JP2004093503A - Conductive coating film inspection method and apparatus - Google Patents

Conductive coating film inspection method and apparatus Download PDF

Info

Publication number
JP2004093503A
JP2004093503A JP2002258095A JP2002258095A JP2004093503A JP 2004093503 A JP2004093503 A JP 2004093503A JP 2002258095 A JP2002258095 A JP 2002258095A JP 2002258095 A JP2002258095 A JP 2002258095A JP 2004093503 A JP2004093503 A JP 2004093503A
Authority
JP
Japan
Prior art keywords
work
charger
conductive coating
coating film
voltmeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002258095A
Other languages
Japanese (ja)
Other versions
JP3611037B2 (en
Inventor
Toshio Nakamura
中村 年男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasuga Denki Inc
Original Assignee
Kasuga Denki Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasuga Denki Inc filed Critical Kasuga Denki Inc
Priority to JP2002258095A priority Critical patent/JP3611037B2/en
Publication of JP2004093503A publication Critical patent/JP2004093503A/en
Application granted granted Critical
Publication of JP3611037B2 publication Critical patent/JP3611037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To wholly and partially implement a resistance inspection of a conductive coating film and simultaneously inspect whether a workpiece is grounded without impairment of a base conductive coating film and work for attaching to and detaching from the workpiece. <P>SOLUTION: A surface of the workpiece 1 on which the conductive coating film is formed, is charged by a charger 2 not contacting the work piece. A surface potential is measured by a surface potential meter 6 not contacting the workpiece. While the charger 2 discharges a charge from a discharge electrode, the charge generated by the discharge is applied to the surface of the workpiece by air blasting and the surface of the workpiece is charged. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、静電塗装前にワークの表面に塗布された導電性プライマーによる導電性塗膜を検査する導電性塗膜検査方法及び装置に関する。
【0002】
【従来の技術】
樹脂製品等の非導電性材質のワークを静電塗装する場合、前処理として、ワーク表面に導電性プライマーによる導電性塗膜を形成することが行われている。この導電性塗膜の抵抗値が高いと、上塗りする静電塗装の品質が悪くなるなど、抵抗値の大小が品質に影響するため、静電塗装前の検査として導電性塗膜の抵抗値を測定している。
【0003】
従来、その抵抗値測定は、金属製触子を有する抵抗計を用い、その金属製触子を導電性塗膜に接触させて行うのが一般的であった。しかし、金属製触子を導電性塗膜に接触させることにより、導電性塗膜を傷つける問題があり、また導電性塗膜が完全に乾くまで測定できなかった。
【0004】
特許文献1(特開平11−138058号公報)には、非導電性のワークの一方側に第1のリード線のクリップ型端子を取り付け、またワークの他方側に第2のリード線のクリップ型端子を取り付けるとともに該第2のリード線の先端を接地し、これら第1及び第2のリード線にスイッチを介して抵抗計を接続することで、下塗りの導電性塗膜がウェット状態でもその抵抗値を測定できるようにするとともに、その測定後、直ちに上塗りのための静電塗装を行えるようにした方法が開示されている。
【0005】
しかし、これによると、2本のリード線のクリップ型端子をワーク毎に取り付けなければならないので、その取り付け作業及び取り外し作業が必要であるとともに、その取付場所が、ワークの端部などの製品の外観に影響しない部位に特定され、更にリード線を抵抗計へ接続する作業もワーク毎に行わなければならず、測定の作業効率が悪い。また、下塗りされた導電性塗膜の全体としての抵抗値を測定するものであるため、部分的な検査をしようとしてもできない。
【0006】
【特許文献1】
特開平11−138058号公報(第2〜3頁、図1)
【0007】
【発明が解決しようとする課題】
そこで、本発明の目的は、下塗りの導電性塗膜を傷つけることがないのは勿論のこと、ワークへの取り付け作業及び取り外し作業を一切必要とせず、導電性塗膜の抵抗値検査を、全体としてばかりでなく部分的にも行え、更にワークが接地されているかどうかの検査も同時に行える導電性塗膜検査方法及び装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明の導電性塗膜検査方法は、導電性塗膜が形成されたワークの表面を、該ワークとは非接触状態で帯電器にて帯電させ、その表面電位をワークとは非接触状態で表面電位計にて測定することを特徴とする。
【0009】
本発明では、ワーク表面の導電性塗膜についてその抵抗値として直接測定しないが、意図的に帯電させてその帯電電位を測定することで、導電性塗膜の抵抗値を正確な値でなくとも、良否判断するには充分なデータとして間接的に測定できる。すなわち、表面電位計にて測定した帯電電位を、抵抗値に換算しなくとも、閾値と比較すれば、良否の判定をすることは可能であり、しかもその部分的な検査も可能である。
【0010】
好適には、帯電器において放電させながら、その放電による電荷を送風によりワークの表面に当てて帯電させる。
【0011】
帯電器と表面電位計とは、表面電位計が帯電器からの電荷を直接検出しないように離隔させて配置する。これら帯電器と表面電位計との間にわたる長さのワークの場合には、ワークの表面を帯電器にて帯電しながら、その表面電位を表面電位計にて測定できる。また、帯電器と表面電位計との間隔に満たない短いワークの場合には、ワークを帯電器との対向位置から表面電位計との対向位置へ移動させて測定する。
【0012】
また、ワークを移動させながら帯電器による帯電及び表面電位計による測定を行えば、全体的な測定ができる。
【0013】
本発明の導電性塗膜検査装置は、導電性塗膜が形成されたワークの表面を、該ワークとは非接触状態で帯電させる帯電器と、帯電されたワークの表面電位をワークとは非接触状態で測定する表面電位計とからなる。
【0014】
帯電器は、放電電極の周囲をエアーパージしながら送風する構造のものがよい。また、帯電器の放電動作と表面電位計の測定動作とをタイミングをとって制御する制御回路を備えるとよい。更に、表面電位計にて測定した電位を閾値と比較する比較回路を備えることで、測定した電位を抵抗値に換算しなくとも、導電性塗膜の良否や乾燥具合やワークが接地されているかどうかの確認ができる。
【0015】
【発明の実施の形態】
次に、本発明の実施の形態を図面に基づいて詳細に説明する。
【0016】
図1に、本発明の導電性塗膜検査装置の概要を示す。この導電性塗膜検査装置は、表面に導電性プライマーによる導電性塗膜が形成されたワーク(樹脂製品等)1に対し、それと非接触状態でその表面を帯電させる帯電器2と、これに高電圧を印加する高電圧発生回路3と、帯電したワーク1の表面電位をワーク1とは非接触状態で測定する表面電位センサ4と、この表面電位センサ4とで表面電位計6を構成する検出処理回路5と、高電圧発生回路3及び検出処理回路5を制御する制御回路7と、検出処理回路5の出力を閾値と比較する比較回路8とで構成される。
【0017】
帯電器2と表面電位センサ4とは、表面電位計4が帯電器2からの電荷を直接検出しないように、ワーク1を移動させる方向(矢印方向)に距離Lを隔てて配置されている。ワーク1は接地され、また高電圧発生回路3及び検出処理回路5も接地される。
【0018】
図2に帯電器2の一例を示す。この帯電器2は、電気絶縁材の円形ブロックである本体9に、上面が開口した凹部であるエアーチャンバ10を形成しているとともに、このエアーチャンバ10の底面から本体9の下面に達して開口する複数の放電孔11を設けている。エアーチャンバ10の上面開口は蓋板12で閉じられ、この蓋板12の外側中央の管継手13に接続したエアーホース14を通じて、エアーチャンバ10内に外部からエアーが供給される。複数の放電孔11のそれぞれには、共通の電極基板15に植設された針状の放電電極16が挿入されている。電極基板15は、エアーチャンバ10の底面に固定されているが、放電孔11を塞いでおらず、エアーチャンバ10に入ったエアーは、放電孔11を通ってその先端開口である吹き出し口11aから吹き出される。放電電極16の長さは放電孔11の長さよりも短いので、放電電極16の先端は放電孔11から突出することなく、その内方に留まっている。電極基板15には高圧ケーブル17が接続されており、この高圧ケーブル17を通じて高電圧発生回路3から複数本の放電電極16に高電圧が同時に印加される。
【0019】
エアーチャンバ10へのエアー供給は、図1において電磁弁18が制御回路7にてオンになったとき行われ、また放電電極16への高電圧の印加は、電磁弁18がオンになった後に高電圧発生回路3が制御回路7にてオンされることにより行われる。従って、放電電極16は、それぞれの放電孔11内でエアーパージされながら放電することになる。
【0020】
なお、帯電器2全体は、本体9の外周を把持する取り付け用バンド19にて適宜の支持部材に取り付けられる。
【0021】
図3に表面電位センサ4の一例を示す。この表面電位センサ4は振動チョッパ式で、検出孔20を有するセンサケース21内に、一対の圧電素子22を付設した音叉型振動子23と検出電極24とプリアンプ25を内蔵している。振動子駆動回路26にて音叉型振動子23を振動させると、検出孔20を通じて検出電極24へ向かう帯電物体からの電気力線が音叉型振動子23の振動によりチョッピングされ、プリアンプ25により交流電圧として外部へ出力される。
【0022】
この出力は、図1の検出処理回路5にて増幅・整流されて直流電圧として取り出され、比較回路8により閾値と比較される。
【0023】
次に、このような装置による検査方法について説明する。
表面に導電性塗膜が形成されたワーク1を帯電器2との対向位置で停止させ、制御回路7からの信号により電磁弁18をオンにして、帯電器2へエアーの供給を先に開始してから、制御回路7からの信号により高電圧発生回路3をオンにして帯電器2の放電電極16に高電圧を印加する。
【0024】
これにより、放電電極16が放電孔11内でエアーパージされながら、接地されているワーク1に向かって放電するので、ワーク1の表面が帯電する。放電により生じた電荷は、ワーク1の表面に送風により吹き付けられるので、効率よく平均にかつ広範囲に帯電させることができる。また、放電電極16を放電孔11内でエアーパージすることにより、放電電極16の汚れを防止できるとともに、放電により生じた電荷を吹き出して放電特性を高めることができる。
【0025】
帯電器2と表面電位センサ4との距離Lに満たない短いワーク1の場合には、高電圧発生回路3を制御回路7にてオフにして放電電極16の放電を停止してから、制御回路7にて電磁弁18をオフにしてエアーの供給を停止する。この後、ワーク1を距離L分だけ移動させ、表面電位センサ4との対向位置で停止させる。つまり、帯電器2と対向していたワーク1が表面電位センサ4と対向するところまで移動させる。そして、制御回路7にて検出処理回路5を制御して、表面電位センサ4によりワーク1の表面電位を検出する。
【0026】
一方、帯電器2と表面電位センサ4との距離Lにわたる長いワーク1の場合には、高電圧発生回路3及び電磁弁18を制御回路7にて所要時間だけオンにして放電電極16の放電及びエアーの供給を所要時間だけ行い、これと同時に、又は直後に、制御回路7にて検出処理回路5を制御して、表面電位センサ4によりワーク1の表面電位を検出する。つまり、ワーク1の表面を帯電させながら、その表面電位を離れた位置で同時に又は直後に測定する。この場合、表面電位センサ4による表面電位の検出は、連続して行っても、又は時間を限って行ってもよい。
【0027】
表面電位に応じた検出処理回路5からの出力電圧は、比較回路8により閾値と比較される。その閾値は、初期設定するために事前に測定した実測値に基づいて予め設定されている。例えば、導電性塗膜が適正に形成されたワークの場合と、不適正なワークの場合について、上記のように帯電器2で帯電させてから、表面電位センサ4で表面電位を測定し、そのデータから良否判定の判断基準となる閾値を決定したり、導電性塗膜が乾いたワークの場合と、乾いていないワークの場合について、同様なことを行って、導電性塗膜の乾湿の判断基準となる閾値を決定する。
【0028】
検出処理回路5の出力電圧は、導電性塗膜の抵抗値そのものを直接には示さないが、帯電器2で帯電させた後のワーク1の表面電位(残留電位)を示すので、導電性塗膜の抵抗値にも依存することになる。すなわち、導電性塗膜の抵抗値が低い場合には、帯電器2で帯電させても電荷が直ぐに消滅するので、残留電位は0又は0に近く、従って測定される表面電位もそのようになるが、導電性塗膜の抵抗値が高いと残留電位が高くなるので、測定される表面電位も高くなる。
【0029】
ワーク1を移動させながら帯電器2による帯電と表面電位計6による測定を同時に行えば、全体的な測定(良否判定)ができる。
【0030】
表1は、次のNo.1からNo.5の5種類のワークについて、上記のように帯電器2で帯電させた後、表面電位センサ4で表面電位を測定するテストを、それぞれ10回ずつ繰り返した実測データである。
No.1  導電性塗膜を形成しない素材のみの場合
No.2  非導電性の通常プライマーで塗膜を形成した場合
No.3  導電性プライマーのみで導電性塗膜を形成した場合
No.4  銀色塗料を混合した導電性プライマーで導電性塗膜を形成した場合
No.5  赤色塗料を混合した導電性プライマーで導電性塗膜を形成した場合
【0031】
【表1】

Figure 2004093503
【0032】
このようなテストからも分かるように、帯電器2でワーク1の表面を帯電させた後、表面電位センサ4で表面電位を測定すれば、その表面電位はワーク1表面の導電性塗膜の抵抗値を反映したものとなるので、測定した表面電位を比較回路8にて閾値と比較することにより、導電性塗膜の良否や乾燥具合を判定できる。更に、ワーク1が接地されていないと、測定される表面電位が通常よりもはるかに高くなるので、ワーク1が接地されているか否かの確認もできる。
なお、帯電と表面電位の測定をワーク1の複数箇所について行うことも可能である。
【0033】
【発明の効果】
以上説明したように本発明によれば、下塗りの導電性塗膜の抵抗値検査を非接触状態で行えるので、導電性塗膜を傷つけることがないのは勿論のこと、ワークへの取り付け作業及び取り外し作業が不要であり、しかも全体としてばかりでなく部分的な検査も行え、更にワークが接地されているかどうかの検査も同時に行える。
【0034】
帯電器において、放電電極の周囲をエアーパージしながら送風することにより、放電により生じた電荷を、ワークの表面に送風により吹き付けることができるので、効率よく平均にかつ広範囲に帯電させることができる。また、放電電極の汚れを防止できるとともに、放電により生じた電荷を吹き出して放電特性を高めることができる。
【図面の簡単な説明】
【図1】本発明の概要を示すブロック図である。
【図2】帯電器の一例を示す側面図である。
【図3】表面電位センサの一例の機構図である。
【符号の説明】
1 ワーク
2 帯電器
3 高電圧発生回路
4 表面電位センサ
5 検出処理回路
6 表面電位計
7 制御回路
8 比較回路
9 本体
10 エアーチャンバ
11 放電孔
11a 吹き出し口
12 蓋板
13 管継手
14 エアーホース
15 電極基板
16 放電電極
17 高圧ケーブル
18 電磁弁
19 取り付け用バンド
20 検出孔
21 センサケース
22 圧電素子
23 振動子
24 検出電極
25 プリアンプ
26 振動子駆動回路[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for inspecting a conductive coating by a conductive primer applied to the surface of a work before electrostatic coating.
[0002]
[Prior art]
When a workpiece made of a non-conductive material such as a resin product is electrostatically coated, as a pretreatment, a conductive coating film is formed on the surface of the workpiece using a conductive primer. If the resistance of this conductive coating film is high, the quality of the overcoated electrostatic coating will deteriorate, and the magnitude of the resistance value will affect the quality. Measuring.
[0003]
Conventionally, the resistance value has been generally measured by using an ohmmeter having a metal contact and bringing the metal contact into contact with a conductive coating film. However, there is a problem in that the conductive film is damaged by bringing the metal contactor into contact with the conductive film, and the measurement cannot be performed until the conductive film is completely dried.
[0004]
Patent Document 1 (Japanese Patent Application Laid-Open No. H11-138058) discloses that a clip-type terminal of a first lead wire is attached to one side of a non-conductive work, and a clip-type terminal of a second lead wire is attached to the other side of the work. By attaching a terminal and grounding the end of the second lead wire, and connecting an ohmmeter to the first and second lead wires via a switch, the resistance of the undercoating conductive coating even when it is wet can be improved. A method is disclosed in which a value can be measured, and immediately after the measurement, electrostatic coating for overcoating can be performed.
[0005]
However, according to this, the clip-type terminals of the two lead wires must be attached to each work, so that attachment work and removal work are required, and the installation place is limited to the product such as the end of the work. The work that is specified as a part that does not affect the appearance and the work of connecting the lead wire to the resistance meter must also be performed for each work, and the work efficiency of the measurement is poor. In addition, since the resistance value of the undercoated conductive coating is measured as a whole, it is impossible to perform a partial inspection.
[0006]
[Patent Document 1]
JP-A-11-138058 (pages 2-3, FIG. 1)
[0007]
[Problems to be solved by the invention]
Therefore, an object of the present invention is not to damage the undercoat conductive film, but also does not require any work of attaching and detaching to the work, and the resistance test of the conductive film is performed as a whole. It is an object of the present invention to provide a method and an apparatus for inspecting a conductive coating film, which can be performed not only as a part but also partially, and can simultaneously inspect whether a work is grounded.
[0008]
[Means for Solving the Problems]
In the conductive coating film inspection method of the present invention, the surface of the work on which the conductive coating film is formed is charged by a charger in a non-contact state with the work, and the surface potential is charged in a non-contact state with the work. It is characterized by measuring with a surface electrometer.
[0009]
In the present invention, the resistance of the conductive coating film is not directly measured as the resistance value of the conductive coating film, but the charged value is measured intentionally, and the resistance value of the conductive coating film may not be an accurate value. , Can be indirectly measured as sufficient data to judge pass / fail. That is, if the charged potential measured by the surface voltmeter is not converted into a resistance value but is compared with a threshold value, it is possible to judge pass / fail, and a partial inspection thereof is also possible.
[0010]
Preferably, while discharging in the charging device, the charge by the discharge is applied to the surface of the work by blowing air to be charged.
[0011]
The charger and the surface voltmeter are arranged so that the surface voltmeter does not directly detect the charge from the charger. In the case of a work having a length extending between the charger and the surface voltmeter, the surface potential of the work can be measured by the surface voltmeter while the surface of the work is charged by the charger. In the case of a short work shorter than the distance between the charger and the surface voltmeter, the measurement is performed by moving the work from the position facing the charger to the position facing the surface voltmeter.
[0012]
In addition, if the charging by the charger and the measurement by the surface voltmeter are performed while moving the work, the entire measurement can be performed.
[0013]
The conductive coating film inspection apparatus of the present invention includes a charger for charging a surface of a work on which a conductive coating film is formed in a non-contact state with the work, and a surface potential of the charged work that is different from that of the work. And a surface electrometer for measuring in a contact state.
[0014]
The charger preferably has a structure in which air is blown while air purging around the discharge electrode. Further, a control circuit for controlling the discharging operation of the charger and the measuring operation of the surface voltmeter with timing may be provided. Furthermore, by providing a comparison circuit for comparing the potential measured by the surface voltmeter with a threshold value, whether the conductive coating is good or bad, whether the work is dry, and whether the work is grounded without converting the measured potential to a resistance value. You can check if it is.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
[0016]
FIG. 1 shows an outline of a conductive coating film inspection apparatus according to the present invention. This conductive coating film inspection apparatus comprises a charger (charger) 2 for charging a surface of a work (resin product or the like) 1 having a conductive coating formed by a conductive primer on a surface thereof in a non-contact state with the work. A high-voltage generating circuit 3 for applying a high voltage, a surface potential sensor 4 for measuring the surface potential of the charged work 1 in a non-contact state with the work 1, and the surface potential sensor 4 constitute a surface voltmeter 6. It comprises a detection processing circuit 5, a control circuit 7 for controlling the high voltage generation circuit 3 and the detection processing circuit 5, and a comparison circuit 8 for comparing the output of the detection processing circuit 5 with a threshold.
[0017]
The charger 2 and the surface potential sensor 4 are arranged at a distance L in the direction in which the workpiece 1 is moved (the direction of the arrow) so that the surface voltmeter 4 does not directly detect the charge from the charger 2. The work 1 is grounded, and the high voltage generation circuit 3 and the detection processing circuit 5 are also grounded.
[0018]
FIG. 2 shows an example of the charger 2. In the charger 2, an air chamber 10 which is a concave portion having an open upper surface is formed in a main body 9 which is a circular block of an electrically insulating material, and an opening extends from the bottom surface of the air chamber 10 to the lower surface of the main body 9. A plurality of discharge holes 11 are provided. The upper opening of the air chamber 10 is closed by a cover plate 12, and air is supplied from the outside into the air chamber 10 through an air hose 14 connected to a pipe joint 13 at the outside center of the cover plate 12. Needle-like discharge electrodes 16 implanted on a common electrode substrate 15 are inserted into each of the plurality of discharge holes 11. The electrode substrate 15 is fixed to the bottom surface of the air chamber 10, but does not block the discharge hole 11, and the air entering the air chamber 10 passes through the discharge hole 11 from the outlet 11 a, which is the tip opening. Be blown out. Since the length of the discharge electrode 16 is shorter than the length of the discharge hole 11, the tip of the discharge electrode 16 does not protrude from the discharge hole 11 but stays inside. A high voltage cable 17 is connected to the electrode substrate 15, and a high voltage is simultaneously applied from the high voltage generating circuit 3 to the plurality of discharge electrodes 16 through the high voltage cable 17.
[0019]
Air supply to the air chamber 10 is performed when the electromagnetic valve 18 is turned on by the control circuit 7 in FIG. 1, and application of a high voltage to the discharge electrode 16 is performed after the electromagnetic valve 18 is turned on. This is performed when the high voltage generating circuit 3 is turned on by the control circuit 7. Accordingly, the discharge electrodes 16 discharge while being air-purged in the respective discharge holes 11.
[0020]
The entire charger 2 is attached to an appropriate support member by an attachment band 19 that grips the outer periphery of the main body 9.
[0021]
FIG. 3 shows an example of the surface potential sensor 4. The surface potential sensor 4 is of a vibration chopper type, and includes a tuning fork vibrator 23 provided with a pair of piezoelectric elements 22, a detection electrode 24, and a preamplifier 25 in a sensor case 21 having a detection hole 20. When the tuning fork vibrator 23 is vibrated by the vibrator driving circuit 26, the lines of electric force from the charged object toward the detection electrode 24 through the detection holes 20 are chopped by the vibration of the tuning fork vibrator 23, and the Is output to the outside.
[0022]
This output is amplified and rectified by the detection processing circuit 5 of FIG. 1, taken out as a DC voltage, and compared with a threshold value by the comparison circuit 8.
[0023]
Next, an inspection method using such an apparatus will be described.
The work 1 having a conductive coating formed on its surface is stopped at a position facing the charger 2, the solenoid valve 18 is turned on by a signal from the control circuit 7, and the supply of air to the charger 2 is started first. Then, the high voltage generating circuit 3 is turned on by a signal from the control circuit 7 to apply a high voltage to the discharge electrode 16 of the charger 2.
[0024]
As a result, the discharge electrode 16 is discharged toward the grounded work 1 while being air-purged in the discharge hole 11, so that the surface of the work 1 is charged. Since the electric charge generated by the discharge is blown to the surface of the work 1 by blowing air, the electric charge can be efficiently averaged and charged over a wide range. In addition, by purging the discharge electrode 16 with air in the discharge hole 11, it is possible to prevent the discharge electrode 16 from being stained and to discharge electric charges generated by the discharge to improve discharge characteristics.
[0025]
In the case of a short work 1 shorter than the distance L between the charger 2 and the surface potential sensor 4, the control circuit 7 turns off the high-voltage generation circuit 3 to stop the discharge of the discharge electrode 16, and then the control circuit At 7, the electromagnetic valve 18 is turned off to stop air supply. Thereafter, the work 1 is moved by the distance L and stopped at a position facing the surface potential sensor 4. In other words, the work 1 facing the charger 2 is moved to a position facing the surface potential sensor 4. Then, the control circuit 7 controls the detection processing circuit 5 and the surface potential sensor 4 detects the surface potential of the work 1.
[0026]
On the other hand, in the case of a long work 1 extending over the distance L between the charger 2 and the surface potential sensor 4, the high voltage generation circuit 3 and the solenoid valve 18 are turned on for a required time by the control circuit 7 to discharge the discharge electrode 16 and The supply of air is performed for a required time, and at the same time or immediately thereafter, the control circuit 7 controls the detection processing circuit 5, and the surface potential sensor 4 detects the surface potential of the work 1. That is, while the surface of the work 1 is charged, the surface potential is measured at a remote position simultaneously or immediately after. In this case, the detection of the surface potential by the surface potential sensor 4 may be performed continuously or for a limited time.
[0027]
The output voltage from the detection processing circuit 5 according to the surface potential is compared with a threshold value by the comparison circuit 8. The threshold is set in advance based on an actual measurement value measured in advance for initial setting. For example, in the case of a work on which a conductive coating film is properly formed and in the case of an improper work, after charging by the charger 2 as described above, the surface potential is measured by the surface potential sensor 4, and the surface potential is measured. Determine a threshold value that is used as a criterion for quality judgment from data, and determine the dryness and wetness of the conductive coating film by performing the same operation for the case where the conductive coating film is dry and the case where the conductive coating film is not dry. Determine a reference threshold value.
[0028]
Although the output voltage of the detection processing circuit 5 does not directly indicate the resistance value of the conductive coating film itself, but indicates the surface potential (residual potential) of the work 1 after being charged by the charger 2, the It will also depend on the resistance of the film. That is, when the resistance value of the conductive coating film is low, the charge immediately disappears even if charged by the charger 2, so that the residual potential is 0 or close to 0, and thus the measured surface potential is also such. However, when the resistance value of the conductive coating film is high, the residual potential increases, so that the measured surface potential also increases.
[0029]
If the charging by the charger 2 and the measurement by the surface voltmeter 6 are performed at the same time while the workpiece 1 is moved, the overall measurement (pass / fail judgment) can be performed.
[0030]
Table 1 shows the following No. No. 1 to No. 5 is a measured data obtained by repeating a test for measuring the surface potential by the surface potential sensor 4 after charging the five types of workpieces by the charger 2 as described above ten times each.
No. No. 1 In the case of only a material that does not form a conductive coating film, 2 When a coating film was formed with a non-conductive normal primer, No. 3 When the conductive coating film was formed only with the conductive primer No. 4 When a conductive coating film was formed with a conductive primer mixed with a silver paint, 5 When a conductive coating film is formed with a conductive primer mixed with a red paint
[Table 1]
Figure 2004093503
[0032]
As can be seen from such a test, after the surface of the work 1 is charged by the charger 2 and the surface potential is measured by the surface potential sensor 4, the surface potential is determined by the resistance of the conductive coating film on the surface of the work 1. Since the value reflects the measured value, the quality of the conductive coating film and the drying condition can be determined by comparing the measured surface potential with a threshold value in the comparison circuit 8. Furthermore, if the work 1 is not grounded, the measured surface potential is much higher than usual, so that it can be confirmed whether the work 1 is grounded.
The charging and the measurement of the surface potential can be performed for a plurality of portions of the work 1.
[0033]
【The invention's effect】
As described above, according to the present invention, since the resistance value inspection of the undercoat conductive film can be performed in a non-contact state, it is needless to say that the conductive film is not damaged, Removal work is not required, and not only the whole but also a partial inspection can be performed, and the inspection whether the work is grounded can be performed at the same time.
[0034]
In the charging device, the electric charge generated by the discharge can be blown to the surface of the work by blowing air by blowing air around the discharge electrode while air purging, so that the charge can be efficiently averaged over a wide range. In addition, it is possible to prevent the discharge electrodes from being stained and to discharge electric charges generated by the discharge to improve discharge characteristics.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an outline of the present invention.
FIG. 2 is a side view illustrating an example of a charger.
FIG. 3 is a mechanism diagram of an example of a surface potential sensor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Work 2 Charger 3 High voltage generation circuit 4 Surface potential sensor 5 Detection processing circuit 6 Surface potential meter 7 Control circuit 8 Comparison circuit 9 Main body 10 Air chamber 11 Discharge hole 11a Blow-out port 12 Cover plate 13 Fitting 14 Air hose 15 Electrode Substrate 16 Discharge electrode 17 High-voltage cable 18 Solenoid valve 19 Band 20 for attachment Detection hole 21 Sensor case 22 Piezoelectric element 23 Vibrator 24 Detection electrode 25 Preamplifier 26 Vibrator drive circuit

Claims (10)

導電性塗膜が形成されたワークの表面を、該ワークとは非接触状態で帯電器にて帯電させ、その表面電位をワークとは非接触状態で表面電位計にて測定することを特徴とする導電性塗膜検査方法。The surface of the work on which the conductive coating film is formed is charged by a charger in a non-contact state with the work, and the surface potential is measured by a surface voltmeter in a non-contact state with the work. Conductive film inspection method. 帯電器において放電させながら、その放電による電荷を送風によりワークの表面に当てて帯電させることを特徴とする請求項1に記載の導電性塗膜検査方法。The method for inspecting a conductive coating film according to claim 1, wherein, while discharging in the charger, the charge by the discharge is applied to the surface of the work by blowing air to charge the work. 帯電器と表面電位計とを離隔させて配置し、ワークの表面を帯電器にて帯電しながら、その表面電位を表面電位計にて測定することを特徴とする請求項1又は2に記載の導電性塗膜検査方法。The charger according to claim 1 or 2, wherein the charger and the surface voltmeter are spaced apart from each other, and the surface potential of the work is measured by the surface voltmeter while the surface of the work is charged by the charger. Conductive coating inspection method. 帯電器と表面電位計とを離隔させて配置し、ワークを帯電器との対向位置から表面電位計との対向位置へ移動させることを特徴とする請求項1又は2に記載の導電性塗膜検査方法。The conductive coating film according to claim 1 or 2, wherein the charger and the surface voltmeter are arranged apart from each other, and the workpiece is moved from a position facing the charger to a position facing the surface voltmeter. Inspection methods. 帯電器と表面電位計とを離隔させて配置し、ワークを移動させながら帯電器による帯電及び表面電位計による測定を行うことを特徴とする請求項1又は2に記載の導電性塗膜検査方法。The method for inspecting a conductive coating film according to claim 1, wherein the charger and the surface voltmeter are arranged apart from each other, and while the workpiece is being moved, charging by the charger and measurement by the surface voltmeter are performed. . 表面電位計にて測定した電位を閾値と比較することを特徴とする請求項1、2、3、4又は5に記載の導電性塗膜検査方法。The method according to claim 1, wherein the potential measured by the surface electrometer is compared with a threshold. 導電性塗膜が形成されたワークの表面を、該ワークとは非接触状態で帯電させる帯電器と、帯電されたワークの表面電位をワークとは非接触状態で測定する表面電位計とからなることを特徴とする導電性塗膜検査装置。It consists of a charger for charging the surface of the work on which the conductive coating film is formed in a non-contact state with the work, and a surface voltmeter for measuring the surface potential of the charged work in a non-contact state with the work. A conductive coating film inspection apparatus, characterized in that: 帯電器は、放電電極の周囲をエアーパージしながら送風する構造になっていることを特徴とする請求項7に記載の導電性塗膜検査装置。The conductive coating film inspection apparatus according to claim 7, wherein the charging device has a structure in which air is blown while air purging around the discharge electrode. 帯電器の放電動作と表面電位計の測定動作とをタイミングをとって制御する制御回路を備えたことを特徴とする請求項7又は8に記載の導電性塗膜検査装置。9. The conductive coating film inspection apparatus according to claim 7, further comprising a control circuit for controlling a discharge operation of the charger and a measurement operation of the surface voltmeter with a timing. 表面電位計にて測定した電位を閾値と比較する比較回路を備えたことを特徴とする請求項7、8又は9に記載の導電性塗膜検査装置。10. The conductive coating film inspection apparatus according to claim 7, further comprising a comparison circuit for comparing a potential measured by a surface voltmeter with a threshold value.
JP2002258095A 2002-09-03 2002-09-03 Conductive coating film inspection method and apparatus Expired - Fee Related JP3611037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002258095A JP3611037B2 (en) 2002-09-03 2002-09-03 Conductive coating film inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002258095A JP3611037B2 (en) 2002-09-03 2002-09-03 Conductive coating film inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2004093503A true JP2004093503A (en) 2004-03-25
JP3611037B2 JP3611037B2 (en) 2005-01-19

Family

ID=32062851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002258095A Expired - Fee Related JP3611037B2 (en) 2002-09-03 2002-09-03 Conductive coating film inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP3611037B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005058998A (en) * 2003-07-28 2005-03-10 Nissan Motor Co Ltd Method and device for inspecting grounding condition of object to be coated by electrostatic coating
JP2006167692A (en) * 2004-12-20 2006-06-29 Nissan Motor Co Ltd Method and device of inspecting earthing condition of electrostatically coated object
JP2014079703A (en) * 2012-10-17 2014-05-08 Trinity Industrial Co Ltd Electrostatic coating apparatus and grounded state inspection method
JP2014079702A (en) * 2012-10-17 2014-05-08 Trinity Industrial Co Ltd Electrostatic coating apparatus and grounded state inspection method
JP2014079704A (en) * 2012-10-17 2014-05-08 Trinity Industrial Co Ltd Electrostatic coating apparatus and grounded state inspection method
JP2014079701A (en) * 2012-10-17 2014-05-08 Trinity Industrial Co Ltd Electrostatic coating apparatus and grounded state inspection method
JP2014138919A (en) * 2013-01-21 2014-07-31 Honda Motor Co Ltd Electrostatic coating equipment
JP2017167011A (en) * 2016-03-17 2017-09-21 国立大学法人山形大学 Physical properties measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5784331B2 (en) * 2011-03-02 2015-09-24 春日電機株式会社 Discharge device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005058998A (en) * 2003-07-28 2005-03-10 Nissan Motor Co Ltd Method and device for inspecting grounding condition of object to be coated by electrostatic coating
JP2006167692A (en) * 2004-12-20 2006-06-29 Nissan Motor Co Ltd Method and device of inspecting earthing condition of electrostatically coated object
JP2014079703A (en) * 2012-10-17 2014-05-08 Trinity Industrial Co Ltd Electrostatic coating apparatus and grounded state inspection method
JP2014079702A (en) * 2012-10-17 2014-05-08 Trinity Industrial Co Ltd Electrostatic coating apparatus and grounded state inspection method
JP2014079704A (en) * 2012-10-17 2014-05-08 Trinity Industrial Co Ltd Electrostatic coating apparatus and grounded state inspection method
JP2014079701A (en) * 2012-10-17 2014-05-08 Trinity Industrial Co Ltd Electrostatic coating apparatus and grounded state inspection method
JP2014138919A (en) * 2013-01-21 2014-07-31 Honda Motor Co Ltd Electrostatic coating equipment
JP2017167011A (en) * 2016-03-17 2017-09-21 国立大学法人山形大学 Physical properties measuring method

Also Published As

Publication number Publication date
JP3611037B2 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
JP3611037B2 (en) Conductive coating film inspection method and apparatus
US7427855B2 (en) Circuit for measuring inrush current
JPH03135778A (en) Method and device for conducting opening/short circuit test of electric circuit in noncontact manner
WO2014061716A1 (en) Electrostatic coating device and ground state inspection method
JP4008173B2 (en) Capacitor insulation resistance measuring method and insulation resistance measuring device
JP2007165917A (en) Method of processing chucked object
JP4649805B2 (en) Coating object inspection device and coating object inspection method
JP3675678B2 (en) Probe contact state detection method and probe contact state detection device
JP3913355B2 (en) Processing method
JP6998909B2 (en) Electrostatic coating device, monitoring device and electrostatic coating method
US5917327A (en) Technique and apparatus for testing electrostatic chucks
JPH1167884A (en) Electrostatic attraction device and electron beam plotting apparatus using it
JP3925136B2 (en) Capacitor pass / fail judgment method
JP5941575B2 (en) Particle detection system
JPH07244098A (en) In-circuit testing method for capacitor
JP2000046885A (en) Apparatus for testing static electricity breakdown endurance amount
JPH03150474A (en) Inspecting device for static eliminator
JPH07263529A (en) Electrostatic attraction apparatus
JP2000155111A (en) Apparatus and method for inspecting insulating state
JPH11138058A (en) Method and apparatus for electrostatic coating of nonconductive member
JP3020619B2 (en) Insulation inspection method for columnar insulator
JP5800395B2 (en) Electrostatic coating apparatus and grounding state inspection method
US20070059965A1 (en) Method and apparatus for non-contact grounding detection in an electrostatic paint system
JP2000136987A (en) Spark plug inspection method
JP2002148298A (en) Device and method for inspecting circuit board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041012

R150 Certificate of patent or registration of utility model

Ref document number: 3611037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees