JP5010415B2 - Antenna-excited gas discharge lamp - Google Patents

Antenna-excited gas discharge lamp Download PDF

Info

Publication number
JP5010415B2
JP5010415B2 JP2007249344A JP2007249344A JP5010415B2 JP 5010415 B2 JP5010415 B2 JP 5010415B2 JP 2007249344 A JP2007249344 A JP 2007249344A JP 2007249344 A JP2007249344 A JP 2007249344A JP 5010415 B2 JP5010415 B2 JP 5010415B2
Authority
JP
Japan
Prior art keywords
discharge
gas
antenna
discharge vessel
xenon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007249344A
Other languages
Japanese (ja)
Other versions
JP2009081043A (en
Inventor
正士 神藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PLASMA APPLICATIONS INC.
Shizuoka University NUC
Original Assignee
PLASMA APPLICATIONS INC.
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PLASMA APPLICATIONS INC., Shizuoka University NUC filed Critical PLASMA APPLICATIONS INC.
Priority to JP2007249344A priority Critical patent/JP5010415B2/en
Publication of JP2009081043A publication Critical patent/JP2009081043A/en
Application granted granted Critical
Publication of JP5010415B2 publication Critical patent/JP5010415B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)

Description

本発明は、放電容器内に突出させたアンテナ部材からプラズマを発生させ、該プラズマにより放電容器内の放電ガスを励起してエキシマを効率よく生成するアンテナ励起型ガス放電灯に関するものである。   The present invention relates to an antenna-excited gas discharge lamp that generates plasma from an antenna member protruding into a discharge vessel and excites a discharge gas in the discharge vessel by the plasma to efficiently generate excimer.

一般に、200nm以下の波長をもつVUV光(真空紫外線)は光エネルギーが大きく、材料表面の改質、洗浄、あるいは水処理等、産業に利用すべく注目されている。   In general, VUV light (vacuum ultraviolet light) having a wavelength of 200 nm or less has a large light energy, and is attracting attention for use in industries such as material surface modification, cleaning, or water treatment.

ところで、従来におけるVUV発光用のガス放電灯として、誘電体バリア放電型ガス放電灯があった。即ち、ガラスあるいはセラミックス等の誘電体からなる放電容器内にキセノン、アルゴン、等の放電ガス(不活性ガス)を充填し、前記放電容器の外面に一対の電極を放電容器に沿って延長配置し、各電極間に交流電圧を印加して前記放電容器内の放電ガスを励起し、該放電ガスからエキシマ分子を生成し、該エキシマ分子によってVUV光を得るようにしたものがあった。   By the way, as a conventional gas discharge lamp for VUV emission, there has been a dielectric barrier discharge type gas discharge lamp. That is, a discharge vessel made of a dielectric material such as glass or ceramics is filled with a discharge gas (inert gas) such as xenon or argon, and a pair of electrodes are extended along the discharge vessel on the outer surface of the discharge vessel. There is one in which an alternating voltage is applied between the electrodes to excite the discharge gas in the discharge vessel, excimer molecules are generated from the discharge gas, and VUV light is obtained by the excimer molecules.

前記従来のものは、電極間に交流電圧を印加して放電ガスを励起するようにしていたので、電極が加熱して放電容器内の放電ガスが加熱され易く、放電ガスの電子温度が昇温してエキシマ分子が発生し難くなるものであった。また、一対の電極を放電容器の外面に沿って延長させるようにしていたので、構造が複雑になるとともに、VUV光が拡散するため、該VUV光を対象物に局所的に照射させることができず、使用範囲が限定されるものであった。また、電極間に数kv〜10数kvの高電圧を必要とし、絶縁対策等、電気回路が複雑になって高価になるとともに、装置が大型になるものであった。
特開2004−363102号公報 特開2006−331903号公報
In the prior art, an AC voltage is applied between the electrodes to excite the discharge gas. Therefore, the electrodes are heated to easily heat the discharge gas in the discharge vessel, and the electron temperature of the discharge gas is increased. Thus, the excimer molecule is hardly generated. In addition, since the pair of electrodes are extended along the outer surface of the discharge vessel, the structure becomes complicated and VUV light diffuses, so that the object can be locally irradiated with the VUV light. However, the range of use was limited. In addition, a high voltage of several kv to several tens kv is required between the electrodes, and the electric circuit becomes complicated and expensive, such as measures against insulation, and the apparatus becomes large.
JP 2004-363102 A JP 2006-331903 A

本発明は、構造簡素にしてVUV光の発光効率が高くなるアンテナ励起型ガス放電灯を得るようにしたものである。   The present invention provides an antenna-excited gas discharge lamp having a simple structure and high luminous efficiency of VUV light.

請求項1に係る発明は、放電ガスが充填される中空の放電容器内にアンテナ部材を突出させ、該アンテナ部材の突出部から前記放電容器内にマイクロ波パルスを放出させるマイクロ波発振装置を設け、前記放電容器内に充填される放電ガスはキセノンを主体とするエキシマガスであり、マイクロ波の出力を、前記放電容器内に生成されるエキシマプラズマの電子温度が1eV〜2eVとなるようにマイクロ波パルスの周波数、及びデュ−ティ比を制御するパルス出力設定部を設けたものである。
請求項に係る発明は、前記放電容器内にキセノンガスを主体として充填するとともに、該キセノンガスを、該キセノンガスが共鳴発光する26.6kPa以下の圧力で放電容器内に充填したものである。
請求項に係る発明は、前記前記放電容器内にキセノンガスを主体として充填するとともに、該キセノンガスを、該キセノンガスがエキシマ発光する約500kPa以上の圧力で放電容器内に充填したものである。
請求項に係る発明は、放電容器の一端部に、第1アンテナ部材、及び第2アンテナ部材を鉛直方向に間隔をおいて並列に配置するとともに、該第1、第2アンテナ部材を放電容器の一端部から該放電容器内に突出させ、第1、第2アンテナ部材の突出端部を放電容器内にて互いに接近する上下方向に屈曲させ、該屈曲した端部同士間の間隔を、放電ガスを放電可能とする強いマイクロ波電界を励起することができる間隙としたものである。
請求項に係る発明は、前記放電容器の一端部と他端部とに、第1アンテナ部材と第2アンテナ部材とを鉛直方向に変位させて平行に配置するとともに、該第1、第2アンテナ部材を放電容器の両端部から該放電容器内に突出させ、第1、第2アンテナ部材の突出端部を放電容器内にて、放電ガスの放電を可能とする強いマイクロ波電界を励起することができる間隙となる如く上下方向に変位させたものである。
According to a first aspect of the present invention, there is provided a microwave oscillation device for projecting an antenna member into a hollow discharge container filled with a discharge gas and emitting a microwave pulse into the discharge container from the projecting portion of the antenna member. The discharge gas filled in the discharge vessel is an excimer gas mainly composed of xenon, and the microwave output is microscopic so that the electron temperature of the excimer plasma generated in the discharge vessel is 1 eV to 2 eV. A pulse output setting unit for controlling the frequency of the wave pulse and the duty ratio is provided.
According to a second aspect of the present invention, the discharge vessel is filled mainly with xenon gas, and the xenon gas is filled into the discharge vessel at a pressure of 26.6 kPa or less at which the xenon gas emits resonance. .
According to a third aspect of the present invention, the discharge vessel is filled mainly with xenon gas, and the xenon gas is filled in the discharge vessel at a pressure of about 500 kPa or more at which the xenon gas emits excimer light. .
According to a fourth aspect of the present invention, the first antenna member and the second antenna member are arranged in parallel at a distance in the vertical direction at one end of the discharge vessel, and the first and second antenna members are arranged in the discharge vessel. Projecting into the discharge vessel from one end , and bending the projecting ends of the first and second antenna members in the vertical direction approaching each other in the discharge vessel, and the interval between the bent ends is It is a gap that can excite a strong microwave electric field that allows gas to be discharged .
According to a fifth aspect of the present invention, the first antenna member and the second antenna member are displaced in the vertical direction and arranged in parallel at one end and the other end of the discharge vessel. The antenna member is protruded from both ends of the discharge vessel into the discharge vessel, and the protruding end portions of the first and second antenna members are excited in the discharge vessel to excite a strong microwave electric field that enables discharge of the discharge gas. It is displaced in the vertical direction so that a gap can be formed .

請求項1に係る発明は、放電容器内に突出したアンテナ部材からマイクロ波が発せられるので小型かつ構造簡素にして放電容器内の放電ガスが効率良く励起されるとともに、点光源化したエキシマが生成されることになる。また、アンテナ部材から発するマイクロ波を出力制御の容易なマイクロ波パルスとし、該マイクロ波パルスの出力をパルス出力設定部により、前記放電ガスがエキシマの生成に適した電子温度に容易に対応させることができ、放電ガスからエキシマが効率良く生成されることになる。また、前記放電ガスをキセノンガスを主体とし、マイクロ波パルスは、前記キセノンガスの電子温度が1eV〜2eVとなるパルス周波数、及びデュ−ティ比としたので、キセノンガスからキセノンエキシマが効率良く生成されることになる。
請求項に係る発明は、前記放電容器内にキセノンガスを主体とする放電ガスを26.6kPa以下の圧力で充填したので、波長147nmのキセノン共鳴線を安定して得ることができる。
請求項に係る発明は、前記放電容器内にキセノンガスを主体とする放電ガスを約500kPa以上の圧力で充填したので、波長172nmのキセノンエキシマの発光を安定して得ることができる。
請求項に係る発明は、第1、第2アンテナ部材の突出端部を放電容器内にて上下方向に変位させたので、両者間で発生するプラズマ柱が上下(重力)方向の紡錘状となり、発光時に放電容器1内で上下に対流する放電ガスに左右され難くなる。このため、エキシマが点光源化することになる。
請求項に係る発明は、第1、第2アンテナ部材を放電容器の一端部から該放電容器内に突出させたので、放電管の他端側に放射光の遮蔽物がなくなる。このため、放射光を有効に活用することができる。
In the invention according to claim 1, since the microwave is emitted from the antenna member protruding into the discharge vessel, the discharge gas in the discharge vessel is efficiently excited with a small size and a simple structure, and an excimer converted into a point light source is generated. Will be. In addition, the microwave emitted from the antenna member is a microwave pulse whose output can be easily controlled, and the output of the microwave pulse is easily made to correspond to the electron temperature suitable for excimer generation by the pulse output setting unit. Thus, excimer is efficiently generated from the discharge gas. Moreover, since the discharge gas is mainly xenon gas and the microwave pulse has a pulse frequency and duty ratio at which the electron temperature of the xenon gas is 1 eV to 2 eV, xenon excimer is efficiently generated from the xenon gas. Will be.
In the invention according to claim 2 , since the discharge vessel mainly filled with xenon gas is filled at a pressure of 26.6 kPa or less, a xenon resonance line having a wavelength of 147 nm can be stably obtained.
In the invention according to claim 3 , since the discharge vessel mainly filled with xenon gas is filled at a pressure of about 500 kPa or more, the emission of xenon excimer having a wavelength of 172 nm can be stably obtained.
In the invention according to claim 4 , since the projecting ends of the first and second antenna members are displaced in the vertical direction in the discharge vessel, the plasma column generated between the two becomes a spindle shape in the vertical (gravity) direction. It becomes difficult to be influenced by the discharge gas that convects up and down in the discharge vessel 1 during light emission. For this reason, the excimer becomes a point light source.
In the invention according to claim 5 , since the first and second antenna members are protruded from one end of the discharge vessel into the discharge vessel, there is no radiated light shielding on the other end of the discharge tube. For this reason, radiated light can be used effectively.

以下、本発明の実施の形態を図面に基いて説明する。図面において、図1は本発明によるアンテナ励起型ガス放電灯の第1実施例を示す断面図、図2は本発明によるアンテナ励起型ガス放電灯の第2実施例を示す断面図、図3はキセノンガス圧と発光スペクトルとの関係を示す発光スペクトル特性図、図4はキセノンガス圧に対する147nm、172nmの発光強度の特性を示す発光強度特性図、図5はキセノン励起原子の生成効率とキセノンの電子温度との関係を示す特性図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 is a cross-sectional view showing a first embodiment of an antenna-excited gas discharge lamp according to the present invention, FIG. 2 is a cross-sectional view showing a second embodiment of an antenna-excited gas discharge lamp according to the present invention, and FIG. FIG. 4 is an emission spectrum characteristic diagram showing the relationship between the xenon gas pressure and the emission spectrum, FIG. 4 is an emission intensity characteristic graph showing the emission intensity characteristics of 147 nm and 172 nm with respect to the xenon gas pressure, and FIG. It is a characteristic view which shows the relationship with electron temperature.

図1において、1はマイクロ波発振装置であり、マイクロ波パルスを発振する固体マイクロ波発振器2及びパルス出力設定部3を有する。パルス出力設定部3は、固体マイクロ波発振器2から発振されるマイクロ波パルスを所望のパルス周波数及びデュ−ティ比に変調し、同軸ケーブル4を介して同軸導波管(ラーンチャ)5に導かれ、放電灯10に供給される。   In FIG. 1, reference numeral 1 denotes a microwave oscillating device, which includes a solid-state microwave oscillator 2 that oscillates a microwave pulse and a pulse output setting unit 3. The pulse output setting unit 3 modulates a microwave pulse oscillated from the solid-state microwave oscillator 2 to a desired pulse frequency and duty ratio, and is guided to a coaxial waveguide (launcher) 5 via a coaxial cable 4. , Supplied to the discharge lamp 10.

前記同軸導波管5は、導体性資材、本例では銅により形成され、円筒状の外部導体6内に同じく円筒状の内部導体7が所定の間隙を保持して同軸に嵌合され、該同軸導波管5の特性インピーダンスは、固体マイクロ波発振器2、及びパルス出力設定部3が有する特性インピーダンスと等しくなるように設定、本例では50Ωに設定されている。8は外部導体6と内部導体7とを同軸に保持する絶縁体であり、石英ガラス、アルミナ、ポリエチレン等の低い誘電体損失を有する絶縁資材により形成されている。   The coaxial waveguide 5 is formed of a conductive material, in this example, copper, and a cylindrical inner conductor 7 is also coaxially fitted in the cylindrical outer conductor 6 with a predetermined gap therebetween, The characteristic impedance of the coaxial waveguide 5 is set to be equal to the characteristic impedance of the solid-state microwave oscillator 2 and the pulse output setting unit 3, and is set to 50Ω in this example. Reference numeral 8 denotes an insulator that holds the outer conductor 6 and the inner conductor 7 coaxially, and is formed of an insulating material having a low dielectric loss such as quartz glass, alumina, or polyethylene.

10は前記同軸導波管5の端部に取付けられる第1実施例の放電灯である。該放電灯10は、透光性資材、本例では石英ガラスにより中空の球状に形成された放電容器11内に、第1アンテナ部材12、及び第2アンテナ部材13の先端部を突出させ、前記放電容器11内にキセノンガスを26.6kPa(200Torr)以下、例えば2.66kPa(20Torr)、または約500kPa以上(約5気圧以上)の圧力で充填する。この場合、約0.1%のアルゴンガスを封入してペニング効果を高めるようにするとよい。   Reference numeral 10 denotes a discharge lamp according to the first embodiment attached to the end of the coaxial waveguide 5. The discharge lamp 10 has the first antenna member 12 and the tip end of the second antenna member 13 projecting into a discharge vessel 11 formed into a hollow sphere by a translucent material, in this example, quartz glass, The discharge vessel 11 is filled with xenon gas at a pressure of 26.6 kPa (200 Torr) or less, for example, 2.66 kPa (20 Torr), or about 500 kPa or more (about 5 atm or more). In this case, about 0.1% argon gas is preferably sealed to enhance the Penning effect.

前記第1、第2アンテナ部材12,13は、導体性の帯板(ストリップライン)、例えばタングステン、モリブデン等の耐熱性資材、あるいは放電ガスに対して耐腐食性を有する白金、金等からなり、図1に示すように、左右水平方向に延出させるとともに、上下に間隔をおいて並列に配置し、両者を保持体14を介して放電容器11に一体的に固定し、その先端部12a,13aを放電容器11内で保持体14から露出させ、該突出端部を放電容器11の中心部にて互いに接近する上下方向に屈曲させるとともに、該屈曲した端部間の間隙、つまりギャップG1は放電に適した値、本例では1mm〜3mmに設定する。前記第1アンテナ部材12、及び第2アンテナ部材13の基部(後部)は保持体14を介して前記同軸導波管5の内部導体7に嵌合固定する。なお、前記先端部12a,13aは保持体14内に埋め込むようにしてもよい。   The first and second antenna members 12 and 13 are made of a conductive strip (strip line), for example, a heat-resistant material such as tungsten or molybdenum, or platinum or gold having corrosion resistance against discharge gas. As shown in FIG. 1, it extends horizontally in the horizontal direction, and is arranged in parallel with a space in the vertical direction, and both are integrally fixed to the discharge vessel 11 via the holding body 14, and its tip portion 12a. , 13a are exposed from the holding body 14 in the discharge vessel 11, and the protruding end portions are bent in the vertical direction approaching each other at the center of the discharge vessel 11, and the gap between the bent ends, that is, the gap G1. Is a value suitable for discharge, in this example, 1 mm to 3 mm. The base portions (rear portions) of the first antenna member 12 and the second antenna member 13 are fitted and fixed to the inner conductor 7 of the coaxial waveguide 5 through a holding body 14. The tip portions 12a and 13a may be embedded in the holding body 14.

図2は第2実施例の放電灯を示す。図2において、10−1は前記同軸導波管5の端部に取付けられる放電灯である。該放電灯10−1は、石英ガラス等の透光性資材により楕円中空状に形成された放電容器11−1の長軸側両端部に第1、第2アンテナ部材12−1,13−1を取付ける。各第1、第2アンテナ部材12−1,13−1は、前述した第1、第2アンテナ部材12,13と同様の導体性資材によりピン状に形成され、先端部12−1a,13−1aを残す後部側が保持体14−1a,14−1b内に埋設され、該保持体14−1a,14−1bを介して前記放電容器11−1の長軸側両端部に固定され、第1アンテナ部材12−1の基部(後部)は保持体14−1aを介して前記同軸導波管5の内部導体7に嵌合固定する。   FIG. 2 shows a discharge lamp of the second embodiment. In FIG. 2, reference numeral 10-1 denotes a discharge lamp attached to the end of the coaxial waveguide 5. The discharge lamp 10-1 includes first and second antenna members 12-1 and 13-1 at both ends of a long axis side of a discharge vessel 11-1 formed in an elliptical hollow shape by a translucent material such as quartz glass. Install. Each of the first and second antenna members 12-1 and 13-1 is formed into a pin shape using the same conductive material as that of the first and second antenna members 12 and 13, and the tip portions 12-1a and 13- The rear side of leaving 1a is embedded in the holding bodies 14-1a and 14-1b, and is fixed to both ends of the long axis side of the discharge vessel 11-1 via the holding bodies 14-1a and 14-1b. The base portion (rear portion) of the antenna member 12-1 is fitted and fixed to the inner conductor 7 of the coaxial waveguide 5 through the holding body 14-1a.

前記第1、第2アンテナ部材12−1,13−1は、図2に示すように、鉛直方向に変位させて平行に配置するとともに、その先端部(突出端部)12−1a,13−1aを放電容器11−1内に突出させる。各先端部12−1a,13−1aの突出端は放電容器11−1の長軸方向中心部に延出させ、この部で上下方向のギャップ(間隙)G2を形成する。該ギャップG2は放電に適した値にする。その他は前述した第1実施例と略同様の構造となっている。   As shown in FIG. 2, the first and second antenna members 12-1 and 13-1 are displaced in the vertical direction and arranged in parallel, and their tip portions (projecting end portions) 12-1 a and 13-. 1a is protruded into the discharge vessel 11-1. The protruding ends of the tip portions 12-1a and 13-1a extend to the central portion in the major axis direction of the discharge vessel 11-1, and a vertical gap (gap) G2 is formed at this portion. The gap G2 is set to a value suitable for discharge. The other structure is substantially the same as that of the first embodiment.

ここで、誘電体バリア放電によるキセノンガスの物性を確認すると、図3〜図5に示すようになっている。即ち、図3によると、200Torr(26.6kPa)〜1000Torr(133kPa)において、波長147nm、及び波長172nmにエキシマ光のピークが存在している。また、図4によると、低い気圧では波長147nmのキセノン共鳴光が支配的であるが、圧力が高くなると波長172nmのキセノンエキシマ光が支配的となっている。   Here, when the physical property of the xenon gas by the dielectric barrier discharge is confirmed, it is as shown in FIGS. That is, according to FIG. 3, excimer light peaks exist at wavelengths of 147 nm and 172 nm at 200 Torr (26.6 kPa) to 1000 Torr (133 kPa). Further, according to FIG. 4, xenon resonance light having a wavelength of 147 nm is dominant at a low pressure, but xenon excimer light having a wavelength of 172 nm is dominant when the pressure is increased.

また、キセノンガスが励起されると、電子の衝突により、励起原子Xe*やキセノンエキシマXe2 * が生成され、147nmあるいは172nmのVUV発光が得られる。この場合、図5によると、キセノンガスの電子温度が1eV〜2eVにおいては、前記励起原子Xe*やキセノンエキシマXe2 * の生成効率が高く、VUVが効率よく発光し、前記電子温度が2eVよりも高くなるに従ってXe+の生成が増え、VUVの発光が低下することになる。 When xenon gas is excited, excited atoms Xe * and xenon excimer Xe 2 * are generated by electron collision, and VUV emission of 147 nm or 172 nm is obtained. In this case, according to FIG. 5, when the electron temperature of the xenon gas is 1 eV to 2 eV, the generation efficiency of the excited atom Xe * and the xenon excimer Xe 2 * is high, VUV emits light efficiently, and the electron temperature is higher than 2 eV. As the value increases, the production of Xe + increases and the emission of VUV decreases.

前記キセノンガスの電子温度は、アンテナ部材12(12−1)から放射されるマイクロ波の出力(電力)によって大きく左右され、該出力をキセノンガスの電子温度が1eV〜2eVとなるように制御(小さく)する必要がある。これは連続のマイクロ波では制御装置が複雑になるとともに、微細な制御が困難となる。そこで、本発明は、固体マイクロ波発振器2から発振されるマイクロ波をパルス化し、該パルス化したマイクロ波パルスをパルス出力設定部3でパルス周波数、デュ−ティ比、パルス高、等を制御することにより、アンテナ部材12(12−1)から放射されるマイクロ波パルスの出力をキセノンガスの電子温度が1eV〜2eVとなるようにして非熱平衡プラズマを生成する。   The electron temperature of the xenon gas is greatly influenced by the output (electric power) of the microwave radiated from the antenna member 12 (12-1), and the output is controlled so that the electron temperature of the xenon gas is 1 eV to 2 eV ( Need to be small). This is because the control device becomes complicated with continuous microwaves, and fine control becomes difficult. Therefore, the present invention pulsates the microwave oscillated from the solid-state microwave oscillator 2 and controls the pulse frequency, duty ratio, pulse height, etc. of the pulsed microwave pulse by the pulse output setting unit 3. As a result, the output of the microwave pulse radiated from the antenna member 12 (12-1) is set so that the electron temperature of the xenon gas becomes 1 eV to 2 eV, thereby generating non-thermal equilibrium plasma.

本例では、前記パルス出力設定部3により、パルス周波数5〜10KHz、デュ−ティ比50〜75%の範囲で制御し、アンテナ部材12(12−1)により5〜50Wのマイクロ波パルスで点灯することにより、キセノンガス圧約2.66kPa(20Torr)、または約1000〜1500kPa(10〜15気圧)において、前記電子温度が1eV〜2eVとなるようにし、これによりキセノンガス圧約2.66kPaにおいて波長147nmのキセノン共鳴光が、また、キセノンガス圧約1000〜1500kPaにおいて波長172nmのキセノンエキシマ光が効率よく発光できるようにする。   In this example, the pulse output setting unit 3 controls the pulse frequency in the range of 5 to 10 KHz and the duty ratio in the range of 50 to 75%, and the antenna member 12 (12-1) lights up with the microwave pulse of 5 to 50 W. Thus, the xenon gas pressure is about 2.66 kPa (20 Torr), or about 1000 to 1500 kPa (10 to 15 atm), so that the electron temperature is 1 eV to 2 eV. Xenon resonance light of xenon excimer light having a wavelength of 172 nm can be efficiently emitted at a xenon gas pressure of about 1000 to 1500 kPa.

本発明によるアンテナ励起型ガス放電灯の第1実施例を示す断面図である。It is sectional drawing which shows 1st Example of the antenna excitation type | mold gas discharge lamp by this invention. 本発明によるアンテナ励起型ガス放電灯の第2実施例を示す断面図である。It is sectional drawing which shows 2nd Example of the antenna excitation type | mold gas discharge lamp by this invention. キセノンガス圧と発光スペクトルとの関係を示す発光スペクトル特性図である。It is an emission-spectrum characteristic figure which shows the relationship between a xenon gas pressure and an emission spectrum. キセノンガス圧に対する147nm、172nmの発光強度の特性を示す発光強度特性図である。It is a light emission intensity characteristic figure which shows the characteristic of the light emission intensity of 147 nm and 172 nm with respect to a xenon gas pressure. キセノン励起原子の生成効率とキセノンの電子温度との関係を示す特性図である。It is a characteristic view which shows the relationship between the production | generation efficiency of a xenon excitation atom, and the electron temperature of a xenon.

符号の説明Explanation of symbols

1 マイクロ波発生装置
2 固体マイクロ波発振器
3 パルス出力設定部
4 同軸ケーブル
5 同軸導波管(ラーンチャ)
6 外部導体
7 内部導体
8 絶縁体
10(10−1) 放電灯
11(11−1) 放電容器
12(12−1) 第1アンテナ部材
13(13−1) 第2アンテナ部材
12a,13a 先端部(突出端部)
14(14−1) 保持体
DESCRIPTION OF SYMBOLS 1 Microwave generator 2 Solid-state microwave oscillator 3 Pulse output setting part 4 Coaxial cable 5 Coaxial waveguide (launcher)
6 Outer conductor 7 Inner conductor 8 Insulator 10 (10-1) Discharge lamp 11 (11-1) Discharge vessel 12 (12-1) First antenna member 13 (13-1) Second antenna member 12a, 13a Tip (Projecting end)
14 (14-1) Holder

Claims (5)

放電ガスが充填される中空の放電容器(11)内にアンテナ部材(12,13)を突出させ、該アンテナ部材(12,13)の突出部から前記放電容器(11)内にマイクロ波パルスを放出させるマイクロ波発振装置(1)を設け、前記放電容器(11)内に充填される放電ガスはキセノンを主体とするエキシマガスであり、マイクロ波の出力を、前記放電容器(11)内に生成されるエキシマプラズマの電子温度が1eV〜2eVとなるようにマイクロ波パルスの周波数、及びデュ−ティ比を制御するパルス出力設定部(3)を設けたことを特徴とするアンテナ励起型ガス放電灯。 An antenna member (12, 13) is protruded into a hollow discharge vessel (11) filled with a discharge gas, and a microwave pulse is applied to the discharge vessel (11) from the protruding portion of the antenna member (12, 13). A microwave oscillation device (1) for discharging is provided, and a discharge gas filled in the discharge vessel (11) is an excimer gas mainly composed of xenon, and a microwave output is supplied to the discharge vessel (11). The antenna-excited gas discharge is provided with a pulse output setting unit (3) for controlling the frequency and duty ratio of the microwave pulse so that the electron temperature of the generated excimer plasma is 1 eV to 2 eV. Electric light. 放電ガスはキセノンガスを主体とし、該キセノンガスを、該キセノンガスが共鳴発光する26.6kPa以下の圧力で放電容器(11)内に充填したことを特徴とする請求項1記載のアンテナ励起型ガス放電灯。   The antenna excitation type according to claim 1, wherein the discharge gas is mainly xenon gas, and the xenon gas is filled in the discharge vessel (11) at a pressure of 26.6 kPa or less at which the xenon gas emits resonance. Gas discharge lamp. 放電ガスはキセノンガスを主体とし、該キセノンガスを、該キセノンガスがエキシマ発光する約500kPa以上の圧力で放電容器(11)内に充填したことを特徴とする請求項1記載のアンテナ励起型ガス放電灯。   The antenna-excited gas according to claim 1, wherein the discharge gas is mainly xenon gas, and the xenon gas is filled in the discharge vessel (11) at a pressure of about 500 kPa or more at which the xenon gas emits excimer light. Discharge lamp. 放電容器(11)の一端部に、第1アンテナ部材(12)、及び第2アンテナ部材(13)を鉛直方向に間隔をおいて並列に配置するとともに、該第1、第2アンテナ部材(12,13)を放電容器(11)の一端部から該放電容器(11)内に突出させ、第1、第2アンテナ部材(12,13)の突出端部(12a,13a)を放電容器(11)内にて互いに接近する上下方向に屈曲させ、該屈曲した端部同士間の間隔を、放電ガスを放電可能とする強いマイクロ波電界を励起することができる間隙(G1)としたことを特徴とする請求項1〜3いずれか1項に記載のアンテナ励起型ガス放電灯。 The first antenna member (12) and the second antenna member (13) are arranged in parallel at one end of the discharge vessel (11) with an interval in the vertical direction, and the first and second antenna members (12). , 13) is projected from one end of the discharge vessel (11) into the discharge vessel (11), and the projecting ends (12a, 13a) of the first and second antenna members (12, 13) are projected to the discharge vessel (11). ) Are bent in the vertical direction approaching each other, and the gap between the bent ends is a gap (G1) that can excite a strong microwave electric field capable of discharging the discharge gas. The antenna-excited gas discharge lamp according to any one of claims 1 to 3. 放電容器(11−1)の一端部と他端部とに、第1アンテナ部材(12−1)と第2アンテナ部材(13−1)とを鉛直方向に変位させて平行に配置するとともに、該第1、第2アンテナ部材(12−1,13−1)を放電容器(11−1)の両端部から該放電容器(11−1)内に突出させ、第1、第2アンテナ部材(12−1,13−1)の突出端部(12−1a,13−1a)を放電容器(11−1)内にて、放電ガスの放電を可能とする強いマイクロ波電界を励起することができる間隙(G2)となる如く上下方向に変位させたことを特徴とする請求項1〜3いずれか1項に記載のアンテナ励起型ガス放電灯。 While disposing the first antenna member (12-1) and the second antenna member (13-1) in the vertical direction at one end and the other end of the discharge vessel (11-1) in parallel, The first and second antenna members (12-1, 13-1) are projected into the discharge vessel (11-1) from both ends of the discharge vessel (11-1), and the first and second antenna members ( 12-1 and 13-1) can excite a strong microwave electric field that enables discharge gas discharge in the discharge vessel (11-1) in the projecting ends (12-1a and 13-1a). The antenna-excited gas discharge lamp according to any one of claims 1 to 3, wherein the antenna-excited gas discharge lamp is displaced in a vertical direction so that a gap (G2) is formed .
JP2007249344A 2007-09-26 2007-09-26 Antenna-excited gas discharge lamp Expired - Fee Related JP5010415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007249344A JP5010415B2 (en) 2007-09-26 2007-09-26 Antenna-excited gas discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007249344A JP5010415B2 (en) 2007-09-26 2007-09-26 Antenna-excited gas discharge lamp

Publications (2)

Publication Number Publication Date
JP2009081043A JP2009081043A (en) 2009-04-16
JP5010415B2 true JP5010415B2 (en) 2012-08-29

Family

ID=40655635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007249344A Expired - Fee Related JP5010415B2 (en) 2007-09-26 2007-09-26 Antenna-excited gas discharge lamp

Country Status (1)

Country Link
JP (1) JP5010415B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4714868B2 (en) * 2005-10-20 2011-06-29 国立大学法人静岡大学 Discharge lamp equipment

Also Published As

Publication number Publication date
JP2009081043A (en) 2009-04-16

Similar Documents

Publication Publication Date Title
JP4714868B2 (en) Discharge lamp equipment
JP2580266Y2 (en) High power beam generator
JP4986509B2 (en) Ultraviolet continuous spectrum lamp and lighting device
US20080054791A1 (en) Dielectric barrier discharge excimer light source
JP3887641B2 (en) Dielectric barrier discharge excimer light source
JP5010415B2 (en) Antenna-excited gas discharge lamp
JP2005216647A (en) High radiance flash discharge lamp
JP4294998B2 (en) Electrodeless lighting system
US20050035711A1 (en) Method and apparatus for a high efficiency ultraviolet radiation source
JP5534471B2 (en) Discharge lamp and discharge lamp device
JP4140320B2 (en) Excimer lamp lighting device
JP2005228520A (en) Electrodeless discharge lamp
US8102107B2 (en) Light-emitting devices having excited sulfur medium by inductively-coupled electrons
JP2001155687A (en) Dielectric barrier discharge lamp device, dielectric barrier discharge lamp lighting device and ultraviolet irradiation device
JP6319660B2 (en) Microwave electrodeless lamp and light irradiation device using the same
JP2004079369A (en) Electrodeless discharge lamp
JP2001351791A (en) Microwave electrodeless lamp resonator
RU2310947C1 (en) Gaseous-discharge radiation source
JP2006185656A (en) Dielectric barrier discharge lamp and ultraviolet-ray irradiation device
JP6590296B2 (en) Microwave electrodeless lamp and light irradiation device using the same
JP2006139992A (en) Flash discharge lamp and light energy irradiation equipment
RU2291516C2 (en) Vacuum lamp of ultraviolet spectrum range
JP2001283785A (en) Dielectric barrier discharge lamp and its apparatus
JP2016129083A (en) Light source device, and extreme ultraviolet light emitting method
US7446484B2 (en) Middle output electrodeless lighting system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090727

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120601

R150 Certificate of patent or registration of utility model

Ref document number: 5010415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees