JP2004093457A - 画像処理装置、及び画像処理方法 - Google Patents
画像処理装置、及び画像処理方法 Download PDFInfo
- Publication number
- JP2004093457A JP2004093457A JP2002256896A JP2002256896A JP2004093457A JP 2004093457 A JP2004093457 A JP 2004093457A JP 2002256896 A JP2002256896 A JP 2002256896A JP 2002256896 A JP2002256896 A JP 2002256896A JP 2004093457 A JP2004093457 A JP 2004093457A
- Authority
- JP
- Japan
- Prior art keywords
- distance
- image
- corresponding point
- point
- photographing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
【課題】物体までの距離を高精度に測定することである。
【解決手段】本発明に係る距離測定装置1は、ステレオカメラ11a,11bとカメラ制御部13と距離計算部15とを備える。ステレオカメラ11a,11bは同一の物体を撮影する。カメラ制御部13は、ステレオカメラ11a,11bにより物体を同時に撮影可能な範囲内で、各ステレオカメラ11a,11bの距離間隔を延長する。距離計算部15は、カメラ制御部13により距離間隔が延長されたステレオカメラ11a,11bによる撮影結果に基づいて、物体までの距離を算出する。
【選択図】 図1
【解決手段】本発明に係る距離測定装置1は、ステレオカメラ11a,11bとカメラ制御部13と距離計算部15とを備える。ステレオカメラ11a,11bは同一の物体を撮影する。カメラ制御部13は、ステレオカメラ11a,11bにより物体を同時に撮影可能な範囲内で、各ステレオカメラ11a,11bの距離間隔を延長する。距離計算部15は、カメラ制御部13により距離間隔が延長されたステレオカメラ11a,11bによる撮影結果に基づいて、物体までの距離を算出する。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、画像処理装置、及び画像処理方法に関する。
【0002】
【従来の技術】
従来、ステレオカメラにより撮影された画像を使用して、撮像対象物としての物体までの距離を測定する三次元計測技術が提案されている。例えば、特開平11−39596号公報においては、遠距離用のステレオカメラと近距離用のステレオカメラとを同時に使用し、より広範囲の立体物を同時に検出する車外監視装置が開示されている。
【0003】
【特許文献1】
特開平11−39596号公報(第3図)
【0004】
【発明が解決しようとする課題】
しかしながら、従来技術では以下に示す様な問題点があった。すなわち、遠距離用と近距離用の二種類のステレオカメラが必要になるだけでなく、測定可能な距離の範囲が狭いため、広範囲に渡って精度良く距離を測定することは困難であった。また、ステレオカメラでは、撮影された一対の画像の中から物体に対応する点を探索するが、特にステレオカメラの間隔が広い場合には、この対応点を探索する処理に時間が掛かり、探索誤差も大きくなる場合が多い。
【0005】
そこで、本発明は、物体までの距離を高精度に測定する画像処理装置、及び画像処理方法を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明は、上記課題を解決する為、以下の様な特徴を備えている。
本発明に係る画像処理装置は、物体を撮影する複数の撮影手段と、前記複数の撮影手段の距離間隔が短い状態で前記物体の画像上の対応点を探索する探索手段と、前記複数の撮影手段により前記物体を同時に撮影可能な範囲内で前記距離間隔を延長する制御を行う制御手段と、前記制御手段により距離間隔が延長された際に、前記複数の撮影手段により撮影された前記物体の画像中に、前記対応点に相当する点を追跡する追跡手段と、前記追跡手段により追跡された点(距離間隔の延長に伴って移動した対応点)を利用して、前記物体の画像から、前記物体までの距離を算出する算出手段とを備える。
【0007】
本発明に係る画像処理方法は、複数の撮影手段により物体を撮影する撮影ステップと、前記複数の撮影手段の距離間隔が短い状態で前記物体の画像上の対応点を探索する探索ステップと、前記複数の撮影手段により前記物体を同時に撮影可能な範囲内で前記距離間隔を延長する制御を行う制御ステップと、前記制御ステップにて距離間隔が延長された際に、前記複数の撮影手段により撮影された前記物体の画像中に、前記対応点に相当する点を追跡する追跡ステップと、前記追跡ステップにて追跡された点(距離間隔の延長に伴って移動した対応点)を利用して、前記物体の画像から、前記物体までの距離を算出する算出ステップとを含む。
【0008】
これらの発明によれば、複数の撮影手段の距離間隔は制御手段により可変的に制御される。例えば、探索手段により対応点を探索する際には、対応点の探索誤差を低減すると共に、探索範囲が狭まる様に距離間隔を短くとる。一方、算出手段により物体との距離を算出する際には、測定距離の誤差を低減すると共に、視差の読取り誤差の影響が小さくなる様に距離間隔を長くとる。その結果、物体までの距離を高精度に測定することが可能となる。
【0009】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態を詳細に説明する。
図1は、本実施の形態における距離測定装置1の機能的構成を示すブロック図である。図1に示す様に、距離測定装置1(画像処理装置に対応)は、撮像部11と、対応点探索部12(探索手段に対応)と、カメラ制御部13(制御手段に対応)と、対応点追跡部14(追跡手段に対応)と、距離計算部15(算出手段に対応)とを備える。これら各部は、各種信号の入出力が可能な様に電気的に接続されている。
【0010】
撮像部11は、同一の物体を異なる視点から撮影可能な2台のステレオカメラ11a,11b(複数の撮影手段に対応)により構成される。各ステレオカメラ11a,11bは、それぞれ画角及び画素数が等しく、撮像方向と垂直な方向の距離間隔(以下、「基線長」と記す。)は可変的に設定可能である。
【0011】
対応点探索部12は、撮像部11のステレオカメラ11a,11bにより撮影された一対の画像の中から、物体に相当する画像上の点(以下、「対応点」と記す。)を探索する。
カメラ制御部13は、撮像部11のステレオカメラ11a,11bの位置を撮像方向と垂直な方向(図3のX軸方向)に移動させる制御を行う。
対応点追跡部14は、ステレオカメラ11a,11bが移動した結果、対応点が撮像面の端部に到達したか否かを判定する。
【0012】
距離計算部15は、対応点探索部12により探索された対応点を基に、ステレオカメラ11a,11bの前端部と対応点との撮像方向(図3のZ軸方向)の距離を算出する。また、距離計算部15は、当該算出結果を参照して、周知の三角測量法により物体の三次元位置を推定する。
【0013】
次に、図2〜図6を参照して、本実施の形態における距離測定装置1の動作を説明する。併せて、本発明に係る画像処理方法の各ステップについて説明する。
まず図2のS1では、カメラ制御部13は、ステレオカメラ11a,11b間の基線長が短く設定されているか否かを判定し、設定されていなければ基線長を短く設定する。
【0014】
図3は、基線長がLに設定されている場合におけるカメラと物体との位置関係を示す図である。図3に示す様に、基線長Lは、ステレオカメラ11aによる撮影画像(左像)とステレオカメラ11bによる撮影画像(右像)との間における視差θが充分に小さくなる程度に短い値に設定される。
【0015】
例えば、対応点A2に関する視差θは、ステレオカメラ11aの撮像方向(L1)とステレオカメラ11aから対応点A2に向かう方向(L2)との為す鋭角をθLとし、ステレオカメラ11bの撮像方向(R1)とステレオカメラ11bから対応点A2に向かう方向(R2)との為す鋭角をθRとした場合に、θ=|θL−θR|により表される。
【0016】
また、ステレオカメラ11a,11bの前端部と撮像面M1,M2とのY軸方向の距離を焦点距離fとすると、ステレオカメラ11a,11bの前端部と対応点とのY軸方向の測定距離Zは、Z=fL/θ…(式1)により表される。したがって、視差θが測定距離Zに及ぼす誤差△Zは、△Z=dZ/dθ=2Z2/fL…(式2)により表される。
【0017】
図4は、図3の撮像面M1,M2に写像された対応点A1,A2の位置関係を示す図である。図4を参照すると、図3に示した視差θが小さい程、対応点の探索範囲が狭くなる。すなわち、基線長をLの様に短くとると、対応点の探索範囲が狭くなり、これにより、対応点探索処理の高速化及び高精度化を図ることができる。その反面、上記式1及び式2から明らかな様に、基線長が短い程、誤差△Zは増大し、測定距離Zは視差θに過敏に反応する。その結果、ノイズに対する測定距離のロバスト性は低下する。
【0018】
図2に戻りS2では、撮像部11は、現時点における基線長Lを維持して、物体を撮影する。
続いて、対応点探索部12は、S2で撮影された一対の画像(撮像面M1,M2に相当)の中から、正規化相互相関法や二乗残差法などの数学的手法を用いて対応点A1,A2を探索する(S3)。
【0019】
S4では、カメラ制御部13は、撮像部11のステレオカメラ11aの位置をX軸の負方向に移動させると共に、ステレオカメラ11bの位置をX軸の正方向に移動させる。このとき、各カメラ11a,11bは、中心点を図3の点Cに維持したまま、等速に等距離移動するように制御される。カメラの移動中、対応点追跡部14は、撮像面M1,M2内にそれぞれ写像される対応点A1,A2を追跡する。
【0020】
S5では、対応点追跡部14は、ステレオカメラ11a,11bが移動した結果、各対応点A1,A2が撮像面M1,M2の端部に到達したか否かを判定する。当該判定の結果、各対応点A1,A2が撮像面M1,M2の端部に到達した場合、すなわち双方のカメラ11a,11bが対応点A1,A2を同時に撮影可能な限界の位置まで移動した場合には、S3に示した処理が再実行される。
【0021】
詳細には、対応点探索部12は、現時点における延長された基線長を維持して、S2で撮影された一対の画像(撮像面M1,M2に相当)の中から、追跡された対応点A1,A2を再度探索する(S6)。
【0022】
図5は、ステレオカメラ11a,11bがそれぞれ△Lずつ移動した場合におけるカメラと物体との位置関係を示す図である。図5に示す様に、基線長L+2△Lは、左像と右像との間における視差θが充分に大きくなる程度に長い値に変更される。このため、上述した式1及び式2から明らかな様に、基線長が長い程、誤差△Z、及び視差θが測定距離Zに与える影響は低減する。その結果、ノイズに対する測定距離のロバスト性は向上する。
【0023】
なお、S6においては、基線長の変更値から、撮像面上における対応点の探索範囲を決定することも可能である。以下、図6を参照して、かかる探索範囲の決定方法について説明する。図6に示す様に、基線長が△L延長された場合、撮像面M1上を対応点A1が移動する距離T1は、T1=f△L/Z+θRにより表される。同様に、基線長が△L延長された場合、撮像面M2上を対応点A2が移動する距離T2は、T2=f△L/Z+θLにより表される。
【0024】
したがって、測定距離Zの誤差率をk(定数)とすると、移動前のA1からX軸の負方向にT1移動した位置を中心として、2f△L(k△Z)/(Z2−(k△Z)2)の範囲内が、移動後の対応点A1の探索範囲となる。同様に、移動前のA2からX軸の正方向にT2移動した位置を中心として、2f△L(k△Z)/(Z2−(k△Z)2)の範囲内が、移動後の対応点A1の探索範囲となる。これにより、対応点探索部12は、上述の様に特定された探索範囲から対応点A1,A2を探索すればよく、他の範囲を含んで探索する場合と比較して、再探索処理の高速化及び高精度を図ることができる。
【0025】
S7では、距離計算部15は、追跡及び再探索された対応点と、S2で撮影された一対の画像とを用いて、ステレオカメラ11a,11bの前端部と対応点とのZ軸方向の距離を算出する。更に、距離計算部15は、当該算出結果を参照して、周知の三角測量法により物体の三次元位置を推定する。
【0026】
以下、本発明に係る距離測定装置1の奏する効果について説明する。本発明は、ステレオカメラ間の距離間隔が短い場合と長い場合におけるそれぞれの長所を活かすべく、当該距離間隔を可変的に制御するという着想に基づくものである。具体的には、基線長が短い時には、視差が小さく探索範囲も狭いので、対応点の探索に適する。これに対して、基線長が長い時には、測定距離の誤差が小さいので、距離の測定に適する。そこで、まず基線長を短く設定して対応点を検出した後に、対応点を探索可能な範囲内で基線長を長く変更して距離を測定する。精度の高い対応点に基づく距離の測定は、高精度な距離測定に資する。その結果、物体までの距離を高速かつ高精度に測定することが可能となる。
【0027】
なお、本実施の形態では、Z軸方向の距離測定を想定したが、X軸方向、Y軸方向に関しても同様の技術を適用可能であることは勿論である。更に、本実施の形態では、ステレオカメラ11a,11bをX軸方向のみに移動させる態様を例示した。しかし、かかる態様に限らず、X,Y,Z軸方向の中から適宜選択された一又は複数の方向にカメラ11a,11bを移動させることにより、パン、チルト、ズーム、輻輳などの多様な動作に関して、本発明を適用することも可能である
【0028】
【発明の効果】
本発明によれば、複数の撮影手段の距離間隔は制御手段により可変的に制御される。例えば、対応点を探索する際には、対応点の探索誤差を低減する為に、探索範囲が狭まる様に距離間隔を短くとる。一方、物体との距離を測定する際には、測定距離の誤差を低減する為に、視差の読取り誤差の影響が小さくなる様に距離間隔を長くとる。その結果、物体までの距離を高精度に測定することが可能となる。
【図面の簡単な説明】
【図1】本発明に係る距離測定装置の機能的構成を示すブロック図である。
【図2】距離測定処理を説明する為のフローチャートである。
【図3】基線長がLに設定されている場合におけるカメラと物体との位置関係を示す図である。
【図4】撮像面に写像された対応点の位置関係を示す図である。
【図5】ステレオカメラがそれぞれ△Lずつ移動した場合におけるカメラと物体との位置関係を示す図である。
【図6】探索範囲の決定方法を説明する為の図である。
【符号の説明】
1…距離測定装置、11…撮像部、11a,11b…ステレオカメラ、12…対応点探索部、13…カメラ制御部、14…対応点追跡部、15…距離計算部
【発明の属する技術分野】
本発明は、画像処理装置、及び画像処理方法に関する。
【0002】
【従来の技術】
従来、ステレオカメラにより撮影された画像を使用して、撮像対象物としての物体までの距離を測定する三次元計測技術が提案されている。例えば、特開平11−39596号公報においては、遠距離用のステレオカメラと近距離用のステレオカメラとを同時に使用し、より広範囲の立体物を同時に検出する車外監視装置が開示されている。
【0003】
【特許文献1】
特開平11−39596号公報(第3図)
【0004】
【発明が解決しようとする課題】
しかしながら、従来技術では以下に示す様な問題点があった。すなわち、遠距離用と近距離用の二種類のステレオカメラが必要になるだけでなく、測定可能な距離の範囲が狭いため、広範囲に渡って精度良く距離を測定することは困難であった。また、ステレオカメラでは、撮影された一対の画像の中から物体に対応する点を探索するが、特にステレオカメラの間隔が広い場合には、この対応点を探索する処理に時間が掛かり、探索誤差も大きくなる場合が多い。
【0005】
そこで、本発明は、物体までの距離を高精度に測定する画像処理装置、及び画像処理方法を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明は、上記課題を解決する為、以下の様な特徴を備えている。
本発明に係る画像処理装置は、物体を撮影する複数の撮影手段と、前記複数の撮影手段の距離間隔が短い状態で前記物体の画像上の対応点を探索する探索手段と、前記複数の撮影手段により前記物体を同時に撮影可能な範囲内で前記距離間隔を延長する制御を行う制御手段と、前記制御手段により距離間隔が延長された際に、前記複数の撮影手段により撮影された前記物体の画像中に、前記対応点に相当する点を追跡する追跡手段と、前記追跡手段により追跡された点(距離間隔の延長に伴って移動した対応点)を利用して、前記物体の画像から、前記物体までの距離を算出する算出手段とを備える。
【0007】
本発明に係る画像処理方法は、複数の撮影手段により物体を撮影する撮影ステップと、前記複数の撮影手段の距離間隔が短い状態で前記物体の画像上の対応点を探索する探索ステップと、前記複数の撮影手段により前記物体を同時に撮影可能な範囲内で前記距離間隔を延長する制御を行う制御ステップと、前記制御ステップにて距離間隔が延長された際に、前記複数の撮影手段により撮影された前記物体の画像中に、前記対応点に相当する点を追跡する追跡ステップと、前記追跡ステップにて追跡された点(距離間隔の延長に伴って移動した対応点)を利用して、前記物体の画像から、前記物体までの距離を算出する算出ステップとを含む。
【0008】
これらの発明によれば、複数の撮影手段の距離間隔は制御手段により可変的に制御される。例えば、探索手段により対応点を探索する際には、対応点の探索誤差を低減すると共に、探索範囲が狭まる様に距離間隔を短くとる。一方、算出手段により物体との距離を算出する際には、測定距離の誤差を低減すると共に、視差の読取り誤差の影響が小さくなる様に距離間隔を長くとる。その結果、物体までの距離を高精度に測定することが可能となる。
【0009】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態を詳細に説明する。
図1は、本実施の形態における距離測定装置1の機能的構成を示すブロック図である。図1に示す様に、距離測定装置1(画像処理装置に対応)は、撮像部11と、対応点探索部12(探索手段に対応)と、カメラ制御部13(制御手段に対応)と、対応点追跡部14(追跡手段に対応)と、距離計算部15(算出手段に対応)とを備える。これら各部は、各種信号の入出力が可能な様に電気的に接続されている。
【0010】
撮像部11は、同一の物体を異なる視点から撮影可能な2台のステレオカメラ11a,11b(複数の撮影手段に対応)により構成される。各ステレオカメラ11a,11bは、それぞれ画角及び画素数が等しく、撮像方向と垂直な方向の距離間隔(以下、「基線長」と記す。)は可変的に設定可能である。
【0011】
対応点探索部12は、撮像部11のステレオカメラ11a,11bにより撮影された一対の画像の中から、物体に相当する画像上の点(以下、「対応点」と記す。)を探索する。
カメラ制御部13は、撮像部11のステレオカメラ11a,11bの位置を撮像方向と垂直な方向(図3のX軸方向)に移動させる制御を行う。
対応点追跡部14は、ステレオカメラ11a,11bが移動した結果、対応点が撮像面の端部に到達したか否かを判定する。
【0012】
距離計算部15は、対応点探索部12により探索された対応点を基に、ステレオカメラ11a,11bの前端部と対応点との撮像方向(図3のZ軸方向)の距離を算出する。また、距離計算部15は、当該算出結果を参照して、周知の三角測量法により物体の三次元位置を推定する。
【0013】
次に、図2〜図6を参照して、本実施の形態における距離測定装置1の動作を説明する。併せて、本発明に係る画像処理方法の各ステップについて説明する。
まず図2のS1では、カメラ制御部13は、ステレオカメラ11a,11b間の基線長が短く設定されているか否かを判定し、設定されていなければ基線長を短く設定する。
【0014】
図3は、基線長がLに設定されている場合におけるカメラと物体との位置関係を示す図である。図3に示す様に、基線長Lは、ステレオカメラ11aによる撮影画像(左像)とステレオカメラ11bによる撮影画像(右像)との間における視差θが充分に小さくなる程度に短い値に設定される。
【0015】
例えば、対応点A2に関する視差θは、ステレオカメラ11aの撮像方向(L1)とステレオカメラ11aから対応点A2に向かう方向(L2)との為す鋭角をθLとし、ステレオカメラ11bの撮像方向(R1)とステレオカメラ11bから対応点A2に向かう方向(R2)との為す鋭角をθRとした場合に、θ=|θL−θR|により表される。
【0016】
また、ステレオカメラ11a,11bの前端部と撮像面M1,M2とのY軸方向の距離を焦点距離fとすると、ステレオカメラ11a,11bの前端部と対応点とのY軸方向の測定距離Zは、Z=fL/θ…(式1)により表される。したがって、視差θが測定距離Zに及ぼす誤差△Zは、△Z=dZ/dθ=2Z2/fL…(式2)により表される。
【0017】
図4は、図3の撮像面M1,M2に写像された対応点A1,A2の位置関係を示す図である。図4を参照すると、図3に示した視差θが小さい程、対応点の探索範囲が狭くなる。すなわち、基線長をLの様に短くとると、対応点の探索範囲が狭くなり、これにより、対応点探索処理の高速化及び高精度化を図ることができる。その反面、上記式1及び式2から明らかな様に、基線長が短い程、誤差△Zは増大し、測定距離Zは視差θに過敏に反応する。その結果、ノイズに対する測定距離のロバスト性は低下する。
【0018】
図2に戻りS2では、撮像部11は、現時点における基線長Lを維持して、物体を撮影する。
続いて、対応点探索部12は、S2で撮影された一対の画像(撮像面M1,M2に相当)の中から、正規化相互相関法や二乗残差法などの数学的手法を用いて対応点A1,A2を探索する(S3)。
【0019】
S4では、カメラ制御部13は、撮像部11のステレオカメラ11aの位置をX軸の負方向に移動させると共に、ステレオカメラ11bの位置をX軸の正方向に移動させる。このとき、各カメラ11a,11bは、中心点を図3の点Cに維持したまま、等速に等距離移動するように制御される。カメラの移動中、対応点追跡部14は、撮像面M1,M2内にそれぞれ写像される対応点A1,A2を追跡する。
【0020】
S5では、対応点追跡部14は、ステレオカメラ11a,11bが移動した結果、各対応点A1,A2が撮像面M1,M2の端部に到達したか否かを判定する。当該判定の結果、各対応点A1,A2が撮像面M1,M2の端部に到達した場合、すなわち双方のカメラ11a,11bが対応点A1,A2を同時に撮影可能な限界の位置まで移動した場合には、S3に示した処理が再実行される。
【0021】
詳細には、対応点探索部12は、現時点における延長された基線長を維持して、S2で撮影された一対の画像(撮像面M1,M2に相当)の中から、追跡された対応点A1,A2を再度探索する(S6)。
【0022】
図5は、ステレオカメラ11a,11bがそれぞれ△Lずつ移動した場合におけるカメラと物体との位置関係を示す図である。図5に示す様に、基線長L+2△Lは、左像と右像との間における視差θが充分に大きくなる程度に長い値に変更される。このため、上述した式1及び式2から明らかな様に、基線長が長い程、誤差△Z、及び視差θが測定距離Zに与える影響は低減する。その結果、ノイズに対する測定距離のロバスト性は向上する。
【0023】
なお、S6においては、基線長の変更値から、撮像面上における対応点の探索範囲を決定することも可能である。以下、図6を参照して、かかる探索範囲の決定方法について説明する。図6に示す様に、基線長が△L延長された場合、撮像面M1上を対応点A1が移動する距離T1は、T1=f△L/Z+θRにより表される。同様に、基線長が△L延長された場合、撮像面M2上を対応点A2が移動する距離T2は、T2=f△L/Z+θLにより表される。
【0024】
したがって、測定距離Zの誤差率をk(定数)とすると、移動前のA1からX軸の負方向にT1移動した位置を中心として、2f△L(k△Z)/(Z2−(k△Z)2)の範囲内が、移動後の対応点A1の探索範囲となる。同様に、移動前のA2からX軸の正方向にT2移動した位置を中心として、2f△L(k△Z)/(Z2−(k△Z)2)の範囲内が、移動後の対応点A1の探索範囲となる。これにより、対応点探索部12は、上述の様に特定された探索範囲から対応点A1,A2を探索すればよく、他の範囲を含んで探索する場合と比較して、再探索処理の高速化及び高精度を図ることができる。
【0025】
S7では、距離計算部15は、追跡及び再探索された対応点と、S2で撮影された一対の画像とを用いて、ステレオカメラ11a,11bの前端部と対応点とのZ軸方向の距離を算出する。更に、距離計算部15は、当該算出結果を参照して、周知の三角測量法により物体の三次元位置を推定する。
【0026】
以下、本発明に係る距離測定装置1の奏する効果について説明する。本発明は、ステレオカメラ間の距離間隔が短い場合と長い場合におけるそれぞれの長所を活かすべく、当該距離間隔を可変的に制御するという着想に基づくものである。具体的には、基線長が短い時には、視差が小さく探索範囲も狭いので、対応点の探索に適する。これに対して、基線長が長い時には、測定距離の誤差が小さいので、距離の測定に適する。そこで、まず基線長を短く設定して対応点を検出した後に、対応点を探索可能な範囲内で基線長を長く変更して距離を測定する。精度の高い対応点に基づく距離の測定は、高精度な距離測定に資する。その結果、物体までの距離を高速かつ高精度に測定することが可能となる。
【0027】
なお、本実施の形態では、Z軸方向の距離測定を想定したが、X軸方向、Y軸方向に関しても同様の技術を適用可能であることは勿論である。更に、本実施の形態では、ステレオカメラ11a,11bをX軸方向のみに移動させる態様を例示した。しかし、かかる態様に限らず、X,Y,Z軸方向の中から適宜選択された一又は複数の方向にカメラ11a,11bを移動させることにより、パン、チルト、ズーム、輻輳などの多様な動作に関して、本発明を適用することも可能である
【0028】
【発明の効果】
本発明によれば、複数の撮影手段の距離間隔は制御手段により可変的に制御される。例えば、対応点を探索する際には、対応点の探索誤差を低減する為に、探索範囲が狭まる様に距離間隔を短くとる。一方、物体との距離を測定する際には、測定距離の誤差を低減する為に、視差の読取り誤差の影響が小さくなる様に距離間隔を長くとる。その結果、物体までの距離を高精度に測定することが可能となる。
【図面の簡単な説明】
【図1】本発明に係る距離測定装置の機能的構成を示すブロック図である。
【図2】距離測定処理を説明する為のフローチャートである。
【図3】基線長がLに設定されている場合におけるカメラと物体との位置関係を示す図である。
【図4】撮像面に写像された対応点の位置関係を示す図である。
【図5】ステレオカメラがそれぞれ△Lずつ移動した場合におけるカメラと物体との位置関係を示す図である。
【図6】探索範囲の決定方法を説明する為の図である。
【符号の説明】
1…距離測定装置、11…撮像部、11a,11b…ステレオカメラ、12…対応点探索部、13…カメラ制御部、14…対応点追跡部、15…距離計算部
Claims (2)
- 物体を撮影する複数の撮影手段と、
前記複数の撮影手段の距離間隔が短い状態で、前記物体の画像上の対応点を探索する探索手段と、
前記複数の撮影手段により前記物体を同時に撮影可能な範囲内で、前記距離間隔を延長する制御を行う制御手段と、
前記制御手段により距離間隔が延長された際に、前記複数の撮影手段により撮影された前記物体の画像中に、前記対応点に相当する点を追跡する追跡手段と、
前記追跡手段により追跡された点を利用して、前記物体の画像から、前記物体までの距離を算出する算出手段と
を備えることを特徴とする画像処理装置。 - 複数の撮影手段により物体を撮影する撮影ステップと、
前記複数の撮影手段の距離間隔が短い状態で、前記物体の画像上の対応点を探索する探索ステップと、
前記複数の撮影手段により前記物体を同時に撮影可能な範囲内で、前記距離間隔を延長する制御を行う制御ステップと、
前記制御ステップにて距離間隔が延長された際に、前記複数の撮影手段により撮影された前記物体の画像中に、前記対応点に相当する点を追跡する追跡ステップと、
前記追跡ステップにて追跡された点を利用して、前記物体の画像から、前記物体までの距離を算出する算出ステップと
を含むことを特徴とする画像処理方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002256896A JP2004093457A (ja) | 2002-09-02 | 2002-09-02 | 画像処理装置、及び画像処理方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002256896A JP2004093457A (ja) | 2002-09-02 | 2002-09-02 | 画像処理装置、及び画像処理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004093457A true JP2004093457A (ja) | 2004-03-25 |
Family
ID=32061981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002256896A Pending JP2004093457A (ja) | 2002-09-02 | 2002-09-02 | 画像処理装置、及び画像処理方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004093457A (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006033282A (ja) * | 2004-07-14 | 2006-02-02 | Olympus Corp | 画像生成装置およびその方法 |
JP2006329747A (ja) * | 2005-05-25 | 2006-12-07 | Tokyo Institute Of Technology | 画像撮影装置 |
JP2007120993A (ja) * | 2005-10-25 | 2007-05-17 | Tokyo Institute Of Technology | 物体形状測定装置 |
JP2009032140A (ja) * | 2007-07-30 | 2009-02-12 | Shimadzu Corp | モーショントラッカ装置 |
JP2009047496A (ja) * | 2007-08-17 | 2009-03-05 | Fujifilm Corp | 立体撮像装置および立体撮像装置の制御方法並びにプログラム |
JP2009047495A (ja) * | 2007-08-17 | 2009-03-05 | Fujifilm Corp | 立体撮像装置および立体撮像装置の制御方法並びにプログラム |
JP2010139288A (ja) * | 2008-12-10 | 2010-06-24 | Konica Minolta Holdings Inc | ステレオカメラユニット及びステレオマッチング方法 |
WO2010109835A1 (en) * | 2009-03-25 | 2010-09-30 | Fujifilm Corporation | Distance measuring method and distance measuring apparatus |
CN102278946A (zh) * | 2010-04-08 | 2011-12-14 | 卡西欧计算机株式会社 | 摄像装置以及长度测量方法 |
CN102997891A (zh) * | 2012-11-16 | 2013-03-27 | 上海光亮光电科技有限公司 | 场景深度的测量装置和方法 |
JP2013513095A (ja) * | 2009-12-04 | 2013-04-18 | アルカテル−ルーセント | 物体の改善されたステレオ画像を得る方法およびシステム |
WO2022137876A1 (ja) * | 2020-12-23 | 2022-06-30 | ソニーグループ株式会社 | 移動体、移動体の制御方法、及びプログラム |
-
2002
- 2002-09-02 JP JP2002256896A patent/JP2004093457A/ja active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006033282A (ja) * | 2004-07-14 | 2006-02-02 | Olympus Corp | 画像生成装置およびその方法 |
JP4545503B2 (ja) * | 2004-07-14 | 2010-09-15 | オリンパス株式会社 | 画像生成装置およびその方法 |
JP2006329747A (ja) * | 2005-05-25 | 2006-12-07 | Tokyo Institute Of Technology | 画像撮影装置 |
JP2007120993A (ja) * | 2005-10-25 | 2007-05-17 | Tokyo Institute Of Technology | 物体形状測定装置 |
JP2009032140A (ja) * | 2007-07-30 | 2009-02-12 | Shimadzu Corp | モーショントラッカ装置 |
JP2009047496A (ja) * | 2007-08-17 | 2009-03-05 | Fujifilm Corp | 立体撮像装置および立体撮像装置の制御方法並びにプログラム |
JP2009047495A (ja) * | 2007-08-17 | 2009-03-05 | Fujifilm Corp | 立体撮像装置および立体撮像装置の制御方法並びにプログラム |
JP2010139288A (ja) * | 2008-12-10 | 2010-06-24 | Konica Minolta Holdings Inc | ステレオカメラユニット及びステレオマッチング方法 |
WO2010109835A1 (en) * | 2009-03-25 | 2010-09-30 | Fujifilm Corporation | Distance measuring method and distance measuring apparatus |
JP2010223864A (ja) * | 2009-03-25 | 2010-10-07 | Fujifilm Corp | 距離測定方法および装置 |
CN102362147A (zh) * | 2009-03-25 | 2012-02-22 | 富士胶片株式会社 | 距离测量方法和距离测量设备 |
JP2013513095A (ja) * | 2009-12-04 | 2013-04-18 | アルカテル−ルーセント | 物体の改善されたステレオ画像を得る方法およびシステム |
US9025009B2 (en) | 2009-12-04 | 2015-05-05 | Alcatel Lucent | Method and systems for obtaining an improved stereo image of an object |
CN102278946A (zh) * | 2010-04-08 | 2011-12-14 | 卡西欧计算机株式会社 | 摄像装置以及长度测量方法 |
CN102997891A (zh) * | 2012-11-16 | 2013-03-27 | 上海光亮光电科技有限公司 | 场景深度的测量装置和方法 |
WO2022137876A1 (ja) * | 2020-12-23 | 2022-06-30 | ソニーグループ株式会社 | 移動体、移動体の制御方法、及びプログラム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5587930B2 (ja) | 距離算出装置及び距離算出方法 | |
JP5293131B2 (ja) | 車両用複眼距離測定装置及び複眼距離測定方法 | |
US20070189750A1 (en) | Method of and apparatus for simultaneously capturing and generating multiple blurred images | |
WO2013132951A1 (ja) | 距離算出装置及び距離算出方法 | |
JP3349121B2 (ja) | ステレオカメラの取付構造 | |
JP2004093457A (ja) | 画像処理装置、及び画像処理方法 | |
JPH0843055A (ja) | 3次元物体形状認識方法及び装置 | |
JP6035774B2 (ja) | 画像処理装置、画像処理方法、及び車両 | |
JP2015206798A (ja) | 距離算出装置 | |
JPH09226490A (ja) | 横断物の検出装置 | |
KR101674298B1 (ko) | 카메라 렌즈 초점거리 정보를 이용한 거리계산 방법 | |
JP2021163396A (ja) | 画像処理装置および画像処理方法 | |
JP2002099902A (ja) | 両眼立体視によって物体の3次元情報を計測する画像処理装置およびその方法又は計測のプログラムを記録した記録媒体 | |
JPH0814861A (ja) | 3次元形状の計測方法及び装置 | |
JP2014238409A (ja) | 距離算出装置及び距離算出方法 | |
JP6734994B2 (ja) | ステレオ計測装置及びシステム | |
JP6241083B2 (ja) | 撮像装置及び視差検出方法 | |
JP4531921B2 (ja) | 距離測定装置 | |
JPH1096607A (ja) | 物体検出装置および平面推定方法 | |
JP2022087978A (ja) | 位置姿勢算出装置、位置姿勢算出方法及び測量装置 | |
JP2004340714A (ja) | ステレオカメラの最適配置決定方法とそのシステム | |
JP3525712B2 (ja) | 三次元画像撮像方法及び三次元画像撮像装置 | |
JPH10289316A (ja) | 視差算出装置、距離算出装置およびこれらの方法 | |
JP5358137B2 (ja) | 画像生成装置、方法及びプログラム | |
JPH1163949A (ja) | 3次元形状復元装置及び方法 |