JP2004096210A - Surface-mounted antenna - Google Patents

Surface-mounted antenna Download PDF

Info

Publication number
JP2004096210A
JP2004096210A JP2002251540A JP2002251540A JP2004096210A JP 2004096210 A JP2004096210 A JP 2004096210A JP 2002251540 A JP2002251540 A JP 2002251540A JP 2002251540 A JP2002251540 A JP 2002251540A JP 2004096210 A JP2004096210 A JP 2004096210A
Authority
JP
Japan
Prior art keywords
electrode
base
radiation
radiation electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002251540A
Other languages
Japanese (ja)
Inventor
Hiroshi Aoyama
青山 博志
Yasunori Takagi
高木 保規
Hidetoshi Hagiwara
萩原 英俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002251540A priority Critical patent/JP2004096210A/en
Publication of JP2004096210A publication Critical patent/JP2004096210A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-mounted antenna which is small and lightweight, suppresses the variations in center frequency even if print slippage of an electrode pattern occurs, and reduces time and effort for frequency adjustment. <P>SOLUTION: The surface-mounted antenna 9 has a substrate 1 consisting of a dielectric or a magnetic material, a radiation electrode 2 formed on at least one surface of the substrate 1, a grounding electrode 3 directly connected to one end of the electrode 2 and formed on the substrate 1, and a feeder electrode 4 opposing the electrode 2 with an interval. In this antenna, at least one sides 22a-22h of the electrode 2 and ridge lines 10a-10h of the substrate 1 forms gaps (d), and a ratio d/W of each gap (d) to the width W of the substrate is 0.05-0.2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、GPS(Global Positioning System)、ブルートゥース(Bluetooth)機能を内蔵した携帯電話などに用いられる表面実装型アンテナに関する。
【0002】
【従来の技術】
図8に、従来の表面実装型アンテナを示す(例えば、特許文献1参照。)。基体1の下面には、給電電極4に対向する一辺の一部が切り欠かれた形状の接地電極3が、基体1の稜線10e〜10hにまで延在して形成されている。基体1の上面には、コの字状の放射電極2が、基体1の稜線10a〜10dにまで延在して形成されている。基体1の側面には、放射電極2と接地電極3を短絡する短絡導体71、72が形成されている。基体1の下面から側面を経由し上面まで延在する給電電極4が形成され、1/4波長短絡型マイクロストリップ表面実装型アンテナとして働く。
【0003】
図9に、別の従来例を示す(例えば、特許文献2参照。)。基体1の下面に接地電極3が全面に、基体1の上面には基体1の稜線10a〜10dにまで全面に延在して放射電極2が形成されている。基体1の側面には給電電極4が形成され、給電端子電極4より入力した送信信号により放射電極2が励振され、電波が放射されることにより送信アンテナとして動作する。また、受信電波により放射電極2が励振され、給電電極4より受信信号が出力されて受信アンテナとして動作する。この際、給電電極4は、中心周波数において1/2波長の長さを持つ。
【0004】
表面実装型アンテナ9の従来からの製造方法を説明する(例えば、特許文献3,4参照。)。複数個の表面実装型アンテナを一度に印刷して、あたかもチョコレートブロックから個々のチップを分離するように、大型基板から切断して得ることが多い。生産性が格段に向上するからである。例えば16個の表面実装型アンテナを一度に大型基板にパターン印刷して加工し、最後に個々の表面実装型アンテナに切断する。
【0005】
【特許文献1】
特許第362002号公報
【特許文献2】
特許第362002号公報
【特許文献3】
特開平10−107537号公報
【特許文献4】
特開2001−119224号公
【0006】
【発明が解決しようとする課題】
ところが、従来の表面実装型アンテナ9においては、その根拠についてはデータと共に後述するが、本発明者の解析により小型化が不十分だということが判明した。
【0007】
また、放射電極2が基体1の稜線10a〜10dにまで延在しているため、製造において次のような問題点もあった。
【0008】
すなわち、製造工程において、基体1に各電極を印刷する際、電極パターンが所望の位置からずれる、いわゆる印刷ズレが生ずる場合があった。基体1の稜線10a〜10dにピッタリと合わせて印刷することは、位置合わせに相当の注意を払う必要があるからである。
電極パターンがずれた場合、放射電極2の開放端と接地電極3との間に発生する容量が増大、または減少し、その結果、中心周波数(共振周波数)は所望値からずれてしまう。
このような中心周波数のばらつきを補正するため、電極パターンのトリミング、切欠等、煩雑な周波数調整の作業が必要であった。
更に、複数個の表面実装型アンテナ9を大型基板から切断して得る場合に、電極パターンが所望の位置からずれる印刷ズレが発生すると、大量に不良品が発生するという問題もあった。
【0009】
そこで本発明は、電極パターンの印刷ズレが生じた場合でも中心周波数のばらつきが抑制され、周波数調整の手間が軽減され、より一層の小型化が可能な表面実装型アンテナの提供を目的とする。
【0010】
【課題を解決するための手段】
本発明の第1手段は、誘電体または磁性体からなる基体1と、該基体1の少なくとも一面に形成された放射電極2と、該放射電極2の一端に直接接続して前記基体1に形成された接地電極3と、前記放射電極2に離間して対向する給電電極4とを有する表面実装型アンテナ9であって、前記放射電極2の少なくとも一辺22a〜22hと前記基体1の稜線10a〜10hが隙間dを形成し、前記隙間dと前記基体の幅Wとの比d/Wが0.05〜0.2であることを特徴とする表面実装型アンテナ9である。
ここで直接接続とは、放射電極2の一端と接地電極3とが伝送線路、ストリップライン、パターンなどにより電気的に直接に接続されることを言う。
【0011】
本発明の第2手段は、誘電体または磁性体からなる基体1と、該基体の少なくとも一面に形成された放射電極2と、該放射電極2の一端に容量結合するように前記基体1に形成された接地電極3と、前記放射電極2の開放端に対して離間して対向する給電電極4を有する表面実装型アンテナ9であって、前記放射電極2の少なくとも一辺22a〜22hと前記基体1の稜線10a〜10hが隙間dを形成し、前記隙間dと前記基体の幅Wとの比d/Wが0.05〜0.2であることを特徴とする表面実装型アンテナ9である。
ここで容量結合とは、放射電極2の一端と接地電極3とが離間して形成され、静電容量を介して電気的に接続、結合されることを言う。
【0012】
本発明者は、表面実装型アンテナにおいてエッジ(端縁)効果を有効に使うことにより、基体1の稜線10a他の近傍での漏れ電磁界によって電極パターンの無い部分でも電極パターンが等価的に存在するかのように取り扱えることを見出した。
また、それを有効活用して、基体1の稜線10a〜10hの少なくとも1つ以上のまで延設するよりも、適切な隙間dを形成した方が、電極パターンの印刷ズレの吸収と放射効率の両方が良好となることを知見した。
【0013】
本発明の第1手段によると、仮に電極パターンの印刷ズレが生じた場合でも、中心周波数のばらつきが抑制できる。エッジ(端縁)効果が有効に作用して、基体1の稜線10a他の近傍での漏れ電磁界によって電極パターンの無い部分でも電極パターンが等価的に存在するかのように取り扱えるからである。
【0014】
本発明の第2手段によると、仮に電極パターンの印刷ズレが生じた場合でも、中心周波数のばらつきが抑制できるだけでなく、容量結合を用いるため、放射電極2の開放端にギャップを介して第2の接地電極を対向させて配置することもできる。
この場合、対向する接地電極3との容量結合が強いため、近傍に給電電極4を配置しても比較的影響が少ない。従って、大幅に中心周波数を調整する場合、放射電極2と第2の接地電極との結合度を調整することにより周波数の主調整を行い、また放射電極2と給電電極4との結合度を調整することにより周波数の微調整を行なえる。
【0015】
本発明の表面実装型アンテナは、放射電極2及び/又は給電電極4の角部に丸みを持たせるのが、より好ましい。電磁界の経路に急な変化を生じないので、損失が低下するからである。
【0016】
【発明の実施の形態】
図1は、本発明の第1実施例による表面実装型アンテナ9を示す斜視図である。図1で放射電極2は、基体1の上面において基体1の稜線10a、10dから隙間dを成して配設した。基体1の幅W=4mm、長さL=10mm、高さH=3mm、比誘電率εr=8の表面実装型アンテナ9において、隙間dと基体1の幅Wとの比d/Wを0〜0.375の範囲で変化させて、中心周波数fのシフト量Δf[%]、正規化帯域幅[%]、放射効率[%]を測定した結果を、各々、図2(a)〜図2(c)に示す。
ここで、d/W値=0の時の共振周波数(中心周波数)をf、それ以外の各d/W値における共振周波数をfとした時、中心周波数fのシフト量Δf=(f−f)×100/f[%]で定義される。正規化帯域幅[%]は、それ以外の各d/W値における帯域幅をBWとした時、BW/f×100で定義される。入力電力をPin、放射電力をPoutとした時、放射効率=Pout×100/Pin[%]で定義される。
【0017】
図2(a)から、中心周波数fのシフト量Δfは、比d/Wに対して単調減少関数となる。すなわち、比d/Wを大きくすると対応する中心周波数fはfよりも小さくできることを意味する。ここで、電波の波長をλ(=c/f、c:光速で一定値)としたとき、長さLはλ/√εrに比例関係にあるので、比d/Wを大きくすると長さLを短縮できる。すなわち表面実装型アンテナの小型化効果がある。
一方、比d/Wを大きくすると、図2(b)から正規化帯域幅が減少し、図2(c)から放射効率が低下するので、最適範囲として比d/W=0.05〜0.2が、表面実装型アンテナを小型化しつつ、正規化帯域幅と放射効率の両方を満足する。
【0018】
図3は、本発明の第2実施例による表面実装型アンテナ9を示す斜視図である。この表面実装型アンテナ9は、直方体状の基体1の上面に配設された放射電極2と、放射電極2の一端に接続された接地電極3と、側面に放射電極2とギャップ1を介して形成された給電電極4とを有する。
表面実装型アンテナ9は、逆F型アンテナと似た構成を有するが、給電電極4がギャップを介している点で異なる。
基体1の底面1aには、半田付け用電極以外の電極は配置されておらず、また表面実装型アンテナも回路基板上の地導体のない領域に実装されるので、いかなる方向にもほぼ均一な放射電界パターンを示す無指向性が得られる。
給電電極4は、帯状の電極を2ヵ所で屈曲した門型(コ字型)の形状を有し、放射電極2の稜線10aにほぼ並行して対向する並行部41を有する。給電電極4は、一端の給電部43に送受信回路(図示せず)の給電線に接続される給電点40を有するとともに、他端の接地部44に地導体に接続される接地端42を有する。給電電極4の給電部43及び接地部44は主としてインダクタンスを生成し、放射電極2と並行部41とは主としてキャパシタンス(静電容量)を形成する。
【0019】
なお、放射電極2、接地電極3、及び給電電極4は、図3に例示した構造に限定されるものではないが、給電電極4は、基体1の側面の一面に形成する方が、電極を印刷形成する際に印刷ずれ等がなく、製造容易で特性上も安定する。
【0020】
図3に示す表面実装型アンテナ9において、放射電極2の他端は開放端20となっている。隙間dは基体1の稜線10aに平行に配設したが、直交する稜線10bに平行に配設するか、両者を組合わせることもできる。この場合、放射電極2の開放端20は、基体1の稜線10bより内側に配設される。
【0021】
図4(A)は第3実施例による表面実装型アンテナを示す斜視図であり、図4(B)はその展開図である。本発明の第2手段に対応して、基体1の一方主面に形成された放射電極21と、この放射電極21の一端に、離間して容量結合するように前記基体1に形成された接地電極3を設けている。
この実施例では、放射電極21と給電電極4に特徴がある。放射電極21は主として基体1の上面1cに設けられており、接地電極3と接続する一端から長手方向の他端に向かって連続的及び/又は段階的に実質的に幅を狭めながら延びる放射電極部21aと、左端部分でコ字状又はUターン状に屈曲した放射電極部21bとからなる。
【0022】
このような放射電極21により、台形状の放射電極部21aで広帯域の共振特性が得られ、屈曲した放射電極部21bでインダクタンスを補充できる。
電極6は表面実装型アンテナを回路基板に固定するための半田付け用電極であって、必要最小限に設ける。
放射電極21の外周と基体1の稜線との間に隙間が設けられている。この隙間により、電極印刷が容易になり、印刷ずれが生じ難くなる。また基体1の稜線部の変形や欠け等による電極剥離を防止できる。
印刷ずれや電極剥離を防ぐことにより、中心周波数のばらつきを抑制することができる。放射電極21を基体1の上面1cのみに設ける構成は、側面にも放射電極を設ける構成に比べて回路基板の地導体との容量結合が減るので、高利得が得られる。
【0023】
図4に示す表面実装型アンテナ9において、隙間は基体1の四つの稜線のうち三つの稜線10a〜10cに平行に配設している。
また、放射電極21と給電電極4の角部に丸みを持たせて、損失が軽減する構成とした。例えば、放射電極の一辺22aと22bとの角部や放射電極の一辺22bと22cとの角部に丸みを持たせている。
【0024】
図5(A)は第4実施例による表面実装型アンテナを示す斜視図であり、図5(B)はその展開図である。給電電極4は、一端に給電端43を有し側面1bに設けられたL字状電極部41と、端面1fに設けられたI字状電極部42と、一端に接地端44を有し側面1dに設けられたL字状電極部45とからなる。
門型の給電電極4は、2側面1b、1dと端面1fに渡って設けられた電極部41、42、45からなるコ字状並行部41を有し、並行部41はコ字状放射電極21bに対向している。このような給電電極4により、放射電極21のコ字状部のほぼ全体に渡って容量結合することができるので、表面実装型アンテナの小型化に有利である。また同一のキャパシタンス値に対しては、放射電極21との間隔を広くとれ、印刷ずれ等に起因するキャパシタンス値のばらつき、及び中心周波数のばらつきを低減できる。
【0025】
図5に示す表面実装型アンテナ9において、図4に示した第2実施例と同様、隙間は基体1の四つの稜線のうち三つの稜線10a〜10cに平行に配設している。
【0026】
図6(A)は第5実施例による表面実装型アンテナを示す斜視図であり、図6(B)はその展開図である。帯状の放射電極21は、側面1dに長手方向に形成されたクランク軸状の電極部21dと、上面1cに形成されたL字状電極部21cとからなり、全体的にはコの字状である。このように放射電極21は基体1の上面から側面まで屈曲状に延在するので、全長を長くすることができる。その結果、同じ帯域幅では表面実装型アンテナ基体1の寸法を小さくすることができる。
給電電極4の給電部43及び接地部44の位置関係は上記実施例と逆であり、給電点40が基体のほぼ中央部に位置し、放射電極21の開放端の近傍に給電部43が位置するようにしている。また上面1に形成されたL字状電極部21cを下面に投影したとき接地電極3と重ならないようにしている。
これらにより、帯域幅の向上と無指向性が良好でGPS用表面実装型アンテナとしてバランスのとれたものとなる。
また放射電極21の開放端と給電電極4の並行部41とは接近している。幅広の並行部41とすることにより、インピーダンス整合が容易であり、利得も若干向上する。
【0027】
本実施例では並行部41は幅が広くて長方形に近い形状を有するが、給電電極4の形状は、回路基板側の実装位置や導体パターンの配置及び放射電極構造等により種々変更することができる。
また回路基板や放射電極21の仕様が変更されても、給電点40と接地点42との間で給電電極4の配置、形状、大きさ等を適宜設定することにより、インダクタンスとキャパシタンスを適当に調整してインピーダンス整合を容易に取ることができる。
【0028】
図7(A)は第4実施例による表面実装型アンテナを示す斜視図であり、図7(B)はその展開図である。この例では給電電極4の構成が他の例のものと異なる。すなわち給電電極4は、基体1の側面1bに設けられた給電端43及び接地端44を有するF字状電極部41と、端面1f及び側面1dに形成された直線状電極部42、45とからなる。この実施例の給電電極は、インピーダンス整合と同時に複共振を用いた広帯域化が可能である。
【0029】
なお、本発明は前記の各実施例に例示した表面実装型アンテナの構成に限定されるものではなく、それらを組み合わせることも可能であり、本発明の範囲内で他の実施例を種々構成することが出来る。
【0030】
また本発明に係る表面実装型アンテナは、基体1は直方体に限るものでなく適宜の形状がある。材料は磁性体、樹脂体、またこれらの積層基板としても良い。また、帯域幅を広げたり、周波数調整のために放射電極稜線の開放端に形成した並行部あるいは基体をトリミングすることが有効である。
【0031】
放射電極2は、台形状、階段状、曲線状、ミアンダ状、一部ミアンダ状、クランク状等種々の形状が考えられる。
また、放射電極2の一端側は必ずしも連続的に接地電極を形成する必要はなく、非連続とした容量結合となし最終的に接地できていれば良い。
また、接地電極は、最小限その端面が覆われ接地面に連接して接地できていれば良いが、基体端面からの電界の放射を抑制する効果を得るためには基体端部において端面とその廻りの四面を覆うように形成しておくと良い。
【0032】
本発明において基体1として誘電体を用いる場合、比誘電率εrは6〜50の範囲が好ましい。この比誘電率εrは、誘電体の温度係数、基体の加工精度等を考慮して決めたものであるが、材質、加工精度等が向上すれば、当然その上限値も引き上げられる。このような比誘電率εrを有する基体は、例えば22.22重量%のMgO、63重量%のCaCO3、48.14重量%のTiO2 及び24.6重量%のZnOの各原料からなる素体を焼成し、焼成基体として36.6モル%のMgO、3.4モル%のCaO、40モル%のTiO2 及び20モル%のZnOからなる誘電セラミック(比誘電率εr:21)により形成することができる。
【0033】
本発明において、基体の稜線部に面取りを施しても表面実装型アンテナ性能が変化せず、携帯電話の自動組み立てラインなどのハンドリングによる基体チップの稜線部における割れ、欠けなどが発生し難いという効果も期待できる。また本発明に係る表面実装型アンテナにおいては、放射電極2の少なくとも一辺と基体1の稜線10a〜10hが所定の隙間を形成して配設されるため、稜線部での断線、剥がれ、チップのクラックによる信頼性低下の影響が少ないという効果も期待できる。
【0034】
【発明の効果】
本発明によれば、電極パターンの印刷ズレが生じた場合でも中心周波数のばらつきが抑制され、周波数調整の手間が軽減される表面実装型アンテナを提供できる。また、小型軽量であり放射効率が高く、広帯域で且つ無指向性をもった表面実装型アンテナを得ることができる。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す表面実装型アンテナの斜視図である。
【図2】本発明の表面実装型アンテナにおいて、隙間dと基体の幅Wとの比d/Wと中心周波数fのシフト量Δf、正規化帯域幅、放射効率の関係を示す特性曲線図である。
【図3】図3(A)は本発明の第2実施例を示す表面実装型アンテナの斜視図、図3(B)はその展開図である。
【図4】図4(A)は本発明の第3実施例を示す表面実装型アンテナの斜視図、図4(B)はその展開図である。
【図5】図5(A)は本発明の第4実施例を示す表面実装型アンテナの斜視図、図5(B)はその展開図である。
【図6】図6(A)は本発明の第5実施例を示す表面実装型アンテナの斜視図、図6(B)はその展開図である。
【図7】図7(A)は本発明の第6実施例を示す表面実装型アンテナの斜視図、図7(B)はその展開図である。
【図8】従来の表面実装型アンテナの1例を示す斜視図である。
【図9】従来の表面実装型アンテナの別の例を示す斜視図である。
【符号の説明】
1:基体
10a〜10h:基体1の稜線
2:放射電極
20:放射電極2の開放端
21:放射電極
22a〜22h:放射電極の一辺
3:接地電極
4:給電電極
40:給電点
41:給電電極4の並行部
42:接地点
43:給電端となる脚部(給電部)
44:接地端となる脚部(接地部)
6:固定用電極
71,72:短絡導体
9:表面実装型アンテナ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a surface-mounted antenna used for a mobile phone or the like having a built-in GPS (Global Positioning System) and Bluetooth (Bluetooth) function.
[0002]
[Prior art]
FIG. 8 shows a conventional surface mount antenna (for example, see Patent Document 1). On the lower surface of the base 1, a ground electrode 3 having a shape in which a part of one side facing the power supply electrode 4 is cut is formed to extend to the ridge lines 10 e to 10 h of the base 1. On the upper surface of the base 1, a U-shaped radiation electrode 2 is formed extending to the ridge lines 10 a to 10 d of the base 1. Short-circuit conductors 71 and 72 for short-circuiting the radiation electrode 2 and the ground electrode 3 are formed on the side surface of the base 1. A feed electrode 4 extending from the lower surface of the base 1 to the upper surface via the side surface is formed, and functions as a 1/4 wavelength short-circuit type microstrip surface mount antenna.
[0003]
FIG. 9 shows another conventional example (for example, see Patent Document 2). A ground electrode 3 is formed on the entire lower surface of the base 1, and a radiation electrode 2 is formed on the entire upper surface of the base 1 up to the ridge lines 10 a to 10 d of the base 1. A power supply electrode 4 is formed on a side surface of the base 1, and the radiation electrode 2 is excited by a transmission signal input from the power supply terminal electrode 4, and operates as a transmission antenna by radiating radio waves. Further, the radiation electrode 2 is excited by the received radio wave, and a reception signal is output from the power supply electrode 4 to operate as a reception antenna. At this time, the power supply electrode 4 has a length of 波長 wavelength at the center frequency.
[0004]
A conventional method of manufacturing the surface mount antenna 9 will be described (for example, see Patent Documents 3 and 4). It is often obtained by printing a plurality of surface mount antennas at once and cutting them from a large substrate as if individual chips were separated from chocolate blocks. This is because productivity is significantly improved. For example, 16 surface mount antennas are patterned and printed on a large substrate at a time and processed, and finally cut into individual surface mount antennas.
[0005]
[Patent Document 1]
Japanese Patent No. 362002 [Patent Document 2]
Japanese Patent No. 362002 [Patent Document 3]
Japanese Patent Application Laid-Open No. 10-107537 [Patent Document 4]
JP 2001-119224 A
[Problems to be solved by the invention]
However, the grounds of the conventional surface-mount antenna 9 will be described later together with data, but analysis by the present inventors has revealed that the miniaturization is insufficient.
[0007]
In addition, since the radiation electrode 2 extends to the ridge lines 10a to 10d of the base 1, there are the following problems in manufacturing.
[0008]
That is, when printing each electrode on the base 1 in the manufacturing process, a so-called printing shift in which the electrode pattern is shifted from a desired position may occur. This is because printing in alignment with the ridge lines 10a to 10d of the base 1 requires considerable care in alignment.
When the electrode pattern shifts, the capacitance generated between the open end of the radiation electrode 2 and the ground electrode 3 increases or decreases, and as a result, the center frequency (resonance frequency) shifts from a desired value.
In order to correct such variations in the center frequency, complicated frequency adjustment operations such as trimming and notching of the electrode pattern were required.
Furthermore, when a plurality of surface-mounted antennas 9 are obtained by cutting from a large-sized substrate, a large number of defective products are generated if a printing shift occurs in which an electrode pattern is shifted from a desired position.
[0009]
Accordingly, it is an object of the present invention to provide a surface mount antenna capable of suppressing the variation of the center frequency even when the printing displacement of the electrode pattern occurs, reducing the trouble of frequency adjustment, and further reducing the size.
[0010]
[Means for Solving the Problems]
The first means of the present invention comprises a substrate 1 made of a dielectric or magnetic material, a radiation electrode 2 formed on at least one surface of the substrate 1, and a radiation electrode 2 formed on the substrate 1 by being directly connected to one end of the radiation electrode 2. A surface-mounted antenna 9 having a ground electrode 3 provided and a feed electrode 4 spaced apart from and facing the radiation electrode 2, wherein at least one side 22 a to 22 h of the radiation electrode 2 and a ridge line 10 a to 10 10h forms the gap d, and the ratio d / W between the gap d and the width W of the base is 0.05 to 0.2, which is the surface-mounted antenna 9.
Here, the direct connection means that one end of the radiation electrode 2 and the ground electrode 3 are electrically directly connected by a transmission line, a strip line, a pattern, or the like.
[0011]
The second means of the present invention comprises a substrate 1 made of a dielectric or magnetic material, a radiation electrode 2 formed on at least one surface of the substrate, and a radiation electrode 2 formed on the substrate 1 so as to be capacitively coupled to one end of the radiation electrode 2. A surface-mounted antenna 9 having a ground electrode 3 provided and a feed electrode 4 spaced apart from and facing the open end of the radiation electrode 2, wherein at least one side 22 a to 22 h of the radiation electrode 2 and the base 1 Ridge lines 10a to 10h form a gap d, and the ratio d / W between the gap d and the width W of the base is 0.05 to 0.2.
Here, the term “capacitive coupling” means that one end of the radiation electrode 2 and the ground electrode 3 are formed apart from each other, and are electrically connected and coupled via a capacitance.
[0012]
The present inventor has made effective use of the edge (edge) effect in the surface mount antenna so that an electrode pattern is equivalently present even in a portion having no electrode pattern due to a leakage electromagnetic field in the vicinity of the ridge line 10a or the like of the base 1. I found that I can handle it as if I did it.
Also, by making effective use of this, it is better to form an appropriate gap d than to extend to at least one or more of the ridge lines 10a to 10h of the base 1, so that the absorption of the misalignment of the electrode pattern and the radiation efficiency can be reduced. Both were found to be good.
[0013]
According to the first means of the present invention, even if printing misalignment of the electrode pattern occurs, variation in the center frequency can be suppressed. This is because the edge (edge) effect works effectively, and even if there is no electrode pattern, it can be handled as if the electrode pattern is equivalent even in a portion where there is no electrode pattern due to the leakage electromagnetic field in the vicinity of the ridge line 10a or the like of the base 1.
[0014]
According to the second means of the present invention, even if the printing deviation of the electrode pattern occurs, not only the variation of the center frequency can be suppressed, but also the capacitive coupling is used. May be arranged to face each other.
In this case, since the capacitive coupling with the opposite ground electrode 3 is strong, even if the power supply electrode 4 is arranged in the vicinity, the influence is relatively small. Therefore, when the center frequency is largely adjusted, the main adjustment of the frequency is performed by adjusting the coupling degree between the radiation electrode 2 and the second ground electrode, and the coupling degree between the radiation electrode 2 and the feeding electrode 4 is adjusted. By doing so, the frequency can be finely adjusted.
[0015]
In the surface mount antenna according to the present invention, it is more preferable that the corners of the radiation electrode 2 and / or the feed electrode 4 have rounded corners. This is because a sudden change does not occur in the path of the electromagnetic field, so that the loss is reduced.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a perspective view showing a surface mount antenna 9 according to a first embodiment of the present invention. In FIG. 1, the radiation electrode 2 is disposed on the upper surface of the base 1 so as to form a gap d from the ridge lines 10 a and 10 d of the base 1. In the surface mount antenna 9 having the width W of the base 1 of 4 mm, the length L of 10 mm, the height H of 3 mm, and the relative permittivity εr = 8, the ratio d / W between the gap d and the width W of the base 1 is set to 0. FIG. 2A shows the results of measuring the shift amount Δf 0 [%] of the center frequency f 0 , the normalized bandwidth [%], and the radiation efficiency [%] while changing the center frequency f 0 . 2 to (c).
Here, f 0 the resonance frequency (center frequency) when the d / W value = 0, when the resonance frequency is f in the d / W value otherwise, the shift amount of the center frequency f 0 Delta] f 0 = ( f−f 0 ) × 100 / f 0 [%]. The normalized bandwidth [%] is defined as BW / f × 100, where BW is the bandwidth at each other d / W value. When the input power is Pin and the radiation power is Pout, the radiation efficiency is defined as Pout × 100 / Pin [%].
[0017]
From FIG. 2 (a), the shift amount Delta] f 0 of the center frequency f 0 is a monotonically decreasing function with respect to the ratio d / W. That is, the center frequency f corresponding to increase the ratio d / W means can be made smaller than f 0. Here, when the wavelength of the radio wave is λ (= c / f, where c is a constant value at the speed of light), the length L is proportional to λ / √εr. Can be shortened. That is, there is an effect of reducing the size of the surface mount antenna.
On the other hand, when the ratio d / W is increased, the normalized bandwidth decreases from FIG. 2B and the radiation efficiency decreases from FIG. 2C, so that the ratio d / W = 0.05 to 0 as the optimum range. 2 satisfies both the normalized bandwidth and the radiation efficiency while miniaturizing the surface mount antenna.
[0018]
FIG. 3 is a perspective view showing a surface mount antenna 9 according to a second embodiment of the present invention. The surface-mounted antenna 9 includes a radiation electrode 2 disposed on the upper surface of a rectangular parallelepiped base 1, a ground electrode 3 connected to one end of the radiation electrode 2, and a radiation electrode 2 on a side surface with a gap 1 therebetween. And the formed power supply electrode 4.
The surface mount antenna 9 has a configuration similar to that of the inverted F-type antenna, but differs in that the power supply electrode 4 is provided with a gap.
No electrodes other than the electrodes for soldering are arranged on the bottom surface 1a of the base 1, and the surface mount antenna is also mounted in an area without a ground conductor on the circuit board. An omnidirectional property indicating a radiation electric field pattern is obtained.
The power supply electrode 4 has a gate-shaped (U-shaped) shape obtained by bending a band-shaped electrode at two places, and has a parallel portion 41 that faces the ridge line 10a of the radiation electrode 2 almost in parallel. The power supply electrode 4 has a power supply point 43 connected to a power supply line of a transmission / reception circuit (not shown) at a power supply section 43 at one end, and has a ground end 42 connected to a ground conductor at a ground section 44 at the other end. . The power supply part 43 and the ground part 44 of the power supply electrode 4 mainly generate inductance, and the radiation electrode 2 and the parallel part 41 mainly form capacitance (capacitance).
[0019]
The radiation electrode 2, the ground electrode 3, and the power supply electrode 4 are not limited to the structure illustrated in FIG. 3, but it is preferable that the power supply electrode 4 be formed on one side surface of the base 1. There is no misregistration at the time of print formation, and it is easy to manufacture and stable in characteristics.
[0020]
In the surface-mounted antenna 9 shown in FIG. 3, the other end of the radiation electrode 2 is an open end 20. Although the gap d is provided in parallel with the ridge line 10a of the base 1, it may be provided in parallel with the orthogonal ridge line 10b or a combination of both. In this case, the open end 20 of the radiation electrode 2 is disposed inside the ridge line 10b of the base 1.
[0021]
FIG. 4A is a perspective view showing a surface-mounted antenna according to a third embodiment, and FIG. 4B is an expanded view thereof. In accordance with the second aspect of the present invention, a radiation electrode 21 formed on one main surface of the base 1 and a ground formed on the base 1 so as to be capacitively coupled to one end of the radiation electrode 21 at a distance. An electrode 3 is provided.
This embodiment is characterized by the radiation electrode 21 and the feed electrode 4. The radiation electrode 21 is provided mainly on the upper surface 1 c of the base 1, and extends continuously and / or stepwise from the one end connected to the ground electrode 3 to the other end in the longitudinal direction while substantially reducing the width. It comprises a portion 21a and a radiation electrode portion 21b bent in a U-shape or U-shape at the left end.
[0022]
With such a radiating electrode 21, broadband resonance characteristics can be obtained with the trapezoidal radiating electrode portion 21a, and inductance can be supplemented with the bent radiating electrode portion 21b.
The electrode 6 is a soldering electrode for fixing the surface-mounted antenna to the circuit board, and is provided in a necessary minimum.
A gap is provided between the outer periphery of the radiation electrode 21 and the ridge line of the base 1. This gap facilitates electrode printing and makes printing less likely to occur. In addition, electrode peeling due to deformation or chipping of the ridge portion of the base 1 can be prevented.
By preventing printing misalignment and electrode peeling, variations in center frequency can be suppressed. In the configuration in which the radiation electrode 21 is provided only on the upper surface 1c of the base 1, compared with the configuration in which the radiation electrode is also provided on the side surface, the capacitive coupling with the ground conductor of the circuit board is reduced, so that a high gain can be obtained.
[0023]
In the surface-mounted antenna 9 shown in FIG. 4, the gap is provided in parallel with three ridge lines 10 a to 10 c of the four ridge lines of the base 1.
Further, the corners of the radiation electrode 21 and the power supply electrode 4 are rounded to reduce the loss. For example, the corner between one side 22a and 22b of the radiation electrode and the corner between one side 22b and 22c of the radiation electrode are rounded.
[0024]
FIG. 5A is a perspective view showing a surface mount antenna according to a fourth embodiment, and FIG. 5B is an expanded view thereof. The power supply electrode 4 has a power supply end 43 at one end, an L-shaped electrode portion 41 provided on the side surface 1b, an I-shaped electrode portion 42 provided on the end surface 1f, and a grounded end 44 at one end. And an L-shaped electrode portion 45 provided at 1d.
The portal-type feeding electrode 4 has a U-shaped parallel portion 41 including electrode portions 41, 42, and 45 provided over two side surfaces 1b and 1d and an end surface 1f, and the parallel portion 41 is a U-shaped radiation electrode. 21b. With such a feeding electrode 4, capacitive coupling can be performed over substantially the entire U-shaped portion of the radiation electrode 21, which is advantageous in reducing the size of the surface-mounted antenna. In addition, for the same capacitance value, the distance between the radiation electrode 21 and the radiation electrode 21 can be widened, and variation in the capacitance value and variation in the center frequency due to printing deviation or the like can be reduced.
[0025]
In the surface-mounted antenna 9 shown in FIG. 5, as in the second embodiment shown in FIG. 4, the gap is provided in parallel with three ridge lines 10a to 10c among the four ridge lines of the base 1.
[0026]
FIG. 6A is a perspective view showing a surface mount antenna according to a fifth embodiment, and FIG. 6B is a developed view thereof. The band-shaped radiation electrode 21 includes a crankshaft-shaped electrode portion 21d formed on the side surface 1d in the longitudinal direction and an L-shaped electrode portion 21c formed on the upper surface 1c. is there. As described above, since the radiation electrode 21 extends in a bent shape from the upper surface to the side surface of the base 1, the overall length can be increased. As a result, the dimensions of the surface mount antenna base 1 can be reduced for the same bandwidth.
The positional relationship between the power supply portion 43 and the grounding portion 44 of the power supply electrode 4 is opposite to that in the above-described embodiment, and the power supply point 40 is located substantially in the center of the base, and the power supply portion 43 is located near the open end of the radiation electrode 21. I am trying to do it. Further, when the L-shaped electrode portion 21c formed on the upper surface 1 is projected on the lower surface, it does not overlap with the ground electrode 3.
As a result, the bandwidth is improved, the omnidirectionality is good, and the surface mount antenna for GPS is well balanced.
The open end of the radiation electrode 21 and the parallel portion 41 of the feed electrode 4 are close to each other. The wide parallel portion 41 facilitates impedance matching and slightly improves the gain.
[0027]
In the present embodiment, the parallel portion 41 has a wide and nearly rectangular shape, but the shape of the power supply electrode 4 can be variously changed depending on the mounting position on the circuit board side, the arrangement of the conductor pattern, the radiation electrode structure, and the like. .
Even if the specifications of the circuit board and the radiation electrode 21 are changed, the inductance, the capacitance and the like can be appropriately adjusted by appropriately setting the arrangement, shape, size, and the like of the power supply electrode 4 between the power supply point 40 and the ground point 42. The impedance can be easily adjusted by adjusting.
[0028]
FIG. 7A is a perspective view showing a surface mount antenna according to a fourth embodiment, and FIG. 7B is an expanded view thereof. In this example, the configuration of the power supply electrode 4 is different from those of the other examples. That is, the power supply electrode 4 includes an F-shaped electrode portion 41 having a power supply end 43 and a ground end 44 provided on the side surface 1b of the base 1 and linear electrode portions 42 and 45 formed on the end surface 1f and the side surface 1d. Become. The power supply electrode of this embodiment can achieve a wide band using multiple resonance simultaneously with impedance matching.
[0029]
It should be noted that the present invention is not limited to the configuration of the surface mount antenna illustrated in each of the above embodiments, and it is possible to combine them, and various other embodiments are configured within the scope of the present invention. I can do it.
[0030]
In the surface-mounted antenna according to the present invention, the base 1 is not limited to a rectangular parallelepiped but has an appropriate shape. The material may be a magnetic body, a resin body, or a laminated substrate thereof. Also, it is effective to trim the parallel portion or the base formed at the open end of the ridge of the radiation electrode for widening the bandwidth or adjusting the frequency.
[0031]
The radiation electrode 2 may have various shapes such as a trapezoidal shape, a stepped shape, a curved shape, a meander shape, a partial meander shape, and a crank shape.
Further, it is not always necessary to form a ground electrode continuously on one end side of the radiation electrode 2, and it is sufficient that the ground electrode can be finally grounded without any discontinuous capacitive coupling.
In addition, the ground electrode only needs to cover at least its end face and be connected to the ground plane so that it can be grounded. However, in order to obtain the effect of suppressing the emission of electric field from the end face of the base body, the end face and its end face are required at the base end. It is good to form so that the surrounding four sides may be covered.
[0032]
When a dielectric is used as the substrate 1 in the present invention, the relative dielectric constant εr is preferably in the range of 6 to 50. The relative permittivity εr is determined in consideration of the temperature coefficient of the dielectric, the processing accuracy of the substrate, and the like. However, if the material, processing accuracy, and the like are improved, the upper limit value is naturally increased. A substrate having such a relative dielectric constant εr is, for example, a body composed of raw materials of 22.22% by weight of MgO, 63% by weight of CaCO3, 48.14% by weight of TiO2, and 24.6% by weight of ZnO. It can be formed by firing and using a dielectric ceramic (relative dielectric constant εr: 21) composed of 36.6 mol% MgO, 3.4 mol% CaO, 40 mol% TiO2, and 20 mol% ZnO as a firing substrate. it can.
[0033]
In the present invention, even if chamfering is performed on the ridge portion of the base, the performance of the surface mount antenna does not change, and cracks, chipping, and the like are less likely to occur at the ridge of the base chip due to handling of an automatic assembly line of a mobile phone. Can also be expected. Further, in the surface-mounted antenna according to the present invention, at least one side of the radiation electrode 2 and the ridge lines 10a to 10h of the base body 1 are arranged with a predetermined gap formed therebetween. The effect of reducing the influence of reliability deterioration due to cracks can also be expected.
[0034]
【The invention's effect】
According to the present invention, it is possible to provide a surface-mounted antenna in which the variation of the center frequency is suppressed even when the printing displacement of the electrode pattern occurs, and the trouble of frequency adjustment is reduced. In addition, a surface-mounted antenna that is small and lightweight, has high radiation efficiency, has a wide band, and has no directivity can be obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view of a surface mount antenna according to a first embodiment of the present invention.
In the surface mount antenna of the present invention; FIG, characteristic curve indicating a shift amount Delta] f 0 of the ratio d / W and the center frequency f 0 of the width W of the gap d and the substrate, the normalized bandwidth, a relationship between radiation efficiency FIG.
FIG. 3A is a perspective view of a surface mount antenna according to a second embodiment of the present invention, and FIG. 3B is a developed view thereof.
FIG. 4A is a perspective view of a surface mount antenna according to a third embodiment of the present invention, and FIG. 4B is a developed view thereof.
FIG. 5A is a perspective view of a surface mount antenna according to a fourth embodiment of the present invention, and FIG. 5B is a developed view thereof.
FIG. 6A is a perspective view of a surface mount antenna according to a fifth embodiment of the present invention, and FIG. 6B is a developed view thereof.
FIG. 7A is a perspective view of a surface mount antenna according to a sixth embodiment of the present invention, and FIG. 7B is a developed view thereof.
FIG. 8 is a perspective view showing an example of a conventional surface mount antenna.
FIG. 9 is a perspective view showing another example of a conventional surface mount antenna.
[Explanation of symbols]
1: bases 10a to 10h: ridge line 2 of base 1: radiation electrode 20: open end 21 of radiation electrode 2: radiation electrodes 22a to 22h: one side of radiation electrode 3: ground electrode 4: feeding electrode 40: feeding point 41: feeding. Parallel part 42 of electrode 4: ground point 43: leg part serving as a power supply end (power supply part)
44: Leg to be the grounding end (grounding part)
6: Fixing electrodes 71, 72: Short-circuit conductor 9: Surface mount antenna

Claims (2)

誘電体または磁性体からなる基体と、
該基体の少なくとも一面に形成された放射電極と、
該放射電極の一端に直接接続して前記基体に形成された接地電極と、
前記放射電極に離間して対向する給電電極とを有する表面実装型アンテナであって、
前記放射電極の少なくとも一辺と前記基体の稜線が隙間を形成し、
前記隙間と前記基体の幅との比が0.05〜0.2であることを特徴とする表面実装型アンテナ。
A substrate made of a dielectric or magnetic material;
A radiation electrode formed on at least one surface of the substrate,
A ground electrode formed on the base by directly connecting to one end of the radiation electrode;
A surface-mounted antenna having a feed electrode spaced apart from and facing the radiation electrode,
At least one side of the radiation electrode and a ridge line of the base form a gap,
A surface-mounted antenna, wherein the ratio of the gap to the width of the base is 0.05 to 0.2.
誘電体または磁性体からなる基体と、
該基体の少なくとも一面に形成された放射電極と、
該放射電極の一端に容量結合するように前記基体に形成された接地電極と、
前記放射電極に離間して対向する給電電極とを有する表面実装型アンテナであって、
前記放射電極の少なくとも一辺と前記基体の稜線が隙間を形成し、
前記隙間と前記基体の幅との比が0.05〜0.2であることを特徴とする表面実装型アンテナ。
A substrate made of a dielectric or magnetic material;
A radiation electrode formed on at least one surface of the substrate,
A ground electrode formed on the base so as to be capacitively coupled to one end of the radiation electrode;
A surface-mounted antenna having a feed electrode spaced apart from and facing the radiation electrode,
At least one side of the radiation electrode and a ridge line of the base form a gap,
A surface-mounted antenna, wherein the ratio of the gap to the width of the base is 0.05 to 0.2.
JP2002251540A 2002-08-29 2002-08-29 Surface-mounted antenna Pending JP2004096210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002251540A JP2004096210A (en) 2002-08-29 2002-08-29 Surface-mounted antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002251540A JP2004096210A (en) 2002-08-29 2002-08-29 Surface-mounted antenna

Publications (1)

Publication Number Publication Date
JP2004096210A true JP2004096210A (en) 2004-03-25

Family

ID=32058101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002251540A Pending JP2004096210A (en) 2002-08-29 2002-08-29 Surface-mounted antenna

Country Status (1)

Country Link
JP (1) JP2004096210A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067342A (en) * 2006-08-09 2008-03-21 Fujitsu Ltd Rfid tag, and manufacturing method therefor
JP2009081702A (en) * 2007-09-26 2009-04-16 Tdk Corp Antenna device and characteristics regulating method therefor
JP2010268183A (en) * 2009-05-14 2010-11-25 Murata Mfg Co Ltd Antenna and radio communication apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067342A (en) * 2006-08-09 2008-03-21 Fujitsu Ltd Rfid tag, and manufacturing method therefor
US8022878B2 (en) 2006-08-09 2011-09-20 Fujitsu Limited RFID tag and manufacturing method thereof
US8462052B2 (en) 2006-08-09 2013-06-11 Fujitsu Limited RFID tag and manufacturing method thereof
JP2009081702A (en) * 2007-09-26 2009-04-16 Tdk Corp Antenna device and characteristics regulating method therefor
JP2010268183A (en) * 2009-05-14 2010-11-25 Murata Mfg Co Ltd Antenna and radio communication apparatus

Similar Documents

Publication Publication Date Title
US6873291B2 (en) Surface-mounted antenna and communications apparatus comprising same
JP4189306B2 (en) Dielectric antenna and electric device having communication function using the same
JP4305282B2 (en) Antenna device
US6639559B2 (en) Antenna element
JP3180683B2 (en) Surface mount antenna
US6268831B1 (en) Inverted-f antennas with multiple planar radiating elements and wireless communicators incorporating same
US5945959A (en) Surface mounting antenna having a dielectric base and a radiating conductor film
KR101027088B1 (en) Surface mount antena and antena equipment
US6750821B2 (en) Folded dual-band antenna apparatus
JP2004088218A (en) Planar antenna
JPWO2004006385A1 (en) Dielectric antenna, antenna mounting board, and mobile communication device incorporating them
KR20120105004A (en) Antenna
JP2015088874A (en) Chip antenna device and transmitting/receiving communication circuit board
US9368858B2 (en) Internal LC antenna for wireless communication device
JP4263972B2 (en) Surface mount antenna, antenna device, and wireless communication device
JP4784636B2 (en) Surface mount antenna, antenna device using the same, and radio communication device
US6946994B2 (en) Dielectric antenna
JP2008300897A (en) Antenna unit
JP4073789B2 (en) Dielectric antenna and mobile communication device incorporating the same
JP3952385B2 (en) Surface mount antenna and communication device equipped with the same
JP2002151930A (en) Antenna structure and radio equipment provided with it
JP2006270575A (en) Antenna device
JP2004096210A (en) Surface-mounted antenna
JP2002100916A (en) Method for adjusting dielectric antenna and the dielectric antenna
CN214280210U (en) Antenna device and electronic apparatus