JP2004092576A - Valve timing control device of internal combustion engine - Google Patents

Valve timing control device of internal combustion engine Download PDF

Info

Publication number
JP2004092576A
JP2004092576A JP2002257420A JP2002257420A JP2004092576A JP 2004092576 A JP2004092576 A JP 2004092576A JP 2002257420 A JP2002257420 A JP 2002257420A JP 2002257420 A JP2002257420 A JP 2002257420A JP 2004092576 A JP2004092576 A JP 2004092576A
Authority
JP
Japan
Prior art keywords
link
pin
engagement pin
guide
timing control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002257420A
Other languages
Japanese (ja)
Other versions
JP4094911B2 (en
JP2004092576A5 (en
Inventor
Masahiko Watanabe
渡辺 正彦
Naotaka Nagura
名倉 直孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Hitachi Unisia Automotive Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Unisia Automotive Ltd filed Critical Hitachi Unisia Automotive Ltd
Priority to JP2002257420A priority Critical patent/JP4094911B2/en
Publication of JP2004092576A publication Critical patent/JP2004092576A/en
Publication of JP2004092576A5 publication Critical patent/JP2004092576A5/ja
Application granted granted Critical
Publication of JP4094911B2 publication Critical patent/JP4094911B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Valve Device For Special Equipments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a smooth engagement operation between an intermediate rotor and a movable guide part while allowing some degree of molding error. <P>SOLUTION: A spiral groove 15 is formed in the intermediate rotor 18 inputting an external rotating operation force, and the movable guide part at the tip of a link 11 is engaged with the spiral groove 15 and the radial groove 8 of a drive ring 3. The base end of the link 11 is pivotally connected to the lever 9 of a driven shaft member 7, and the assembling angle of the drive ring 3 and the driven shaft member 7 is changed by the rotating operation of the rotor 18. In such a valve timing control device, An engagement pin 16 is rotatably and rockably housed in the housing hole 14 of the link 11, and a part of the movable guide part is constituted by the engagement pin 16. The head part 41 of the engagement pin 16 is spherically formed, and the head part 41 is engaged with the semi-circular sectional spiral groove 15. The molding error is absorbed by the rocking of the engagement pin 16. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この出願の発明は、内燃機関の吸気側または排気側の機関弁の開閉タイミングを運転状態に応じて可変制御する内燃機関のバルブタイミング制御装置に関する。
【0002】
【従来の技術】
この種のバルブタイミング制御装置として、次のようなものが案出されている。
【0003】
このバルブタイミング制御装置は、クランクシャフトにタイミングチェーン等を介して連係されたハウジング(駆動回転体)がカムシャフトの端部に回動可能に組み付けられ、ハウジングの内側端面に形成された径方向ガイドに可動案内部が径方向に沿って摺動自在に係合支持されると共に、径方向外側に突出するレバーを有するレバー軸(従動回転体)がカムシャフトの端部にボルト結合され、可動案内部とレバー軸のレバーとがリンクによって枢支連結されている。そして、前記径方向ガイドに対向する位置には、渦巻き状ガイドを有する中間回転体がハウジングとレバー軸に対して相対回動可能に設けられ、前記可動案内部の軸方向の一方の端部に突設された略円弧状の複数の突条が前記渦巻き状ガイドに案内係合されている。また、中間回転体はハウジングに対して回転を進める側にゼンマイばねによって付勢されると共に、電磁ブレーキによって回転を遅らせる側の力を適宜受けるようになっている。
【0004】
この装置の場合、電磁ブレーキがOFF状態のときには、中間回転体がゼンマイばねの付勢力を受けハウジングに対して初期位置に位置されており、渦巻き状ガイドに突条でもって噛合う可動案内部は径方向外側に最大に変位し、リンクを引き起こしてハウジングとカムシャフトの組付角を最遅角位置または最進角位置に維持している。そして、この状態から電磁ブレーキがONにされると、中間回転体が減速されてハウジングに対して遅れ側に相対回転する結果、渦巻き状ガイドに噛合う可動案内部が径方向内側に変位し、今まで引き起こされていたリンクを次第に倒すようにしてハウジングとカムシャフトの組付角を最進角位置または最遅角位置に変更する。
【0005】
【特許文献】
特開2001−41013号公報
【0006】
【発明が解決しようとする課題】
しかし、この従来のバルブタイミング制御装置の場合、略円弧状の突条を渦巻き状ガイドに摺動自在に係合させることで、中間回転体の回動を可動案内部の径方向変位に変換するようにしているため、中間回転体の渦巻き状ガイドと可動案内部の突条を高精度に製造しないと、両者間の円滑な作動を得ることができない。即ち、渦巻き状ガイドと突条の位置関係に大きな誤差があると、中間回転体と可動案内部の相互の動き自体がフリクションによって拘束され、両者の円滑な作動が妨げられてしまう。したがって、渦巻き状ガイドと突条の成形精度が低い場合には、バルブタイミング制御の作動応答性が低下してしまう。
【0007】
また、渦巻き状ガイドと突条は高精度に成形すれば問題は生じないが、満足できる円滑な作動を得られる程度にこれらの成形精度を高めるようとすると、製造コストが大幅に高騰し、商品性が低下してしまう。
【0008】
そこでこの出願の発明は、ある程度の成形誤差を許容しつつ中間回転体と可動案内部の円滑な係合作動が得られるようにして、製造コストの高騰を招くことなく作動応答性の向上を図ることのできる内燃機関のバルブタイミング制御装置を提供しようとするものである。
【0009】
【課題を解決するための手段】
上述した課題を解決するための手段として、この出願の発明は、中間回転体の操作回転をリンクの揺動に変換する可動案内部を、リンクに対して回転自在であって先端部が渦巻き状ガイドに案内係合される係合ピンを備えた構成とし、その係合ピンをリンクに揺動可能に保持させるようにした。
【0010】
この発明の場合、可動案内部の係合ピンはリンクに対して回転しつつ渦巻き状ガイドに案内係合される。また、可動案内部と渦巻き状ガイドにある程度の成形誤差があったとしても、係合ピンがリンクに対して揺動することでその誤差を吸収することができる。したがって、この発明によれば、製造コストの高騰を招くことなく、渦巻き状ガイドと可動案内部の間のフリクションを低減することが可能となる。
【0011】
前記係合ピンの軸方向略中央部には、径方向外側に膨出する膨出部を設け、係合ピンの外周部とリンク側のピン収容穴の間に潤滑油が供給されるようにすることが望ましい。この場合、膨出部を中心としてピン収容穴内での係合ピンの揺動が可能となり、また、係合ピンの膨出部の前後位置には潤滑油が滞留するため、ピンの回転時や揺動時の抵抗をその潤滑油によって確実に下げることができると共に、ピンの揺動に伴なうガタ付きを潤滑油の粘性抵抗によって低減することができる。
【0012】
また、前記係合ピンの先端部は球面状に形成し、中間回転体の渦巻き状ガイドは断面半円状の渦巻き溝によって構成し、その渦巻き溝の断面は、前記係合ピンの先端部の球面形状よりも大きい半径に形成することが好ましい。この場合、係合ピンと渦巻き溝が滑らかな面で接触するため、これらの接触部によって両者間のガタ付きを確実に防止することができる。そして、渦巻き溝の断面の半径は係合ピンの先端部の球面形状の半径よりも大きく設定されているため、これらの接触部において、係合ピンの揺動を充分に許容することができると共に、係合ピンが渦巻き溝の開口エッジに当ることによるフリクションの増大を防止することができる。
【0013】
【発明の実施の形態】
次に、この出願の発明の一実施形態を図面に基づいて説明する。
【0014】
この実施形態は、この出願の発明にかかるバルブタイミング制御装置を内燃機関の吸気側の動力伝達系に適用したものであるが、排気側の動力伝達系に同様に適用することも可能である。
【0015】
バルブタイミング制御装置は、図1に示すように内燃機関のシリンダヘッド(図示せず)に回転自在に支持されたカムシャフト1と、このカムシャフト1の前端部に必要に応じて相対回動できるように組み付けられ、チェーン(図示せず)を介してクランクシャフト(図示せず)に連係されるタイミングスプロケット2を外周に有する駆動リング3(駆動回転体)と、この駆動リング3とカムシャフト1の前方側(図1中左側)に配置されて、両者3,1の組付角を操作する組付角操作機構4と、この組付角操作機構4のさらに前方側に配置されて、同機構4を駆動する操作力付与手段5と、内燃機関の図外のシリンダヘッドとヘッドカバーの前面に跨って取り付けられて組付角操作機構4と操作力付与手段5の前面と周域を覆う図外のVTCカバーと、を備えている。
【0016】
駆動リング3は、段差状の挿通孔6を備えた略円板状に形成され、この挿通孔6部分が、カムシャフト1の前端部に結合された従動軸部材7(従動回転体)に回転可能に組み付けられている。そして、駆動リング3の前面(カムシャフト1と逆側の面)には、図2に示すように、対面する平行な側壁を有する3つの径方向溝8(径方向ガイド)が同リング3のほぼ半径方向に沿うように形成されている。
【0017】
また、従動軸部材7は、図1に示すように、カムシャフト1の前端部に突き合される基部側外周に拡径部が形成されると共に、その拡径部よりも前方側の外周面に放射状に突出する三つのレバー9が一体に形成され、軸芯部を貫通するボルト10によってカムシャフト1に結合されている。各レバー9には、リンク11の基端がピン12によって枢支連結され、各リンク11の先端には前記各径方向溝8に摺動自在に係合する円柱状の突出部13が一体に形成されている。
【0018】
各リンク11は、突出部13が対応する径方向溝8に係合した状態において、ピン12を介して従動軸部材7に連結されているため、リンク11の先端側が外力を受けて径方向溝8に沿って変位すると、駆動リング3と従動軸部材7はリンク11の作用でもって突出部13の変位に応じた方向及び角度だけ相対回動する。
【0019】
また、各リンク11の先端部には、軸方向前方側に開口する収容穴14が形成され、この収容穴14に、後述する渦巻き溝15(渦巻き状ガイド)に係合する係合ピン16と、この係合ピン16を前方側(渦巻き溝15側)に付勢するコイルばね17とが収容されている。尚、この実施形態の場合、リンク11の先端の突出部13と係合ピン16、コイルばね17等によって径方向に変位可能な可動案内部が構成されている。
【0020】
ここで、係合ピン16は、図4に拡大して示すように、リンク11の収容穴14内に収容される略円筒状の筒状部40と、その筒状部40の先端側に設けられ、中間回転体18の渦巻き溝15内に転動自在に係合される球面状の頭部41と、を有しており、これらは全体が金属材料によって一体に形成されている。筒状部40の外周面は軸方向全域に亙って一定外径に形成されているのではなく、軸方向の略中央部に向かって外径が次第に増大する樽形状となっている。したがって、この係合ピン16は筒状部40がリンク11の収容穴14内に回転自在に収容されているが、外面形状が樽形状であることから、その樽形状に沿った係合ピン16の揺動も許容される。また、係合ピン16の表面には、DLC(ダイヤモンド・ライク・カーボン)等の摺動抵抗を下げるための表面処理が施されている。
【0021】
また、組付角操作機構4の周域の空間部53には、カムシャフト1と従動軸部材7を通して機関ブロック側から潤滑油が供給されるようになっている。したがって、組付角操作機構4の各部はその潤滑油によって潤滑され、前記係合ピン16と収容穴14の隙間にもその潤滑油が回り込んでいる。特に、係合ピン16は軸方向略中央が膨出する樽形状に形成されているため、その中央の最大膨出部の前後には潤滑液がほぼ常時滞留している。
【0022】
一方、従動軸部材7のレバー9の突設位置よりも前方側には、円板状のフランジ壁を有する中間回転体18が軸受19を介して回転自在に支持されている。この中間回転体18のフランジ壁の後面側には断面半円状の前述の渦巻き溝15が形成され、この渦巻き溝15に、前記各リンク11の先端の係合ピン16が転動自在に案内係合されている。渦巻き溝15の断面の円弧は、係合ピン16の頭部41よりも大きい半径に形成され、係合ピン16の揺動時に、同ピン16が渦巻き溝15の開口エッジに接触しないように設定されている。また、渦巻き溝15の渦巻きは、機関回転方向Rに沿って次第に縮径するように形成されている。したがって、各リンク11先端の係合ピン16が渦巻き溝15に係合した状態において、中間回転体18が駆動リング3に対して遅れ方向に相対回転すると、リンク11の先端部は径方向溝8に案内されつつ、渦巻き溝15の渦巻き形状に誘導されて半径方向内側に移動し、逆に、中間回転体18が進み方向に相対変位すると、半径方向外側に移動する。
【0023】
組付角操作機構4は、以上説明した駆動リング3の径方向溝8、リンク11、突出部13、係合ピン16、レバー9、中間回転体18、渦巻き溝15等によって構成されている。この組付角操作機構4は、操作力付与手段5から中間回転体18にカムシャフト1に対する相対的な回動操作力が入力されると、その操作力が渦巻き溝15と係合ピン16の係合部を通してリンク11の先端を径方向に変位させ、このときリンク11とレバー9の作用でもって駆動リング3と従動軸部材7に相対的な回動力を伝達する。
【0024】
一方、操作力付与手段5は、中間回転体18を駆動リング3に対して機関回転方向Rに付勢する回転付勢ばねとしてのゼンマイばね47と、中間回転体18を駆動リング3に対して機関回転方向Rと逆方向に付勢するヒステリシスブレーキ20と、を備えて成り、内燃機関の運転状態に応じてヒステリシスブレーキ20の制動力を適宜制御することにより、中間回転体18を駆動リング3に対して相対回動させ、或は、両者の回転位置を維持するようになっている。
【0025】
ゼンマイばね47は、駆動リング3に延設された円筒壁21にその外周端部が結合される一方、内周端部が中間回転体18の円筒状の基部に結合されている。
【0026】
また、中間回転体18のカムシャフト1と逆側の端面には、封止壁50が一体に結合され、その封止壁50の外周面が前記円筒壁21の内面に摺動自在に密接している。
【0027】
ヒステリシスブレーキ20は、非回転部材であるVTCカバーに取り付けられ、略円筒状の隙間を挟んで対向する一対の周面状の対向面を有する磁気誘導部材22と、前記両対向面に夫々設けられた内側極歯23、及び、外側極歯24と、磁気誘導部材22に取り付けられて内側極歯23と外側極歯24の間に磁界を生じさせる電磁コイル25と、前記両極歯23,24間に非接触状態で挿入配置された円筒状のヒステリシスリング26と、外周端がこのヒステリシスリング26に一体に結合された状態で中間回転体18に連結ピン54とゴムブッシュ38を介して結合された円環プレート33と、を備え、電磁コイル25が図外のコントローラによって通電制御されるようになっている。
【0028】
磁気誘導部材22の内側極歯23と外側極歯24は夫々軸方向に沿って延出する複数の極歯要素を有している。両極歯23,24の極歯要素は夫々円周方向に沿って配置され、極歯23,24の極歯要素相互は円周方向に相互にオフセットされている。したがって、電磁コイル25が通電されると、両極歯23,24間には、オフセットした位置関係にある相手極歯要素に向かう磁界が発生する。
【0029】
ヒステリシスリング20は、磁気的ヒステリシス特性を有するヒステリシス材から成り、同リング20の回転中に内側極歯23と外側極歯24の間に磁界が発生すると、その磁界の向きとヒステリシスリング20内の磁束の向きとにずれが生じるようになっている。ヒステリシスブレーキ20は、このずれによって制動力を発生する。また、円環プレート33は、磁気誘導部材22の内周面に軸受34,35を介して支持された軸部材36に一体に結合されている。したがって、ヒステリシスリング20は、円環プレート33と軸部材36を介して磁気誘導部材22に相対回転可能に支持されている。
【0030】
ところで、中間回転体18は、ヒステリシスブレーキ20の励磁のオン,オフの切換えにより、駆動リング3に対して正逆いずれかの方向に相対回動することとなるが、この相対回動は、中間回転体18と駆動リング3の間に設けられた回動ストッパ42によって所定の角度範囲内に規制されるようになっている。
【0031】
回動ストッパ42は、中間回転体18の後面側の外周縁部に一体に形成された突起48(相手当接部)と、駆動リング3の前面側の外周縁部に取付けられた緩衝器49とによって構成され、これらの突起48と緩衝器49が相互に当接することによって駆動リング3と中間回転体18の相対回動を所定角度内に規制するようになっている。
【0032】
緩衝器49は、図5に示すように、その本体部分が弾性を有する薄肉の板状部材43、例えば、鋼板やステンレス板等から成り、その板状部材43が、重合面相互が摺動可能なように渦巻き状に積層されると共に、その積層部の径方向内側に板状部材43の変形を許容する空間部44が設けられている。板状部材43の径方向内側と外側の各端部は自由端とされている。また、板状部材43の積層部の外周側にはC字形状の鉄製のカバー部材45が被着されている。このカバー部材45は弾性を有し、そのC字形状を拡径することによって積層部に被着されている。そして、板状部材43とカバー部材45は、図5に示すように、頭部を二面幅状に切り欠いた係止具46によって駆動リング3の外周縁部に固定されている。
【0033】
この緩衝器49は、衝撃の入力時に、板状部材43の積層部のほぼ全域のずれによってその衝撃を確実に緩衝することができるが、相手当接部である突起48が直接接触する積層部の外周側にカバー部材45を被着しているため、直接接触部が衝撃によって損傷したり、摩耗したりする不具合を無くすことができる。つまり、カバー部材45を備えないタイプの緩衝器においては、板状部材43の積層部外面が入力衝撃によって破損したり摩耗する不具合があったが、この実施形態の緩衝器49においてはこのような負具合を確実に解消することができる。
【0034】
このバルブタイミング制御装置は以上のような構成であるため、内燃機関の始動時やアイドル運転時には、ヒステリシスブレーキ20の電磁コイル25の励磁をオフにしておくことにより、ゼンマイばね47の力によって中間回転体18を駆動リング3に対して機関回転方向Rに最大に回転させておく(図2参照)。これにより、クランクシャフトとカムシャフト1の回転位相(機関弁の開閉タイミング)は最遅角側に維持され、機関回転の安定化と燃費の向上が図られる。
【0035】
そして、この状態から機関の運転が通常運転に移行し、前記回転位相を最進角側に変更すべき指令が図外のコントローラから発されると、ヒステリシスブレーキ20の電磁コイル25の励磁がオンにされ、ゼンマイばね47に抗する制動力が円環プレート33から中間回転体18に連結ピン54とゴムブッシュ38を介して伝達される。これにより、中間回転体18が駆動リング3に対して逆方向に回転し、それによってリンク11の先端の係合ピン16が渦巻き溝15に誘導されてリンク11の先端部が径方向溝8に沿って変位し、図3に示すようにリンク11の作用によって駆動リング3と従動軸部材7の組付角が最進角側に変更される。この結果、クランクシャフトとカムシャフト1の回転位相が最進角側に変更され、それによって機関の高出力化が図られることとなる。
【0036】
また、この状態から前記回転位相を最遅角側に変更すべく指令がコントローラから発されると、ヒステリシスブレーキ20の電磁コイル25の励磁がオフにされ、再度ゼンマイばね47の力によって中間回転体18が機関回転方向Rに回転させられる。すると、渦巻き溝15による係合ピン16の誘導によってリンク11が上記と逆方向に揺動し、図2に示すようにそのリンク11の作用によって駆動リング3と従動軸部材7の組付角が再度遅角側に変更される。
【0037】
尚、このバルブタイミング制御装置によるクランクシャフトとカムシャフト1の回転位相は、以上で説明した最遅角と最進角の二種の位相ばかりでなく、ヒステリシスブレーキ20の制動力の制御によって任意の位相に変更し、ゼンマイばね47の力とヒステリシスブレーキ20の制動力のバランスによってその位相を保持することができる。
【0038】
ところで、このバルブタイミング制御装置においては、中間回転体18の回動が、渦巻き溝15と係合ピン16の係合部を通してリンク11の揺動に変換されるが、中間回転体18が駆動リング3に対して相対回動すると、係合ピン16が渦巻き溝15の内面に沿って転動しつつリンク11の先端部を径方向に変位させる。このとき、係合ピン16は、筒状部40の樽形状によって収容穴14内を適宜揺動し、収容穴14と渦巻き溝15の位置的な誤差等をその揺動によって吸収する。そして、係合ピン16は揺動が許容されていることで、回転を阻害するフリクションの発生を無くしているため、渦巻き溝15内を常時円滑に転動することができる。つまり、係合ピン16が仮に一定外径の円筒形状であったとすると、係合ピン16を傾斜させる方向の力が入力されたときに、係合ピン16の軸方向の端部が収容穴14の内面に強接触して係合ピン16の回転が妨げられるが、係合ピン16の揺動を許容するこの実施形態の装置においてはそのような不具合は生じない。
【0039】
したがって、この装置の場合、各部の製造誤差等に起因する若干の位置的なずれがあっても、中間回転体18の回動をリンク11の揺動に円滑に変換することができる。よって、製造コストの高騰を招くことなく、装置の作動応答性を高めることができる。
【0040】
また、この実施形態の装置においては、係合ピン16の頭部41が球面状に形成され、渦巻き溝15の断面がこの頭部41の半径よりも大きい半円状の断面形状に形成されているため、係合ピン16が揺動しても、その揺動に応じて溝15と頭部41の接触点を滑らかに変化させることができ、両者の間のガタ付きを無くすことができる。また、頭部41の球面形状の半径に対して渦巻き溝15の断面の半径が大きいことから、係合ピン16の揺動を充分に許容することができるうえ、係合ピン16が渦巻き溝15の開口エッジに当接することによるフリクションの増大を防止することができる。
【0041】
さらに、この実施形態の場合、係合ピン16の筒状部40を樽形状に形成することで、係合ピン16を収容穴14に対して自由に揺動できるようにしているため、簡素な構造によって係合ピン16の揺動を実現できるという利点がある他、係合ピン16と収容穴14の間の潤滑性能を高めることができるという利点もある。即ち、潤滑油は収容穴14の開口部側からその内部に供給されるが、係合ピン16の樽形状の最膨出部の軸方向前後には比較的大きな隙間ができるため、この大きな隙間部分に潤滑油を充分に滞留させておくことができる。
【0042】
また、係合ピン16の最膨出部の前後に滞留した潤滑油は粘性抵抗によるダンパ作用を得ることができるため、そのダンパ作用によって係合ピン16のガタ付きを抑えることができるという利点もある。尚、係合ピン16の軸方向略中央に部分的に隆起する膨出部を形成することによっても係合ピン16の揺動を許容したり、潤滑油を滞留させる効果は得ることができるが、この実施形態のように、係合ピン16の筒状部40の外面を樽形状に滑らかに変化させた場合には、係合ピン16が揺動する際の同ピン16と係合穴14の間の接触部の面圧を常に一定に低く抑えることができると共に、揺動に伴うガタ付きの発生も防止することができる。
【0043】
尚、この出願の発明の実施形態は以上で説明したものに限るものではなく、例えば、以上の実施形態では、係合ピン16の筒状部40の外周面を樽形状にすることによって係合ピン16の揺動を許容したが、図6に示すように係合ピン116の筒状部の外面に段差部60を設け、その段差部60と収容穴14の間に樽形状のニードルベアリング61を介装させるようにしても良い。この場合、係合ピン116はニードルベアリング61の樽形状に沿って自由に揺動できるようになり、さらに収容穴14との間にベアリング61を介在させたことから、回転に伴なう抵抗がより小さくなる。
【0044】
次に、上記の各実施形態から把握し得る請求項に記載以外の発明について、以下にその作用効果と共に記載する。
【0045】
(イ)前記係合ピンの、リンク側のピン収容穴内に収容される部位を、樽形状に形成したことを特徴とする請求項1〜3のいずれかに記載の内燃機関のバルブタイミング制御装置。
【0046】
この場合、係合ピンがピン収容穴内で滑らかに揺動するため、揺動時における係合ピンの接触部の面圧を全体的に低く抑えることができると共に、係合ピンのガタ付きを防止することができる。
【0047】
(ロ)前記係合ピンを、リンク側のピン収容穴に、樽形状のニードルベアリングを介して収容保持させたことを特徴とする請求項1または3に記載の内燃機関のバルブタイミング制御装置。
【0048】
この場合、係合ピンはニードルベアリング部分で揺動を許容される。そして、係合ピンは、ニードルベアリングを介してピン収容穴内に回転自在に保持されるため、回転時の抵抗は非常に小さくなる。したがって、装置の作動応答性がより高まる。
【0049】
(ハ)前記係合ピンに、摺動抵抗を下げるための表面処理を施したことを特徴とする請求項1〜3、(イ)のいずれかに記載の内燃機関のバルブタイミング制御装置。
【0050】
この場合、表面処理の効果によって摩耗粉の発生が抑制され、摩耗粉によって係合ピンの回転や揺動に支障を来す不具合は生じなくなる。また、表面処理の効果により、係合ピンの円滑な回転や揺動を長期に亙って維持することができる。
【0051】
(ニ)相互に変位する二部材のうちの一方の部材に取り付けられ、他方の部材に設けられた相手当接部が当接するときに前記二部材間の衝突衝撃や振動を吸収する緩衝器において、
弾性を有する板状部材を、重合面相互が摺動可能になるように渦巻き状に積層し、その積層部の径方向内側に板状部材の変形を許容する空間部を設けると共に、その積層部の外周側にカバー部材を取り付け、そのカバー部材を相手当接部に対する当接部位としたことを特徴とする緩衝器。
【0052】
この場合、緩衝器本体は入力衝撃を積層部のほぼ全域のずれによって受け止めることができるため、大きな衝撃の入力に対して、部分的な塑性変形や損傷、摩耗等を招くことなく確実に緩衝することができる。また、相手当接部に対してはカバー部材を通して当接するため、当接時の直接的な衝撃等によって板状部材が破損する不具合を防止することができる。
【0053】
(ホ)前記カバー部材を、弾性変形可能なC字形状のリングによって構成したことを特徴とする(ニ)に記載の緩衝器。
【0054】
この場合、リングのC字の開口を押し開くだけで同リングを積層部の外表面に容易に装着することができる。リングは弾性変形可能であるため、装着後に積層部の緩衝特性に殆ど影響を及ぼすことがない。
【図面の簡単な説明】
【図1】この出願の発明の一実施形態を示す縦断面図。
【図2】同実施形態を示す図1のA−A線に沿う断面図。
【図3】同実施形態の作動状態を示す図2に対応の断面図。
【図4】同実施形態を示す要部の拡大断面図。
【図5】同実施形態を示すストッパの分解斜視図。
【図6】この出願の他の実施形態を示す拡大断面図。
【符号の説明】
1…カムシャフト
3…駆動リング(駆動回転体)
5…操作力付与手段
7…従動軸部材(従動回転体)
8…径方向溝(径方向ガイド)
11…リンク
13…突出部(可動案内部)
15…渦巻き溝(渦巻き状ガイド)
16…係合ピン(可動案内部)
17…コイルばね(可動案内部)
18…中間回転体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a valve timing control device for an internal combustion engine that variably controls the opening / closing timing of an intake-side or exhaust-side engine valve of the internal combustion engine in accordance with an operating state.
[0002]
[Prior art]
The following has been devised as this type of valve timing control device.
[0003]
In this valve timing control device, a housing (driving rotating body) linked to a crankshaft via a timing chain or the like is rotatably assembled to an end of a camshaft, and a radial guide formed on an inner end surface of the housing. A movable guide portion is slidably engaged in the radial direction and supported, and a lever shaft (a driven rotating body) having a lever protruding outward in the radial direction is bolted to an end of the camshaft. The part and the lever of the lever shaft are pivotally connected by a link. An intermediate rotating body having a spiral guide is provided at a position facing the radial guide so as to be rotatable relative to the housing and the lever shaft, and is provided at one end of the movable guide portion in the axial direction. A plurality of projecting substantially arc-shaped projections are guided and engaged with the spiral guide. The intermediate rotator is biased by a spring to the side that advances the rotation with respect to the housing, and receives an appropriate force on the side that delays the rotation by an electromagnetic brake.
[0004]
In the case of this device, when the electromagnetic brake is in the OFF state, the intermediate rotating body is located at the initial position with respect to the housing under the urging force of the mainspring spring, and the movable guide portion that meshes with the spiral guide with a ridge is provided. It is maximally displaced radially outward, causing a link to maintain the assembly angle between the housing and the camshaft at the most retarded position or the most advanced position. Then, when the electromagnetic brake is turned ON from this state, the intermediate rotating body is decelerated and relatively rotates with respect to the delay side with respect to the housing. As a result, the movable guide portion meshing with the spiral guide is displaced radially inward, The assembling angle between the housing and the camshaft is changed to the most advanced position or the most retarded position by gradually tilting the link that has been caused so far.
[0005]
[Patent Document]
JP 2001-41013 A
[Problems to be solved by the invention]
However, in the case of this conventional valve timing control device, the rotation of the intermediate rotating body is converted into a radial displacement of the movable guide portion by slidably engaging the substantially arc-shaped ridge with the spiral guide. Therefore, unless the spiral guide of the intermediate rotating body and the ridge of the movable guide portion are manufactured with high precision, a smooth operation between the two cannot be obtained. That is, if there is a large error in the positional relationship between the spiral guide and the ridge, the mutual movement of the intermediate rotating body and the movable guide portion itself is restrained by the friction, and the smooth operation of both is hindered. Therefore, when the precision of forming the spiral guide and the ridge is low, the responsiveness of the valve timing control is reduced.
[0007]
The spiral guide and the ridge do not cause any problems if they are formed with high precision. However, if these molding precisions are increased to such an extent that satisfactory smooth operation can be obtained, the production cost will rise sharply, Performance is reduced.
[0008]
Therefore, the invention of this application aims to improve the operation responsiveness without causing a rise in manufacturing cost by enabling a smooth engagement operation between the intermediate rotating body and the movable guide portion while allowing a certain molding error. It is an object of the present invention to provide a valve timing control device for an internal combustion engine that can perform the above.
[0009]
[Means for Solving the Problems]
As a means for solving the above-mentioned problem, the invention of this application provides a movable guide portion for converting the operation rotation of the intermediate rotating body into the swing of the link, the movable guide portion being rotatable with respect to the link, and having a spiral end. The guide pin is provided with an engagement pin that is guided and engaged with the guide, and the engagement pin is swingably held by the link.
[0010]
In the case of the present invention, the engagement pin of the movable guide portion is guided and engaged with the spiral guide while rotating with respect to the link. Further, even if there is a certain molding error between the movable guide portion and the spiral guide, the error can be absorbed by swinging the engagement pin with respect to the link. Therefore, according to the present invention, it is possible to reduce the friction between the spiral guide and the movable guide without increasing the manufacturing cost.
[0011]
A swelling portion swelling radially outward is provided at a substantially central portion in the axial direction of the engagement pin so that lubricating oil is supplied between an outer peripheral portion of the engagement pin and a pin-receiving hole on the link side. It is desirable to do. In this case, the engagement pin can be swung around the bulged portion in the pin receiving hole, and the lubricating oil stays at the front and rear positions of the bulged portion of the engagement pin. The lubricating oil can surely reduce the resistance at the time of swinging, and can reduce the backlash caused by the swinging of the pin by viscous resistance of the lubricating oil.
[0012]
Further, the tip of the engaging pin is formed in a spherical shape, and the spiral guide of the intermediate rotating body is formed by a spiral groove having a semicircular cross section. It is preferable to form it with a radius larger than the spherical shape. In this case, since the engaging pin and the spiral groove come into contact with each other on a smooth surface, it is possible to reliably prevent rattling between the engaging pin and the spiral groove. Since the radius of the cross section of the spiral groove is set to be larger than the radius of the spherical shape at the tip of the engagement pin, the swing of the engagement pin can be sufficiently allowed at these contact portions, and In addition, it is possible to prevent an increase in friction caused by the engagement pin hitting the opening edge of the spiral groove.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the invention of this application will be described based on the drawings.
[0014]
In this embodiment, the valve timing control device according to the invention of this application is applied to a power transmission system on the intake side of an internal combustion engine. However, the valve timing control device can be similarly applied to a power transmission system on the exhaust side.
[0015]
As shown in FIG. 1, the valve timing control device is rotatable relative to a camshaft 1 rotatably supported by a cylinder head (not shown) of an internal combustion engine, and can rotate relative to the front end of the camshaft 1 as necessary. Ring (drive rotary member) having a timing sprocket 2 on its outer periphery, which is linked to a crankshaft (not shown) via a chain (not shown), and the drive ring 3 and the camshaft 1 1 is arranged on the front side (the left side in FIG. 1) of the assembling angle operating mechanism 4 for operating the assembling angle of the both 3 and 1; FIG. 2 is a diagram showing an operating force applying means 5 for driving the mechanism 4, and a cylinder head (not shown) of the internal combustion engine, which is attached across a front surface of a head cover and covers the front surface and the peripheral area of the assembly angle operating mechanism 4 and the operating force applying means 5. VT outside And it includes a cover, a.
[0016]
The drive ring 3 is formed in a substantially disk shape having a stepped insertion hole 6, and the insertion hole 6 is rotated by a driven shaft member 7 (driven rotation body) coupled to the front end of the camshaft 1. Assembled as possible. As shown in FIG. 2, three radial grooves 8 (radial guides) having parallel side walls facing each other are formed on the front surface of the drive ring 3 (the surface opposite to the camshaft 1). It is formed substantially along the radial direction.
[0017]
As shown in FIG. 1, the driven shaft member 7 has an enlarged-diameter portion formed on an outer periphery of a base portion that abuts on a front end portion of the camshaft 1, and has an outer peripheral surface on a front side of the enlarged diameter portion. Three levers 9 projecting radially are integrally formed and connected to the camshaft 1 by bolts 10 penetrating the shaft core. A base end of a link 11 is pivotally connected to each lever 9 by a pin 12, and a column-shaped projection 13 slidably engaged with each of the radial grooves 8 is integrally formed at a distal end of each link 11. Is formed.
[0018]
Each link 11 is connected to the driven shaft member 7 via the pin 12 in a state where the protrusion 13 is engaged with the corresponding radial groove 8. When displaced along 8, the drive ring 3 and the driven shaft member 7 rotate relative to each other by the action of the link 11 in a direction and an angle corresponding to the displacement of the projection 13.
[0019]
A receiving hole 14 is formed at the distal end of each link 11 and opens forward in the axial direction. The receiving hole 14 has an engaging pin 16 that engages with a spiral groove 15 (a spiral guide) described later. And a coil spring 17 for urging the engagement pin 16 forward (toward the spiral groove 15). In the case of this embodiment, a movable guide portion that can be displaced in the radial direction is configured by the protrusion 13 at the tip of the link 11, the engagement pin 16, the coil spring 17, and the like.
[0020]
Here, as shown in an enlarged manner in FIG. 4, the engaging pin 16 is provided on a substantially cylindrical tubular portion 40 accommodated in the accommodating hole 14 of the link 11, and is provided on the distal end side of the tubular portion 40. And a spherical head 41 that is rotatably engaged in the spiral groove 15 of the intermediate rotor 18, and these are integrally formed of a metal material as a whole. The outer peripheral surface of the cylindrical portion 40 is not formed to have a constant outer diameter over the entire area in the axial direction, but has a barrel shape in which the outer diameter gradually increases toward a substantially central portion in the axial direction. Therefore, although the cylindrical portion 40 is rotatably accommodated in the accommodating hole 14 of the link 11, the engaging pin 16 has a barrel-shaped outer surface. Swing is also allowed. The surface of the engaging pin 16 is subjected to a surface treatment such as DLC (diamond-like carbon) to reduce sliding resistance.
[0021]
Further, lubricating oil is supplied from the engine block side to the space 53 around the assembly angle operating mechanism 4 through the camshaft 1 and the driven shaft member 7. Therefore, each part of the assembling angle operation mechanism 4 is lubricated by the lubricating oil, and the lubricating oil also flows into the gap between the engaging pin 16 and the housing hole 14. In particular, since the engaging pin 16 is formed in a barrel shape that bulges substantially at the center in the axial direction, the lubricating liquid stays almost always before and after the maximum bulge at the center.
[0022]
On the other hand, an intermediate rotating body 18 having a disk-shaped flange wall is rotatably supported via a bearing 19 in front of the driven shaft member 7 at a position forward of the lever 9. The above-mentioned spiral groove 15 having a semicircular cross section is formed on the rear surface side of the flange wall of the intermediate rotating body 18, and the engaging pin 16 at the tip of each link 11 is guided in the spiral groove 15 so as to freely roll. Is engaged. The arc of the cross section of the spiral groove 15 is formed to have a larger radius than the head 41 of the engaging pin 16, and is set so that the pin 16 does not contact the opening edge of the spiral groove 15 when the engaging pin 16 swings. Have been. The spiral of the spiral groove 15 is formed so as to gradually decrease in diameter along the engine rotation direction R. Therefore, when the intermediate rotating body 18 relatively rotates in the delay direction with respect to the drive ring 3 in a state where the engaging pin 16 at the tip of each link 11 is engaged with the spiral groove 15, the tip of the link 11 is While being guided by the spiral shape of the spiral groove 15 and moving inward in the radial direction, conversely, when the intermediate rotating body 18 is relatively displaced in the advancing direction, it moves outward in the radial direction.
[0023]
The assembling angle operating mechanism 4 includes the radial groove 8, the link 11, the protrusion 13, the engaging pin 16, the lever 9, the intermediate rotating body 18, the spiral groove 15, and the like of the drive ring 3 described above. When the relative rotation operation force with respect to the camshaft 1 is input from the operation force applying means 5 to the intermediate rotating body 18, the operation angle operation mechanism 4 applies the operation force to the spiral groove 15 and the engagement pin 16. The distal end of the link 11 is displaced in the radial direction through the engaging portion, and at this time, relative rotational power is transmitted to the drive ring 3 and the driven shaft member 7 by the action of the link 11 and the lever 9.
[0024]
On the other hand, the operating force applying means 5 includes a mainspring spring 47 serving as a rotation urging spring for urging the intermediate rotating body 18 in the engine rotation direction R with respect to the driving ring 3 and an intermediate rotating body 18 with respect to the driving ring 3. A hysteresis brake 20 that urges the intermediate rotating body 18 in the drive ring 3 by appropriately controlling the braking force of the hysteresis brake 20 according to the operating state of the internal combustion engine. , Or maintain both rotational positions.
[0025]
The mainspring spring 47 has an outer peripheral end coupled to the cylindrical wall 21 extending from the drive ring 3, and an inner peripheral end coupled to the cylindrical base of the intermediate rotating body 18.
[0026]
A sealing wall 50 is integrally connected to the end face of the intermediate rotating body 18 opposite to the camshaft 1, and the outer peripheral surface of the sealing wall 50 is slidably in close contact with the inner surface of the cylindrical wall 21. ing.
[0027]
The hysteresis brake 20 is attached to a VTC cover which is a non-rotating member, and is provided on a magnetic induction member 22 having a pair of circumferentially opposed surfaces facing each other with a substantially cylindrical gap therebetween, and provided on the both opposed surfaces, respectively. An inner coil 23, an outer pole 24, an electromagnetic coil 25 attached to the magnetic induction member 22 and generating a magnetic field between the inner pole 23 and the outer pole 24; And a cylindrical hysteresis ring 26 inserted and arranged in a non-contact state with the intermediate rotating body 18 via a connecting pin 54 and a rubber bush 38 with the outer peripheral end integrally connected to the hysteresis ring 26. And an annular plate 33, and the electromagnetic coil 25 is controlled to be energized by a controller (not shown).
[0028]
The inner pole teeth 23 and the outer pole teeth 24 of the magnetic guide member 22 each have a plurality of pole tooth elements extending along the axial direction. The pole teeth elements of the both pole teeth 23 and 24 are respectively arranged along the circumferential direction, and the pole tooth elements of the pole teeth 23 and 24 are mutually offset in the circumferential direction. Therefore, when the electromagnetic coil 25 is energized, a magnetic field is generated between the two pole teeth 23 and 24 toward the partner pole tooth element having an offset positional relationship.
[0029]
The hysteresis ring 20 is made of a hysteresis material having a magnetic hysteresis characteristic. When a magnetic field is generated between the inner pole teeth 23 and the outer pole teeth 24 during rotation of the ring 20, the direction of the magnetic field and the direction of the hysteresis ring 20 are reduced. A deviation is caused in the direction of the magnetic flux. The hysteresis brake 20 generates a braking force due to this shift. The annular plate 33 is integrally connected to a shaft member 36 supported on the inner peripheral surface of the magnetic guide member 22 via bearings 34 and 35. Therefore, the hysteresis ring 20 is rotatably supported by the magnetic guide member 22 via the annular plate 33 and the shaft member 36.
[0030]
By the way, when the excitation of the hysteresis brake 20 is switched on and off, the intermediate rotating body 18 relatively rotates in either the forward or reverse direction with respect to the drive ring 3. A rotation stopper 42 provided between the rotating body 18 and the driving ring 3 regulates the rotation angle within a predetermined angle range.
[0031]
The rotation stopper 42 includes a projection 48 (an abutting portion) integrally formed on the outer peripheral edge on the rear surface side of the intermediate rotating body 18 and a shock absorber 49 attached to the outer peripheral edge on the front surface side of the drive ring 3. The protrusion 48 and the shock absorber 49 abut each other to restrict the relative rotation between the drive ring 3 and the intermediate rotating body 18 within a predetermined angle.
[0032]
As shown in FIG. 5, the shock absorber 49 has a main body portion formed of a thin plate-like member 43 having elasticity, for example, a steel plate or a stainless steel plate, and the plate-like member 43 is slidable on the overlapped surfaces. As described above, a spiral portion is laminated, and a space portion 44 that allows deformation of the plate-like member 43 is provided radially inside the laminated portion. The radially inner and outer ends of the plate member 43 are free ends. A C-shaped iron cover member 45 is attached to the outer peripheral side of the laminated portion of the plate-shaped member 43. The cover member 45 has elasticity, and is attached to the laminated portion by expanding its C-shape. As shown in FIG. 5, the plate member 43 and the cover member 45 are fixed to the outer peripheral edge of the drive ring 3 by a locking tool 46 whose head is cut off in a two-sided width shape.
[0033]
The shock absorber 49 can reliably buffer the shock due to the displacement of almost the entire area of the laminated portion of the plate-shaped member 43 when the impact is input. Since the cover member 45 is attached to the outer peripheral side of the device, it is possible to eliminate the problem that the direct contact portion is damaged or worn by an impact. In other words, in the shock absorber of the type without the cover member 45, the outer surface of the laminated portion of the plate member 43 has a problem of being damaged or worn by the input impact, but in the shock absorber 49 of this embodiment, there is a problem. The negative condition can be surely eliminated.
[0034]
Since the valve timing control device is configured as described above, the excitation of the electromagnetic coil 25 of the hysteresis brake 20 is turned off at the time of starting the internal combustion engine or at the time of idling, whereby the intermediate rotation is performed by the force of the mainspring spring 47. The body 18 is rotated to the maximum in the engine rotation direction R with respect to the drive ring 3 (see FIG. 2). As a result, the rotational phase of the crankshaft and the camshaft 1 (opening / closing timing of the engine valve) is maintained at the most retarded side, so that engine rotation is stabilized and fuel efficiency is improved.
[0035]
Then, from this state, the operation of the engine shifts to the normal operation, and when a command to change the rotation phase to the most advanced side is issued from a controller (not shown), the excitation of the electromagnetic coil 25 of the hysteresis brake 20 is turned on. The braking force against the mainspring spring 47 is transmitted from the annular plate 33 to the intermediate rotating body 18 via the connecting pin 54 and the rubber bush 38. As a result, the intermediate rotating body 18 rotates in the opposite direction with respect to the drive ring 3, whereby the engaging pin 16 at the tip of the link 11 is guided to the spiral groove 15, and the tip of the link 11 is inserted into the radial groove 8. 3, the assembling angle between the drive ring 3 and the driven shaft member 7 is changed to the most advanced angle side by the action of the link 11, as shown in FIG. As a result, the rotation phases of the crankshaft and the camshaft 1 are changed to the most advanced angle side, thereby increasing the output of the engine.
[0036]
When a command is issued from the controller to change the rotation phase to the most retarded side from this state, the excitation of the electromagnetic coil 25 of the hysteresis brake 20 is turned off, and the force of the mainspring spring 47 is again applied to the intermediate rotating body. 18 is rotated in the engine rotation direction R. Then, the guide pin 16 guided by the spiral groove 15 causes the link 11 to swing in the opposite direction to the above, and as a result of the action of the link 11, the assembling angle between the drive ring 3 and the driven shaft member 7 is reduced, as shown in FIG. It is changed to the retard side again.
[0037]
The rotation phase of the crankshaft and the camshaft 1 by this valve timing control device is not limited to the two phases of the most retarded angle and the most advanced angle described above, but may be any value determined by controlling the braking force of the hysteresis brake 20. The phase can be changed and the phase can be maintained by the balance between the force of the mainspring 47 and the braking force of the hysteresis brake 20.
[0038]
In this valve timing control device, the rotation of the intermediate rotating body 18 is converted into the swing of the link 11 through the spiral groove 15 and the engaging portion of the engaging pin 16. When rotated relative to 3, the engaging pin 16 displaces the distal end of the link 11 in the radial direction while rolling along the inner surface of the spiral groove 15. At this time, the engagement pin 16 appropriately swings in the accommodation hole 14 due to the barrel shape of the cylindrical portion 40, and absorbs a positional error or the like between the accommodation hole 14 and the spiral groove 15 by the oscillation. Further, since the engagement pin 16 is allowed to swing, the occurrence of friction that hinders rotation is eliminated, so that the inside of the spiral groove 15 can always roll smoothly. That is, assuming that the engaging pin 16 has a cylindrical shape with a constant outer diameter, when a force in a direction of tilting the engaging pin 16 is input, the axial end of the engaging pin 16 is Although the rotation of the engagement pin 16 is hindered by the strong contact with the inner surface of the first member, such a problem does not occur in the device of this embodiment which allows the engagement pin 16 to swing.
[0039]
Therefore, in the case of this device, the rotation of the intermediate rotating body 18 can be smoothly converted into the swing of the link 11 even if there is a slight positional shift due to a manufacturing error or the like of each part. Therefore, the operation responsiveness of the device can be improved without increasing the manufacturing cost.
[0040]
In the device of this embodiment, the head 41 of the engaging pin 16 is formed in a spherical shape, and the cross section of the spiral groove 15 is formed in a semicircular cross-sectional shape larger than the radius of the head 41. Therefore, even if the engagement pin 16 swings, the contact point between the groove 15 and the head 41 can be smoothly changed according to the swing, and the play between the two can be eliminated. Further, since the radius of the cross section of the spiral groove 15 is larger than the radius of the spherical shape of the head portion 41, the swing of the engaging pin 16 can be sufficiently allowed. Can be prevented from increasing due to contact with the opening edge.
[0041]
Further, in the case of this embodiment, since the cylindrical portion 40 of the engaging pin 16 is formed in a barrel shape so that the engaging pin 16 can be freely swung with respect to the accommodation hole 14, a simple structure is provided. The structure has the advantage that the swing of the engagement pin 16 can be realized, and also has the advantage that the lubrication performance between the engagement pin 16 and the accommodation hole 14 can be enhanced. That is, the lubricating oil is supplied from the opening side of the housing hole 14 to the inside thereof. However, since a relatively large gap is formed around the barrel-shaped most bulging portion of the engagement pin 16 in the axial direction, this large gap is formed. The lubricating oil can be sufficiently retained in the portion.
[0042]
Further, the lubricating oil accumulated before and after the most bulged portion of the engagement pin 16 can obtain a damper action by viscous resistance, and therefore, there is an advantage that the rattling of the engagement pin 16 can be suppressed by the damper action. is there. It is to be noted that, by forming a bulging portion that partially protrudes substantially at the center of the engaging pin 16 in the axial direction, the swinging of the engaging pin 16 and the effect of retaining the lubricating oil can be obtained. When the outer surface of the cylindrical portion 40 of the engaging pin 16 is smoothly changed into a barrel shape as in this embodiment, when the engaging pin 16 swings, the pin 16 and the engaging hole 14 are rotated. The contact pressure between the contact portions can be kept constant and low, and the occurrence of rattling due to the swing can be prevented.
[0043]
The embodiment of the invention of this application is not limited to the above-described embodiment. For example, in the above-described embodiment, the outer peripheral surface of the cylindrical portion 40 of the engaging pin 16 is formed into a barrel shape so as to engage. Although the swing of the pin 16 is permitted, a stepped portion 60 is provided on the outer surface of the cylindrical portion of the engagement pin 116 as shown in FIG. 6, and a barrel-shaped needle bearing 61 is provided between the stepped portion 60 and the receiving hole 14. May be interposed. In this case, the engagement pin 116 can freely swing along the barrel shape of the needle bearing 61, and the bearing 61 is interposed between the engagement pin 116 and the housing hole 14, so that the resistance accompanying rotation is reduced. Smaller.
[0044]
Next, inventions other than those described in the claims that can be understood from the above embodiments will be described below together with their operational effects.
[0045]
The valve timing control device for an internal combustion engine according to any one of claims 1 to 3, wherein a portion of the engagement pin that is accommodated in the link-side pin accommodation hole is formed in a barrel shape. .
[0046]
In this case, since the engaging pin swings smoothly in the pin receiving hole, the surface pressure of the contact portion of the engaging pin at the time of swing can be suppressed to be low as a whole, and rattling of the engaging pin is prevented. can do.
[0047]
(B) The valve timing control device for an internal combustion engine according to claim 1 or 3, wherein the engagement pin is accommodated and held in a pin accommodation hole on a link side via a barrel-shaped needle bearing.
[0048]
In this case, the engagement pin is allowed to swing at the needle bearing portion. Since the engagement pin is rotatably held in the pin receiving hole via the needle bearing, the resistance during rotation is extremely small. Therefore, the operation responsiveness of the device is further improved.
[0049]
(C) The valve timing control device for an internal combustion engine according to any one of (1) to (3), wherein the engagement pin is subjected to a surface treatment for reducing sliding resistance.
[0050]
In this case, generation of abrasion powder is suppressed by the effect of the surface treatment, and a problem that hinders rotation or swing of the engagement pin due to the abrasion powder does not occur. In addition, due to the effect of the surface treatment, the smooth rotation and swing of the engagement pin can be maintained for a long period of time.
[0051]
(D) A shock absorber which is attached to one of the two members that are displaced with each other and absorbs a collision impact or vibration between the two members when a mating contact portion provided on the other member comes into contact. ,
Elastic plate members are spirally laminated so that the overlapping surfaces can slide with each other, and a space is provided radially inward of the laminated portion to allow deformation of the plate member. A cover member attached to an outer peripheral side of the shock absorber, and the cover member serves as a contact portion with respect to a mating contact portion.
[0052]
In this case, since the shock absorber main body can receive the input shock by displacement of almost the entire area of the laminated portion, the shock absorber body reliably buffers a large shock input without causing partial plastic deformation, damage, wear and the like. be able to. In addition, since the contact member comes into contact with the mating contact portion through the cover member, it is possible to prevent the plate-shaped member from being damaged by a direct impact or the like at the time of contact.
[0053]
(E) The shock absorber according to (D), wherein the cover member is formed by a C-shaped ring that can be elastically deformed.
[0054]
In this case, the ring can be easily mounted on the outer surface of the laminated portion simply by pushing and opening the C-shaped opening of the ring. Since the ring is elastically deformable, it hardly affects the cushioning characteristics of the laminated portion after mounting.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention.
FIG. 2 is an exemplary sectional view of the same embodiment taken along line AA of FIG. 1;
FIG. 3 is an exemplary sectional view corresponding to FIG. 2 showing an operation state of the embodiment;
FIG. 4 is an enlarged sectional view of a main part showing the embodiment.
FIG. 5 is an exploded perspective view of a stopper according to the embodiment.
FIG. 6 is an enlarged sectional view showing another embodiment of the present application.
[Explanation of symbols]
1 camshaft 3 drive ring (drive rotary body)
5 ... operation force applying means 7 ... driven shaft member (driven rotating body)
8 ... radial groove (radial guide)
11 Link 13 Projection (movable guide)
15. Spiral groove (spiral guide)
16 ... engaging pin (movable guide)
17 ... Coil spring (movable guide)
18 Intermediate rotating body

Claims (3)

内燃機関のクランクシャフトによって回転駆動される駆動回転体と、カムシャフト若しくは同シャフトに結合された別体部材から成る従動回転体と、前記駆動回転体と従動回転体のいずれか一方に設けられた径方向ガイドと、前記駆動回転体と従動回転体に対して相対回転可能に設けられ、前記径方向ガイドに対峙する側の面に渦巻き状ガイドを有する中間回転体と、前記径方向ガイドと渦巻き状ガイドに変位可能に案内係合される可動案内部と、前記駆動回転体と従動回転体のいずれか他方のものの回転中心から離間した部位と前記可動案内部とを揺動可能に連結するリンクと、前記中間回転体に回動操作力を付与する操作力付与手段と、を備えた内燃機関のバルブタイミング制御装置において、
前記可動案内部を、リンクに対して回転自在であって先端部が渦巻き状ガイドに案内係合される係合ピンを備えた構成とし、その係合ピンをリンクに揺動可能に保持させたことを特徴とする内燃機関のバルブタイミング制御装置。
A drive rotating body that is rotationally driven by a crankshaft of the internal combustion engine, a driven shaft formed of a camshaft or a separate member coupled to the shaft, and provided on one of the drive shaft and the driven shaft. A radial guide, an intermediate rotary body provided to be rotatable relative to the driving rotary body and the driven rotary body, and having a spiral guide on a surface facing the radial guide; and the radial guide and the spiral. A movable guide portion that is displaceably guided and engaged with the guide, and a link that swingably connects the movable guide portion with a portion separated from the rotation center of the other of the driving rotator and the driven rotator. And an operating force applying means for applying a rotating operating force to the intermediate rotating body,
The movable guide portion is configured to include an engagement pin rotatable with respect to the link and a distal end portion of which is guided and engaged with the spiral guide, and the engagement pin is swingably held by the link. A valve timing control device for an internal combustion engine, comprising:
前記係合ピンの軸方向略中央部に、径方向外側に膨出する膨出部を設け、係合ピンの外周部とリンク側のピン収容穴の間に潤滑油が供給されるようにしたことを特徴とする請求項1に記載の内燃機関のバルブタイミング制御装置。A bulging portion bulging radially outward is provided at a substantially central portion in the axial direction of the engaging pin, so that lubricating oil is supplied between the outer peripheral portion of the engaging pin and the pin receiving hole on the link side. The valve timing control device for an internal combustion engine according to claim 1, wherein 前記係合ピンの先端部を球面状に形成し、中間回転体の渦巻き状ガイドを断面半円状の渦巻き溝によって構成すると共に、その渦巻き溝の断面を、前記係合ピンの先端部の球面形状よりも大きい半径に形成したことを特徴とする請求項1または2に記載の内燃機関のバルブタイミング制御装置。The tip of the engagement pin is formed in a spherical shape, and the spiral guide of the intermediate rotating body is formed by a spiral groove having a semicircular cross section. 3. The valve timing control device for an internal combustion engine according to claim 1, wherein the valve timing control device is formed to have a radius larger than the shape.
JP2002257420A 2002-09-03 2002-09-03 Valve timing control device for internal combustion engine Expired - Fee Related JP4094911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002257420A JP4094911B2 (en) 2002-09-03 2002-09-03 Valve timing control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002257420A JP4094911B2 (en) 2002-09-03 2002-09-03 Valve timing control device for internal combustion engine

Publications (3)

Publication Number Publication Date
JP2004092576A true JP2004092576A (en) 2004-03-25
JP2004092576A5 JP2004092576A5 (en) 2007-09-06
JP4094911B2 JP4094911B2 (en) 2008-06-04

Family

ID=32062324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002257420A Expired - Fee Related JP4094911B2 (en) 2002-09-03 2002-09-03 Valve timing control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4094911B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285302A (en) * 2007-07-06 2007-11-01 Hitachi Ltd Valve timing control device for internal combustion engine
JP2010255474A (en) * 2009-04-22 2010-11-11 Denso Corp Valve timing adjusting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285302A (en) * 2007-07-06 2007-11-01 Hitachi Ltd Valve timing control device for internal combustion engine
JP2010255474A (en) * 2009-04-22 2010-11-11 Denso Corp Valve timing adjusting device

Also Published As

Publication number Publication date
JP4094911B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
JP2002227615A (en) Valve timing controller of internal combustion engine
JP2019007409A (en) Valve opening/closing timing control device
WO2002061241A1 (en) Valve timing controller of internal combustion engine
JP2006299867A (en) Valve timing control device for internal combustion engine
JP2008208780A (en) Variable valve gear for internal combustion engine
JP2007218116A (en) Variable valve gear for engine
US11339689B2 (en) Valve timing adjustment device
JP4094911B2 (en) Valve timing control device for internal combustion engine
JP2003129805A (en) Valve timing control device for internal combustion engine
JP4324580B2 (en) Camshaft phase varying device for automobile engine
JP4109967B2 (en) Valve timing control device for internal combustion engine
JP4160414B2 (en) Valve timing control device for internal combustion engine
JP2002227616A (en) Valve timing controller of internal combustion engine
JP3989764B2 (en) Valve timing control device for internal combustion engine
JP3964158B2 (en) Valve timing control device for internal combustion engine
JP2005299605A (en) Valve timing control device for internal combustion engine
JP2005299604A (en) Valve timing control device for internal combustion engine
JP3917832B2 (en) Valve timing control device for internal combustion engine
JP4012386B2 (en) Valve timing control device for internal combustion engine
JP4374151B2 (en) Phase variable device for automobile engine
JP2004092577A (en) Valve timing control device of internal combustion engine
JP4076398B2 (en) Valve timing control device for internal combustion engine
JP4109972B2 (en) Valve timing control device for internal combustion engine
JP2003120226A (en) Valve timing control device for internal combustion engine
JP4076399B2 (en) Valve timing control device for internal combustion engine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080306

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees