JP2004091870A - レーザ熱処理方法、レーザ熱処理装置、フレア付きボルト - Google Patents
レーザ熱処理方法、レーザ熱処理装置、フレア付きボルト Download PDFInfo
- Publication number
- JP2004091870A JP2004091870A JP2002255660A JP2002255660A JP2004091870A JP 2004091870 A JP2004091870 A JP 2004091870A JP 2002255660 A JP2002255660 A JP 2002255660A JP 2002255660 A JP2002255660 A JP 2002255660A JP 2004091870 A JP2004091870 A JP 2004091870A
- Authority
- JP
- Japan
- Prior art keywords
- laser
- flare
- irradiation
- bolt
- irradiation target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Laser Beam Processing (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
【課題】高い強度を持ちながら、かしめも容易に行うことのできるフレア付きボルトを提供することを目的とする。
【解決手段】フレア付きボルト1のフレア部5に溶体化処理を施すことにより、フレア付きボルト1自体の材質を高強度なものとした場合も、フレア部5のみの硬度を低下させることができ、フレア部5のかしめ性を良好なものとする。溶体化処理には、レーザ光Lを、焦点Fからその光軸方向および光軸と直交する方向にオフセットさせて照射対象のフレア付きボルト1のフレア部5に照射し、フレア部5を、炭化物が消失し、かつ溶融しない範囲の温度領域に略均一に加熱する。
【選択図】 図2
【解決手段】フレア付きボルト1のフレア部5に溶体化処理を施すことにより、フレア付きボルト1自体の材質を高強度なものとした場合も、フレア部5のみの硬度を低下させることができ、フレア部5のかしめ性を良好なものとする。溶体化処理には、レーザ光Lを、焦点Fからその光軸方向および光軸と直交する方向にオフセットさせて照射対象のフレア付きボルト1のフレア部5に照射し、フレア部5を、炭化物が消失し、かつ溶融しない範囲の温度領域に略均一に加熱する。
【選択図】 図2
Description
【0001】
【発明の属する技術分野】
本発明は、レーザ熱処理方法、レーザ熱処理装置等に関する。
【0002】
【従来の技術】
例えば、原子力容器のフォーマ板とバッフル板とを接続するために、図4および図5に示すようなフレア付きボルト1が用いられている。このフレア付きボルト1は、その外周面に螺条が形成された雄ネジ部2と、雄ネジ部2の基端部側に一体に形成されたネジ頭部3とを有している。ネジ頭部3には、その中心部に、フレア付きボルト1をボルト孔10にねじ込むための工具が嵌め合う、例えば六角断面の工具係合部4が形成され、その外周部には、周方向に例えば四分割されたフレア部5が形成されている。
図4に示すように、このようなフレア付きボルト1がねじ込まれるボルト孔10は、雄ネジ部2が螺合する雌ネジ部11と、雌ネジ部11よりも内径が大きく、ネジ頭部3が納まる穴12とを有している。穴12には、その内周面に、凹部13が形成されている。
そして、工具係合部4に嵌め合う工具を用い、フレア付きボルト1をボルト孔10に、ネジ頭部3の座面3aが穴12の底面12aに接するまでねじ込む。その後、図6に示すように、工具係合部4とフレア部5との隙間にかしめ用工具の爪15を挿入し、この爪15でフレア部5を外周側に押圧することで、フレア部5を外周側に変形させ、ボルト孔10の凹部13に食い込ませる。
【0003】
このようにしてフレア部5をかしめることで、万が一フレア付きボルト1が、例えば雄ネジ部2とネジ頭部3との境界付近、いわゆる首下で破断したような場合にも、ネジ頭部3のフレア部5が、ボルト孔10の凹部13に食い込んでいるため、フレア付きボルト1の脱落を防止できる構造となっているのである。
【0004】
ところで、原子力容器内において、上記のようなフレア付きボルト1を長期間にわたって使用すると、照射応力腐食割れ(IASCC)の影響により、フレア付きボルト1の損傷を招く可能性がある。
このため、近年、フレア付きボルト1の材質を、炭化物を高めて強度を高めた材料、例えば冷間加工材であるSUS316等とし、これによって照射応力腐食割れを防止することが検討されている。
【0005】
【発明が解決しようとする課題】
しかしながら、炭化物の多いSUS316等を採用すると、フレア付きボルト1全体強度も高まり、その結果、フレア部5の部分も硬くなり、かしめ用工具を用いてフレア部5をかしめることができなくなってしまうという問題点がある。
本発明は、このような技術的課題に基づいてなされたもので、高い強度を持ちながら、かしめも容易に行うことのできるフレア付きボルトを提供することを目的とする。
また、本発明は、例えば部材の一部分のみ、硬度を下げることのできるレーザ熱処理方法等を提供することを他の目的とする。
【0006】
【課題を解決するための手段】
かかる目的のもと、本発明のレーザ熱処理方法は、例えば頭部に外周側にかしめるためのフレア部を有したステンレス製のボルト等、炭化物が析出した照射対象にレーザ光を照射する照射工程と、レーザ光を照射することで、照射対象の融点未満であって照射対象に含まれる炭化物が消滅する温度領域に照射対象が至った時点で、レーザ光の照射を停止する照射停止工程と、を有することを特徴とする。
このように、照射対象にレーザ光を照射し、照射対象に含まれる炭化物が消滅する温度領域まで照射対象を加熱(急加熱)すると、再固溶化して炭化物が消滅する。この後、レーザ光の照射を停止すると、当然のことながらレーザ光を用いる場合は加熱炉の中に照射対象を入れるわけではなく、周囲の雰囲気の温度は概ね常温であり、したがって、炉中にある場合に比較して急冷されることになる。照射対象を急冷することで、炭化物が析出するのを抑制できる。
ところで、上記のような熱処理は、照射対象全体に対して施しても良いが、照射工程でレーザ光を照射対象の一部のみに照射し、これによって照射対象の一部のみから炭化物を消滅させることもできる。この場合、前記照射停止工程では、レーザ光が照射されている部分の温度が炭化物の消滅する温度領域に至ったときに、レーザ光の照射を停止すれば良い。
【0007】
レーザ光は、その焦点位置でエネルギー密度が飛躍的に高くなっている。このため、上記のように、照射対象に含まれる炭化物が消滅する温度領域に至るまで照射対象を加熱するには、もちろんレーザ光の出力のみをコントロールしても良いが、照射対象を融点未満に維持するのは難しい。そこで、レーザ光を、照射対象に対して焦点をオフセットさせて照射するのが好ましい。
【0008】
本発明のレーザ熱処理装置は、ポジショナによって所定の位置に保持された照射対象に、出力コントローラによってその出力が制御されるレーザヘッドでレーザ光を照射するものであり、レーザヘッドから照射するレーザ光の焦点が、照射対象に対し、その光軸方向および光軸方向に直交する方向にオフセットしていることを特徴とする。
このとき、レーザヘッドは、照射対象の一部にレーザ光を照射し、出力コントローラでは、照射対象のレーザ光が照射された部分の硬度を他の部分よりも低下させるようレーザ光の出力を制御する構成とすることができる。
また、ポジショナは、照射対象を軸線回りに回転させる回転機構を備えることができ、この場合、回転コントローラにて、レーザヘッドから照射されるレーザ光によって、照射対象に含まれる炭化物が消滅しかつ照射対象の融点未満の温度領域に加熱されるよう、ポジショナの回転速度を制御する。
【0009】
本発明は、外周面に螺条が形成された雄ネジ部と、雄ネジ部の基端側に一体に形成され、雄ネジ部を回転させるための工具が係合する工具係合部と、雄ネジ部の基端側に一体に形成され、雄ネジ部の軸線に対して外周側に変形可能なフレア部と、を有したフレア付きボルトとして捉えることもできる。このようなフレア付きボルトは、フレア部が雄ネジ部よりも硬度が低い。また、フレア部は、フレア付きボルトの他の部分よりも炭化物の濃度が低くなっている。
このようなフレア付きボルトは、上記レーザ熱処理方法やレーザ熱処理装置を適用することによって得ることができる。
【0010】
【発明の実施の形態】
以下、添付図面に示す実施の形態に基づいてこの発明を詳細に説明する。
図1は、本実施の形態におけるレーザ溶体化処理装置(レーザ熱処理装置)20の構成を説明するための図である。
この図1に示すように、レーザ溶体化処理装置20は、溶体化処理の対象となる部材を載置するポジショナ21と、ポジショナ21上の部材に対してレーザ光を照射するレーザヘッド22と、部材表面の温度をレーザヘッド22の近傍から観察するサーモビュア23と、部材表面の温度をレーザヘッド22とは略反対側から観察するパイロメータ24と、レーザヘッド22からポジショナ21上の部材に対するレーザ光の照射をシールドされた空間内で行うためのシールドボックス25と、を備える。
【0011】
ポジショナ21は、円盤状のテーブル21aと、このテーブル21aを回転駆動させる回転機構(図示無し)と、テーブル21aの回転速度を制御する回転コントローラ21bとから構成される。
【0012】
レーザヘッド22は、図示しないレーザ光源から所定の光学系を通して到達したレーザ光を、ポジショナ21上の部材に対して照射し、その出力は、出力コントローラ26によって制御される。
図2に示すように、レーザヘッド22から照射されるレーザ光Lは、部材に焦点Fを合わせるのが通常であるが、本実施の形態では、ポジショナ21上の部材に焦点Fを合わせず、焦点Fに対し、光軸に直交する方向に焦点ずらし量Dfだけオフセットさせ、光軸に沿った方向にディフォーカス量Lfだけオフセットさせた設定とする。
【0013】
より具体的には、図3に示すように、光軸方向において、焦点Fに対応した位置P1では、曲線C1に示すように、光軸に直交する面内におけるエネルギー分布は、焦点Fの位置で飛躍的に高くなっており、その両側では急激に落ち込んでいる。このため、焦点Fをポジショナ21上の部材に合わせると、部材の焦点Fに対応した位置に局所的にレーザ光Lによる入熱が発生し、部材の他の部分に均等に入熱させることができないのである。
これに対し、ディフォーカス量Lfを大きくした、光軸方向において焦点Fから離れた位置P2、P3、P4では、曲線C2、C3、C4に示すように、光軸に直交する面内におけるエネルギー分布は焦点Fの位置で高いものの、そのピーク値および傾きは曲線C1に比べ、曲線C2、C3、C4の順で徐々に小さくなっている。
さらに、光軸に対する焦点ずらし量Dfを大きくし、光軸からオフセットした範囲(例えば図3中(A)の範囲)の、エネルギー分布の傾きが小さい部分のレーザ光Lを用いることで、レーザ光Lを照射する範囲内におけるエネルギー分布を均等化することができるのである。このとき、例えば範囲(A)におけるエネルギー分布の傾きは、曲線C2、C3、C4の順で徐々に小さくなるため、エネルギー分布を均等化するという観点からして、ディフォーカス量Lfをなるべく大きく取るのが望ましい。
【0014】
このように、レーザ光Lのエネルギーのピークからずれた位置では、エネルギーが急激に落ちるとともに、エネルギー分布の傾斜が緩やかになるので、本実施の形態では、ポジショナ21上の部材に焦点Fを合わせず、焦点Fに対する焦点ずらし量Df、ディフォーカス量Lfを所定値に設定することで、エネルギー分布が緩やかな箇所を用い、なるべく均等に入熱を図るのである。
ところで、例えばディフォーカス量Lfを、図3において位置P4に対応した寸法とする場合、曲線C4からもわかるように、エネルギー量自体が非常に小さくなっている。このため、所定の入熱が図れるよう、焦点Fを用いる場合に比較してレーザ光Lの出力を高くするのが好ましい。
【0015】
これにより、ポジショナ21上の部材には、レーザ光Lにより、面状(線状)の入熱が行われることになる。
このとき、上述したように、ポジショナ21上の部材に対する入熱をコントロールするには、光軸に対する焦点ずらし量Df、焦点Fに対するディフォーカス量Lf、レーザ光Lの出力だけでなく、ポジショナ21の回転速度も重要であるのは言うまでも無い。
【0016】
ここで、本実施の形態において、溶体化処理の対象となる部材は、図4および図5に示したフレア付きボルト(照射対象)1である。フレア付きボルト1は、例えばSUS316からなり、その外周面に螺条が形成された雄ネジ部2と、雄ネジ部2の基端部側に一体に形成されたネジ頭部3とを有している。ネジ頭部3には、その中心部に、フレア付きボルト1をボルト孔10にねじ込むための工具が嵌め合う、例えば六角断面の工具係合部4が形成され、その外周部には、周方向に例えば四分割されたフレア部5が形成されている。また、ネジ頭部3と雄ネジ部2の境界部分には、雄ネジ部2よりも大径で、かつネジ頭部3よりも小径とされた台座部7が一体に形成されている。これにより、フレア部5は、断面視すると、台座部7から略L字状に延びるように形成された形状となっている。
【0017】
次に、上記構成からなるレーザ溶体化処理装置20におけるフレア付きボルト1の溶体化処理方法について説明する。
まず、フレア付きボルト1を、ポジショナ21上の所定の位置(回転中心軸線上)にセットする。
そして、ポジショナ21を、回転コントローラ21bによって予め設定された所定の回転速度で回転させる。これにより、フレア付きボルト1は、ポジショナ21とともに所定の回転速度で回転する。
この状態で、前記レーザヘッド22から、所定のディフォーカス量Lf、焦点ずらし量Dfだけオフセットさせ、フレア付きボルト1に対してレーザ光Lを照射する。すると、フレア付きボルト1には、フレア部5の先端部から所定寸法、例えば4mmの範囲Sにレーザ光Lが照射される。
このようにして、フレア付きボルト1を回転させながら、レーザヘッド22からのレーザ光Lをあらかじめ設定した所定時間だけ照射する。これにより、フレア付きボルト1には、その全周のフレア部5に対し、レーザ光Lが照射され、入熱がなされることになる。
【0018】
ここで、レーザ光Lを照射する時間は、フレア部5が所定の温度領域にまで加熱されるように設定される。すなわち、フレア部5が、この部分を形成する材料に含まれる炭化物が再固溶する温度(例えば約1020℃)以上であり、かつ、この材料であるSUS316の融点(1450℃)以下である温度領域に加熱されるようにするのである。
これにより、フレア部5の部分から、炭化物が再固溶して消滅する。
【0019】
レーザ光Lを所定時間照射した後は、出力コントローラ26によって、レーザヘッド22からのレーザ光Lの照射を停止させる。
すると、フレア部5の温度は低下する。フレア付きボルト1は、レーザ光Lによって加熱されたフレア部5よりも温度が低いシールドボックス25内の雰囲気中に存在しており、しかもフレア部5は、レーザ光Lによって加熱されていないためにフレア部5よりも温度が低い部分である、雄ネジ部2や工具係合部4、台座部7等と一体であるため、雰囲気との熱交換、雄ネジ部2や工具係合部4、台座部7等への伝熱により、フレア部5の温度が低下するのである。このため、例えばこのフレア付きボルト1全体を炉中で、上記と同様の温度領域に加熱した場合に比較し、温度低下は急激なものとなる。
このようにフレア部5を急冷することにより、フレア部5から消滅した炭化物が析出しない。
【0020】
これにより、レーザ溶体化処理装置20におけるフレア付きボルト1の溶体化処理が完了する。この溶体化処理により、フレア付きボルト1のフレア部5からは炭化物が消滅しており、他の部分よりも炭化物含有量が当然低くなっているので、以下の説明では、溶体化処理前の状態と区別するため、溶体化処理後のフレア付きボルト1を、処理済フレア付きボルト(フレア付きボルト)40と適宜称することとする。
【0021】
図5に示したように、処理済フレア付きボルト40は、工具係合部4に嵌め合う工具を用い、ボルト孔10に、ネジ頭部3の座面3aが穴12の底面12aに接するまでねじ込まれる。その後、図6に示したように、工具係合部4とフレア部5との隙間にかしめ用工具の爪15を挿入し、この爪15でフレア部5を外周側に押圧することで、フレア部5を外周側に変形させ、ボルト孔10の凹部13に食い込ませる。
このとき、フレア部5からは、炭化物が消滅しているために、処理済フレア付きボルト40の他の部分に比較して強度が低く、爪15によるかしめ作業を容易かつ確実に行うことができる。
【0022】
[実施例]
上記のような構成を確認するための試験を行ったのでその結果を以下に示す。
ここで、試験装置のレーザ発振器には最大出力1.6kWのYAGレーザを用い、レーザヘッド22までレーザ光Lを伝達するための光ファイバにはφ0.6mm、SI型のものを用い、レーザヘッド22には、集光焦点距離が約80mmであるレーザ加工光学系を用いた。
そして、レーザヘッド22からポジショナ21上に保持されたフレア付きボルト1に対しては、レーザヘッド22から出力560Wのレーザ光Lを照射し、このときのポジショナ21の回転速度は、ポジショナ21上のフレア付きボルト1に対するレーザ光Lの照射速度、すなわちフレア部5の外周面における移動速度が、190mm/minとなるようにした。また、光軸に対する焦点ずらし量Dfは70mm、焦点Fに対するディフォーカス量Lfは+1mmに設定した。
【0023】
レーザ溶体化処理装置20にて、上記条件でフレア付きボルト1のフレア部5に対しレーザ光Lを照射し、フレア部5の溶体化処理を施した。
このときのフレア部5の温度変化を、パイロメータ24にて計測した。その計測位置は、フレア部5の先端面から(1)2mm、(2)4mm、(3)6mmの3箇所と、(2)の計測位置とはフレア部5の周方向に180度異なる位置の、(4)フレア部5の先端面から4mmの位置の1箇所、合計4箇所である。
図7は、このときの計測結果を示すもので、横軸は時間で一目盛4秒である。この図に示すように、(1)、(2)の、フレア部5の端面から2mm、4mmの位置では、炭化物が再固溶する温度である1020℃以上に上昇しており、かつ融点以下となっている。また、(4)の、(2)と180度反対側の位置でも、同様に、温度が1020℃以上、融点以下の温度領域に上昇している。
図8[a]は、処理済フレア付きボルト40のフレア部5の組織を示すものであり、[b]は、上記の(1)、(2)、(3)、(4)それぞれの箇所の組織を示すものである。このように、1020℃まで上昇していない(3)の位置では炭化物が残存しているのに対し、1020℃以上に上昇した(1)、(2)、(4)の位置においては、フレア部5が再結晶化して細粒化し、炭化物が消失していた。
【0024】
また、上記のような処理済フレア付きボルト40のフレア部5のビッカース硬さ(Hv)を計測したところ、図9に示すように、フレア部5の端面から約4mmまでの範囲が、Hv=130程度に低下し(処理前の初期値はHv=300前後)、軟化していた。
また、ストラウス試験(硫酸・硫酸銅腐食試験)でも、炭化物が析出することによって生じる境界域の鋭敏化は認められない。
【0025】
このような処理済フレア付きボルト40を、図6に示したように、ボルト孔10にねじ込み、工具係合部4とフレア部5との隙間にかしめ用工具の爪15を挿入し、この爪15でフレア部5を外周側に押圧することによって、フレア部5を外周側に変形させ(かしめ)、ボルト孔10の凹部13に食い込ませた。
すると、溶体化処理を行わない従来のフレア付きボルトでは、かしめに必要な荷重が約800kgであったのに対し、処理済フレア付きボルト40では、かしめに必要な荷重が約400kgとなり、半分程度の荷重で容易にかしめることができた。しかも、フレア部5をかしめることで、処理済フレア付きボルト40の回り止め性や抜け止め性に問題は認められなかった。
さらに、フレア部5のかしめによる割れも認められなかった。
なお、溶体化処理時の入熱により、フレア部5に変色が認められるものの、これは周知の化学的洗浄によってほぼ除去可能であることも確認された。
【0026】
上述したように、フレア付きボルト1のフレア部5に溶体化処理を施すことにより、フレア付きボルト1自体の材質を高強度なものとした場合も、フレア部5のみの硬度を低下させることができ、フレア部5のかしめ性を良好なものとすることができる。
この溶体化処理には、レーザ光Lを、焦点Fからその光軸方向および光軸と直交する方向にオフセットさせて照射対象のフレア付きボルト1のフレア部5に照射するようにしたので、所定の範囲Sに面状(線状)にレーザ光Lによる入熱を図ることができ、フレア部5を、炭化物が消失し、かつ溶融しない範囲の温度領域に略均一に加熱することができる。これによって、溶体化処理を容易かつ確実に行うことができるのである。
【0027】
なお、上記実施の形態では、溶体化処理の対象をフレア付きボルト1のフレア部5としたが、その対象物、および対象部位は、これに限るものではなく、適宜他の対象物、対象部位とすることもできる。
また、上記実施の形態では、レーザ光Lの出力、ポジショナ21の回転速度、ディフォーカス量Lf、焦点ずらし量Dfの4つのパラメータを調整する構成としたが、これら4つのパラメータ全てではなく、3つ以下のみを適宜調整することでも、同様の効果が得られるのは言うまでも無い。例えば、レーザ光Lの出力を下げ、フレア部5が溶融しない程度に入熱を図ることも考えられるが、上記したようなエネルギー分布上の理由から、レーザ光Lの焦点位置をオフセットさせない場合(Lf、Df=0)には、そのコントロールは非常に難しくなる。
しかし、レーザ光Lに、エネルギー分布の均一な平行ビームを用いることができれば、レーザ光Lの出力のコントロールのみで同様の効果が得られる可能性が高い。
【0028】
また、レーザ溶体化処理装置20も、その構成はあくまでも一例に過ぎず、特にサーモビュア23やパイロメータ24等を適宜選択的に備える構成とすることもできるし、他のものに代替すること等も可能である。
加えて、上記実施の形態では、レーザビームの照射は予め設定された所定時間だけ行うようにしたが、これは、予め行った条件出しの実験等によって設定できるものである。これに代えて、サーモビュア23やパイロメータ24等の温度検出手段でフレア部5の温度を検出し、出力コントローラ26では、検出された温度に基づいてレーザ光Lの出力を制御する構成、つまりフレア部5が所定の温度領域に達した時点でレーザ光Lの出力を停止させる構成とすることも可能である。
さらに、上記実施の形態では、ポジショナ21上に保持したフレア付きボルト1を回転させる構成としたが、これに代えて、レーザヘッド22側が動く構成とすることもできる。
これ以外にも、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。
【0029】
【発明の効果】
以上説明したように、本発明によれば、レーザ光により照射対象から炭化物を消失させることにより、照射した部分の硬度を下げることができる。特に照射対象の一部のみにレーザ光を照射することで、他の部分の強度を下げることなく硬度を部分的に下げることができる。
また、本発明のフレア付きボルトによれば、フレア部の硬度を雄ネジ部より下げることで、フレア部のかしめ性を向上させることができる。
【図面の簡単な説明】
【図1】本実施の形態におけるレーザ溶体化処理装置の構成を示す図である。
【図2】レーザ光をオフセットして照射する状態を示す図である。
【図3】レーザ光のエネルギー分布を示す図である。
【図4】フレア付きボルトを示す平面図および正断面図である。
【図5】フレア付きボルトをボルト孔にねじ込んだ状態を示す断面図である。
【図6】フレア部をかしめた状態を示す断面図である。
【図7】フレア部の溶体化処理時の温度計測結果を示す図である。
【図8】フレア部の組織を示す図である。
【図9】フレア部の硬度分布を示す図である。
【符号の説明】
1…フレア付きボルト(照射対象)、2…雄ねじ部、4…工具係合部、5…フレア部、20…レーザ溶体化処理装置(レーザ熱処理装置)、21…ポジショナ、21b…回転コントローラ、22…レーザヘッド、26…出力コントローラ、40…処理済フレア付きボルト(フレア付きボルト)
【発明の属する技術分野】
本発明は、レーザ熱処理方法、レーザ熱処理装置等に関する。
【0002】
【従来の技術】
例えば、原子力容器のフォーマ板とバッフル板とを接続するために、図4および図5に示すようなフレア付きボルト1が用いられている。このフレア付きボルト1は、その外周面に螺条が形成された雄ネジ部2と、雄ネジ部2の基端部側に一体に形成されたネジ頭部3とを有している。ネジ頭部3には、その中心部に、フレア付きボルト1をボルト孔10にねじ込むための工具が嵌め合う、例えば六角断面の工具係合部4が形成され、その外周部には、周方向に例えば四分割されたフレア部5が形成されている。
図4に示すように、このようなフレア付きボルト1がねじ込まれるボルト孔10は、雄ネジ部2が螺合する雌ネジ部11と、雌ネジ部11よりも内径が大きく、ネジ頭部3が納まる穴12とを有している。穴12には、その内周面に、凹部13が形成されている。
そして、工具係合部4に嵌め合う工具を用い、フレア付きボルト1をボルト孔10に、ネジ頭部3の座面3aが穴12の底面12aに接するまでねじ込む。その後、図6に示すように、工具係合部4とフレア部5との隙間にかしめ用工具の爪15を挿入し、この爪15でフレア部5を外周側に押圧することで、フレア部5を外周側に変形させ、ボルト孔10の凹部13に食い込ませる。
【0003】
このようにしてフレア部5をかしめることで、万が一フレア付きボルト1が、例えば雄ネジ部2とネジ頭部3との境界付近、いわゆる首下で破断したような場合にも、ネジ頭部3のフレア部5が、ボルト孔10の凹部13に食い込んでいるため、フレア付きボルト1の脱落を防止できる構造となっているのである。
【0004】
ところで、原子力容器内において、上記のようなフレア付きボルト1を長期間にわたって使用すると、照射応力腐食割れ(IASCC)の影響により、フレア付きボルト1の損傷を招く可能性がある。
このため、近年、フレア付きボルト1の材質を、炭化物を高めて強度を高めた材料、例えば冷間加工材であるSUS316等とし、これによって照射応力腐食割れを防止することが検討されている。
【0005】
【発明が解決しようとする課題】
しかしながら、炭化物の多いSUS316等を採用すると、フレア付きボルト1全体強度も高まり、その結果、フレア部5の部分も硬くなり、かしめ用工具を用いてフレア部5をかしめることができなくなってしまうという問題点がある。
本発明は、このような技術的課題に基づいてなされたもので、高い強度を持ちながら、かしめも容易に行うことのできるフレア付きボルトを提供することを目的とする。
また、本発明は、例えば部材の一部分のみ、硬度を下げることのできるレーザ熱処理方法等を提供することを他の目的とする。
【0006】
【課題を解決するための手段】
かかる目的のもと、本発明のレーザ熱処理方法は、例えば頭部に外周側にかしめるためのフレア部を有したステンレス製のボルト等、炭化物が析出した照射対象にレーザ光を照射する照射工程と、レーザ光を照射することで、照射対象の融点未満であって照射対象に含まれる炭化物が消滅する温度領域に照射対象が至った時点で、レーザ光の照射を停止する照射停止工程と、を有することを特徴とする。
このように、照射対象にレーザ光を照射し、照射対象に含まれる炭化物が消滅する温度領域まで照射対象を加熱(急加熱)すると、再固溶化して炭化物が消滅する。この後、レーザ光の照射を停止すると、当然のことながらレーザ光を用いる場合は加熱炉の中に照射対象を入れるわけではなく、周囲の雰囲気の温度は概ね常温であり、したがって、炉中にある場合に比較して急冷されることになる。照射対象を急冷することで、炭化物が析出するのを抑制できる。
ところで、上記のような熱処理は、照射対象全体に対して施しても良いが、照射工程でレーザ光を照射対象の一部のみに照射し、これによって照射対象の一部のみから炭化物を消滅させることもできる。この場合、前記照射停止工程では、レーザ光が照射されている部分の温度が炭化物の消滅する温度領域に至ったときに、レーザ光の照射を停止すれば良い。
【0007】
レーザ光は、その焦点位置でエネルギー密度が飛躍的に高くなっている。このため、上記のように、照射対象に含まれる炭化物が消滅する温度領域に至るまで照射対象を加熱するには、もちろんレーザ光の出力のみをコントロールしても良いが、照射対象を融点未満に維持するのは難しい。そこで、レーザ光を、照射対象に対して焦点をオフセットさせて照射するのが好ましい。
【0008】
本発明のレーザ熱処理装置は、ポジショナによって所定の位置に保持された照射対象に、出力コントローラによってその出力が制御されるレーザヘッドでレーザ光を照射するものであり、レーザヘッドから照射するレーザ光の焦点が、照射対象に対し、その光軸方向および光軸方向に直交する方向にオフセットしていることを特徴とする。
このとき、レーザヘッドは、照射対象の一部にレーザ光を照射し、出力コントローラでは、照射対象のレーザ光が照射された部分の硬度を他の部分よりも低下させるようレーザ光の出力を制御する構成とすることができる。
また、ポジショナは、照射対象を軸線回りに回転させる回転機構を備えることができ、この場合、回転コントローラにて、レーザヘッドから照射されるレーザ光によって、照射対象に含まれる炭化物が消滅しかつ照射対象の融点未満の温度領域に加熱されるよう、ポジショナの回転速度を制御する。
【0009】
本発明は、外周面に螺条が形成された雄ネジ部と、雄ネジ部の基端側に一体に形成され、雄ネジ部を回転させるための工具が係合する工具係合部と、雄ネジ部の基端側に一体に形成され、雄ネジ部の軸線に対して外周側に変形可能なフレア部と、を有したフレア付きボルトとして捉えることもできる。このようなフレア付きボルトは、フレア部が雄ネジ部よりも硬度が低い。また、フレア部は、フレア付きボルトの他の部分よりも炭化物の濃度が低くなっている。
このようなフレア付きボルトは、上記レーザ熱処理方法やレーザ熱処理装置を適用することによって得ることができる。
【0010】
【発明の実施の形態】
以下、添付図面に示す実施の形態に基づいてこの発明を詳細に説明する。
図1は、本実施の形態におけるレーザ溶体化処理装置(レーザ熱処理装置)20の構成を説明するための図である。
この図1に示すように、レーザ溶体化処理装置20は、溶体化処理の対象となる部材を載置するポジショナ21と、ポジショナ21上の部材に対してレーザ光を照射するレーザヘッド22と、部材表面の温度をレーザヘッド22の近傍から観察するサーモビュア23と、部材表面の温度をレーザヘッド22とは略反対側から観察するパイロメータ24と、レーザヘッド22からポジショナ21上の部材に対するレーザ光の照射をシールドされた空間内で行うためのシールドボックス25と、を備える。
【0011】
ポジショナ21は、円盤状のテーブル21aと、このテーブル21aを回転駆動させる回転機構(図示無し)と、テーブル21aの回転速度を制御する回転コントローラ21bとから構成される。
【0012】
レーザヘッド22は、図示しないレーザ光源から所定の光学系を通して到達したレーザ光を、ポジショナ21上の部材に対して照射し、その出力は、出力コントローラ26によって制御される。
図2に示すように、レーザヘッド22から照射されるレーザ光Lは、部材に焦点Fを合わせるのが通常であるが、本実施の形態では、ポジショナ21上の部材に焦点Fを合わせず、焦点Fに対し、光軸に直交する方向に焦点ずらし量Dfだけオフセットさせ、光軸に沿った方向にディフォーカス量Lfだけオフセットさせた設定とする。
【0013】
より具体的には、図3に示すように、光軸方向において、焦点Fに対応した位置P1では、曲線C1に示すように、光軸に直交する面内におけるエネルギー分布は、焦点Fの位置で飛躍的に高くなっており、その両側では急激に落ち込んでいる。このため、焦点Fをポジショナ21上の部材に合わせると、部材の焦点Fに対応した位置に局所的にレーザ光Lによる入熱が発生し、部材の他の部分に均等に入熱させることができないのである。
これに対し、ディフォーカス量Lfを大きくした、光軸方向において焦点Fから離れた位置P2、P3、P4では、曲線C2、C3、C4に示すように、光軸に直交する面内におけるエネルギー分布は焦点Fの位置で高いものの、そのピーク値および傾きは曲線C1に比べ、曲線C2、C3、C4の順で徐々に小さくなっている。
さらに、光軸に対する焦点ずらし量Dfを大きくし、光軸からオフセットした範囲(例えば図3中(A)の範囲)の、エネルギー分布の傾きが小さい部分のレーザ光Lを用いることで、レーザ光Lを照射する範囲内におけるエネルギー分布を均等化することができるのである。このとき、例えば範囲(A)におけるエネルギー分布の傾きは、曲線C2、C3、C4の順で徐々に小さくなるため、エネルギー分布を均等化するという観点からして、ディフォーカス量Lfをなるべく大きく取るのが望ましい。
【0014】
このように、レーザ光Lのエネルギーのピークからずれた位置では、エネルギーが急激に落ちるとともに、エネルギー分布の傾斜が緩やかになるので、本実施の形態では、ポジショナ21上の部材に焦点Fを合わせず、焦点Fに対する焦点ずらし量Df、ディフォーカス量Lfを所定値に設定することで、エネルギー分布が緩やかな箇所を用い、なるべく均等に入熱を図るのである。
ところで、例えばディフォーカス量Lfを、図3において位置P4に対応した寸法とする場合、曲線C4からもわかるように、エネルギー量自体が非常に小さくなっている。このため、所定の入熱が図れるよう、焦点Fを用いる場合に比較してレーザ光Lの出力を高くするのが好ましい。
【0015】
これにより、ポジショナ21上の部材には、レーザ光Lにより、面状(線状)の入熱が行われることになる。
このとき、上述したように、ポジショナ21上の部材に対する入熱をコントロールするには、光軸に対する焦点ずらし量Df、焦点Fに対するディフォーカス量Lf、レーザ光Lの出力だけでなく、ポジショナ21の回転速度も重要であるのは言うまでも無い。
【0016】
ここで、本実施の形態において、溶体化処理の対象となる部材は、図4および図5に示したフレア付きボルト(照射対象)1である。フレア付きボルト1は、例えばSUS316からなり、その外周面に螺条が形成された雄ネジ部2と、雄ネジ部2の基端部側に一体に形成されたネジ頭部3とを有している。ネジ頭部3には、その中心部に、フレア付きボルト1をボルト孔10にねじ込むための工具が嵌め合う、例えば六角断面の工具係合部4が形成され、その外周部には、周方向に例えば四分割されたフレア部5が形成されている。また、ネジ頭部3と雄ネジ部2の境界部分には、雄ネジ部2よりも大径で、かつネジ頭部3よりも小径とされた台座部7が一体に形成されている。これにより、フレア部5は、断面視すると、台座部7から略L字状に延びるように形成された形状となっている。
【0017】
次に、上記構成からなるレーザ溶体化処理装置20におけるフレア付きボルト1の溶体化処理方法について説明する。
まず、フレア付きボルト1を、ポジショナ21上の所定の位置(回転中心軸線上)にセットする。
そして、ポジショナ21を、回転コントローラ21bによって予め設定された所定の回転速度で回転させる。これにより、フレア付きボルト1は、ポジショナ21とともに所定の回転速度で回転する。
この状態で、前記レーザヘッド22から、所定のディフォーカス量Lf、焦点ずらし量Dfだけオフセットさせ、フレア付きボルト1に対してレーザ光Lを照射する。すると、フレア付きボルト1には、フレア部5の先端部から所定寸法、例えば4mmの範囲Sにレーザ光Lが照射される。
このようにして、フレア付きボルト1を回転させながら、レーザヘッド22からのレーザ光Lをあらかじめ設定した所定時間だけ照射する。これにより、フレア付きボルト1には、その全周のフレア部5に対し、レーザ光Lが照射され、入熱がなされることになる。
【0018】
ここで、レーザ光Lを照射する時間は、フレア部5が所定の温度領域にまで加熱されるように設定される。すなわち、フレア部5が、この部分を形成する材料に含まれる炭化物が再固溶する温度(例えば約1020℃)以上であり、かつ、この材料であるSUS316の融点(1450℃)以下である温度領域に加熱されるようにするのである。
これにより、フレア部5の部分から、炭化物が再固溶して消滅する。
【0019】
レーザ光Lを所定時間照射した後は、出力コントローラ26によって、レーザヘッド22からのレーザ光Lの照射を停止させる。
すると、フレア部5の温度は低下する。フレア付きボルト1は、レーザ光Lによって加熱されたフレア部5よりも温度が低いシールドボックス25内の雰囲気中に存在しており、しかもフレア部5は、レーザ光Lによって加熱されていないためにフレア部5よりも温度が低い部分である、雄ネジ部2や工具係合部4、台座部7等と一体であるため、雰囲気との熱交換、雄ネジ部2や工具係合部4、台座部7等への伝熱により、フレア部5の温度が低下するのである。このため、例えばこのフレア付きボルト1全体を炉中で、上記と同様の温度領域に加熱した場合に比較し、温度低下は急激なものとなる。
このようにフレア部5を急冷することにより、フレア部5から消滅した炭化物が析出しない。
【0020】
これにより、レーザ溶体化処理装置20におけるフレア付きボルト1の溶体化処理が完了する。この溶体化処理により、フレア付きボルト1のフレア部5からは炭化物が消滅しており、他の部分よりも炭化物含有量が当然低くなっているので、以下の説明では、溶体化処理前の状態と区別するため、溶体化処理後のフレア付きボルト1を、処理済フレア付きボルト(フレア付きボルト)40と適宜称することとする。
【0021】
図5に示したように、処理済フレア付きボルト40は、工具係合部4に嵌め合う工具を用い、ボルト孔10に、ネジ頭部3の座面3aが穴12の底面12aに接するまでねじ込まれる。その後、図6に示したように、工具係合部4とフレア部5との隙間にかしめ用工具の爪15を挿入し、この爪15でフレア部5を外周側に押圧することで、フレア部5を外周側に変形させ、ボルト孔10の凹部13に食い込ませる。
このとき、フレア部5からは、炭化物が消滅しているために、処理済フレア付きボルト40の他の部分に比較して強度が低く、爪15によるかしめ作業を容易かつ確実に行うことができる。
【0022】
[実施例]
上記のような構成を確認するための試験を行ったのでその結果を以下に示す。
ここで、試験装置のレーザ発振器には最大出力1.6kWのYAGレーザを用い、レーザヘッド22までレーザ光Lを伝達するための光ファイバにはφ0.6mm、SI型のものを用い、レーザヘッド22には、集光焦点距離が約80mmであるレーザ加工光学系を用いた。
そして、レーザヘッド22からポジショナ21上に保持されたフレア付きボルト1に対しては、レーザヘッド22から出力560Wのレーザ光Lを照射し、このときのポジショナ21の回転速度は、ポジショナ21上のフレア付きボルト1に対するレーザ光Lの照射速度、すなわちフレア部5の外周面における移動速度が、190mm/minとなるようにした。また、光軸に対する焦点ずらし量Dfは70mm、焦点Fに対するディフォーカス量Lfは+1mmに設定した。
【0023】
レーザ溶体化処理装置20にて、上記条件でフレア付きボルト1のフレア部5に対しレーザ光Lを照射し、フレア部5の溶体化処理を施した。
このときのフレア部5の温度変化を、パイロメータ24にて計測した。その計測位置は、フレア部5の先端面から(1)2mm、(2)4mm、(3)6mmの3箇所と、(2)の計測位置とはフレア部5の周方向に180度異なる位置の、(4)フレア部5の先端面から4mmの位置の1箇所、合計4箇所である。
図7は、このときの計測結果を示すもので、横軸は時間で一目盛4秒である。この図に示すように、(1)、(2)の、フレア部5の端面から2mm、4mmの位置では、炭化物が再固溶する温度である1020℃以上に上昇しており、かつ融点以下となっている。また、(4)の、(2)と180度反対側の位置でも、同様に、温度が1020℃以上、融点以下の温度領域に上昇している。
図8[a]は、処理済フレア付きボルト40のフレア部5の組織を示すものであり、[b]は、上記の(1)、(2)、(3)、(4)それぞれの箇所の組織を示すものである。このように、1020℃まで上昇していない(3)の位置では炭化物が残存しているのに対し、1020℃以上に上昇した(1)、(2)、(4)の位置においては、フレア部5が再結晶化して細粒化し、炭化物が消失していた。
【0024】
また、上記のような処理済フレア付きボルト40のフレア部5のビッカース硬さ(Hv)を計測したところ、図9に示すように、フレア部5の端面から約4mmまでの範囲が、Hv=130程度に低下し(処理前の初期値はHv=300前後)、軟化していた。
また、ストラウス試験(硫酸・硫酸銅腐食試験)でも、炭化物が析出することによって生じる境界域の鋭敏化は認められない。
【0025】
このような処理済フレア付きボルト40を、図6に示したように、ボルト孔10にねじ込み、工具係合部4とフレア部5との隙間にかしめ用工具の爪15を挿入し、この爪15でフレア部5を外周側に押圧することによって、フレア部5を外周側に変形させ(かしめ)、ボルト孔10の凹部13に食い込ませた。
すると、溶体化処理を行わない従来のフレア付きボルトでは、かしめに必要な荷重が約800kgであったのに対し、処理済フレア付きボルト40では、かしめに必要な荷重が約400kgとなり、半分程度の荷重で容易にかしめることができた。しかも、フレア部5をかしめることで、処理済フレア付きボルト40の回り止め性や抜け止め性に問題は認められなかった。
さらに、フレア部5のかしめによる割れも認められなかった。
なお、溶体化処理時の入熱により、フレア部5に変色が認められるものの、これは周知の化学的洗浄によってほぼ除去可能であることも確認された。
【0026】
上述したように、フレア付きボルト1のフレア部5に溶体化処理を施すことにより、フレア付きボルト1自体の材質を高強度なものとした場合も、フレア部5のみの硬度を低下させることができ、フレア部5のかしめ性を良好なものとすることができる。
この溶体化処理には、レーザ光Lを、焦点Fからその光軸方向および光軸と直交する方向にオフセットさせて照射対象のフレア付きボルト1のフレア部5に照射するようにしたので、所定の範囲Sに面状(線状)にレーザ光Lによる入熱を図ることができ、フレア部5を、炭化物が消失し、かつ溶融しない範囲の温度領域に略均一に加熱することができる。これによって、溶体化処理を容易かつ確実に行うことができるのである。
【0027】
なお、上記実施の形態では、溶体化処理の対象をフレア付きボルト1のフレア部5としたが、その対象物、および対象部位は、これに限るものではなく、適宜他の対象物、対象部位とすることもできる。
また、上記実施の形態では、レーザ光Lの出力、ポジショナ21の回転速度、ディフォーカス量Lf、焦点ずらし量Dfの4つのパラメータを調整する構成としたが、これら4つのパラメータ全てではなく、3つ以下のみを適宜調整することでも、同様の効果が得られるのは言うまでも無い。例えば、レーザ光Lの出力を下げ、フレア部5が溶融しない程度に入熱を図ることも考えられるが、上記したようなエネルギー分布上の理由から、レーザ光Lの焦点位置をオフセットさせない場合(Lf、Df=0)には、そのコントロールは非常に難しくなる。
しかし、レーザ光Lに、エネルギー分布の均一な平行ビームを用いることができれば、レーザ光Lの出力のコントロールのみで同様の効果が得られる可能性が高い。
【0028】
また、レーザ溶体化処理装置20も、その構成はあくまでも一例に過ぎず、特にサーモビュア23やパイロメータ24等を適宜選択的に備える構成とすることもできるし、他のものに代替すること等も可能である。
加えて、上記実施の形態では、レーザビームの照射は予め設定された所定時間だけ行うようにしたが、これは、予め行った条件出しの実験等によって設定できるものである。これに代えて、サーモビュア23やパイロメータ24等の温度検出手段でフレア部5の温度を検出し、出力コントローラ26では、検出された温度に基づいてレーザ光Lの出力を制御する構成、つまりフレア部5が所定の温度領域に達した時点でレーザ光Lの出力を停止させる構成とすることも可能である。
さらに、上記実施の形態では、ポジショナ21上に保持したフレア付きボルト1を回転させる構成としたが、これに代えて、レーザヘッド22側が動く構成とすることもできる。
これ以外にも、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。
【0029】
【発明の効果】
以上説明したように、本発明によれば、レーザ光により照射対象から炭化物を消失させることにより、照射した部分の硬度を下げることができる。特に照射対象の一部のみにレーザ光を照射することで、他の部分の強度を下げることなく硬度を部分的に下げることができる。
また、本発明のフレア付きボルトによれば、フレア部の硬度を雄ネジ部より下げることで、フレア部のかしめ性を向上させることができる。
【図面の簡単な説明】
【図1】本実施の形態におけるレーザ溶体化処理装置の構成を示す図である。
【図2】レーザ光をオフセットして照射する状態を示す図である。
【図3】レーザ光のエネルギー分布を示す図である。
【図4】フレア付きボルトを示す平面図および正断面図である。
【図5】フレア付きボルトをボルト孔にねじ込んだ状態を示す断面図である。
【図6】フレア部をかしめた状態を示す断面図である。
【図7】フレア部の溶体化処理時の温度計測結果を示す図である。
【図8】フレア部の組織を示す図である。
【図9】フレア部の硬度分布を示す図である。
【符号の説明】
1…フレア付きボルト(照射対象)、2…雄ねじ部、4…工具係合部、5…フレア部、20…レーザ溶体化処理装置(レーザ熱処理装置)、21…ポジショナ、21b…回転コントローラ、22…レーザヘッド、26…出力コントローラ、40…処理済フレア付きボルト(フレア付きボルト)
Claims (9)
- 炭化物が析出した照射対象にレーザ光を照射する照射工程と、
前記レーザ光を照射することで、前記照射対象の融点未満であって当該照射対象に含まれる炭化物が消滅する温度領域に前記照射対象が至った時点で、前記レーザ光の照射を停止する照射停止工程と、
を有することを特徴とするレーザ熱処理方法。 - 前記照射工程では、前記レーザ光を前記照射対象の一部のみに照射することを特徴とする請求項1に記載のレーザ熱処理方法。
- 前記照射工程では、前記レーザ光を、前記照射対象に対して焦点をオフセットさせて照射することを特徴とする請求項1または2に記載のレーザ熱処理方法。
- 前記照射対象が、頭部に外周側にかしめるためのフレア部を有したボルトであることを特徴とする請求項1から3のいずれかに記載のレーザ熱処理方法。
- 照射対象を所定の位置に保持するポジショナと、
前記ポジショナに保持された前記照射対象にレーザ光を照射するレーザヘッドと、
前記レーザヘッドからのレーザ光の出力を制御する出力コントローラと、を備え、
前記レーザヘッドは、当該レーザヘッドから照射するレーザ光の焦点が、前記照射対象に対し、その光軸方向および光軸方向に直交する方向にオフセットしていることを特徴とするレーザ熱処理装置。 - 前記レーザヘッドは、前記照射対象の一部にレーザ光を照射し、
前記出力コントローラは、前記照射対象の前記レーザ光が照射された部分の硬度を、当該照射対象の他の部分よりも低下させるよう、レーザ光の出力を制御することを特徴とする請求項5に記載のレーザ熱処理装置。 - 前記ポジショナは、前記照射対象を当該照射対象の軸線回りに回転させる回転機構と、当該ポジショナの回転速度を制御する回転コントローラとを有し、
前記回転コントローラは、前記照射対象が、前記レーザヘッドから照射されるレーザ光によって、当該照射対象に含まれる炭化物が消滅しかつ当該照射対象の融点未満の温度領域に加熱されるよう、前記ポジショナの回転速度を制御することを特徴とする請求項5または6に記載のレーザ熱処理装置。 - 外周面に螺条が形成された雄ネジ部と、
前記雄ネジ部の基端側に一体に形成され、当該雄ネジ部を回転させるための工具が係合する工具係合部と、
前記雄ネジ部の基端側に一体に形成され、当該雄ネジ部の軸線に対して外周側に変形可能なフレア部と、
を有し、
前記フレア部は、前記雄ネジ部よりも硬度が低いことを特徴とするフレア付きボルト。 - 前記フレア部は、前記フレア付きボルトの他の部分よりも炭化物の濃度が低いことを特徴とする請求項8に記載のフレア付きボルト。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002255660A JP2004091870A (ja) | 2002-08-30 | 2002-08-30 | レーザ熱処理方法、レーザ熱処理装置、フレア付きボルト |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002255660A JP2004091870A (ja) | 2002-08-30 | 2002-08-30 | レーザ熱処理方法、レーザ熱処理装置、フレア付きボルト |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004091870A true JP2004091870A (ja) | 2004-03-25 |
Family
ID=32061130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002255660A Withdrawn JP2004091870A (ja) | 2002-08-30 | 2002-08-30 | レーザ熱処理方法、レーザ熱処理装置、フレア付きボルト |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004091870A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015054325A (ja) * | 2013-09-10 | 2015-03-23 | 株式会社アマダ | 金属板材の曲げ加工方法及び該曲げ加工方法に用いるレーザ加工装置 |
KR20220101360A (ko) * | 2021-01-11 | 2022-07-19 | (주)진합 | 레이저를 이용한 체결나사의 국부 열처리 방법 |
CN117403156A (zh) * | 2023-12-14 | 2024-01-16 | 东方蓝天钛金科技有限公司 | 一种gh4169合金扩口螺母的热处理方法 |
-
2002
- 2002-08-30 JP JP2002255660A patent/JP2004091870A/ja not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015054325A (ja) * | 2013-09-10 | 2015-03-23 | 株式会社アマダ | 金属板材の曲げ加工方法及び該曲げ加工方法に用いるレーザ加工装置 |
KR20220101360A (ko) * | 2021-01-11 | 2022-07-19 | (주)진합 | 레이저를 이용한 체결나사의 국부 열처리 방법 |
KR102468984B1 (ko) * | 2021-01-11 | 2022-11-22 | (주)진합 | 레이저를 이용한 체결나사의 국부 열처리 방법 |
CN117403156A (zh) * | 2023-12-14 | 2024-01-16 | 东方蓝天钛金科技有限公司 | 一种gh4169合金扩口螺母的热处理方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106862746B (zh) | 一种高温钛合金薄壁铸件电子束焊接方法 | |
JP3112758B2 (ja) | 超合金製のワークピースの溶接方法及び装置 | |
US7094988B1 (en) | Laser welding heat treat process | |
US11045902B2 (en) | Linear groove formation method and linear groove formation device | |
US9238286B2 (en) | Method of controlling laser beam preheating temperature of surface of workpiece | |
KR20150116794A (ko) | 레이저 용접 방법 및 용접 구조 | |
RU2621092C2 (ru) | Устройство для лазерной обработки и способ лазерного облучения | |
JP6452699B2 (ja) | ガラス製品の鋭いエッジを鈍くする方法 | |
US20070095802A1 (en) | Laser treatment apparatus | |
JP4537763B2 (ja) | レーザ・ビームを使用したスポット溶接のための方法と装置 | |
JP2004091870A (ja) | レーザ熱処理方法、レーザ熱処理装置、フレア付きボルト | |
JP2009123807A (ja) | 熱処理装置 | |
JP2006273695A (ja) | ガラス板の切断面の処理装置及び処理方法 | |
JP2016016432A (ja) | 表面改質方法及び表面改質金属部材 | |
CN106755891B (zh) | 一种高纯金属溅射靶材的表面处理方法 | |
JP2020050906A (ja) | 立体形状加工対象物の熱処理方法及び熱処理装置 | |
CN108486348A (zh) | 钳子刃口热处理工艺 | |
JP7386118B2 (ja) | 溶接方法および溶接装置 | |
Shukla et al. | Influence of laser beam brightness during surface treatment of a ZrO2 engineering ceramic | |
JPH091243A (ja) | ベンディング金型およびその金型に焼入れを行う金型焼入れ方法並びにその装置 | |
US7077993B2 (en) | Apparatus for softening a selected portion of a steel object by heating | |
KR101643925B1 (ko) | 박판 금속 레이저 열처리 방법 | |
Nikolov et al. | Hardening in laser forming under the temperature gradient mechanism | |
KR102125368B1 (ko) | 연속 주조용 몰드의 코팅 장치 | |
JPH0860233A (ja) | レ−ザ焼入れ装置およびその焼入れ方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20051101 |