【0001】
【発明の属する技術分野】
本発明は、過熱水蒸気による粒状食品殺菌方法及びその装置のそれぞれ改良に関する。
【0002】
【従来の技術】
小麦等の穀類に代表される粒状食品の殺菌に、放射線、エチレンオキサイド、プロピレンオキサイド等のガスの使用が提案されているが、いずれも食品衛生上許可されておらず、少なくとも国内では実施されておらず、過熱水蒸気の使用について幾つかの提案がなされている。また、防虫の目的で臭化メチルの燻蒸(又は燻煙)が使用されていたが、京都議定書には、それが温室効果ガスの一つであることからそれの使用禁止が記載されてる。
【0003】
それに対して、上述の放射線、薬剤による殺菌に比較して、従来から煩瑣で経費も掛かるという点に難があるとされていた過熱水蒸気の使用について幾つかの提案がなされている。
【0004】
その一つは、香辛料等を対象とするするものではあるが、特公昭63−50984号報である。それによれば、微粉砕されたものの過熱水蒸気による処理に問題があるため、被処理物が、原形のまま、又はその粗砕物の比較的粗い状態で、管内を流れる過熱水蒸気で搬送(気流輸送)されることによって加熱殺菌されたうえ、必要な粒度に粉砕される。
【0005】
しかしながら、この提案には、搬送、加熱用の大量の過熱水蒸気並びにその過熱水蒸気と置換する、搬送急冷用の大量の空気が必要なことから、それぞれ搬送及びサイクロン等による固気分離に多大な動力を要すると共に、最終製品へ仕上げのための微粉砕が無菌状態で行われる必要があるという問題点がある。
【0006】
それに対して、特開平8−242807号公報には、香辛料等の粉末食品が、上述のように過熱水蒸気の気流中を大径の粒状補助剤と混合された状態で搬送されながら加熱殺菌されたうえ、篩等によって大径の粒状補助剤と分離されると記載されている。
【0007】
この提案では、粉末であっても過熱水蒸気処理が可能なため、微粉砕が殺菌に先立って行われる点で改善されていると推定されるが、搬送及びサイクロン等による固気分離に多大な動力を要する点については全く改善されていない。
【0008】
その他、特開平7−274916号公報には、(逆円錐形の)容器内で(スクリューで)撹拌されながら水蒸気処理されるに当たって、内部に充満する気体が除去されるよう、予め(真空ポンプで)減圧されると共に、水蒸気処理後、内部に充満する水蒸気が除去されるよう、容器内が再度(真空ポンプで)減圧されると記載されている。
【0009】
この提案では、バッチ方式であって、1バッチ当たり3回の操作の切り替えが必要であるという点で煩瑣であること、そのため短い加熱時間の確保が困難であり、被処理物が変質するおそれがあることが問題である。
【0010】
【発明が解決しようとする課題】
そこで本発明は、上記した従来技術の欠点を除くためになされたものであって、その目的とするところは、従来のものに比較して、水分を含み、熱に弱い被処理材との接触時間をさらに短縮可能であり、且つ、前記被処理材の殺菌の他には余分の熱が与えられないよう構成された、粒状食品の殺菌装置を提供することにある。
【0011】
【課題を解決するための手段】
上記の目的を達するために、請求項1の発明の粒状食品の殺菌装置は、水平又は略水平の多孔性のコンベア41に載せられて一方向に連続的に搬送される粒状食品Gが、空気との接触を絶たれた状態で、前記粒状食品(G)の搬送方向に略垂直に流れる、常圧又は減圧の過熱水蒸気SSと瞬間的に接触し、殺菌されるよう構成された殺菌空間STと,前記過熱水蒸気SSの流れと接触した粒状食品Gが直ちに冷風CWと接触し、瞬間的に冷却されるよう構成された冷却空間CLと,を備えている
【0012】
請求項1の発明によれば、殺菌空間STにおいて、一方向に連続的に搬送される、熱に敏感な低温(常温以下低ければ低い程よい)の粒状食品Gが、空気に比べ、さらに静止した水蒸気に比較しても伝熱係数が高く、そのうえ、飽和水蒸気とは異なり、加熱には凝縮潜熱によらず、顕熱を利用可能な過熱水蒸気SSと略垂直に交差するよう瞬間的に接触するため、水蒸気の凝縮も起らず、粒状食品Gの表面とそれに付着した病原菌だけが加熱され、殺菌される。
【0013】
しかも、殺菌空間ST内の粒状食品Gは、加熱、殺菌中、空気との接触が絶たれており、また、上述のように、その加熱は表面のみに留まり、内部が低い温度に保たれた状態で、直後に冷却空間CL内で冷風CWによって瞬間的に冷却されるため、高温のまま長い時間空気と接触することもなく、その表面の酸化や内部までの加熱が殆んど又は全く進むことがない。従って粒状食品Gの品質が殆んど又は全く損われることがない。
【0014】
そのうえ、上述のように、粒状食品Gが、多孔性のコンベア41に載せられたままで過熱水蒸気及び冷風と略垂直に交差するよう瞬間的に接触するため、従来の気流輸送によるものにあった、粒状食品Gの加速、搬送、さらにサイクロン等による固気分離のいずれもが不要となり、所用動力が著しく軽減される。
【0015】
請求項2の発明は、請求項1に記載の発明の構成に加えて、前記多孔性のコンベア141が静止していて、それに載せられた粒状食品Gの層が、それを下方から上方に通過する気体によって僅かに持ち上げられ、流動性を増し、薄い層を形成し、低い方に流下するよう、コンベア41の上面が僅かに傾斜している。
【0016】
請求項2の発明によれば、請求項1に記載の発明の作用効果に加えて、エンドレスのコンベアとは異なり、粒状食品Gの排出から供給の間の戻りの遊び部分が不要であり、また、構造が著しく単純化されているため、設備費が低減され、また、短い固気接触時間、すなわち、粒状食品Gの殺菌空間STの通過速度の制御も、粒状食品Gがあたかも液体のようになっているため、例えばコンベア41の上面の傾斜やダム高さの調整によって容易に可能である。
【0017】
請求項3の発明は、請求項1又は2に記載の発明の構成に加えて、過熱水蒸気SSの流れと接触した粒状食品Gの、冷風CWとの接触による冷却が同一コンベア41上でなされるよう構成されている
【0018】
請求項3の発明によれば、請求項1又は2に記載の発明の作用効果に加えて、粒状食品Gは過熱水蒸気SSの流れとの接触によって表面のみ加熱されているため、同一コンベア41上での殺菌域への空気の混入が阻止される隔壁さえ準備されていれば、同一コンベア41で冷風CWとの接触によって容易に冷却可能であり、従来の気流輸送によるものにあった、粒状食品Gの加速、搬送、さらにサイクロン等による固気分離のいずれもが不要となり、所用動力が著しく軽減されると共に、装置が著しく簡略化され、装置費が著しく低減される。
【0019】
【発明の実施の形態】
本発明の第1の実施の形態例の粒状食品の殺菌装置について図1により説明すると、この粒状食品の殺菌装置40は、基本的には、粒状食品Gを載せて、連続的に水平又は略水平の多孔性のコンベア41によって1方向に搬送される粒状食品Gが、空気との接触を絶たれた状態で、上記粒状食品Gの搬送方向に略垂直に流れる、常圧又は減圧の過熱水蒸気SSと瞬間的に接触し、殺菌されるよう構成された殺菌空間STと,前記過熱水蒸気SSの流れと接触した粒状食品Gが直ちに冷風CWと接触し、瞬間的に冷却されるよう構成された冷却空間CLと,を備えている。
【0020】
上記殺菌空間ST及び冷却空間CLは、外部から空気が漏入しないよう、共通の囲い42で囲まれており、殺菌空間ST内の過熱水蒸気SSと冷却空間CL内の冷風CWとが混合しないよう、両者の間には隔壁45が設けられている。また、コンベア41上を搬送される粒状食品Gに向って過熱水蒸気SS、冷風CWがそれぞれ略垂直に噴射されるよう、そのコンベア41の上下、上流側に過熱水蒸気噴射ノズル43,43、下流側に冷風噴射ノズル44,44が設けられている。なお、過熱水蒸気噴射ノズル43,43はコンベア41の下側だけでもよい。
【0021】
コンベア41について説明すると、図2に示すように、静止していて、可動部分はないが、粒状食品Gを下方から上方に通過する気体(過熱水蒸気SS、冷風CW)によって僅かに持ち上げられ、流動性を増した粒状食品(G)が、薄い層を形成し、あたかも液体のように低い方に流下するよう、コンベア(41)の上面が僅かに傾斜している。
【0022】
しかも、過熱水蒸気SSや冷風CWのような気体は通過可能であるが、粒状食品Gが通過、落下しないよう、例えば、目開きの金網、目板、合成樹脂繊維状シート、目の細かいキャンバス等で構成されているが、これらに格別限定されるものではない。なお、囲い42と一体に、コンベア41の上面の傾斜を調節可能に、囲い42が傾斜調節装置SCで支持されている。
【0023】
周辺機器について説明すると、過熱水蒸気SSの発生のために、水Wを加熱し温水にする温水器10、温水から飽和水蒸気Sをつくるボイラ20、その飽和水蒸気Sを加熱して、過熱水蒸気SSに変え、上述の過熱水蒸気噴射ノズル43,43に送る、誘導加熱式の過熱器30を備えている。
【0024】
また、殺菌装置40を通過し、降温した過熱水蒸気SSに含まれる粉塵を濾過するフィルタ50やそのフィルタ50を通過した過熱水蒸気SSをボイラ20を経て過熱器30に戻す循環ポンプP1を備えると共に、粒状食品Gが過熱水蒸気SSと接触する空間で生じたドレンDを受入れ、溜めるドレンタンク60を備えている。
【0025】
その他、粒状食品Gと接触した冷風CWは、一旦冷風溜めタンク70に受け入れられ、ブロワP2によって昇圧され、冷却器80で所定の温度(例えば約7℃)に冷却されたうえ、冷風噴射ノズル44,44に送られるよう構成されている。なお、この周辺装置を構成する機器、配管、ラインには種々の変型が想定され、必ずしも上述のものに限定されるものではない。
【0026】
作用について説明する。予め常温以下に冷却され、低温の粒状食品Gが、多孔性のコンベア41の上面を極めて薄い層を形成すると共に、あたかも液体のように、低い出口に向って速い速度で流下する。それによって、過熱水蒸気SSや冷風CWが粒子と接触し、粒子表面を加熱する。
【0027】
その特徴の一つは、先ず、多孔性のコンベア41によって搬送される粒状食品Gと接触、加熱する熱媒が、過熱水蒸気噴射ノズル43,43によって噴射される過熱水蒸気SSであって、空気に比べ、さらに静止した水蒸気に比較しても伝熱係数が高いが、瞬間的接触であり、しかも、飽和水蒸気とは異なり、粒状食品Gの加熱に凝縮潜熱が不要であり、顕熱が有効に利用されるため(減圧であれば、過熱度が増し、利用度合が一層高くなる)、付着し易い凝縮水を生じないか、又は生じ難いことである。
【0028】
2番目は、粒状食品Gは、空気との接触が囲い42によって絶たれた状態で、前記粒状食品Gの搬送方向に略垂直な過熱水蒸気SSの流れと接触するため、粒状食品Gの移動速度や過熱水蒸気SSの流れる範囲の調節によって接触時間を容易に調節可能であることであり、3番目は、その接触直後は、冷風噴射ノズル44,44から噴射される冷風CWによって瞬間的に冷却され、高温のまま長い時間空気と接触することもないことである。
【0029】
以上のことから、粒状食品Gの表面に付着した病原菌等の殺菌が満遍なく行われるが、熱に敏感な粒状食品Gの表面の酸化や内部までの加熱が殆んど又は全く進行せず、粒状食品Gの品質が殆んど又は全く損われることがない。そのうえ、粒状食品Gが、多孔性のコンベア41の上面近傍で上述のように殆んど抵抗なく、過熱水蒸気及び冷風と略垂直に接触するため、従来の気流輸送によるものにあった、粒状食品Gの加速、搬送、さらにサイクロン等による固気分離のいずれもが不要となり、所用動力が著しく軽減される。
【0030】
その他、例えばエンドレスのコンベアとは異なり、従来困難とされていた、粒状食品Gと過熱水蒸気SSとの極めて短い固気接触時間(粒状食品Gの移動速度)がコンベア41の上面の傾斜やダム高さ(図示省略)の調節によって容易に可能であり、そのうえ、構成が極めて単純化されていて、粒状食品Gの排出から供給の間の戻りの遊び部分等が不要であり、コンベア41が静止しているため、配管も容易であり、シールも極めて容易である。なお、粒状食品Gの持ち上げのために動力が必要であるが、接触時間が極めて短く、その層の厚さが極めて小さいため、気流式に比較して著しく小さくなる。
【0031】
【実施例】粒状食品Gの試料として小麦が使用され、本発明に基く処理がなされたものとなされないものについて、品質に関する各種試験が行われると共に、殺菌効果(一般生菌、耐熱性菌及び大腸菌の数の検査)が調査された。
【0032】
(注1)一般生菌…生菌数は食品の衛生学的品質を評価する衛生指標菌、または環境衛生管理上の汚染指標菌とされている。生菌数は標準寒天培地を用いて、好気的(酸素がある状態)な条件で発育した中温性の細菌の数である。その菌数が多い場合は、食品の衛生的取扱いが悪かった恐れがあり、また食中毒菌などの病原菌の多くが中温細菌であることから、病原菌が存在する可能性が高いことを示す。
【0033】
表1に試験結果の一部を示す。それによれば、過熱水蒸気との接触によって、細菌数は、一般生菌数が激減した他、元々少なかった耐熱性菌、大腸菌も皆無又は殆んど認められなくなった。なお、水分が僅かに上昇し、容積重量が減少しているが、加熱時の凝縮水によるものではなく、冷却時に生じた僅かな凝縮水の吸水のためであると推察される。また、製粉されたものの白度が僅かに向上しており、好ましいことである。製パン性、製麺性については、不処理のものと殆んど差はないが、処理されたものの優劣を比較すると表の通りである。
【0034】
第2の実施の形態例について図3により説明すると、殺菌装置140は、振動又は揺動機構B、モータM等の振動又は揺動に必要な機器・部材が吹かされていることを除けば、それと同じ構成になっていて、対応する機器、部材の符号が、第1の実施の形態例のそれの百の桁に1が追加されただけある。
【0035】
第1の実施の形態例と異なる部分について詳細説明すると、囲い142と一体に水平に対して斜めの方向に振動又は揺動するよう、リンク、レバーのリンクとピンとを備えた振動又は揺動機構B、それの駆動用モータM、圧縮(又は引張)が解除される度に反撥し、斜め上方(又は下方)にコンベア141を揺すり、その都度粒状食品Gを跳び上がらせる(又は急落させる)バネSP、1周期当たりの粒状食品Gの移動距離の制御するためのコンベア141の上面の傾斜調節装置SC等を備えている。
【0035】
作用について説明する。予め常温以下に冷却され、低温の粒状食品Gが、多孔性のコンベア141の上面近傍を飛び跳ね、急落を盛んに繰り返すことによって攪拌されながら出口に向って移動する。そのため、単位空間当たりの粒子数は比較的少なく、その間を過熱水蒸気SSや冷風CWは粒子の抵抗もあまりない状態で通過し、粒子表面と熱交換する。
【0036】
その殺菌・冷却の特徴的作用については第1の実施の形態例のそれと略同様であるが、その他、例えばエンドレスのコンベアとは異なり、粒状食品Gの移動速度の制御が、コンベア141の振動又は揺動の速度や上面の傾斜の調節によって容易に可能であり、コンベア141の各点の動きが極めて狭い範囲に限られており、コンベア141が囲い142と一体に振動又は揺動するため、配管等に可撓性のものが一部使用されればシールが容易となる。
【0037】
【発明の効果】
以上のとおり請求項1の発明によれば、殺菌空間STにおいて、水蒸気の凝縮も起らず、粒状食品Gの表面とそれに付着した病原菌だけが加熱され、殺菌される。しかも、殺菌空間ST内の粒状食品Gは、高温のまま長い時間空気と接触することもなく、その表面の酸化や内部までの加熱が殆んど又は全く進むことがない。従って粒状食品Gの品質が殆んど又は全く損われることがない。
【0038】
そのうえ、従来の気流輸送によるものにあった、粒状食品Gの加速、搬送、さらにサイクロン等による固気分離のいずれもが不要となり、所用動力が著しく軽減される。
【0039】
請求項2の発明によれば、請求項1に記載の発明の効果に加えて、エンドレスのコンベアに比較して、単純化されてており、設備費が低減され、また、短い固気接触時間、すなわち、粒状食品Gの殺菌空間STの通過速度の制御も、例えばコンベア41の上面の傾斜やダム高さの調整によって容易に可能である。
【0040】
請求項3の発明によれば、請求項1又は2に記載の発明の効果に加えて、冷却についても、同一コンベア41で容易に可能であり、従来の気流輸送によるものにあった、粒状食品Gの加速、搬送、さらにサイクロン等による固気分離のいずれもが不要となり、所用動力が著しく軽減されると共に、装置が著しく簡略化され、装置費が著しく低減される。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態例の粒状食品の殺菌装置を示す機器構成図である。
【図2】図1の要部を示す機器構成図である。
【図3】本発明の第2の実施の形態例の粒状食品の殺菌装置の要部を示す機器構成図である。
【符号の説明】
10 温水器
20 ボイラ
30 過熱器
40 殺菌装置
41 コンベア
42 囲い
43 過熱水蒸気噴射ノズル
44 冷風噴射ノズル
45 隔壁
50 フィルタ
60 ドレンタンク
70 冷風溜めタンク
80 冷却器
140 殺菌装置
141 コンベア
142 囲い
143 過熱水蒸気噴射ノズル
144 冷風噴射ノズル
145 隔壁
B 揺動機構
CL 冷却空間
CW 冷風
D ドレン
G 粒状食品
M 駆動用モータ
P1 ポンプ
P2 ブロア
S 飽和水蒸気
SC 傾斜調節装置
SP バネ
SS 過熱水蒸気
ST 殺菌空間
W 水
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for sterilizing granular foods using superheated steam and an improvement in each of the apparatuses.
[0002]
[Prior art]
For the sterilization of granular foods represented by grains such as wheat, the use of radiation, gas such as ethylene oxide and propylene oxide has been proposed, but none of them has been approved for food hygiene and at least it has been implemented in Japan. Instead, several proposals have been made for the use of superheated steam. In addition, fumigation (or smoking) of methyl bromide was used for insect control, but the Kyoto Protocol states that it is one of the greenhouse gases, and that its use is prohibited.
[0003]
On the other hand, several proposals have been made regarding the use of superheated steam, which has conventionally been considered to be difficult and costly in comparison with the above-mentioned sterilization by radiation and chemicals.
[0004]
One of them is for spices and the like, but is the report of JP-B-63-50984. According to this, since there is a problem in the treatment with the superheated steam of the finely pulverized product, the object to be processed is transported by the superheated steam flowing in the pipe in the original form or in a relatively coarse state of the coarsely crushed material (pneumatic transport). Then, it is heat-sterilized and pulverized to a required particle size.
[0005]
However, this proposal requires a large amount of superheated steam for transportation and heating, and a large amount of air for transportation quenching to replace the superheated steam. In addition, there is a problem that fine grinding for finishing into a final product needs to be performed under aseptic conditions.
[0006]
In contrast, JP-A-8-242807 discloses that powdered foods such as spices are heat-sterilized while being conveyed in a stream of superheated steam mixed with a large-diameter granular auxiliary as described above. In addition, it is described that it is separated from a large-diameter granular auxiliary by a sieve or the like.
[0007]
According to this proposal, it is presumed that since the powder can be subjected to superheated steam treatment, the pulverization has been improved in that the pulverization is performed prior to the sterilization. Is not improved at all.
[0008]
In addition, Japanese Patent Application Laid-Open No. 7-274916 discloses that, when a steam treatment is performed while being stirred (with a screw) in a (inverted conical) container, a gas filled inside is removed in advance by a vacuum pump. ) It is described that the pressure inside the container is reduced again (by a vacuum pump) so that the pressure is reduced and the steam filling the inside is removed after the steam treatment.
[0009]
This proposal is a batch method, which is complicated in that it is necessary to switch the operation three times per batch. Therefore, it is difficult to secure a short heating time, and there is a possibility that the object to be processed may be deteriorated. There is a problem.
[0010]
[Problems to be solved by the invention]
Therefore, the present invention has been made to eliminate the above-mentioned drawbacks of the prior art, and has as its object the purpose of including contact with a material to be processed which contains moisture and is vulnerable to heat as compared with the conventional one. It is an object of the present invention to provide an apparatus for sterilizing granular foods, which can further reduce the time and is configured not to give extra heat other than the sterilization of the material to be processed.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the granular food sterilizing apparatus according to the first aspect of the present invention is configured such that the granular food G placed on the horizontal or substantially horizontal porous conveyor 41 and continuously conveyed in one direction is made of air. The sterilizing space ST is configured to be instantaneously contacted with the superheated steam SS at normal pressure or reduced pressure, which flows substantially perpendicularly to the transport direction of the granular food (G), and is sterilized in a state where the contact with the superheated steam SS is stopped. And a cooling space CL configured such that the granular food G in contact with the flow of the superheated steam SS immediately contacts the cool air CW and is instantaneously cooled.
According to the invention of claim 1, in the sterilization space ST, the heat-sensitive granular food G that is continuously conveyed in one direction and is low in temperature (the lower the lower the normal temperature, the better), is more stationary than air. The heat transfer coefficient is higher than steam, and, unlike saturated steam, it does not depend on latent heat of condensation for heating, but instantaneously contacts the superheated steam SS that can use sensible heat almost vertically. Therefore, no condensation of water vapor occurs, and only the surface of the granular food G and the pathogenic bacteria attached thereto are heated and sterilized.
[0013]
Moreover, the granular food G in the sterilizing space ST is kept out of contact with air during heating and sterilizing, and as described above, the heating remains only on the surface and the inside is kept at a low temperature. In this state, it is immediately cooled by the cold air CW in the cooling space CL immediately after that, so that it does not come into contact with air for a long time at a high temperature, and the oxidation of its surface and the heating to the inside proceed little or no. Nothing. Therefore, the quality of the granular food G is hardly or not impaired.
[0014]
Moreover, as described above, since the granular food G instantaneously comes into contact with the superheated steam and the cold air almost perpendicularly while being placed on the porous conveyor 41, the conventional airflow transport was used. Neither the acceleration and transport of the granular food G nor the solid-gas separation by a cyclone or the like is required, and the required power is remarkably reduced.
[0015]
According to the invention of claim 2, in addition to the constitution of the invention of claim 1, the porous conveyor 141 is stationary, and the layer of the granular food G placed thereon passes from above to below. The upper surface of the conveyor 41 is slightly inclined so that it is slightly lifted by the flowing gas to increase the flowability, form a thin layer, and flow down.
[0016]
According to the invention of claim 2, in addition to the effect of the invention of claim 1, unlike the endless conveyor, a return play portion between discharge and supply of the granular food G is unnecessary, and Since the structure is significantly simplified, the equipment cost is reduced, and the short solid-gas contact time, that is, the control of the speed of passage of the granular food G through the sterilizing space ST, is similar to the case where the granular food G is liquid. Therefore, for example, the inclination of the upper surface of the conveyor 41 and the adjustment of the dam height can be easily achieved.
[0017]
According to the invention of claim 3, in addition to the configuration of the invention of claim 1 or 2, cooling of the granular food G in contact with the flow of the superheated steam SS by contact with the cold air CW is performed on the same conveyor 41. [0018]
According to the invention of claim 3, in addition to the effects of the invention of claim 1 or 2, the granular food G is heated only on the surface by contact with the flow of the superheated steam SS. As long as a partition wall is provided that prevents air from entering the sterilization area, the same conveyer 41 can be easily cooled by contact with the cold air CW, and the granular food, which has been provided by conventional airflow transport, can be provided. Neither the acceleration and transport of G nor the solid-gas separation by cyclone or the like is required, so that the required power is remarkably reduced, the apparatus is significantly simplified, and the apparatus cost is significantly reduced.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The sterilizing apparatus for granular food according to the first embodiment of the present invention will be described with reference to FIG. 1. The sterilizing apparatus 40 for granular food basically has a granular food G placed thereon and is continuously horizontally or substantially continuously. The superheated steam at normal pressure or reduced pressure, wherein the granular food G transported in one direction by the horizontal porous conveyor 41 flows substantially perpendicularly to the transport direction of the granular food G in a state where the granular food G is disconnected from the air. The sterilizing space ST, which is configured to be instantaneously contacted with the SS and sterilized, and the granular food G, which is in contact with the flow of the superheated steam SS, immediately comes into contact with the cool air CW and is instantaneously cooled. And a cooling space CL.
[0020]
The sterilizing space ST and the cooling space CL are surrounded by a common enclosure 42 so that air does not leak from the outside, and the superheated steam SS in the sterilizing space ST and the cool air CW in the cooling space CL do not mix. A partition 45 is provided between the two. Further, the superheated steam SS and the cold air CW are jetted substantially vertically toward the granular food G conveyed on the conveyor 41, so that the superheated steam jet nozzles 43 and 43 are located above and below and upstream of the conveyor 41, respectively. Are provided with cold air jet nozzles 44,44. The superheated steam injection nozzles 43 may be provided only on the lower side of the conveyor 41.
[0021]
As shown in FIG. 2, the conveyor 41 is stationary and has no moving parts, but is slightly lifted by a gas (superheated steam SS, cold air CW) that passes through the granular food G from below to above and flows. The upper surface of the conveyor (41) is slightly inclined so that the granular food (G) having increased properties forms a thin layer and flows down like a liquid.
[0022]
In addition, gas such as superheated steam SS and cold air CW can pass through, but to prevent the granular food G from passing and falling, for example, a mesh wire mesh, a mesh board, a synthetic resin fibrous sheet, a fine canvas, etc. , But is not particularly limited to these. The enclosure 42 is supported by the inclination adjusting device SC so that the inclination of the upper surface of the conveyor 41 can be adjusted integrally with the enclosure 42.
[0023]
The peripheral device will be described. In order to generate superheated steam SS, a water heater 10 that heats water W to generate hot water, a boiler 20 that generates saturated steam S from hot water, and heats the saturated steam S to generate superheated steam SS Alternatively, an induction heating type superheater 30 that sends the superheated water vapor to the above-mentioned superheated steam injection nozzles 43 is provided.
[0024]
Further, a filter 50 for filtering dust contained in the superheated steam SS that has passed through the sterilizer 40 and cooled, and a circulation pump P1 for returning the superheated steam SS that has passed through the filter 50 to the superheater 30 via the boiler 20 are provided. A drain tank 60 is provided for receiving and storing the drain D generated in the space where the granular food G comes into contact with the superheated steam SS.
[0025]
In addition, the cold air CW in contact with the granular food G is once received in the cold air storage tank 70, is pressurized by the blower P2, is cooled to a predetermined temperature (for example, about 7 ° C.) by the cooler 80, and then is cooled by the cold air jet nozzle 44. , 44. It should be noted that various modifications are conceivable for the equipment, piping, and lines that constitute this peripheral device, and are not necessarily limited to those described above.
[0026]
The operation will be described. The granular food G, which has been cooled in advance to room temperature or lower and is low in temperature, forms an extremely thin layer on the upper surface of the porous conveyor 41, and flows down at a high speed toward a low outlet like a liquid. Thereby, the superheated steam SS and the cold air CW come into contact with the particles, and heat the particle surfaces.
[0027]
One of the features is that the heating medium that contacts and heats the granular food G conveyed by the porous conveyor 41 is superheated steam SS injected by the superheated steam injection nozzles 43, 43, Compared to stationary steam, the heat transfer coefficient is higher than that of still steam, but it is instantaneous contact, and unlike saturated steam, the latent heat of condensation is not required for heating the granular food G, and sensible heat is effectively used. Because it is used (if the pressure is reduced, the degree of superheat increases and the degree of use becomes even higher), condensed water that easily adheres is not generated or is hardly generated.
[0028]
Second, the granular food G comes into contact with the flow of the superheated steam SS substantially perpendicular to the conveying direction of the granular food G in a state where the contact with the air is cut off by the enclosure 42. The third is that the contact time can be easily adjusted by adjusting the flow range of the superheated steam SS, and immediately after the contact, the cooling air is instantaneously cooled by the cool air CW injected from the cool air injection nozzles 44, 44. That is, it does not come into contact with air for a long time at a high temperature.
[0029]
From the above, the sterilization of pathogenic bacteria and the like adhering to the surface of the granular food G is performed evenly, but the oxidation of the surface of the granular food G sensitive to heat and the heating to the inside hardly progress at all, or the granular The quality of the food G is hardly or not impaired. In addition, since the granular food G comes into contact with the superheated steam and the cold air almost vertically in the vicinity of the upper surface of the porous conveyor 41 with almost no resistance as described above, the granular food which has been produced by the conventional pneumatic transport is used. Neither the acceleration and transport of G nor the solid-gas separation by cyclone or the like is required, and the required power is remarkably reduced.
[0030]
In addition, unlike the endless conveyor, for example, the extremely short solid-gas contact time (moving speed of the granular food G) between the granular food G and the superheated steam SS, which has been considered difficult in the past, is caused by the inclination of the upper surface of the conveyor 41 and the height of the dam. It is easily possible by adjusting the height (not shown), and furthermore, the configuration is extremely simplified, and a return play portion between the discharge and the supply of the granular food G is not required, and the conveyor 41 is stationary. Therefore, piping is easy and sealing is very easy. In addition, although power is required for lifting the granular food G, the contact time is extremely short and the thickness of the layer is extremely small, so that it becomes extremely small as compared with the air flow method.
[0031]
EXAMPLE Wheat is used as a sample of the granular food G, and various tests on quality are performed on those that have not been treated according to the present invention, and the bactericidal effect (general viable bacteria, heat-resistant bacteria and Test for the number of E. coli).
[0032]
(Note 1) General viable bacteria: The viable count is regarded as a hygienic indicator for evaluating the hygienic quality of food or a pollution indicator for environmental hygiene management. The viable cell count is the number of mesophilic bacteria grown on a standard agar medium under aerobic (with oxygen) conditions. If the number of bacteria is large, it may indicate that the food has been poorly handled in a hygienic manner, and since many pathogenic bacteria such as food poisoning bacteria are mesophilic bacteria, it indicates that the possibility of the presence of the pathogenic bacteria is high.
[0033]
Table 1 shows some of the test results. According to the report, the number of bacteria decreased drastically due to the contact with the superheated steam, and the heat-resistant bacteria and Escherichia coli, which were originally small, were completely or almost not recognized. In addition, although the water content increased slightly and the volume weight decreased, it is presumed that this was not due to the condensed water during heating, but due to the absorption of a small amount of condensed water generated during cooling. Further, the whiteness of the milled product is slightly improved, which is preferable. There is almost no difference in the bread making property and noodle making property from the untreated one, but the superiority of the treated one is as shown in the table.
[0034]
Explaining the second embodiment with reference to FIG. 3, the sterilizing apparatus 140 is configured such that the devices or members necessary for vibration or rocking such as the vibration or rocking mechanism B and the motor M are blown. The configuration is the same as that of the first embodiment, and the reference numerals of the corresponding devices and members are different from those of the first embodiment only in that one is added to hundreds digit.
[0035]
A portion different from the first embodiment will be described in detail. A vibration or swing mechanism including a link, a link of a lever and a pin so as to vibrate or swing integrally with the enclosure 142 in a direction oblique to horizontal. B, a drive motor M thereof, a spring which repels each time compression (or tension) is released, swings the conveyor 141 obliquely upward (or downward), and causes the granular food G to jump up (or drop down) each time. The SP includes a tilt adjusting device SC on the upper surface of the conveyor 141 for controlling the moving distance of the granular food G per cycle.
[0035]
The operation will be described. The granular food G, which has been cooled to a normal temperature or lower in advance and is low in temperature, jumps near the upper surface of the porous conveyor 141, and moves toward the outlet while being stirred by vigorously repeatedly falling. Therefore, the number of particles per unit space is relatively small, and the superheated steam SS and the cool air CW pass through the space with little resistance of the particles and exchange heat with the particle surface.
[0036]
The characteristic action of the sterilization / cooling is substantially the same as that of the first embodiment, but other than that, for example, unlike the endless conveyor, the control of the moving speed of the granular food G is performed by the vibration of the conveyor 141 or It is easily possible by adjusting the swing speed and the inclination of the upper surface, and the movement of each point of the conveyor 141 is limited to an extremely narrow range. The conveyor 141 vibrates or swings integrally with the enclosure 142, so that piping If a flexible material is partially used, the sealing becomes easy.
[0037]
【The invention's effect】
As described above, according to the first aspect of the present invention, in the sterilizing space ST, no condensation of water vapor occurs, and only the surface of the granular food G and the pathogenic bacteria attached thereto are heated and sterilized. Moreover, the granular food G in the sterilizing space ST does not come into contact with air for a long time at a high temperature, and the oxidation of the surface and the heating to the inside hardly proceed at all or at all. Therefore, the quality of the granular food G is hardly or not impaired.
[0038]
In addition, the acceleration and transportation of the granular food G and the solid-gas separation using a cyclone or the like, which are conventionally performed by airflow, are not required, and the required power is significantly reduced.
[0039]
According to the second aspect of the present invention, in addition to the effects of the first aspect of the invention, compared to an endless conveyor, simplification is achieved, equipment costs are reduced, and a short solid-gas contact time is achieved. That is, it is possible to easily control the speed at which the granular food G passes through the sterilization space ST, for example, by adjusting the inclination of the upper surface of the conveyor 41 or the height of the dam.
[0040]
According to the third aspect of the present invention, in addition to the effects of the first or second aspect, the granular food can be easily cooled by the same conveyer 41 and has been provided by the conventional airflow transport. Neither the acceleration and transport of G nor the solid-gas separation by cyclone or the like is required, so that the required power is remarkably reduced, the apparatus is significantly simplified, and the apparatus cost is significantly reduced.
[Brief description of the drawings]
FIG. 1 is an apparatus configuration diagram showing a sterilizing apparatus for granular food according to a first embodiment of the present invention.
FIG. 2 is a device configuration diagram showing a main part of FIG. 1;
FIG. 3 is an apparatus configuration diagram showing a main part of a granular food sterilizing apparatus according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Water heater 20 Boiler 30 Superheater 40 Sterilizer 41 Conveyor 42 Enclosure 43 Superheated steam injection nozzle 44 Cold air injection nozzle 45 Partition wall 50 Filter 60 Drain tank 70 Cold air storage tank 80 Cooler 140 Sterilizer 141 Conveyor 142 Enclosure 143 Superheated steam injection nozzle 144 Cold air jet nozzle 145 Partition wall B Swing mechanism CL Cooling space CW Cold air D Drain G Granular food M Driving motor P1 Pump P2 Blower S Saturated steam SC Incline adjusting device SP Spring SS Superheated steam ST Sterilization space W Water