JP2004095441A - Excimer lamp lighting device - Google Patents

Excimer lamp lighting device Download PDF

Info

Publication number
JP2004095441A
JP2004095441A JP2002256918A JP2002256918A JP2004095441A JP 2004095441 A JP2004095441 A JP 2004095441A JP 2002256918 A JP2002256918 A JP 2002256918A JP 2002256918 A JP2002256918 A JP 2002256918A JP 2004095441 A JP2004095441 A JP 2004095441A
Authority
JP
Japan
Prior art keywords
excimer lamp
frequency
excimer
discharge
mhz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002256918A
Other languages
Japanese (ja)
Other versions
JP4140320B2 (en
Inventor
Takayuki Suzuki
鈴木 貴之
Taku Sumitomo
住友 卓
Kenichi Hirose
広瀬 賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2002256918A priority Critical patent/JP4140320B2/en
Publication of JP2004095441A publication Critical patent/JP2004095441A/en
Application granted granted Critical
Publication of JP4140320B2 publication Critical patent/JP4140320B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excimer lamp lighting device capable of lowering an impression voltage by having excimer light efficiently emitted by the pulse (intermittent) supply of high-frequency voltages in a MHz band and capable of having a high-output vacuum ultraviolet ray emitted. <P>SOLUTION: In the excimer lamp lighting device composed of an excimer lamp 1 with discharge gas generating excimer molecules by discharge filled in a discharge vessel 2 and with a dielectric arranged between at least one of a pair of electrodes 5, 6 and a discharge space, and an excimer lamp lighting circuit that is connected to the pair of electrodes 5, 6 for lighting the excimer lamp 1 by supplying it at a high-frequency voltage, the pressure of the discharge gas is 10kPa or more and the high-frequency voltage has high frequencies of 1 MHz to 1GHz pulse modulated with a frequency of 1 kHz or more and a modulation signal of 1/10 or less of the high frequencies of 1 MHz to 1 GHz and a duty ratio of 10 to 80%. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、放電によってエキシマ分子を生成し、エキシマ分子から放射される光を利用するエキシマランプ点灯装置に関する。
【0002】
【従来の技術】
従来、光化学反応を利用した硬化、ドライ洗浄、殺菌、表面改質、光CVD等の処理に高効率の放射性能を有する真空紫外光放射ランプの1つであるエキシマランプが利用されている。
【0003】
エキシマランプとしては誘電体バリヤ放電を利用したものが知られており、これは、例えば、特開平2−7353号公報に開示されているように、放電容器にエキシマ分子を生成する放電用ガスを充填し、誘電体バリヤ放電(別名、オゾナイザ放電あるいは無声放電、電気学会発行改訂新版「放電ハンドブック」平成1年6月再販7刷発行第263頁)によってエキシマ分子を生成し、エキシマ分子から真空紫外光を放射させるものである。
【0004】
このような誘電体バリヤ放電を利用したエキシマランプでは、例えば、エキシマランプに周波数が数10kHzの矩形波電圧を印加すると、発光効率の高い真空紫外光が得られることが知られている。
【0005】
一方、エキシマランプ点灯装置を用いて真空紫外光を放射させる場合、処理時間を短縮するために高出力化しなければならないが、高出力化を図るために、周波数を数10kHzで点灯しようとすると、5kV程度の高電圧で印加する必要がある。しかし、このような高電圧はエキシマランプ点灯装置にとっては厄介な絶縁上の問題を生じる。
【0006】
そのため、このような絶縁上の問題を回避するために、数10kHz時の印加電圧に比べて低い印加電圧となるMHz帯域の周波数を利用(例えば、数MHzの周波数で、印加電圧が1kV程度となる)する誘電体バリア放電の応用が考えられる。
【0007】
【発明が解決しようとする課題】
しかしながら、エキシマランプ装置において、MHz帯域の周波数で点灯しようとすると、数10kHzの周波数で点灯する場合に比べて、真空紫外光の放射量が少なくなる、つまり、エキシマ光の発光効率が悪いという問題が生じる。以下にその理由について述べる。
【0008】
まず、図9を用いて、エキシマ光の発光現象をXe(キセノン)のエネルギー準位および電子温度の点から詳述する。
図9はXeのエネルギー準位の一部を示す図であり、ここで、基底状態にあるXe原子(Xe())は、放電中の高エネルギー電子と衝突することによりエネルギーを得て、励起状態(Xe(res)、Xe(met))となる。励起状態に至ったXe原子は、基底状態のXe原子との三体衝突によりXeエキシマに変化する(Xe+Xe+Xe→Xe +Xe)。このようにして生成されたXeエキシマは脱励起することにより、波長172nmの真空紫外光を放射する。
【0009】
従って、このようなプロセスにより真空紫外光を放射する場合、真空紫外光の放射量を多くするためには、基底状態にあるXe原子を頻繁に励起させて励起状態にあるXe原子を増大させること、および励起状態にあるXe原子をXeエキシマに変化させることが必要である。
【0010】
定常放電中の電子は様々なエネルギーを持っており、一般的にはそのエネルギーは数eVであり、基底状態のXe原子を励起するために必要な8eV以上の高エネルギーを有する電子は少ない。そのため、上記のプロセス中、前者のプロセスは、電子のエネルギー分布をより高エネルギー化することにより、高エネルギーの電子数の割合を増やすことが必要である。
後者のプロセスは、放電中のXe原子数を増やすことにより達成され、これが従来のエキシマランプが10kPa以上の比較的高圧のガス圧力で動作させる理由である。
【0011】
しかし、1MHz〜1GHzの高周波を連続的にランプに印加する場合には、図10に示すように、上記のプロセスが効率的に行われない。
即ち、ランプに電源を投入した直後、つまり放電生成直後は、ランプ内に入力される高周波電磁エネルギーは主に電子に吸収され、電子だけが高エネルギー状態(高電子温度)に加熱され、その結果、高エネルギー状態にある電子はXe原子と衝突することによりXe原子にエネルギーを与え、励起状態にあるXeエキシマを多く生成する。しかし、放電生成から十分な時間(msecオーダー以上)経過すると、上記の衝突過程は定常状態に達し、電子温度は減少し、ガス温度(原子の温度)、イオン温度は上昇して落ち着ついてしまう。
【0012】
このように、1MHz〜1GHzの高周波を連続的にランプに印加する場合は、高周波電圧の印加直後は、電子温度は急激に上昇して非常に高い状態にあって光出力はこれに対応して増大するが、その後定常状態に落ち着き、また、ガス温度が高くなると不安定なエキシマ分子は壊れてしまい易いこともあって光出力は低下してしまう。
【0013】
そこで、以上のことから下記のことが知見される。即ち、1MHz〜1GHzの高周波を連続的に供給した場合の入力電力(消費電力)と、1MHz〜1GHzの高周波をパルス的(間欠的)に供給した場合の入力電力(消費電力)とが等しくなる条件下において、1MHz〜1GHzの高周波をパルス的(間欠的)にランプに供給する場合は、パルスON期間(出力期間)内における電圧値が連続波としたときの電圧値よりも高くすることができるので、さらにパルスOFF期間(休止期間)では放電が完全に消えガスの温度を下げることができるので、その結果として、電子のエネルギー分布をより高エネルギー状態とし、高エネルギーの電子数の割合を増し、励起種の増加、ひいては真空紫外光の増大を図ることが可能となる。
【0014】
本発明の目的は、上記の知見に基づいて、エキシマランプにMHz帯域の高周波電圧をパルス的(間欠的)に供給して、エキシマ光を効率よく発光させ、印加電圧を低くすることが可能な、高出力の真空紫外光を発光させることのできるエキシマランプ点灯装置を提供することにある。
【0015】
【課題を解決するための手段】
本発明は、上記の課題を解決するために、次のような手段を採用した。
【0016】
第1の手段は、放電によってエキシマ分子を生成する放電ガスが放電容器内に充填され、一対の電極のうち少なくとも一方の電極と前記放電空間との間に誘電体が配置されたエキシマランプと、前記一対の電極に接続され、高周波電圧を供給しエキシマランプを点灯させるエキシマランプ点灯回路と、からなるエキシマランプ点灯装置において、前記エキシマランプにおける前記放電ガスの圧力が10kPa以上であり、前記エキシマランプ点灯回路から供給される前記高周波電圧が、1MHz〜1GHzの高周波を、周波数が1kHz以上、前記1MHz〜1GHzの高周波の1/10以下であって、デューティ比が10〜80%の変調信号でパルス変調されていることを特徴とする。
【0017】
【発明の実施の形態】
本発明の一実施形態を図1ないし図8を用いて説明する。
図1(a)は、エキシマランプの管軸方向の断面図、図1(b)は図1(a)のA−Aから見た断面図である。
【0018】
同図において、1はエキシマランプ、2はキセノンガス等のエキシマ分子を形成するための放電用ガスが10kPa以上封入され、竹輪状に形成された放電容器、3は放電容器2の外側管、4は放電容器2の内側管、5は放電容器2の外側管3面上に網目状に形成された第1の電極、6は放電容器2の内側管4面上に形成された第2の電極である。
【0019】
同図に示すように、エキシマランプ1の放電容器2は、誘電体からなる外側管3と内側管4が同軸的に配置された2重管構造からなり、外側管3と内側管4の両端は閉じられ、この間に放電空間が形成される。後述する点灯回路から第1の電極5と第2の電極6間に、後に詳述する高周波電圧が印加されると、放電容器2内で放電が発生し、放電により励起されて生成されたエキシマ分子から真空紫外光が発生し、発生した真空紫外光は外側管3の網目状の第1の電極5の間から外部に放射させることができる。
【0020】
なお、後述する実験に用いたエキシマランプとしては、エキシマ分子を生成する放電用ガスとして、キセノン(Xe)ガスが2kPa、10kPa、60kPa(いずれも25℃換算)からなる封入圧の異なる3種類のもの用いた。また、放電容器2は、材質が合成石英ガラスからなり、外側管3の外径がφ26mm、内側管4の外径がφ16mm、長さ25cm、内容積63ccのものを用いた。
【0021】
図2は、エキシマランプ1を点灯するための点灯回路の構成を示すブロック図である。
同図において、7は1MHz〜1GHzの高周波(基準周波数)を発生する高周波発生回路、8は1MHz〜1GHzの高周波(基準周波数)を変調するために、周波数の下限が1kHz以上、上限が1MHz〜1GHzの1/10以下であって、デューティ比が10〜80%のパルス変調信号を発生する変調信号発生回路、9はパルス変調された高周波電圧を発生し増幅する変調増幅回路、10はパルス変調された高周波電圧をエキシマランプ1に印加するための整合回路である。
【0022】
図3(a)は、エキシマランプに印加されるパルス変調された高周波電圧、図3(b)は、エキシマランプから放射される真空紫外光の光出力を示す図である。
同図に示すように、本発明によれば、エキシマランプ1に、1MHz〜1GHzの周波数電圧(基準周波数)を、周波数が1kHz以上、1MHz〜1GHzの1/10以下の周波数であって、デューティ比が10〜80%のパルス変調信号によって変調された高周波電圧を印加して点灯することにより、エキシマ光を効率よく発光させ、印加電圧を低くすることが可能な、高出力の真空紫外光を出力させることができる。
【0023】
次に、エキシマランプに上記の条件からなる高周波電圧を印加することを知見するに至ったエキシマランプ点灯装置による実験結果を、図4ないし図8の表に示す。
【0024】
この実験は、図1に示したエキシマランプとして、キセノン(Xe)ガスの封入圧が2kPa、10kPa、60kPaの3種類のもの用い、図2に示した点灯回路において、高周波発生回路7において800kHz〜1GHzの範囲において高周波(基準周波数)を種々に変化させ、また変調信号発生回路8において、周波数を100Hz〜500MHzの範囲で、かつデューティ比を5〜90%の範囲のパルス変調周波数を種々に変化させて行ったものである。
【0025】
なお、これらの図において、効率比とは、両者とも高周波(基準周波数)の周波数が同じであり、一方の図10(a)に示すよう高周波(基準周波数)を連続的に供給した場合の入力電力(消費電力)と、他方の図3(a)に示すように高周波(基準周波数)をパルス的(間欠的)に供給した場合の入力電力(消費電力)とが等しくなる条件下において、一方の連続的に供給した場合の真空紫外光(172nm波長)の光出力に対する他方のパルス的(間欠的)に供給した場合の真空紫外光(172nm波長)の光出力との比を表したものである。またこれらの表における○は効率比の改善が特に認められた実験結果を示すものである。
【0026】
図4〜図8に示すように、この実験結果から以下に示すような点灯条件が見出された。
まず、図4の表に示すように、基準周波数が800kHz程度では、これをパルス的(間欠的)に変調したいかなる高周波電圧で印加しても、効率比の改善が見られないことが分かる。よって、基準周波数は1MHz〜1GHzの範囲にあることが分かる。
【0027】
また、図5〜図8の表に示すように、パルス変調周波数の下限値は1kHz以上なければならないことが分かる。これはパルス変調周波数が1kHz以下では、パルス変調周波数の1周期におけるパルスON期間が長くなり、結果として、このON期間内に図10(b)に示したような状態を呈するためと考えられる。また、パルス変調周波数の上限値も、図5〜図8の表に示すように、基準周波数の1/10以上では効率比の改善が見られないことが分かる。例えば、基準周波数の1/2では効率比の改善は見られない。これはパルス変調周波数の1周期におけるパルスON期間が短く、即ち、基準周波数の期間が短すぎて、エキシマランプへの1パルス当たりの入力電力が不足して基底Xe原子を励起できないためと考えられる。
【0028】
また、同じく、図5〜図8の表に示すように、デューティ比10〜80%の範囲においては、効率比の改善が見られる。デューティ比が10%以下では、パルス変調周波数の1周期におけるパルスON期間が短すぎて、エキシマランプへの入力電力が不足し、エキシマ分子の生成する時間がないためと考えられる。また、デューティ比が80%以上では、パルス変調周波数の1周期におけるパルスON期間が長くなるため、ON期間内は図10(b)に示したような状態を呈してしまうと考えられる。
【0029】
【発明の効果】
請求項1に記載の発明によれば、エキシマランプにおける放電ガスの圧力が10kPa以上であり、エキシマランプ点灯回路から供給される高周波電圧が、1MHz〜1GHzの高周波を、周波数が1kHz以上、前記1MHz〜1GHzの高周波の1/10以下であって、デューティ比が10〜80%の変調信号でパルス変調するようにしたので、エキシマランプの点灯周波数をMHz帯域としてもエキシマ光の発光効率を高くとることができると共に、印加電圧を低くすることができ、真空紫外光の高出力化が可能なエキシマランプ点灯装置を実現することができる。
【図面の簡単な説明】
【図1】本発明に係るエキシマランプの管軸方向の断面図およびエキシマランプの管軸方向に対して直角方向から見た断面図である。
【図2】本発明に係るエキシマランプの点灯回路の構成を示すブロック図である。
【図3】本発明に係るエキシマランプに印加されるパルス変調された高周波電圧およびエキシマランプから放射される真空紫外光の光出力を示す図である。
【図4】エキシマランプ点灯装置における実験結果を示す表である。
【図5】エキシマランプ点灯装置における実験結果を示す表である。
【図6】エキシマランプ点灯装置における実験結果を示す表である。
【図7】エキシマランプ点灯装置における実験結果を示す表である。
【図8】エキシマランプ点灯装置における実験結果を示す表である。
【図9】Xeのエネルギー準位の一部を示す図である。
【図10】従来技術に係るエキシマランプに連続的に印加される1MHz〜1GHzの高周波電圧およびエキシマランプから放射される真空紫外光の光出力を示す図である。
【符号の説明】
1 エキシマランプ
2 放電容器
3 外側管
4 内側管
5 第1の電極
6 第2の電極
7 高周波発生回路
8 変調信号発生回路
9 変調増幅回路
10 整合回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an excimer lamp lighting device that generates excimer molecules by electric discharge and uses light emitted from the excimer molecules.
[0002]
[Prior art]
2. Description of the Related Art An excimer lamp, which is one of vacuum ultraviolet light emitting lamps having a high-efficiency radiation performance, has been used for processes such as curing, dry cleaning, sterilization, surface modification, and photo-CVD using a photochemical reaction.
[0003]
As an excimer lamp, a lamp utilizing a dielectric barrier discharge is known. For example, as disclosed in Japanese Patent Application Laid-Open No. 2-7353, a discharge gas for generating excimer molecules is formed in a discharge vessel. After filling, a dielectric barrier discharge (also known as an ozonizer discharge or a silent discharge, a new edition of the “Discharge Handbook” published by the Institute of Electrical Engineers of Japan, reprinted in June 2001, reprinted in 7th edition, page 263) to generate excimer molecules, and vacuum ultraviolet from the excimer molecules It emits light.
[0004]
In an excimer lamp using such a dielectric barrier discharge, it is known that, for example, when a rectangular wave voltage having a frequency of several tens of kHz is applied to the excimer lamp, vacuum ultraviolet light having high luminous efficiency can be obtained.
[0005]
On the other hand, when vacuum ultraviolet light is emitted using an excimer lamp lighting device, it is necessary to increase the output in order to shorten the processing time, but in order to increase the output, when trying to light at a frequency of several tens of kHz, It is necessary to apply a high voltage of about 5 kV. However, such high voltages create a troublesome insulation problem for excimer lamp lighting devices.
[0006]
Therefore, in order to avoid such an insulation problem, a frequency in the MHz band, which is lower than the applied voltage at several tens of kHz, is used (for example, at a frequency of several MHz, the applied voltage is about 1 kV. The application of the dielectric barrier discharge is considered.
[0007]
[Problems to be solved by the invention]
However, in the excimer lamp device, when it is attempted to operate at a frequency in the MHz band, the amount of radiation of vacuum ultraviolet light is smaller than when operating at a frequency of several tens of kHz, that is, the emission efficiency of excimer light is poor. Occurs. The reason is described below.
[0008]
First, the phenomenon of excimer light emission will be described in detail with reference to FIG. 9 in terms of the energy level of Xe (xenon) and the electron temperature.
FIG. 9 is a diagram showing a part of the energy level of Xe. Here, the Xe atom (Xe ( 1 S 0 )) in the ground state obtains energy by colliding with high-energy electrons during discharge. As a result, an excited state (Xe * (res), Xe * (met)) is obtained. The Xe atom that has reached the excited state changes to an Xe excimer by three-body collision with the Xe atom in the ground state (Xe * + Xe * + Xe → Xe 2 * + Xe). The Xe excimer thus generated emits vacuum ultraviolet light having a wavelength of 172 nm by being de-excited.
[0009]
Therefore, when vacuum ultraviolet light is emitted by such a process, in order to increase the amount of vacuum ultraviolet light emitted, Xe atoms in the ground state are frequently excited to increase Xe atoms in the excited state. , And the Xe atom in the excited state must be changed to Xe excimer.
[0010]
Electrons during a steady discharge have various energies, and the energies are generally several eV, and few electrons have high energies of 8 eV or more necessary to excite Xe atoms in the ground state. Therefore, in the above process, in the former process, it is necessary to increase the ratio of the number of high-energy electrons by increasing the energy distribution of electrons.
The latter process is achieved by increasing the number of Xe atoms in the discharge, which is why conventional excimer lamps operate at relatively high gas pressures of 10 kPa or more.
[0011]
However, when a high frequency of 1 MHz to 1 GHz is continuously applied to the lamp, the above process is not performed efficiently as shown in FIG.
That is, immediately after the lamp is turned on, that is, immediately after the discharge is generated, the high-frequency electromagnetic energy input into the lamp is mainly absorbed by the electrons, and only the electrons are heated to a high energy state (high electron temperature). An electron in a high energy state collides with an Xe atom to give energy to the Xe atom, and generates a large amount of Xe excimer in an excited state. However, when a sufficient time (msec order or more) elapses from the discharge generation, the above collision process reaches a steady state, the electron temperature decreases, the gas temperature (atomic temperature), and the ion temperature rise and calm down. .
[0012]
As described above, when a high frequency of 1 MHz to 1 GHz is continuously applied to the lamp, immediately after the application of the high frequency voltage, the electron temperature rises rapidly and is in a very high state, and the light output is correspondingly high. Although it increases, it calms down to a steady state thereafter, and when the gas temperature increases, the unstable excimer molecules are liable to be broken, and the light output decreases.
[0013]
Thus, the following is found from the above. That is, the input power (power consumption) when the high frequency of 1 MHz to 1 GHz is continuously supplied and the input power (power consumption) when the high frequency of 1 MHz to 1 GHz is supplied in a pulsed (intermittent) manner. Under the conditions, when a high frequency of 1 MHz to 1 GHz is supplied to the lamp in a pulsed manner (intermittently), the voltage value in the pulse ON period (output period) may be higher than that of a continuous wave. Since the discharge can completely disappear during the pulse OFF period (pause period) and the temperature of the gas can be lowered, the energy distribution of electrons can be made higher and the ratio of the number of high energy electrons can be reduced. It is possible to increase the number of excited species and, consequently, the vacuum ultraviolet light.
[0014]
An object of the present invention is to supply a high-frequency voltage in the MHz band to an excimer lamp in a pulsed manner (intermittently) based on the above findings, thereby efficiently emitting excimer light and reducing the applied voltage. Another object of the present invention is to provide an excimer lamp lighting device capable of emitting high-output vacuum ultraviolet light.
[0015]
[Means for Solving the Problems]
The present invention employs the following means in order to solve the above problems.
[0016]
The first means is an excimer lamp in which a discharge gas that generates excimer molecules by discharge is filled in a discharge vessel, and a dielectric is disposed between at least one electrode of the pair of electrodes and the discharge space, An excimer lamp lighting circuit, which is connected to the pair of electrodes and supplies a high-frequency voltage to light the excimer lamp, wherein the excimer lamp has a pressure of the discharge gas of 10 kPa or more; The high-frequency voltage supplied from the lighting circuit is a high-frequency voltage of 1 MHz to 1 GHz, and a pulse of a modulation signal having a frequency of 1 kHz or more and 1/10 or less of the high frequency of 1 MHz to 1 GHz and a duty ratio of 10 to 80%. It is characterized by being modulated.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1A is a cross-sectional view of the excimer lamp in the tube axis direction, and FIG. 1B is a cross-sectional view taken along AA in FIG. 1A.
[0018]
In FIG. 1, reference numeral 1 denotes an excimer lamp, 2 denotes a discharge vessel in which a discharge gas for forming excimer molecules such as xenon gas is filled at 10 kPa or more, and is formed in a bamboo ring shape; Is an inner tube of the discharge vessel 2, 5 is a first electrode formed on the outer tube 3 of the discharge vessel 2 in a mesh pattern, and 6 is a second electrode formed on the inner tube 4 of the discharge vessel 2. It is.
[0019]
As shown in FIG. 1, the discharge vessel 2 of the excimer lamp 1 has a double-tube structure in which an outer tube 3 and an inner tube 4 made of a dielectric material are coaxially arranged, and both ends of the outer tube 3 and the inner tube 4 are provided. Is closed, during which a discharge space is formed. When a high-frequency voltage, which will be described in detail later, is applied between the first electrode 5 and the second electrode 6 from a lighting circuit to be described later, a discharge occurs in the discharge vessel 2 and the excimer generated by being excited by the discharge is generated. Vacuum ultraviolet light is generated from the molecule, and the generated vacuum ultraviolet light can be radiated outside from between the mesh-shaped first electrodes 5 of the outer tube 3.
[0020]
The excimer lamps used in the experiments described below include three types of xenon (Xe) gas of 2 kPa, 10 kPa, and 60 kPa (each converted to 25 ° C.) containing xenon (Xe) gas as a discharge gas for generating excimer molecules. Used. The discharge vessel 2 was made of synthetic quartz glass, and the outer tube 3 had an outer diameter of 26 mm, the inner tube 4 had an outer diameter of 16 mm, a length of 25 cm, and an inner volume of 63 cc.
[0021]
FIG. 2 is a block diagram showing a configuration of a lighting circuit for lighting the excimer lamp 1.
In the figure, 7 is a high frequency generating circuit for generating a high frequency (reference frequency) of 1 MHz to 1 GHz, and 8 is a high frequency (reference frequency) of 1 MHz to 1 GHz. A modulation signal generation circuit for generating a pulse modulation signal having a duty ratio of 10 to 80% which is 1/10 or less of 1 GHz, a modulation amplification circuit 9 for generating and amplifying a pulse-modulated high-frequency voltage, and a pulse modulation circuit 10 This is a matching circuit for applying the applied high-frequency voltage to the excimer lamp 1.
[0022]
FIG. 3A is a diagram illustrating a pulse-modulated high-frequency voltage applied to an excimer lamp, and FIG. 3B is a diagram illustrating a light output of vacuum ultraviolet light emitted from the excimer lamp.
As shown in the figure, according to the present invention, a frequency voltage (reference frequency) of 1 MHz to 1 GHz is applied to the excimer lamp 1 at a frequency of 1 kHz or more and 1/10 or less of 1 MHz to 1 GHz, and By applying a high-frequency voltage modulated by a pulse modulation signal having a ratio of 10 to 80% and lighting the device, excimer light can be efficiently emitted, and high-output vacuum ultraviolet light capable of reducing the applied voltage can be obtained. Can be output.
[0023]
Next, the results of experiments with an excimer lamp lighting device that led to the knowledge of applying a high-frequency voltage under the above conditions to the excimer lamp are shown in the tables of FIGS.
[0024]
In this experiment, three kinds of excimer lamps shown in FIG. 1 having xenon (Xe) gas filling pressures of 2 kPa, 10 kPa, and 60 kPa were used, and in the lighting circuit shown in FIG. The high frequency (reference frequency) is changed variously in the range of 1 GHz, and the modulation signal generating circuit 8 changes the pulse modulation frequency in the frequency range of 100 Hz to 500 MHz and the duty ratio in the range of 5 to 90%. It was done.
[0025]
In these figures, the efficiency ratio refers to the input when the high frequency (reference frequency) is continuously supplied as shown in FIG. Under the condition that the power (power consumption) is equal to the input power (power consumption) when a high frequency (reference frequency) is supplied in a pulsed (intermittent) manner as shown in FIG. Represents the ratio of the light output of vacuum ultraviolet light (172 nm wavelength) when continuously supplied to the light output of vacuum ultraviolet light (172 nm wavelength) when supplied in the other pulsed (intermittent) manner. is there. In these tables, ○ indicates the experimental results in which the efficiency ratio was particularly improved.
[0026]
As shown in FIGS. 4 to 8, the following lighting conditions were found from the experimental results.
First, as shown in the table of FIG. 4, when the reference frequency is about 800 kHz, no improvement in the efficiency ratio is observed even if the reference frequency is applied with any high-frequency voltage modulated in a pulsed (intermittent) manner. Therefore, it is understood that the reference frequency is in the range of 1 MHz to 1 GHz.
[0027]
Also, as shown in the tables of FIGS. 5 to 8, it can be seen that the lower limit value of the pulse modulation frequency must be 1 kHz or more. This is presumably because when the pulse modulation frequency is 1 kHz or less, the pulse ON period in one cycle of the pulse modulation frequency becomes longer, and as a result, the state shown in FIG. Also, as shown in the tables of FIGS. 5 to 8, the upper limit of the pulse modulation frequency does not show any improvement in the efficiency ratio when the reference frequency is 1/10 or more. For example, no improvement in the efficiency ratio is observed at half the reference frequency. This is considered to be because the pulse ON period in one cycle of the pulse modulation frequency is short, that is, the period of the reference frequency is too short, and the input power per pulse to the excimer lamp is insufficient to excite the base Xe atoms. .
[0028]
Similarly, as shown in the tables of FIGS. 5 to 8, the efficiency ratio is improved in the range of the duty ratio of 10 to 80%. If the duty ratio is 10% or less, it is considered that the pulse ON period in one cycle of the pulse modulation frequency is too short, the input power to the excimer lamp is insufficient, and there is no time to generate excimer molecules. Further, when the duty ratio is 80% or more, the pulse ON period in one cycle of the pulse modulation frequency becomes longer, so that it is considered that the state shown in FIG. 10B is exhibited during the ON period.
[0029]
【The invention's effect】
According to the first aspect of the present invention, the pressure of the discharge gas in the excimer lamp is 10 kPa or more, the high frequency voltage supplied from the excimer lamp lighting circuit is a high frequency of 1 MHz to 1 GHz, the frequency is 1 kHz or more, and the frequency is 1 MHz or more. Since the pulse modulation is performed with a modulation signal having a duty ratio of 10 to 80%, which is 1/10 or less of a high frequency of 1 GHz, the light emission efficiency of the excimer light is increased even when the excimer lamp lighting frequency is set to the MHz band. As a result, the applied voltage can be reduced, and an excimer lamp lighting device capable of increasing the output of vacuum ultraviolet light can be realized.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an excimer lamp according to the present invention in a tube axis direction and a cross-sectional view of the excimer lamp viewed from a direction perpendicular to the tube axis direction.
FIG. 2 is a block diagram showing a configuration of a lighting circuit of an excimer lamp according to the present invention.
FIG. 3 is a diagram showing a pulse-modulated high-frequency voltage applied to an excimer lamp and an optical output of vacuum ultraviolet light emitted from the excimer lamp according to the present invention.
FIG. 4 is a table showing experimental results in an excimer lamp lighting device.
FIG. 5 is a table showing experimental results in an excimer lamp lighting device.
FIG. 6 is a table showing experimental results in an excimer lamp lighting device.
FIG. 7 is a table showing experimental results in an excimer lamp lighting device.
FIG. 8 is a table showing experimental results in an excimer lamp lighting device.
FIG. 9 is a diagram showing a part of the energy level of Xe.
FIG. 10 is a diagram showing a high-frequency voltage of 1 MHz to 1 GHz continuously applied to an excimer lamp according to the related art and an optical output of vacuum ultraviolet light radiated from the excimer lamp.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 excimer lamp 2 discharge vessel 3 outer tube 4 inner tube 5 first electrode 6 second electrode 7 high-frequency generation circuit 8 modulation signal generation circuit 9 modulation amplification circuit 10 matching circuit

Claims (1)

放電によってエキシマ分子を生成する放電ガスが放電容器内に充填され、一対の電極のうち少なくとも一方の電極と前記放電空間との間に誘電体が配置されたエキシマランプと、
前記一対の電極に接続され、高周波電圧を供給してエキシマランプを点灯させるエキシマランプ点灯回路と、
からなるエキシマランプ点灯装置において、
前記エキシマランプにおける前記放電ガスの圧力が10kPa以上であり、前記エキシマランプ点灯回路から供給される前記高周波電圧が、1MHz〜1GHzの高周波を、周波数が1kHz以上、前記1MHz〜1GHzの高周波の1/10以下であって、デューティ比が10〜80%の変調信号でパルス変調されていることを特徴とするエキシマランプ点灯装置。
An excimer lamp in which a discharge gas that generates excimer molecules by discharge is filled in a discharge vessel, and a dielectric is disposed between at least one of the pair of electrodes and the discharge space,
An excimer lamp lighting circuit that is connected to the pair of electrodes and supplies a high-frequency voltage to light the excimer lamp;
An excimer lamp lighting device comprising
The pressure of the discharge gas in the excimer lamp is 10 kPa or more, and the high-frequency voltage supplied from the excimer lamp lighting circuit is a high frequency of 1 MHz to 1 GHz. An excimer lamp lighting device, wherein the pulse modulation is performed with a modulation signal having a duty ratio of 10 to 80% or less.
JP2002256918A 2002-09-02 2002-09-02 Excimer lamp lighting device Expired - Lifetime JP4140320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002256918A JP4140320B2 (en) 2002-09-02 2002-09-02 Excimer lamp lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002256918A JP4140320B2 (en) 2002-09-02 2002-09-02 Excimer lamp lighting device

Publications (2)

Publication Number Publication Date
JP2004095441A true JP2004095441A (en) 2004-03-25
JP4140320B2 JP4140320B2 (en) 2008-08-27

Family

ID=32061997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002256918A Expired - Lifetime JP4140320B2 (en) 2002-09-02 2002-09-02 Excimer lamp lighting device

Country Status (1)

Country Link
JP (1) JP4140320B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008511966A (en) * 2004-08-30 2008-04-17 ルトガーズ、ザ ステイト ユニバーシティ Corona discharge lamp
JP2014034008A (en) * 2012-08-09 2014-02-24 Ushio Inc Gas activation device, nitrogen oxide treatment device, and nitrogen oxide treatment method
JP2020185532A (en) * 2019-05-14 2020-11-19 ウシオ電機株式会社 Ultraviolet irradiation device and gas treatment apparatus comprising the same
JP2021001099A (en) * 2019-06-25 2021-01-07 株式会社オーク製作所 Ozone generator and ozone generating method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008511966A (en) * 2004-08-30 2008-04-17 ルトガーズ、ザ ステイト ユニバーシティ Corona discharge lamp
JP2014034008A (en) * 2012-08-09 2014-02-24 Ushio Inc Gas activation device, nitrogen oxide treatment device, and nitrogen oxide treatment method
JP2020185532A (en) * 2019-05-14 2020-11-19 ウシオ電機株式会社 Ultraviolet irradiation device and gas treatment apparatus comprising the same
JP7287103B2 (en) 2019-05-14 2023-06-06 ウシオ電機株式会社 Ultraviolet irradiation device and gas treatment device provided with the same
JP2021001099A (en) * 2019-06-25 2021-01-07 株式会社オーク製作所 Ozone generator and ozone generating method
JP7370037B2 (en) 2019-06-25 2023-10-27 株式会社オーク製作所 Ozone generator and ozone generation method

Also Published As

Publication number Publication date
JP4140320B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
Kogelschatz et al. From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges
JP4714868B2 (en) Discharge lamp equipment
KR100212684B1 (en) Light source device using a dielectric barrier discharge lamp
JP2771428B2 (en) High power beam generator
US6408052B1 (en) Z-pinch plasma X-ray source using surface discharge preionization
JP3355976B2 (en) Discharge lamp lighting device
US6633109B2 (en) Dielectric barrier discharge-driven (V)UV light source for fluid treatment
KR940009330B1 (en) Rare gas discharge fluorescent lamp device
HU221362B1 (en) Method for operating discharge lamp
JPH03201358A (en) High-output beam radiation device
JP4140320B2 (en) Excimer lamp lighting device
JPS61208743A (en) Ultraviolet treatment device
JP4196649B2 (en) Excimer light source device
JP2007080705A (en) Microwave discharge lamp and microwave discharge light source device equipped with the microwave discharge lamp
JP2775698B2 (en) Dielectric barrier discharge lamp device
JP2001155687A (en) Dielectric barrier discharge lamp device, dielectric barrier discharge lamp lighting device and ultraviolet irradiation device
TW202414507A (en) Eximer lamp assembly with trigger for plasma formation
JPH07272672A (en) Fluorescent lamp
RU2291516C2 (en) Vacuum lamp of ultraviolet spectrum range
JP5010415B2 (en) Antenna-excited gas discharge lamp
KR20240006992A (en) Eximer lamp assembly with trigger for plasma formation
KR200288954Y1 (en) Ozonizer
JP3267668B2 (en) UV generator
Lomaev et al. One-and two-barrier excilamps on xenon dimers operating in the VUV range
Jin-zhou et al. UV Emission of Excimer XeCl* Excited in Dielectric Barrier Discharge by using Pulse Power Supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4140320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term