JP2004096887A - Conductor structure of bulk power conversion device - Google Patents

Conductor structure of bulk power conversion device Download PDF

Info

Publication number
JP2004096887A
JP2004096887A JP2002254596A JP2002254596A JP2004096887A JP 2004096887 A JP2004096887 A JP 2004096887A JP 2002254596 A JP2002254596 A JP 2002254596A JP 2002254596 A JP2002254596 A JP 2002254596A JP 2004096887 A JP2004096887 A JP 2004096887A
Authority
JP
Japan
Prior art keywords
positive
negative
terminal
conductor
conductor plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002254596A
Other languages
Japanese (ja)
Inventor
Masahiro Aoyama
青山 昌弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002254596A priority Critical patent/JP2004096887A/en
Publication of JP2004096887A publication Critical patent/JP2004096887A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To avoid unbalance among currents passed through smoothing capacitors and switch units in a bulk power conversion device with a large number of parallel switch units, and simplify the wiring between the smoothing capacitors and the switch units for the reduction of wiring space. <P>SOLUTION: The distances are set larger between the switch units connected with positive-pole and negative-pole conductor plates 21 and 31 and positive-pole and negative-pole conductor terminals 22 and 32. The positive-pole and the negative-pole conductor plates or their positive-pole and the negative-pole conductor terminals are bent to reduce the air clearances between the switch units and the positive-pole and the negative-pole conductor terminals. Positive-pole and the negative-pole conductor plates 24 and 34 provided with slits are provided with notches 25 and 35 between the switch units and the positive-pole and the negative-pole conductor terminals 22 and 32. The dimensions of the notches are set such that their length is substantially half the left-right dimension of the positive-pole and the negative-pole conductor plates 24 and 34 provided with slits, and their width is such that the influences of interaction of currents can be reduced. The positive-pole and the negative-pole conductor plates provided with slits are bent to reduce the air clearances between the switch units and the positive-pole and the negative-pole conductor terminals. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、多数の半導体スイッチ素子を並列に接続して電力変換を行う際に、前記半導体スイッチ素子に流れる電流が不平衡になるのを回避する大容量電力変換装置の導体構造に関する。
【0002】
【従来の技術】
電力変換装置として、以下では直流電力を交流電力に変換するインバータ装置を例にして本発明の詳細を説明する。
インバータ装置は、例えば半導体スイッチ素子としてのIGBT(絶縁ゲートバイポーラトランジスタ)とダイオードとの逆並列接続回路の2組を直列にして直流回路の正負極間に挿入し、正極側のIGBTと負極側のIGBTを順次オン・オフ動作させることにより、直流電力を交流電力に変換するのであるが、最近ではこれら2個のIGBTと2個のダイオードとを一括してパッケージに封入してスイッチユニットとし、これを相数に対応した数だけ使用することにより、装置の構成を簡略化している。インバータの容量が増大すればIGBTやダイオードも大容量にするが、それでも賄いきれない場合は、複数のスイッチユニットを並列に接続して使用することになる。このとき平滑コンデンサも正負極間接続にするが、この平滑コンデンサも大容量にする必要であることから、スイッチユニットと同様に複数のコンデンサを並列に接続して使用する。
【0003】
大容量インバータでは通流電流も大になることから、導体の抵抗とインダクタンスを低減させるために、板状の正極側導体と負極側導体との間に板状の絶縁体を挟んだサンドイッチ構造にすることが多いが、このサンドイッチ構造の導体で多数のスイッチユニットを並列接続するのには工夫が必要である。
図7はサンドイッチ構造の導体で複数のスイッチユニットを並列接続する状況を表した構造図である。この図7において、スイッチユニット15Aの上面には正極端子P,負極端子N,交流端子Wが設けられているが、正極導体板16に設けた正極端子接続穴16Pとスイッチユニット15Aの正極端子Pをねじ止めすることで、両者は接続される。同様に負極導体板17に設けた負極端子接続穴17Nとスイッチユニット15Aの負極端子Nをねじ止めすることで、両者は接続される。このとき正極導体板16と負極導体板17との間に絶縁板18を介在させることで、サンドイッチ構造の導体が形成される。正極導体板16と負極導体板17と絶縁板18には、図示を省略している他のスイッチユニットを接続するために、同様の開口部が設けられているから、これで複数のスイッチユニットを並列接続することができる。
【0004】
図8は大容量インバータ用に複数のスイッチユニットの正極端子を並列接続する正極導体板の従来例を示した構造図であって、1相分として横方向に4個,3相分として上下方向に3段に並べた合計12個のスイッチユニット15Aで3相インバータが形成される。これらのスイッチユニット15Aを並列接続するために、正極導体板16には、各スイッチユニット15Aに対応する位置に開口部があり、この開口部に正極端子Pを接続するための正極端子接続穴16Pを設けている。正極導体板16の下端左側には正極導体端子16Tがあって、スイッチユニット15Aの下側に横一列に並んでいる複数の平滑コンデンサ(図示は省略)の正極側端子同士を並列に接続するための導体が、この正極導体端子16Tに接続される。
【0005】
図9は大容量インバータ用に複数のスイッチユニットの負極端子を並列接続する負極導体板の従来例を示した構造図であって、前述した正極導体板16と同様に、各スイッチユニット15Aに対応する位置に開口部があり、この開口部に負極端子Nを接続するための負極端子接続穴17Nを設けている。この負極導体板17の下端右側には負極導体端子17Tがあって、前述の複数平滑コンデンサの負極側端子同士を並列に接続するための導体が、この負極導体端子17Tに接続される。
【0006】
【発明が解決しようとする課題】
前述した図8に図示の正極導体板の従来例において、例えば最下段左端のスイッチユニットから正極導体端子16Tまでの距離と、同じ最下段でも右端のスイッチユニットから正極導体端子16Tまでの距離の差は大きい。この距離の差は導体の抵抗とインダクタンスに差を生じさせるから、この差が原因で各スイッチユニットを流れる電流に不平衡を生じる。正極導体端子16Aを正極導体板16の中央部から引き出し、負極導体端子17Tを負極導体板17の中央部から引き出せば、各スイッチユニットから正負両極導体端子までの抵抗とインダクタンスの不平衡が減少し、電流の不平衡を軽減できるのであるが、インバータ装置ではスイッチユニットと複数の平滑コンデンサとの接続は必須であるために、正極導体端子16Tを左端に設置して、ここから平滑コンデンサの正極側端子へ接続し、平滑コンデンサの負極側端子へは右端に設置した負極導体端子17Tから接続することで、並列接続している各平滑コンデンサの電流に不平衡が生じるのを抑制している。
【0007】
すなわち、正負両極導体板の中央から導体端子を引き出して各スイッチユニットの電流不平衡を抑制しようとすると、各平滑コンデンサに電流不平衡を生じてしまう不都合が現れる。そこで正負両極導体端子を中央から引き出して、尚且つ各平滑コンデンサの電流をバランスさせようとすると、正負両極導体と平滑コンデンサの間の導体配置が複雑になって組み立て作業に手間がかかることになるし、正負両極導体と平滑コンデンサの間に広いスペースが必要になることから、装置全体が大形化してしまう不都合もある。
【0008】
また、「特開2000−350475 」号公報に記載の発明では、配置されている複数のスイッチユニットの上下方向の中央部から右方向へ正極側端子を引出し、負極側端子は左方向へ引き出しているから、前述したように平滑コンデンサと接続してインバータなどの電力変換装置を構成する場合に、不平衡電流を生じない導体接続には広いスペースと手間がかかってしまう欠点があるし、スイッチユニットを偶数で使用しなければならないために、余分なスイッチユニットを使用することもあり、装置寸法の大形化やコストの上昇をもたらす不具合が生じる。
【0009】
そこでこの発明の目的は、スイッチユニットの並列数が多い大容量電力変換装置における各平滑コンデンサと各スイッチユニットを流れる電流の不平衡を回避すると共に、平滑コンデンサとスイッチユニットの間の配線を簡素にして配線スペースを縮小できるようにすることにある。
【0010】
【課題を解決するための手段】
前記の目的を達成するために、この発明の大容量電力変換装置の導体構造は、半導体スイッチ素子とダイオードとの逆並列回路の2組を直列接続して形成されるスイッチユニットの1相分を左右方向に一列に並べ、必要相数分を上下方向にすべて同一平面上に並べ、平滑コンデンサの複数を左右方向に並べ、上下左右に並べた前記スイッチユニットの表面を正極導体板で覆う際に、各スイッチユニットの負極端子と交流端子に対応する位置は開口部にすると共に各正極端子を当該正極導体板に接続し、この正極導体板と絶縁シートを介して重ねる負極導体板は、各スイッチユニットの正極端子と交流端子に対応する位置を開口部にすると共に各負極端子を当該負極導体板と接続し、前記正極導体板の左右いずれかの端部に前記平滑コンデンサを接続する正極導体端子を備え、前記負極導体板の前記と反対側の端部に前記平滑コンデンサを接続する負極導体端子を備えている大容量電力変換装置の導体構造において、
前記正極導体板に接続するスイッチユニットから正極導体端子までの距離と、負極導体板に接続するスイッチユニットから負極導体端子までの距離を大きくする。
【0011】
前記正負両極導体板またはその正負両極導体端子を折り曲げて、前記スイッチユニットから正負両極導体端子までの空間距離を短縮させる。
前記正極導体板は、前記スイッチユニットと正極導体端子との間に当該正極導体板の左右寸法のほぼ半分の長さの切り欠き部を設けたスリット付き正極導体板とし、前記負極導体板は、前記スイッチユニットと負極導体端子との間に当該負極導体板の左右寸法のほぼ半分の長さの切り欠き部を設けたスリット付き負極導体板とする。
【0012】
前記スリット付き正負両極導体板またはその正負両極導体端子を折り曲げて、前記スイッチユニットから正負両極導体端子までの空間距離を短縮させる。
前記スリット付き正負両極導体板に設ける前記切り欠き部の幅寸法は、当該切り欠き部の一方の縁と他方の縁を対向して流れる電流の相互作用の影響を小さくできる寸法にする。
【0013】
【発明の実施の形態】
図1は本発明の第1実施例を表した正極導体板の構造図であるが、この正極導体板21の構造は、スイッチユニットから正極導体端子22までの距離Lが、図8で既述の従来例よりも大きくなっている点が異なるが、これ以外はすべて同じである。寸法Lを大きくすることで、同一相で正極導体端子22に近い位置のスイッチユニットと遠い位置のスイッチユニットの配線抵抗とインダクタンスの差を、従来よりも縮小することができる。
【0014】
図2も本発明の第1実施例を表した負極導体板の構造図であるが、この負極導体板31の構造は、スイッチユニットから負極導体端子32までの距離Lを、図1に図示の第1実施例と同様に大きくしているから、同一相で負極導体端子32に近い位置のスイッチユニットと遠い位置のスイッチユニットでも配線抵抗とインダクタンスの差は、従来よりも縮小されている。
【0015】
図3は本発明の第2実施例を表した負極導体板の構造図であって、スイッチユニットから負極導体端子32までの間で負極導体板33に折り曲げ加工を施している。この折り曲げ加工により、平滑コンデンサとスイッチユニットとを近接して取り付けることができるから、図2で既述の第1実施例と同様に、スイッチユニットから負極導体端子32までの長さ寸法Lを確保しながらでも、装置全体を小形化することができる。なお図示は省略しているが、正極導体板も同様の折り曲げ加工を施す。
【0016】
図4は本発明の第3実施例を表した正極導体板の構造図であって、切り欠き部25を備えたスリット付き正極導体板24と正極導体端子22で構成している。この切り欠き部25により、左端のスイッチユニットから正極導体端子22までの電流経路の長さと、これと同一相の右端のスイッチユニットから正極導体端子22までの電流経路の長さをほぼ同じにするために、この切り欠き部25の概略寸歩は、当該スリット付き正極導体板24の幅寸法の約半分まで切り込む。
【0017】
左端のスイッチユニットからは、矢印Aで示した経路と矢印Bで示した経路を経て正極導体端子22へ電流が流れるが、切り欠き部25の幅寸法Bが小さいと経路Aの電流と経路Bの電流が接近して流れ、配線インダクタンスを減少させるから、切り欠き部25を設けても、電流の不平衡を是正する効果が低下する。配線インダクタンスは幅寸法Bの2乗で変化するから、配線インダクタンスの減少を無視できる程度に幅寸法Bの値を定める。
【0018】
図5は本発明の第3実施例を表した負極導体板の構造図であって、切り欠き部35を備えたスリット付き正極導体板34と負極導体端子32で構成しているが、その作用は図4で既述のスリット付き正極導体板24の場合と同じであるから、その説明は省略する。
図6は本発明の第4実施例を表したスリット付き負極導体板の構造図であって、スイッチユニットから負極導体端子32までの間でスリット付き負極導体板36に折り曲げ加工を施している。この折り曲げ加工により、平滑コンデンサとスイッチユニットとを近接して取り付けることができるから、図5で既述の第3実施例と同様に、スイッチユニットから負極導体端子32までの長さ寸法を確保しながらでも、装置全体を小形化することができる。なお図示は省略しているが、正極導体板も同様の折り曲げ加工を施す。
【0019】
【発明の効果】
多数のスイッチユニットを並列に接続しなければならない従来の大容量の電力変換装置では、各スイッチユニットと他の機器(例えば平滑コンデンサ)とを接続する導体の抵抗やインダクタンスの値に差異があると通流電流に不平衡を生じるから、これら抵抗やインダクタンスに差が生じることがないように、導体の敷設には十分な注意が必要であるが、スイッチユニットの電流が平衡すると平滑コンデンサの電流が不平衡になるなど、並列数が多数の場合に不平衡を生じない導体の敷設は困難であった。本発明では、平滑コンデンサとの接続を容易にするために、スイッチユニットを並列接続する正負両極導体板から正負両極導体端子までの距離を延ばしたり、両者の中間に切り欠き部を設けたり、折り曲げ加工を施すなどにより、平滑コンデンサなど他の機器との接続を容易にすると共に余分な配線スペースを必要とせずに、各スイチユニットを通流する電流の不平衡を抑制できる効果が得られる。
【図面の簡単な説明】
【図1】本発明の第1実施例を表した正極導体板の構造図
【図2】本発明の第1実施例を表した負極導体板の構造図
【図3】本発明の第2実施例を表した負極導体板の構造図
【図4】本発明の第3実施例を表した正極導体板の構造図
【図5】本発明の第3実施例を表した負極導体板の構造図
【図6】本発明の第4実施例を表したスリット付き負極導体板の構造図
【図7】サンドイッチ構造の導体で複数のスイッチユニットを並列接続する状況を表した構造図
【図8】大容量インバータ用に複数のスイッチユニットの正極端子を並列接続する正極導体板の従来例を示した構造図
【図9】大容量インバータ用に複数のスイッチユニットの負極端子を並列接続する負極導体板の従来例を示した構造図
【符号の説明】
15A     スイッチユニット
16      正極導体板
16P     正極端子接続穴
16T     正極導体端子
17      負極導体板
17N     負極端子接続穴
17T     負極導体端子
18      絶縁板
21      正極導体板
22      正極導体端子
24      スリット付き正極導体板
25,35   切り欠き部
31,33   負極導体板
32      負極導体端子
34,36   スリット付き負極導体板
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductor structure of a large-capacity power converter that avoids unbalanced current flowing in a semiconductor switching element when performing power conversion by connecting a large number of semiconductor switching elements in parallel.
[0002]
[Prior art]
Hereinafter, the present invention will be described in detail by taking an inverter device that converts DC power into AC power as an example of a power converter.
The inverter device includes, for example, two sets of an IGBT (insulated gate bipolar transistor) as a semiconductor switch element and an anti-parallel connection circuit of a diode connected in series and inserted between the positive and negative electrodes of a DC circuit. DC power is converted to AC power by sequentially turning on and off the IGBTs. Recently, these two IGBTs and two diodes have been packaged together in a package to form a switch unit. Are used in a number corresponding to the number of phases, thereby simplifying the configuration of the device. If the capacity of the inverter increases, the capacity of the IGBT and the diode also increases, but if the capacity still cannot be satisfied, a plurality of switch units are connected in parallel and used. At this time, the smoothing capacitor is also connected between the positive and negative electrodes. However, since the smoothing capacitor also needs to have a large capacity, a plurality of capacitors are connected in parallel and used like the switch unit.
[0003]
Since the current flowing through a large-capacity inverter is large, a sandwich structure is used in which a plate-shaped insulator is sandwiched between a plate-shaped positive conductor and a negative conductor to reduce the resistance and inductance of the conductor. However, it is necessary to devise to connect a large number of switch units in parallel with this sandwich-structured conductor.
FIG. 7 is a structural diagram showing a situation where a plurality of switch units are connected in parallel by a conductor having a sandwich structure. In FIG. 7, a positive terminal P, a negative terminal N, and an AC terminal W are provided on the upper surface of the switch unit 15A. A positive terminal connection hole 16P provided in the positive conductor plate 16 and a positive terminal P of the switch unit 15A are provided. Are connected by screwing. Similarly, by screwing the negative terminal connection hole 17N provided in the negative conductor plate 17 and the negative terminal N of the switch unit 15A, the two are connected. At this time, a conductor having a sandwich structure is formed by interposing the insulating plate 18 between the positive conductor plate 16 and the negative conductor plate 17. The positive electrode conductor plate 16, the negative electrode conductor plate 17, and the insulating plate 18 are provided with similar openings for connecting other switch units (not shown). Can be connected in parallel.
[0004]
FIG. 8 is a structural view showing a conventional example of a positive electrode conductor plate in which the positive terminals of a plurality of switch units are connected in parallel for a large-capacity inverter. A three-phase inverter is formed by a total of 12 switch units 15A arranged in three stages. In order to connect these switch units 15A in parallel, the positive electrode conductor plate 16 has an opening at a position corresponding to each switch unit 15A, and a positive terminal connection hole 16P for connecting the positive terminal P to this opening. Is provided. There is a positive conductor terminal 16T on the lower left side of the positive conductor plate 16 for connecting the positive terminals of a plurality of smoothing capacitors (not shown) arranged in a row below the switch unit 15A in parallel. Are connected to the positive conductor terminal 16T.
[0005]
FIG. 9 is a structural view showing a conventional example of a negative electrode conductor plate in which the negative terminals of a plurality of switch units are connected in parallel for a large-capacity inverter, and corresponds to each switch unit 15A similarly to the positive electrode conductor plate 16 described above. There is an opening at a position where the negative electrode terminal N is connected, and a negative electrode terminal connection hole 17N for connecting the negative electrode terminal N is provided in this opening. A negative conductor terminal 17T is provided on the lower right side of the lower end of the negative conductor plate 17, and a conductor for connecting the negative terminals of the plurality of smoothing capacitors in parallel to each other is connected to the negative conductor terminal 17T.
[0006]
[Problems to be solved by the invention]
In the conventional example of the positive electrode conductor plate shown in FIG. 8 described above, for example, the difference between the distance from the lowermost leftmost switch unit to the positive electrode conductor terminal 16T and the distance from the rightmost switch unit to the positive electrode conductor terminal 16T even at the same lowermost stage. Is big. This difference in distance causes a difference between the resistance and the inductance of the conductor, and this difference causes an imbalance in the current flowing through each switch unit. If the positive conductor terminal 16A is pulled out from the center portion of the positive conductor plate 16 and the negative conductor terminal 17T is pulled out from the center portion of the negative conductor plate 17, the unbalance of resistance and inductance from each switch unit to the positive and negative bipolar conductor terminals is reduced. However, it is possible to reduce the current imbalance, but since the connection between the switch unit and the plurality of smoothing capacitors is indispensable in the inverter device, the positive conductor terminal 16T is provided at the left end, and the positive side of the smoothing capacitor is By connecting to the terminal and connecting to the negative electrode side terminal of the smoothing capacitor from the negative electrode conductor terminal 17T provided at the right end, it is possible to suppress the occurrence of unbalance in the current of each of the smoothing capacitors connected in parallel.
[0007]
In other words, when the conductor terminals are drawn out from the center of the positive and negative bipolar conductor plates to suppress the current imbalance of each switch unit, there arises a disadvantage that the current imbalance occurs in each smoothing capacitor. Therefore, if the positive and negative bipolar conductor terminals are pulled out from the center and the current of each smoothing capacitor is to be balanced, the conductor arrangement between the positive and negative bipolar conductors and the smoothing capacitor becomes complicated, and the assembling work is troublesome. However, since a large space is required between the positive and negative bipolar conductors and the smoothing capacitor, there is also a disadvantage that the entire device is enlarged.
[0008]
In the invention described in Japanese Patent Application Laid-Open No. 2000-350475, a positive terminal is pulled out rightward from a vertical center of a plurality of arranged switch units, and a negative terminal is drawn left. Therefore, when a power conversion device such as an inverter is configured by connecting to a smoothing capacitor as described above, there is a disadvantage that a conductor connection that does not generate an unbalanced current requires a large space and labor, and a switch unit. Since an even number of switches must be used, an extra switch unit may be used, resulting in a problem that the size of the device is increased and the cost is increased.
[0009]
Therefore, an object of the present invention is to avoid imbalance between currents flowing through each smoothing capacitor and each switch unit in a large-capacity power converter having a large number of parallel switch units, and to simplify wiring between the smoothing capacitor and the switch unit. To reduce wiring space.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a conductor structure of a large-capacity power conversion device according to the present invention is configured such that one phase of a switch unit formed by connecting two sets of an anti-parallel circuit of a semiconductor switch element and a diode in series is connected. When arranged in a line in the left and right direction, the required number of phases are all arranged on the same plane in the up and down direction, a plurality of smoothing capacitors are arranged in the left and right direction, and when covering the surfaces of the switch units arranged vertically and horizontally with a positive electrode conductor plate, The position corresponding to the negative electrode terminal and the AC terminal of each switch unit is an opening, and each positive electrode terminal is connected to the corresponding positive electrode conductor plate. An opening is formed at a position corresponding to the positive terminal and the AC terminal of the unit, and each negative terminal is connected to the negative conductive plate, and the smoothing capacitor is connected to one of right and left ends of the positive conductive plate. Comprising a cathode conductor terminal to be connected, in conductor structure of the negative electrode conductor plate the opposite large capacity power conversion apparatus comprising an anode conductor terminal for connecting the smoothing capacitor on the end of,
The distance from the switch unit connected to the positive conductor plate to the positive conductor terminal and the distance from the switch unit connected to the negative conductor plate to the negative conductor terminal are increased.
[0011]
The positive / negative bipolar conductor plate or its positive / negative bipolar conductor terminal is bent to reduce the spatial distance from the switch unit to the positive / negative bipolar conductor terminal.
The positive electrode conductor plate is a slit-containing positive electrode conductor plate provided with a cutout portion having a length of substantially half the left-right dimension of the positive electrode conductor plate between the switch unit and the positive electrode conductor terminal, the negative electrode conductor plate, A negative electrode conductor plate with a slit is provided between the switch unit and the negative electrode conductor terminal, with a cutout having a length substantially half of the left-right dimension of the negative electrode conductor plate.
[0012]
The positive and negative bipolar conductor plates with slits or the positive and negative bipolar conductor terminals are bent to reduce the spatial distance from the switch unit to the positive and negative bipolar conductor terminals.
The width of the notch provided in the positive and negative bipolar conductor plate with a slit is set to a size that can reduce the influence of the interaction of the current flowing through one edge and the other edge of the notch.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a structural diagram of a positive electrode conductor plate showing a first embodiment of the present invention. The structure of the positive electrode conductor plate 21 is such that the distance L from the switch unit to the positive electrode conductor terminal 22 is the same as that described in FIG. Is different from that of the conventional example described above, but all other configurations are the same. By increasing the dimension L, it is possible to reduce the difference between the wiring resistance and the inductance of the switch unit at a position close to the positive electrode conductor terminal 22 and the switch unit at a position far from the positive electrode conductor terminal 22 in the same phase as compared with the related art.
[0014]
FIG. 2 is a structural view of the negative electrode conductor plate showing the first embodiment of the present invention. The structure of the negative electrode conductor plate 31 is such that the distance L from the switch unit to the negative electrode conductor terminal 32 is shown in FIG. As in the first embodiment, the difference between the wiring resistance and the inductance between the switch unit in the same phase and the switch unit at a position far from the negative electrode terminal 32 is smaller than that of the conventional switch unit.
[0015]
FIG. 3 is a structural view of a negative electrode conductor plate according to a second embodiment of the present invention, in which a negative electrode conductor plate 33 is bent between a switch unit and a negative electrode conductor terminal 32. By this bending process, the smoothing capacitor and the switch unit can be mounted close to each other, so that the length L from the switch unit to the negative electrode conductor terminal 32 is secured as in the first embodiment described above with reference to FIG. However, the entire device can be downsized. Although not shown, the positive electrode conductor plate is also subjected to the same bending.
[0016]
FIG. 4 is a structural view of a positive electrode conductor plate according to a third embodiment of the present invention, which comprises a positive electrode conductor plate 24 having a slit 25 having a notch 25 and a positive electrode terminal 22. Due to the cutout portion 25, the length of the current path from the leftmost switch unit to the positive electrode conductor terminal 22 and the length of the current path from the rightmost switch unit of the same phase to the positive electrode conductor terminal 22 are made substantially the same. For this purpose, the cutout 25 is cut roughly to half the width of the slitted positive electrode conductor plate 24.
[0017]
From the left end switch unit, a current flows to the positive electrode conductor terminal 22 through a path indicated by an arrow A and a path indicated by an arrow B. However, if the width dimension B of the notch 25 is small, the current of the path A and the path B Current flows close to each other to reduce the wiring inductance, so that even if the notch 25 is provided, the effect of correcting the current imbalance is reduced. Since the wiring inductance changes with the square of the width B, the value of the width B is determined so that the decrease in the wiring inductance can be ignored.
[0018]
FIG. 5 is a structural view of a negative electrode conductor plate according to a third embodiment of the present invention, which is composed of a positive electrode conductor plate 34 with a slit provided with a notch 35 and a negative electrode conductor terminal 32. Is the same as the case of the positive electrode conductor plate with slits 24 described above with reference to FIG. 4, and the description thereof will be omitted.
FIG. 6 is a structural view of a negative electrode conductor plate with a slit, showing a fourth embodiment of the present invention. The negative electrode conductor plate with a slit 36 is bent between the switch unit and the negative electrode terminal 32. By this bending, the smoothing capacitor and the switch unit can be mounted close to each other, so that the length from the switch unit to the negative electrode conductor terminal 32 is secured as in the third embodiment already described with reference to FIG. However, the entire device can be downsized. Although not shown, the positive electrode conductor plate is also subjected to the same bending.
[0019]
【The invention's effect】
In a conventional large-capacity power converter in which a large number of switch units must be connected in parallel, if there is a difference in resistance or inductance of a conductor connecting each switch unit to another device (for example, a smoothing capacitor). Care must be taken in laying conductors so that there will be no difference in resistance or inductance because the current flowing will be unbalanced.However, when the current of the switch unit is balanced, the current of the smoothing capacitor will be It has been difficult to lay conductors that do not cause imbalance when the number of parallel circuits is large, such as unbalance. In the present invention, in order to facilitate connection with the smoothing capacitor, the distance from the positive and negative bipolar conductor plates to which the switch units are connected in parallel to the positive and negative bipolar conductor terminals is extended, a notch is provided in the middle between the two, and bending is performed. By performing processing, it is possible to obtain an effect of facilitating connection with other devices such as a smoothing capacitor and suppressing an unbalance of current flowing through each switch unit without requiring an extra wiring space.
[Brief description of the drawings]
FIG. 1 is a structural diagram of a positive electrode conductor plate showing a first embodiment of the present invention; FIG. 2 is a structural diagram of a negative electrode conductor plate showing a first embodiment of the present invention; FIG. 3 is a second embodiment of the present invention; FIG. 4 is a structural diagram of a negative electrode conductor plate according to a third embodiment of the present invention. FIG. 5 is a structural diagram of a negative electrode conductor plate according to a third embodiment of the present invention. FIG. 6 is a structural diagram of a negative electrode conductor plate with slits showing a fourth embodiment of the present invention. FIG. 7 is a structural diagram showing a situation in which a plurality of switch units are connected in parallel by a sandwich-structured conductor. FIG. 9 is a structural view showing a conventional example of a positive conductor plate in which the positive terminals of a plurality of switch units are connected in parallel for a capacity inverter. FIG. 9 is a diagram of a negative conductor plate in which the negative terminals of a plurality of switch units are connected in parallel for a large capacity inverter. Structural diagram showing a conventional example [Description of reference numerals]
15A Switch unit 16 Positive conductor plate 16P Positive terminal connection hole 16T Positive conductor terminal 17 Negative conductor plate 17N Negative terminal connection hole 17T Negative conductor terminal 18 Insulating plate 21 Positive conductor plate 22 Positive conductor terminal 24 Slit positive conductor plate 25, 35 cut Notches 31, 33 Negative conductor plate 32 Negative conductor terminals 34, 36 Negative conductor plate with slit

Claims (5)

半導体スイッチ素子とダイオードとの逆並列回路の2組を直列接続して形成されるスイッチユニットの複数を左右方向に一列に並べて1相分を形成させると共にこれの必要相数分を上下方向にすべて同一平面上に並べ、
平滑コンデンサの複数を左右方向に並べ、
上下左右に並べた前記スイッチユニットの表面を正極導体板で覆う際に、各スイッチユニットの負極端子と交流端子に対応する位置は開口部にすると共に各正極端子を当該正極導体板に接続し、
この正極導体板と絶縁シートを介して重ねる負極導体板は、各スイッチユニットの正極端子と交流端子に対応する位置を開口部にすると共に各負極端子を当該負極導体板と接続し、
前記正極導体板の左右いずれかの端部に前記平滑コンデンサを接続する正極導体端子を備え、
前記負極導体板の前記と反対側の端部に前記平滑コンデンサを接続する負極導体端子を備えている大容量電力変換装置の導体構造において、
前記正極導体板に接続するスイッチユニットから正極導体端子までの距離と、負極導体板に接続するスイッチユニットから負極導体端子までの距離を大きくすることを特徴とする大容量電力変換装置の導体構造。
A plurality of switch units formed by connecting two sets of an anti-parallel circuit of a semiconductor switch element and a diode in series are arranged in a line in the left-right direction to form one phase, and the required number of phases are all set in the vertical direction. Arrange on the same plane,
Arrange multiple smoothing capacitors in the horizontal direction,
When covering the surfaces of the switch units arranged vertically and horizontally with a positive electrode conductor plate, the positions corresponding to the negative electrode terminal and the AC terminal of each switch unit are opened and connected to each positive electrode terminal with the corresponding positive electrode conductor plate,
The positive electrode conductor plate and the negative electrode conductor plate that are overlapped with an insulating sheet interposed therebetween have openings corresponding to the positive terminal and the AC terminal of each switch unit and connect each negative electrode terminal to the negative electrode conductor plate,
A positive conductor terminal for connecting the smoothing capacitor to one of right and left ends of the positive conductor plate,
In the conductor structure of the large-capacity power converter, comprising a negative conductor terminal for connecting the smoothing capacitor to an end of the negative conductor plate opposite to the end,
A conductor structure for a large-capacity power converter, wherein a distance from a switch unit connected to the positive conductor plate to a positive conductor terminal and a distance from a switch unit connected to the negative conductor plate to a negative conductor terminal are increased.
請求項1に記載の大容量電力変換装置の導体構造において、
前記正負両極導体板またはその正負両極導体端子を折り曲げて、前記スイッチユニットから正負両極導体端子までの空間距離を短縮させることを特徴とする大容量電力変換装置の導体構造。
The conductor structure of the large-capacity power converter according to claim 1,
A conductor structure for a large-capacity power converter, wherein the positive / negative bipolar conductor plate or its positive / negative bipolar conductor terminal is bent to reduce a spatial distance from the switch unit to the positive / negative bipolar conductor terminal.
半導体スイッチ素子とダイオードとの逆並列回路の2組を直列接続して形成されるスイッチユニットの複数を左右方向に一列に並べて1相分を形成させると共にこれの必要相数分を上下方向にすべて同一平面上に並べ、
平滑コンデンサの複数を左右方向に並べ、
上下左右に並べた前記スイッチユニットの表面を正極導体板で覆う際に、各スイッチユニットの負極端子と交流端子に対応する位置は開口部にすると共に各正極端子を当該正極導体板に接続し、
この正極導体板と絶縁シートを介して重ねる負極導体板は、各スイッチユニットの正極端子と交流端子に対応する位置を開口部にすると共に各負極端子を当該負極導体板と接続し、
前記正極導体板の左右いずれかの端部に前記平滑コンデンサを接続する正極導体端子を備え、
前記負極導体板の前記と反対側の端部に前記平滑コンデンサを接続する負極導体端子を備えている大容量電力変換装置の導体構造において、
前記正極導体板は、前記スイッチユニットと正極導体端子との間に当該正極導体板の左右寸法のほぼ半分の長さの切り欠き部を設けたスリット付き正極導体板とし、
前記負極導体板は、前記スイッチユニットと負極導体端子との間に当該負極導体板の左右寸法のほぼ半分の長さの切り欠き部を設けたスリット付き負極導体板とすることを特徴とする大容量電力変換装置の導体構造。
A plurality of switch units formed by connecting two sets of an anti-parallel circuit of a semiconductor switch element and a diode in series are arranged in a line in the left-right direction to form one phase, and the required number of phases are all set in the vertical direction. Arrange on the same plane,
Arrange multiple smoothing capacitors in the horizontal direction,
When covering the surfaces of the switch units arranged vertically and horizontally with a positive electrode conductor plate, the positions corresponding to the negative electrode terminal and the AC terminal of each switch unit are opened and connected to each positive electrode terminal with the corresponding positive electrode conductor plate,
The positive electrode conductor plate and the negative electrode conductor plate that are overlapped with an insulating sheet interposed therebetween have openings corresponding to the positive terminal and the AC terminal of each switch unit and connect each negative electrode terminal to the negative electrode conductor plate,
A positive conductor terminal for connecting the smoothing capacitor to one of right and left ends of the positive conductor plate,
In the conductor structure of a large-capacity power conversion device including a negative conductor terminal for connecting the smoothing capacitor to an end of the negative conductor plate opposite to the end,
The positive electrode conductor plate is a slit-containing positive electrode conductor plate provided with a cutout portion having a length of substantially half the left-right dimension of the positive electrode conductor plate between the switch unit and the positive electrode terminal,
The negative electrode conductor plate may be a slit-type negative electrode conductor plate provided with a cutout portion having a length substantially half the left-right dimension of the negative electrode conductor plate between the switch unit and the negative electrode terminal. Conductor structure of capacitive power converter.
請求項3に記載の大容量電力変換装置の導体構造において、
前記スリット付き正負両極導体板またはその正負両極導体端子を折り曲げて、前記スイッチユニットから正負両極導体端子までの空間距離を短縮させることを特徴とする大容量電力変換装置の導体構造。
The conductor structure of the large-capacity power converter according to claim 3,
A conductor structure for a large-capacity power converter, wherein the positive / negative bipolar conductor plate with a slit or its positive / negative bipolar conductor terminal is bent to reduce a spatial distance from the switch unit to the positive / negative bipolar conductor terminal.
請求項3または請求項4に記載の大容量電力変換装置の導体構造において、
前記スリット付き正負両極導体板に設ける前記切り欠き部の幅寸法は、当該切り欠き部の一方の縁と他方の縁を対向して流れる電流の相互作用の影響を小さくできる寸法にすることを特徴とする大容量電力変換装置の導体構造。
The conductor structure of the large-capacity power converter according to claim 3 or 4,
The width dimension of the notch provided in the positive / negative bipolar conductor plate with a slit is set to a dimension that can reduce the influence of the interaction of the current flowing through one edge and the other edge of the notch. Conductor structure of the large-capacity power converter.
JP2002254596A 2002-08-30 2002-08-30 Conductor structure of bulk power conversion device Withdrawn JP2004096887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002254596A JP2004096887A (en) 2002-08-30 2002-08-30 Conductor structure of bulk power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002254596A JP2004096887A (en) 2002-08-30 2002-08-30 Conductor structure of bulk power conversion device

Publications (1)

Publication Number Publication Date
JP2004096887A true JP2004096887A (en) 2004-03-25

Family

ID=32060333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002254596A Withdrawn JP2004096887A (en) 2002-08-30 2002-08-30 Conductor structure of bulk power conversion device

Country Status (1)

Country Link
JP (1) JP2004096887A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019043849A1 (en) * 2017-08-30 2019-03-07 三菱電機株式会社 Main circuit wiring member and power conversion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019043849A1 (en) * 2017-08-30 2019-03-07 三菱電機株式会社 Main circuit wiring member and power conversion device
JPWO2019043849A1 (en) * 2017-08-30 2020-01-23 三菱電機株式会社 Main circuit wiring member and power converter

Similar Documents

Publication Publication Date Title
US10153708B2 (en) Three-level power converter
US8902612B2 (en) Power conversion apparatus
US9735137B2 (en) Switch circuit package module
JP5132175B2 (en) Power converter
WO2007113979A1 (en) Power converter and its assembling method
JPH06261556A (en) Semiconductor switch apparatus
CN105593989B (en) Semiconductor stack for a converter with buffer-capacitors
JPH11332253A (en) Power converter
JP6425357B2 (en) Four-terminal snubber capacitor and capacitor module
WO2013179463A1 (en) Power conversion apparatus
JPH08140363A (en) Power converter
JP7074175B2 (en) Power converter
CN215817941U (en) Three-level power unit module and frequency converter
US9954459B2 (en) Inverter device
JP2008306867A (en) Power conversion equipment and method of connecting electrical part
JP2004096887A (en) Conductor structure of bulk power conversion device
JP6604097B2 (en) Switching circuit and power converter
JP2019134543A (en) Power supply device
JP2002320391A (en) Conductor structure of large capacity power converter
JP2002044960A (en) Power converter
JP2005065414A (en) Inverter device
CN109121456B (en) Multi-stage power conversion device
JP4828170B2 (en) Power converter
JP7364103B2 (en) power converter
JP7395935B2 (en) power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080903