滑らかに形成させてループ同士の融着を均一化させるものであり、さらに、コンベアの無端ベルト128に触れる前に、その表面を冷却固化させベルト128の噛み痕が製品につかないようにするものである。
【0034】
また、別例として、図10の正面図に示すように、水槽226内に切断装置230を設け、切断装置230は引取機224下方近傍に配置し、水槽226の対向側壁には、切断部位で切断された単体の空隙に挿入される係止突起を多数突設したコンベアからなる搬送装置235を備える。他の部位の構成については、200番台として上記説明を援用する。
【0035】
[立体網状構造体2の製造方法]
次に、上記立体網状構造体2の製造方法の一例について説明する。
図11の模式図に示すように、本実施形態における立体網状構造体2の製造方法において、好適には、PE,PP等のポリオレフィン系樹脂と、VAC、EVA又はSBS等の原料樹脂は、後述するタンブラー、或いは定量供給機等を経てドライブレンドされ、又は、混合若しくは溶融混合してペレット化されて、押出成形機20のホッパー21へ送られる。
【0036】
具体的には、原料樹脂、例えば、PPとSBSをタンブラー(加藤理機製作所製KR混合機)で、40rpm、15分間混合する。
【0037】
次に、図8の説明図に示すように、この原料樹脂から成る混合物をφ65mm単軸押出成形機120のホッパー121(図9参照)より投入し、所定温度(実施例1〜6が200℃、実施例7〜9が260℃)で溶融混錬し、成形ダイ122に設けた所定径の多数のノズルから所定の押出速度において溶融押し出し、引取機124により引き取ることにより、所定の線径(例えば、600〜90,000デニール、好ましくは3,000〜30,000デニール、より好ましくは、6,000〜10,000デニール)の中実及び又は中空の連続線条を形成し、この溶融状態の線条112同士を、ループ形成装置150によって、隣同士の線条112を接触絡合させることによりランダムなループ、例えば、直径1〜10mm、好ましくは直径1〜5mmのループを形成させる。このとき、接触絡合部位の少なくとも一部は、相互に溶融接着されて冷却される。また、線条112は中空のものと中実のものとが所定割合で混合されていても良い。
【0038】
上記ランダムなループの集合である立体構造体の厚さ及び嵩密度は、水槽126内の引取機124の引取ロール125,125間で設定される。この立体構造体(例えば、厚さ10〜200mm、幅2,000mm)は、カール又はループ状にランダムに成形され、水中で固化し、巻取ロール129,129により立体網状構造体2として取り出される。
【0039】
また、水中においてこのループが形成された線条112を引取機124により引き取る際には、引取機124の速度を変更することで、立体網状特性を変更しても良い。その場合、この立体構造体の嵩密度を比較的増大させる場合、0.03〜0.08g/cm、好ましくは、0.04〜0.07g/cm、特に0.05〜0.06g/cmとすることが好ましい。
【0040】
また、例えば、引取ロール125,125の引き取り速度をタイマー等により設定時間毎に、設定時間内、低速にする等、引取機124の引き取り速度を所定の間隔(例えば3〜5m)で低速に調整することにより、立体網状構造体2の長手方向において、所定間隔ごと(例えば、30〜50cm)に低速引き取り時に形成された嵩密度の大きい部分とそれ以外の部分、すなわち、粗密を連続して形成しても良い。
【0041】
また、図9の正面図に示す通り、引き取りに際し、立体構造体である立体網状構造体2を引取ロール125,125で折り曲げることが困難な場合には、嵩密度の粗い部分を作ることによってその部位で折り曲げ、水中から引き上げることもできる。以上の工程を経て取り出された立体網状構造体2は、切断装置130により適宜長さに切断される。
【0042】
上記製造方法によって、一例として、嵩密度0.03g/cm、厚さ50mmの立体網状構造体2を得た。なお、立体構造体は、それぞれ1種又は複数種の異なる材質の組合せから成るものを用いて製造することもできる。
【0043】
[製造装置実施例]
使用押出成形機は直径90mm単軸型押出機である。使用原料はエチレン酢酸ビニル共重合体である。運転条件は樹脂温度は250℃、成形圧力は0.1Mpa、スクリュー回転数は30rpm、吐出能力gは135kg/hr、引取速度は32.3m/hrである。
【0044】
実施形態の効果は次の通りである。
(1)鑑賞用苔培地1は立体網状構造体2であって加工が容易であり、鑑賞者に好みに合わせて、溝を形成したりする等、形状の自由度が大きく利点は大である。
(2)鑑賞用苔培地1の表層の苔又は空隙内に保持される苔10は、立体網状構造体2を構成する互いに絡み合った多数本の連続線条体の空隙内にしっかりと保持されるので、屋外に設置する場合、雨水などの流水による苔の流出を抑えることができる。
(3)苔10には水の吸収機能と水保持機能があるので、水分の蒸散を抑え、水分を保持する効果がある。
(4)容器6に水を入れて鑑賞用苔培地1を載せるだけであり、後は容器6に水を補給するだけでよいので、灌水・施肥・刈り込み等の維持管理がほんとど不要のため、管理が非常に容易であり、ランニングコストもかからず、極めて経済性が高い。屋外は、乾燥しやすく土もなくそして熱せられやすい所であるが、苔は、乾燥しても枯れず、仮死状態になっても雨水が供給されれば即座に再生する。特に、スナゴケ・ハイゴケは乾燥に非常に強く、そのため他の植物では生物層形成が困難な屋外で使用できる。
(5)立体網状構造体2は空隙を備えた熱可塑性樹脂であるので、軽量で丈夫な立体網状構造体2に土壌をほとんど必要としない苔10が内蔵されるので、全体として超軽量である。このため、取り扱いが容易であり、コストも大幅に低減できる。
(6)鑑賞用苔培地1を廃棄するにあたり産業廃棄物として簡単な処理で再生できるので、リサイクル性に優れている。土・粘土・砂・ワラくず・古紙等の苔養生材をバランスよく調整し、化学合成材を使用せず、苔10を鑑賞用苔培地1に固定した優秀な生物生長基盤である。
(7)立体網状構造体2を圧縮した場合には、屋外用に好適であり、苔10の風、雨などによる飛散が少ないので、商品寿命が長くなる。強風の場所では圧縮を強く行うことで対応可能である。
(8)予め苔10と苔養生材11を立体網状構造体2に充填した場合、苔3だけの場合より、苔養生材11により緑化速度が速くなる。
(9)立体網状構造体2を面方向に圧縮することで厚みが減少して省スペースの利点が生じる。
以上の通り、本実施形態は、従来の問題点を解消したものであり、実用的価値はきわめて大なるものがある。
【図面の簡単な説明】
【図1】本発明実施形態の鑑賞用苔培地を水入りの容器に入れた斜視図である。
【図2】別の実施形態の部分断面図である。
【図3】同じく斜視図である。
【図4】鑑賞用苔培地の実施形態の製造方法である。
【図5】鑑賞用苔培地の別の製造方法の中間製造工程を示す説明図である。
【図6】鑑賞用苔培地の最終製造工程(圧縮化工程)を示す説明図である。
【図7】立体網状構造体2を示す説明図である。
【図8】立体網状構造体2の製造装置を示す説明図である。
【図9】立体網状構造体2の他の製造装置を示す実施例である。
【図10】立体網状構造体2のさらに他の製造装置を示す実施例である。
【図11】立体網状構造体2の製造方法の工程を示す模式図である。
【符号の説明】
1…鑑賞用苔培地 2…立体網状構造体 3…苔
5…水  6…容器  7…   8…凹部  9…石
10…苔 11…苔養生材  12…ローラ
112 線条 113…線条集合体
115…スプリング構造樹脂成形装置 120…押出成形機
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ornamental moss culture medium, and more particularly to an ornamental moss culture medium that is placed in a container filled with water to observe the appearance of the moss.
[0002]
[Prior art]
Conventionally, the following patent documents are known as ornamental culture media.
[Patent Document 1] JP-A-10-84768
Patent Literature 1 discloses a body part (4) having water permeability and air permeability through which a plant (10) can be planted in order to provide a culture medium, an ornamental plant, a cultivation apparatus, and a cultivation method in which generation of moss and algae is suppressed. A culture medium (2) having a part of the outer surface portion of the medium having a water-repellent surface (6). As a result, water is repelled by the water-repellent surface (6) of the medium body, so that propagation of algae and moss and generation of microorganisms are prevented. It is described that the water-repellent surface can be kept clean.
[Patent Document 2] Japanese Patent Application Laid-Open No. 10-327673
Patent Literature 2 has a lower part immersed in the water W stored in the water reservoir 1 in a water reservoir 1 in order to provide a potted plant that can significantly reduce the labor for water supply and sufficiently bring out the natural atmosphere. In this state, a massive vegetation base 2 composed of natural stones, artificial rocks, tree stumps and the like is installed. A plurality of vegetation sandbags 21 on the surface of the massive vegetation base 2 are filled with soil material or moss, and a plant 3 is planted. A water supply pump 4 is disposed in a pump chamber 22 formed on the lower surface of the massive vegetation base 2, and a water supply pipe 6 connected to the water supply pump 4 passes through a water supply hole 23 extending upward from the pump chamber 22 to form a massive vegetation. It is led out to the upper part of the base 2. The water W stored in the water basin 1 is pumped up from the pump chamber 22 by the water supply pump 4, discharged to the upper part of the massive vegetation base 2 by the water supply pipe 6, and flows through the water channel 25 via each vegetation sandbag portion 21. It is described that the water falls into the water basin 1.
[0003]
[Problems to be solved by the invention]
However, the conventional one has a problem that it is difficult for the viewer to modify the culture medium and process it according to his / her preference. Further, according to the concept of Patent Document 1, moss is treated as a troublesome substance that stains the water-repellent surface, and cannot be used for appreciation. Further, water must be supplied from the mist nozzle 36 in order to prevent drying, and there is a problem that labor for cultivation is great, cost is high, and it is not easy to appreciate. Also, the idea of Patent Document 2 is that moss 3 ′ may be planted on the entire surface of the massive vegetation base 2, and in this case, the massive vegetation base 2 is made of pumice, porous porcelain, tree stumps or the like having water absorbency. There is no problem with the water W. However, in the case of a material made of a material having poor water absorption, soil water and the like are attached to the surface to give water retention, so that a part of the water W flowing through the water channel 25 is impregnated with moss. It is described that the growth of 3 'can be promoted, and there is a problem that labor for cultivation is great, cost is high, and it is not easy to appreciate.
[0004]
Therefore, the present inventor diligently examined the disadvantages of the conventional technology, and changed the idea of the conventional technology, conceived to utilize the three-dimensional network structure, and applied moss to the three-dimensional network structure in advance. Alternatively, the space of the three-dimensional network structure is filled in advance with moss, and then the three-dimensional network structure is compressed from the surface direction, and the porosity is forcibly reduced by an external force to reduce the thickness. If the internal structure of the moss is changed densely, moss is reliably captured by the striatum of the three-dimensional net-like structure, and it is possible to use the moss medium for appreciation easily and prevent moss from flowing out. Focusing on that, the present invention has been made.
[0005]
That is, the invention according to claim 1 includes a three-dimensional network structure in which a large number of continuous filaments made of a thermoplastic resin are welded in a three-dimensionally irregularly intersecting portion while winding. An appreciation moss medium characterized by fixing moss to a structure.
[0006]
According to the first aspect, when the ornamental moss medium is installed indoors or outdoors, the moss grows due to rainwater or the like. Since the moss matches the characteristic structure in which the continuous filaments form random loops and the continuous filaments are in contact with each other, the moss can be wrapped in a net-like structure and grown greatly. Unlike other plants, moss grows by absorbing moisture and nutrients from the air without the common tissue called roots, so it does not require soil, is resistant to drying, and can grow indoors or outdoors.
[0007]
The effects of the ornamental moss medium of the present invention are as follows.
(1) The moss culture medium for appreciation is a three-dimensional net-like structure, is easy to process, and has a large degree of freedom in shape, such as formation of a groove according to the viewer's preference, and has a great advantage.
(2) The moss in the moss medium for appreciation is firmly held in the gaps between a large number of continuous striatum entangled with each other constituting the three-dimensional network structure. Moss runoff can be suppressed.
(3) Since moss has a water absorption function and a water retention function, it has an effect of suppressing evaporation of moisture and retaining moisture.
(4) It is only necessary to put water in the container and put the moss medium for appreciation, and after that it is only necessary to supply water to the container, so there is almost no need for maintenance such as irrigation, fertilization, cutting, etc. It is very easy, has no running cost, and is extremely economical. Outdoors are places that are dry, plain, and easily heated, but moss does not die even if it dries, and even in the state of asphyxia, it regenerates as soon as rainwater is supplied. In particular, S. moss and H. moss are very resistant to drying, so that they can be used outdoors where it is difficult for other plants to form a biolayer.
(5) Since the three-dimensional network structure is a thermoplastic resin having voids, moss that hardly requires soil is incorporated in the lightweight and durable three-dimensional network structure, so that the overall structure is ultralight. Therefore, the handling is easy and the cost can be greatly reduced.
(6) Since the moss medium for appreciation can be regenerated as industrial waste by simple treatment when discarded, it is excellent in recyclability. It is an excellent biological growth base in which moss curing materials such as soil, clay, sand, straw waste, and waste paper are adjusted in a well-balanced manner, and moss is fixed to an ornamental moss medium without using a chemically synthesized material.
(7) When the three-dimensional network structure is compressed, it is suitable for outdoor use, and the moss is less scattered by wind, rain, and the like, so that the product life is extended. In places with strong winds, it is possible to cope by applying strong compression.
[0008]
By the way, it is preferable that “moss” includes snagoga and higoke. The effect of the mixture of the two species, Sagogoke and Hyogoke, is that the ornamental moss medium mixes and immobilizes these two representative mosses, which exhibit a distinctive ecosystem, at the beginning of the transition phase environment. Can be. By mixing and fixing these two types, the biological growth base can be spread to ordinary households. Not only the moss, which is known to pioneer breeding in the inorganic environment (early phase of the first transition of dry and sandy primary) from many moss, but also the transition phase progresses The moss was selected from the bryophytes (Hymenoptera) that breed in an organic environment including some seed root system soil (grassland phase to positive forest stage in dry and sandy primary and secondary succession). This can lead to the development of other plant species. Further, the production is easy and a stable production production system can be completed. As a result, there is an effect that it is possible to construct a mass production of an appreciation medium which has been considered difficult.
[0009]
If necessary, "moss curing material" may be added to the three-dimensional net-like structure together with "moss". Soil and non-woven fabric (small pieces) are preferred. In addition, at least one selected from the group consisting of plant fiber materials such as sand, straw waste, sawdust, bark, coconut palm, etc., volcanic ash materials such as shirasu balloon, and used paper is preferred. It is preferable to mix moss (snagoke, higoke) with the mixture, sprinkle the mixture into a three-dimensional network structure, or the like, put the mixture into the structure, and press-form the surface in a plane direction. Here, the shirasu balloon is a material in which fine powdered volcanic minerals (volcanic glass) are selected, dried, and heat-treated at a high temperature. is there. Fertilizer may be mixed.
[0010]
The density distribution of the three-dimensional network structure may be uniform, or the density may be changed in a plurality of layers. For example, a material in which the upper layer is sparse and the lower layer is dense may be used.
[0011]
In the moss culture medium for appreciation according to claim 2, it is preferable that the thickness of the three-dimensional network structure is 5 mm to 100 mm.
[0012]
In the moss culture medium for appreciation of the third aspect, it is preferable that a concave portion is formed in the three-dimensional network structure, and a stone is fitted into the concave portion. Thereby, appreciation by the combination of the moss and the stone is enhanced, and the added value to the product is increased.
[0013]
In the moss culture medium for appreciation of the fourth aspect, it is preferable that a concave portion is formed in the three-dimensional network structure, and a plant is planted in the concave portion together with soil. Thereby, plant cultivation can be performed more easily than bonsai.
[0014]
In the moss culture medium for appreciation according to claim 5, it is preferable that the three-dimensional network structure is press-formed by a press machine.
[0015]
In the moss culture medium for appreciation according to claim 6, it is preferable that the three-dimensional network structure is compressed in a plane direction to reduce a porosity, and the moss filled in the void is fixed in the three-dimensional network structure.
By compressing in the plane direction, the thickness of the three-dimensional net-like structure is reduced, and a space-saving advantage is obtained. Since the three-dimensional network structure is compressed in the plane direction, the moss and the moss curing material are firmly held in the voids of the three-dimensional network structure, and the moss can be prevented from flowing out due to wind, rain, rainwater, etc. even outdoors. . When compressing the three-dimensional network structure in the plane direction, some heat may be applied. It is preferable that the moss is compressed from both sides in the surface direction so that the moss does not go outside.
[0016]
In the moss culture medium for appreciation according to claim 7, the porosity of the three-dimensional network structure before compression is preferably 80% to 99%, and the porosity after compression is preferably 30% to 80%.
The moss medium for appreciation according to claim 1, wherein the moss medium for appreciation has a porosity of the three-dimensional network structure of 80% to 99%. The porosity before compression is preferably 80% to 99%, and the bulk density is 0.01 to 0.18 g / cm.3Is preferred. The porosity after compression is preferably 30 to 80%, particularly preferably 50 to 60%, and the bulk density is 0.18 to 0.63 g / cm.3Is preferable, and especially 0.36 to 0.45 g / cm3Is preferred. Here, the three-dimensional net-like structure is intended to have at least a portion having the above porosity. For example, the case includes the case where the entire three-dimensional network structure is within the range of the porosity, and the case where a part of the three-dimensional network structure is within the range of the porosity.
[0017]
In the moss culture medium for appreciation of the eighth aspect, the three-dimensional network structure preferably has a wire diameter of 0.5 mm to 3 mm. The wire diameter is particularly preferably from 0.7 mm to 2 mm. Furthermore, even if the moss in the upper layer falls off, the moss in the lower layer comes out on the upper surface and grows, so that the product life is long.
[0018]
The moss medium for appreciation according to claim 9, wherein the three-dimensional network structure is made of a thermoplastic resin, and has a bulk density of 0.18 to 0.27 g / cm.3The porosity is preferably 70 to 80%, and the moss is preferably fixed to the three-dimensional network structure.
It is preferable that the moss and the moss curing material are pressed into the three-dimensional network structure from above and pressed. When the moss is wetted with water, the moss is easily attached to the three-dimensional network structure. If the three-dimensional net-like structure is made sparse (has a high porosity), it becomes easy to adhere.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
The moss culture medium 1 for appreciation shown in FIGS. 1 to 3 is applied irrespective of whether it is outdoors or indoors. A large number of continuous filaments made of a thermoplastic resin intersect three-dimensionally irregularly while winding. A spring-structured resin molded product having a panel-shaped three-dimensional net-like structure 2 which is fused at a portion, and a moss 3 and a moss curing material are fixed to the three-dimensional net-like structure 2 as shown in FIG. It was done. It is preferable to place on the surface of the net-like structure 2 and press it from above and press it on. Wet the moss 3 with water to make it easier to attach. It is also preferable to wind the moss 3 with a thread.
[0020]
As shown in FIG. 1, it can be used simply by placing the ornamental moss medium 1 in a container 6 containing water 5. After a while, moss 7 grows on the surface. As shown in FIGS. 2 and 3, the recess 8 may be formed by a machine tool or the like, and an object such as a stone 9 may be placed in the recess 8.
[0021]
Instead of FIG. 3, as shown in FIGS. 5 and 6, moss 10 and moss curing material 11 are put in the voids of the three-dimensional net-like structure 2, and the three-dimensional net-like structure 2 is compressed in the plane direction (FIG. 4 and 5), the porosity may be reduced, and the moss 10 and the moss curing material 11 held in the voids may be sealed so as not to flow due to wind and rain, and may have strength and formability that can be used outdoors. As shown in FIG. 5, the method of manufacturing the moss medium for appreciation 1 is as follows. First, as shown in FIG. 5, the moss 10 and the moss curing material 11 are sprinkled on the three-dimensional network structure 2 and shaken. Are distributed and placed inside. Next, as shown in FIG. 6, the three-dimensional network structure 2 is compressed by the rollers 12. Thereby, the porosity of the three-dimensional network structure 2 is reduced, and the moss 11 and the moss curing material 12 can be prevented from leaking outside. Bulk density after compression is 0.63 to 0.18 g / cm3The porosity is preferably 30 to 80%.
[0022]
[Description of Three-dimensional Network Structure 2]
The three-dimensional network structure 2 applied to the moss culture medium 1 for appreciation of the present embodiment is composed of a continuous filament 112 (hereinafter, simply referred to as a filament 112) using a thermoplastic resin as a raw material or a main raw material as shown in FIG. This is the striated aggregate 113. The filament aggregate 113 is a three-dimensional net-like structure in which adjacent filaments of a loop of a plurality of filaments 112 are randomly tangled and entangled with each other and have a predetermined gap therein. The method for manufacturing the three-dimensional network structure 2 will be described later.
[0023]
The specifications of the three-dimensional network structure 2 are as follows.
(1) When moss 3 is put into three-dimensional net-like structure 2 and compressed
Before compression
Void ratio 80-99%
Bulk density 0.18-0.01 g / cm3
After compression
Porosity 30-80%, preferably 50-60%
Bulk density 0.63-0.18g / cm3, Preferably 0.45 to 0.36 g / cm3
(2) When moss 3 is attached to the three-dimensional network structure 2 without being compressed
Porosity 70-80%
Bulk density 0.27-0.18g / cm3
[0024]
The wire diameter (diameter) of the filament of the three-dimensional net-like structure 2 is 0.3 to 3.0 mm, preferably 0.7 to 2.0 mm in the case of a solid filament. In the case of solid filaments, if the filament diameter is 0.3 mm or less, the filaments have no rigidity, the number of fused portions increases, and the porosity decreases. If it is 3.0 mm or more, the striatum has too much waist, a loop is not formed, and the moss 3 is poorly implanted. In the case of a hollow filament, it is 1.0 to 3.0 mm, preferably 1.5 to 2.0 mm, and particularly preferably 0.9 to 1.3 mm. In the case of a hollow filament, it is 1.0 to 3.0 mm, preferably 1.5 to 2.0 mm. The hollow ratio is preferably 10% to 80%. When the hollow ratio is 10% or less and 80% or more, inconveniences such as poor implantation of the moss 3 occur.
The thickness is 5 mm to 100 mm, preferably 20 to 40 mm. The length and width may be appropriately determined.
[0025]
The porosity is preferably in the above range in order to maintain the elasticity and strength of the network and reduce the weight.
[Porosity (%)] = (1− [bulk density] / [resin density]) × 100
[0026]
It is preferable that the mixing ratio between the solid filament and the hollow filament is solid: hollow = 0 to 50:50 to 100.
[0027]
The thermoplastic resin used as the raw material of the three-dimensional network structure 2 is particularly preferably a polyolefin-based resin such as polyethylene (PE) and polypropylene (PP). A vinyl acetate resin (hereinafter, referred to as VAC), an ethylene-vinyl acetate copolymer (hereinafter, referred to as EVA), a styrene / butadiene / styrene copolymer (hereinafter, referred to as SBS), and the like are preferable, and a mixture thereof may be used. Further, the polyolefin-based resin may be a recycled resin.
[0028]
It is preferable that the thermoplastic resin comprises a mixture of a polyolefin resin and a vinyl acetate resin, a biethylene acetate copolymer, or styrene-butadiene-styrene. The three-dimensional network structure 2 which is a three-dimensional structure molded from a mixture (for example, a thermoplastic elastomer) of a polyolefin-based resin such as PE or PP and VAC, EVA or SBS is preferable.
[0029]
The mixing ratio of polyolefin resin and vinyl acetate resin or vinyl acetate of ethylene vinyl acetate copolymer is 70 to 97% by weight: 3 to 30% by weight, preferably 80 to 90% by weight: 10 to 20% by weight. Is preferred.
When the VAC or EVA is 3% by weight or less, the rebound resilience decreases, and when the VAC or EVA exceeds 30% by weight, the thermal characteristics deteriorate.
[0030]
The mixing ratio of the polyolefin resin and styrene butadiene styrene is preferably 50 to 97% by weight: 3 to 50% by weight, and more preferably 70 to 90% by weight: 10 to 30% by weight.
[0031]
[Spring structure resin molding device 115]
Next, a spring structure resin molding device 115 which is an example of a production device of the three-dimensional network structure 2 will be described. As shown in FIGS. 8 and 9, the extruder 120 is provided with a hopper 121, and melts and kneads a thermoplastic resin supplied from the hopper 121 at a predetermined temperature, and is provided in a molding die (die) 122. At a predetermined extrusion rate, a plurality of nozzles 123 having a diameter extrude a filament aggregate 113 composed of molten thermoplastic resin filaments 112, and the filament aggregate 113 is pulled by a pulling machine 124.
[0032]
The take-up rolls 125 of the take-up machine 124 are installed in the water in the water tank 126. Each of the take-up rolls 125 has a pair of upper and lower rollers on which one endless belt 128 is hung. The water tank 126 includes a water supply valve 126a and a drain valve 126b. In the three-dimensional net-like structure 2, the filaments 112 of the filament aggregate 113 are randomly formed into a loop shape, and the loops are partially entangled in contact with each other, welded and solidified in water, and are taken up by the winding rolls 129, 129. Is taken out as a three-dimensional net-like structure 2.
[0033]
As shown in FIG. 9, when it is difficult to bend the three-dimensional net-like structure 2, which is a three-dimensional structure, with the take-off rolls 125, 125 at the time of take-off, a portion having a coarse bulk density is formed to bend at that portion, and the underwater is bent. Can be pulled up. The cutting device 130 is for cutting the taken-out three-dimensional network structure 2 into appropriate lengths. The loop forming apparatus 150 narrows down the thickness of the continuous continuous wire 112 discharged from the mold 122 before the continuous continuous wire on the outer peripheral side thereof contacts the water surface of the water tank 126 to reduce the surface layer of the three-dimensional net-like structure 2. In addition to increasing the density of the belt, the loops are formed smoothly, and the fusion between the loops is made uniform. Further, before the endless belt 128 of the conveyor is touched, the surface thereof is cooled and solidified, and the biting marks of the belt 128 are formed. It does not stick to the product.
[0034]
As another example, as shown in the front view of FIG. 10, a cutting device 230 is provided in a water tank 226, and the cutting device 230 is disposed near a lower portion of a take-off machine 224. A transport device 235 is provided which is a conveyor having a large number of locking projections to be inserted into the cut gaps of the single unit. About the structure of another part, the said description is referred to as 200s.
[0035]
[Manufacturing method of three-dimensional network structure 2]
Next, an example of a method for manufacturing the three-dimensional network structure 2 will be described.
As shown in the schematic diagram of FIG. 11, in the method of manufacturing the three-dimensional network structure 2 in the present embodiment, preferably, a polyolefin-based resin such as PE or PP and a raw material resin such as VAC, EVA or SBS are described later. The mixture is dry-blended via a tumbler, a fixed-rate feeder, or the like, or mixed or melt-mixed into pellets, and sent to the hopper 21 of the extruder 20.
[0036]
Specifically, raw material resins, for example, PP and SBS are mixed by a tumbler (KR mixer manufactured by Kato Riki Seisakusho) at 40 rpm for 15 minutes.
[0037]
Next, as shown in an explanatory view of FIG. 8, a mixture composed of the raw material resin is charged from a hopper 121 (see FIG. 9) of a φ65 mm single screw extruder 120, and a predetermined temperature (200 ° C. in Examples 1 to 6). And melt-kneading at 260 ° C. in Examples 7 to 9 and melt-extrusion at a predetermined extrusion rate from a number of nozzles having a predetermined diameter provided in the forming die 122, and a predetermined wire diameter ( For example, 600 to 90,000 deniers, preferably 3,000 to 30,000 deniers, and more preferably 6,000 to 10,000 deniers) are formed to form solid and / or hollow continuous filaments. Are entangled with each other by the loop forming device 150 so that adjacent filaments 112 are in contact with each other, for example, a random loop, for example, a diameter of 1 to 10 mm, preferably a straight loop. To form a loop of 1~5mm. At this time, at least a part of the contact entangled portions is mutually melt-bonded and cooled. The filament 112 may be a mixture of a hollow filament and a solid filament at a predetermined ratio.
[0038]
The thickness and bulk density of the three-dimensional structure, which is a set of the random loops, are set between the take-up rolls 125 of the take-up machine 124 in the water tank 126. This three-dimensional structure (for example, a thickness of 10 to 200 mm and a width of 2,000 mm) is randomly formed into a curl or a loop, solidified in water, and taken out as a three-dimensional net-like structure 2 by winding rolls 129 and 129. .
[0039]
Further, when the filament 112 having this loop is formed underwater by the take-off machine 124, the three-dimensional net-like characteristic may be changed by changing the speed of the take-off machine 124. In this case, when the bulk density of the three-dimensional structure is relatively increased, 0.03 to 0.08 g / cm3, Preferably 0.04 to 0.07 g / cm3, Especially 0.05 to 0.06 g / cm3It is preferable that
[0040]
Further, for example, the take-up speed of the take-up rolls 125, 125 is adjusted at a predetermined interval (for example, 3 to 5 m) by adjusting the take-up speed of the take-up machine 124 to a low speed within a set time by a timer or the like for each set time. By doing so, in the longitudinal direction of the three-dimensional net-like structure 2, a portion having a large bulk density and a portion other than the bulk density formed at a predetermined interval (for example, 30 to 50 cm) at the time of low-speed drawing are continuously formed, that is, dense and dense. You may.
[0041]
As shown in the front view of FIG. 9, when it is difficult to bend the three-dimensional net-like structure 2 as the three-dimensional structure with the take-up rolls 125, 125 at the time of take-off, a portion having a coarse bulk density is formed by forming the portion. It can be bent at the site and pulled out of the water. The three-dimensional net-like structure 2 taken out through the above steps is cut into appropriate lengths by the cutting device 130.
[0042]
By the above manufacturing method, as an example, the bulk density is 0.03 g / cm.3And a three-dimensional net-like structure 2 having a thickness of 50 mm. In addition, the three-dimensional structure can also be manufactured using one or a combination of a plurality of different materials.
[0043]
[Example of manufacturing apparatus]
The extruder used is a single-screw extruder having a diameter of 90 mm. The raw material used is an ethylene vinyl acetate copolymer. The operating conditions were a resin temperature of 250 ° C., a molding pressure of 0.1 Mpa, a screw rotation speed of 30 rpm, a discharge capacity g of 135 kg / hr, and a take-up speed of 32.3 m / hr.
[0044]
The effects of the embodiment are as follows.
(1) The moss culture medium 1 for appreciation is a three-dimensional net-like structure 2 and is easy to process, and has a great degree of freedom in shape, such as forming a groove according to the viewer's preference, and has a great advantage. .
(2) The moss 10 held in the surface moss or voids of the moss medium 1 for appreciation is firmly held in the voids of a large number of continuous striatum entangled with each other constituting the three-dimensional network structure 2. Therefore, when installed outdoors, the outflow of moss due to running water such as rainwater can be suppressed.
(3) Since the moss 10 has a function of absorbing water and a function of retaining water, it has an effect of suppressing evaporation of moisture and retaining moisture.
(4) Since it is only necessary to put water in the container 6 and put the moss medium 1 for appreciation, and then simply supply water to the container 6, there is almost no need for maintenance such as irrigation, fertilization, cutting, etc. It is very easy to manage, has no running cost, and is extremely economical. Outdoors are places that are dry, plain, and easily heated, but moss does not die even if it dries, and even in the state of asphyxia, it regenerates as soon as rainwater is supplied. In particular, S. moss and H. moss are very resistant to drying, so that they can be used outdoors where it is difficult for other plants to form a biolayer.
(5) Since the three-dimensional network structure 2 is a thermoplastic resin having voids, the moss 10 that hardly needs soil is incorporated in the lightweight and strong three-dimensional network structure 2, so that the overall structure is ultralight. . Therefore, the handling is easy and the cost can be greatly reduced.
(6) Since the moss culture medium for appreciation 1 can be regenerated as industrial waste by simple treatment upon disposal, the recyclability is excellent. It is an excellent biological growth base in which moss curing materials such as soil, clay, sand, straw waste and waste paper are adjusted in a well-balanced manner, and moss 10 is fixed to the ornamental moss medium 1 without using a chemically synthesized material.
(7) When the three-dimensional network structure 2 is compressed, it is suitable for outdoor use, and the moss 10 is less scattered by wind, rain, and the like, so that the product life is extended. In places with strong winds, it is possible to cope by applying strong compression.
(8) When the moss 10 and the moss curing material 11 are previously filled in the three-dimensional net-like structure 2, the moss curing material 11 increases the greening speed more than the case of only the moss 3.
(9) By compressing the three-dimensional net-like structure 2 in the plane direction, the thickness is reduced and the advantage of space saving is obtained.
As described above, the present embodiment has solved the conventional problems, and has very large practical value.
[Brief description of the drawings]
FIG. 1 is a perspective view of an ornamental moss medium according to an embodiment of the present invention in a container containing water.
FIG. 2 is a partial cross-sectional view of another embodiment.
FIG. 3 is a perspective view of the same.
FIG. 4 is a method for producing an embodiment of an ornamental moss medium.
FIG. 5 is an explanatory view showing an intermediate production step of another production method of the ornamental moss medium.
FIG. 6 is an explanatory view showing a final production step (compression step) of an ornamental moss medium.
FIG. 7 is an explanatory diagram showing a three-dimensional network structure 2.
FIG. 8 is an explanatory view showing an apparatus for manufacturing the three-dimensional network structure 2.
FIG. 9 is an embodiment showing another manufacturing apparatus of the three-dimensional network structure 2;
FIG. 10 is an embodiment showing still another manufacturing apparatus of the three-dimensional network structure 2.
FIG. 11 is a schematic view showing steps of a method for manufacturing the three-dimensional network structure 2.
[Explanation of symbols]
1: moss medium for appreciation 2: three-dimensional network structure 3: moss
5 ... water 6 ... container 7 ... 8 ... recess 9 ... stone
10 ... moss 11 ... moss curing material 12 ... roller
112 113 線 集合 集合
115 ... Spring structure resin molding machine # 120 ... Extrusion molding machine

Claims (9)

熱可塑性樹脂よりなる連続線条体の多数本が曲がりくねりながら三次元に不規則に交差する部分において融着されてなる立体網状構造体を備え、
該立体網状構造体に苔を固定することを特徴とする鑑賞用苔培地。
With a three-dimensional network-like structure in which a large number of continuous filaments made of a thermoplastic resin are fused at three-dimensionally irregularly intersecting portions while meandering,
An appreciation moss medium, wherein moss is fixed to the three-dimensional network structure.
前記立体網状構造体の厚みが5mm〜100mmであることを特徴とする請求項1の鑑賞用苔培地。The ornamental moss culture medium according to claim 1, wherein the three-dimensional network structure has a thickness of 5 mm to 100 mm. 前記立体網状構造体に凹部を形成し、該凹部に石を嵌め込むことを特徴とする請求項1又は2の鑑賞用苔培地。The moss culture medium for appreciation according to claim 1 or 2, wherein a concave portion is formed in the three-dimensional network structure, and a stone is fitted into the concave portion. 前記立体網状構造体に凹部を形成し、該凹部に植物を土とともに植えることを特徴とする請求項1又は2の鑑賞用苔培地。The moss culture medium for appreciation according to claim 1 or 2, wherein a concave portion is formed in the three-dimensional network structure, and a plant is planted in the concave portion together with soil. 前記立体網状構造体がプレス機で押圧成形されたことを特徴とする請求項1乃至4いずれかの鑑賞用苔培地。The moss medium for appreciation according to any one of claims 1 to 4, wherein the three-dimensional net-like structure is formed by pressing with a press machine. 前記立体網状構造体が面方向に圧縮されて、空隙率を減少させ、前記空隙に充填した苔が前記立体網状構造体内に固定されることを特徴とする請求項1乃至5いずれかの鑑賞用苔培地。The viewing structure according to any one of claims 1 to 5, wherein the three-dimensional network structure is compressed in a plane direction to reduce a porosity, and moss filled in the voids is fixed in the three-dimensional network structure. Moss medium. 前記立体網状構造体の圧縮前の空隙率が80%〜99%であり圧縮後の空隙率が30%〜80%であることを特徴とする請求項6に記載の鑑賞用苔培地。The porosity of the ornamental moss medium according to claim 6, wherein the porosity of the three-dimensional network structure before compression is 80% to 99%, and the porosity after compression is 30% to 80%. 前記立体網状構造体の線径が0.5mm〜3mmであることを特徴とする請求項1乃至7いずれかに記載の鑑賞用苔培地。The ornamental moss medium according to any one of claims 1 to 7, wherein a wire diameter of the three-dimensional network structure is 0.5 mm to 3 mm. 前記立体網状構造体が熱可塑性樹脂で構成され、嵩密度0.18〜0.27g/cm、空隙率70〜80%であり、苔を立体網状構造体に固定してなることを特徴とする請求項1乃至4いずれかに記載の鑑賞用苔培地。The three-dimensional network structure is made of a thermoplastic resin, has a bulk density of 0.18 to 0.27 g / cm 3 , a porosity of 70 to 80%, and is obtained by fixing moss to the three-dimensional network structure. The ornamental moss medium according to any one of claims 1 to 4.
JP2003064149A 2002-07-19 2003-03-10 Decorative moss medium Pending JP2004097201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003064149A JP2004097201A (en) 2002-07-19 2003-03-10 Decorative moss medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002210413 2002-07-19
JP2003064149A JP2004097201A (en) 2002-07-19 2003-03-10 Decorative moss medium

Publications (1)

Publication Number Publication Date
JP2004097201A true JP2004097201A (en) 2004-04-02

Family

ID=32300356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003064149A Pending JP2004097201A (en) 2002-07-19 2003-03-10 Decorative moss medium

Country Status (1)

Country Link
JP (1) JP2004097201A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100899947B1 (en) * 2009-04-08 2009-05-27 김소연 Cultivation method of bryophyte by using sponge
JP2011036154A (en) * 2009-08-07 2011-02-24 Micro Systems:Kk Method for producing moss, and device for producing moss
JP2017221136A (en) * 2016-06-15 2017-12-21 住友ゴム工業株式会社 Method of producing greening mat

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100899947B1 (en) * 2009-04-08 2009-05-27 김소연 Cultivation method of bryophyte by using sponge
JP2011036154A (en) * 2009-08-07 2011-02-24 Micro Systems:Kk Method for producing moss, and device for producing moss
JP2017221136A (en) * 2016-06-15 2017-12-21 住友ゴム工業株式会社 Method of producing greening mat

Similar Documents

Publication Publication Date Title
KR100807285B1 (en) The vegetation basis using polyester staple fiber and method of production thereof
EP1584228A1 (en) Growth medium for sphagnum moss
US20030140556A1 (en) Growing medium for plants
JPWO2002041688A1 (en) Moss plant fixation
JP2002119160A (en) Resin culture medium, water purifying device and method using the same resin culture medium
JP2004097202A (en) Moss-fixing base
JP2004097201A (en) Decorative moss medium
CN205284348U (en) Wall greening system
JP2002125453A (en) Greening structure
KR100999489B1 (en) Sediment discharge prevention both use high absorbance, for the vegetation mat and this factory and production technique
KR20100002016A (en) The vegetation basis and method of production thereof
KR20160019593A (en) soil composition for planting and manufacturing method thereby
JPH10323120A (en) Material for greening base and its production
JP3733331B2 (en) Greening method
JPH11146727A (en) Soil conditioner
JP2000262143A (en) Plant growing base material comprising coir shaped material
JP2005027504A (en) Greening system for covering wall surface
KR101146763B1 (en) Natural greening mat and its manufacturing apparatus
JP2005232405A (en) Light-weight soil-improving material for soil for cultivation
JP2018201389A (en) Base material for raising moss, and method for raising moss
JP2005229891A (en) Wall surface greening base material and greened wall
JP4209049B2 (en) Carbonaceous plant cultivation floor and method for producing the same
JP2005027503A (en) Greening system
JP3073492B1 (en) Unit for artificial soil body for plant growth and artificial soil body
JP2005312327A (en) Soil alternative material

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050715