JP2004089962A - Treatment method of reverse osmosis membrane - Google Patents

Treatment method of reverse osmosis membrane Download PDF

Info

Publication number
JP2004089962A
JP2004089962A JP2002258671A JP2002258671A JP2004089962A JP 2004089962 A JP2004089962 A JP 2004089962A JP 2002258671 A JP2002258671 A JP 2002258671A JP 2002258671 A JP2002258671 A JP 2002258671A JP 2004089962 A JP2004089962 A JP 2004089962A
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
hydrogen peroxide
water
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002258671A
Other languages
Japanese (ja)
Other versions
JP4102980B2 (en
Inventor
Tsutomu Matsui
松井 勉
Daisuke Kitada
北田 大介
Norikazu Okuda
奥田 典和
Kenji Koyanagi
小柳 賢司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002258671A priority Critical patent/JP4102980B2/en
Publication of JP2004089962A publication Critical patent/JP2004089962A/en
Application granted granted Critical
Publication of JP4102980B2 publication Critical patent/JP4102980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method of a reverse osmosis membrane used for purifying an aqueous solution of hydrogen peroxide. <P>SOLUTION: In the treatment method of the reverse osmosis membrane, water is fed to the reverse osmosis membrane at a feed rate of ≤65L/(h×m<SP>2</SP>), or a water containing a stabilizer is fed to the reverse osmosis membrane. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、過酸化水素水溶液の精製に使用する逆浸透膜の処理方法に関する。精製された過酸化水素水溶液は、紙パルプ工業分野での漂白剤、医療分野での殺菌剤、環境分野での排水処理・悪臭防止剤、エネルギー分野での燃料電池・ロケット推進剤、および半導体分野でのウェハー等の洗浄剤などとして有用である。
【0002】
【従来の技術】
過酸化水素水溶液の代表的な製造方法は、アントラキノン類を反応媒体とするアントラキノン法、アルコール酸化法、水素と酸素を直接反応させる直接法、電解法が知られる。有機媒体を用いる過酸化水素の製造方法で得られる過酸化水素には、反応媒体、溶剤、およびこれらの誘導体に由来する有機不純物および装置材料、触媒、水などに由来するFe、Cr、Ni、Al、Pdなどの金属成分やホウ素、珪素などの無機不純物が含まれる。水性媒体を用いる過酸化水素の製造方法で得られる過酸化水素には、酸、アルカリ、触媒、装置材料、および水などに由来する無機不純物が含まれる。
【0003】
過酸化水素の精製法としては、溶剤洗浄法、蒸留法、イオン交換法などが知られている。近年、逆浸透膜法によって過酸化水素水溶液中の有機不純物、無機不純物又は両者を効率的に除去する方法が提案されている。例えば、芳香族ポリアミド膜を用い、5〜50重量%の過酸化水素水溶液を圧力100〜1500psi、温度0〜100℃、pH1〜6で処理する方法が示されている(例えば、特許文献1参照。)。また、精製された過酸化水溶液に過酸化水素分解抑制剤を添加して逆浸透膜と接触する方法が提案されている(例えば、特許文献2参照。)。
【0004】
ここで、過酸化水素水溶液の逆浸透膜による接触処理は、一般的にバッチ、バッチ連続、あるいは連続で行われるが、バッチ処理とバッチ処理の間あるいは連続処理停止期間の残留過酸化水素による膜劣化は抑制できず、通常当業者が行う水置換操作でも十分な抑制はできない。
【0005】
一方、逆浸透膜の処理方法として、原水に燐酸塩を添加して逆浸透内装置内のシリカ、重金属などのスケール発生を防止する方法が開示されている(例えば、特許文献3参照。)。また、酸化剤を含有する原水に0.1〜5ppmの燐酸塩を添加し逆浸透膜を処理する方法が開示されている(例えば、特許文献4参照。)。
【0006】
これらの方法は、原水中に含まれるppmオーダーの僅かな過酸化水素や塩素等の酸化剤に対する膜劣化の抑制を意図したものであり、高濃度過酸化水素水溶液での作用、方法は何ら教示していない。更にこれらの方法は、脱塩目的の原液にのみ安定剤を添加することを特徴とする方法であり、膜劣化の抑制効果は必ずしも十分ではない。
【0007】
【特許文献1】
米国特許第4,879,043号明細書
【特許文献2】
特開平11−139811号公報
【特許文献3】
特開昭52−151670号公報
【特許文献4】
特開昭63−69586号公報
【0008】
【発明が解決しようとする課題】
本発明の目的は、従来技術の課題を解決し、逆浸透膜の膜劣化を抑える方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討を行った結果、供給速度65L/(h・m)以下の水による逆浸透膜の接触処理、または安定剤を含有する水のよる逆浸透膜の接触処理により、過酸化水素の精製で顕著に逆浸透膜の寿命を長くできることを見出し、本発明を完成させるに至った。
【0010】
【発明の実施の形態】
逆浸透膜で精製される過酸化水素水溶液は、電解法、直接法、アントラキノン法などの公知の過酸化水素製造法から得られるものが用いられ、中でもアントラキノン法により製造されるものが好ましい。過酸化水素水溶液の濃度は、20〜75重量%であり、好ましくは30〜70重量%であり、より好ましくは45〜65重量%である。
【0011】
通常、金属(例えば鉄、クロム、ニッケル、アルミニウム、ナトリウム、カルシウム、リチウム、亜鉛、鉛、マンガンなど)濃度および非金属(例えば、珪素、ホウ素など)濃度200ppb以下の過酸化水素水溶液が用いられ、100ppb以下の過酸化水素水溶液が好ましく、50ppb以下の過酸化水素水溶液がより好ましい。
【0012】
過酸化水素水溶液中の全炭素濃度は、一般的に1000ppm以下であり、好ましくは250ppm以下、より好ましくは150ppm以下、特に好ましくは100ppm以下である。
【0013】
上記の過酸化水素水溶液は、公知の精製法である蒸留法、合成樹脂吸着法、カチオン交換法、アニオン交換法、キレート交換法から選ばれる単独または複数の方法の組合せで製造され、従来半導体工業で使用されてきた精製過酸化水素水溶液を含む。
【0014】
本発明の処理方法が適用される逆浸透膜は、膜の少なくとも片面に緻密層を持ち、緻密層から膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称膜、非対称膜の緻密層の上に別の素材で形成された非常に薄い活性層を有する複合膜があり、複合膜がより好ましい。
【0015】
複合型逆浸透膜は、多孔性支持体上に界面重縮合反応、架橋反応、ポリマーコーティング、モノマー重合法などで分離を司る機能膜層を形成したものである。機能膜層は、厚さ10000オングストローム以下であり、一般に、数オングストロームから数十オングストロームの微細孔を有するかあるいは細孔を持たない無孔性の緻密層である。多孔性支持体としては、例えば一方の側に微細孔を有する緻密層があり、他方にこれより孔径の大きい細孔を持つ非対称構造の膜などがある。また、支持体は平膜あるいは中空糸状のものなとがあり、平膜の場合は織物、不織布など繊維で構成される基材で裏打ちされていてもよい。
【0016】
多孔性支持体の素材としては、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィドスルホン、ポリフェニレンスルホン等スルホン基を有するポリマー、ポリフェニレンオキサイド等のポリエーテル系ポリマー、ポリフェニレンサルファイド等のチオエーテル系ポリマー、ポリアクリロニトリル等のビニル系ポリマー、ナイロン6、ナイロン66といったポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ポリイミド等のイミド系ポリマーなどの公知素材が挙げられる。
【0017】
機能膜層の成分としては、架橋ポリアミド、芳香族ポリアミド、架橋全芳香族ポリアミド、ポリアミド酸、ポリイミド、ポリアミドヒドラジド、ポリイミダゾロン、ポリスルホンアミド、ポリベンズイミダゾール、ポリアリーレンオキシド、酢酸セルロースなどが挙げられる。
【0018】
膜の形態としては、平膜、管状膜、中空糸膜といった公知の形態のものをとることができる。さらに、膜分離素子は、これら平膜、管状膜、中空糸膜などを、支持板、ネット、外筒などの他の部材とともに組込んだものである。その形態は、プレートアンドフレーム型、スパイラル型、チューブラー型、中空糸型といった公知の形態のものをとることができるが、本発明はこれら形態によって左右されるものではない。
【0019】
芳香族ポリアミド膜のスキン構造は、記載のように下記のものが知られている(神山 表面p66−76(408−418)Vol.3 No2,1993)。中でも2)、3)のスキン構造を有する芳香族ポリアミドが好ましく、3)が最も好ましい。
【0020】
【化1】

Figure 2004089962
【0021】
本発明の逆浸透膜の処理に用いる水は、ろ過、イオン交換、蒸留または逆浸透膜などの方法およびこれらの組合せにより製造される水や安定剤を含有する水が用いられ、なかでも膜劣化を抑制するため安定剤を含有する水が好ましい。通常、全炭素濃度1ppm以下の水が用いられ、0.1ppm以下の水がより好ましく、0.05ppm以下の水が最も好ましい。また、水の比抵抗値は、通常10MΩ・cm以上であり、15MΩ・cm以上が好ましく、17MΩ・cm以上がより好ましい。
【0022】
本発明では、水供給速度をある一定以下とすることにより膜劣化が抑制される。水の供給速度は65L/(h・m)以下であり、好ましくは55L/(h・m)以下、より好ましくは、1〜45L/(h・m)である。
【0023】
逆浸透膜の処理に用いる水に含有される安定剤は、過酸化水素分解の抑制効果を有する物質であり、過酸化水素分解抑制作用を有する公知の物質が用いられる。硝酸系化合物、無機燐酸系化合物、有機燐酸系化合物、酢酸系化合物および錫系化合物が挙げられ、これらは単独または複数組み合わせて用いられる。
【0024】
硝酸系化合物としては、硝酸、硝酸ナトリウム、硝酸カリウム、硝酸アンモニウムなどの硝酸塩が挙げられる。中でも硝酸アンモニウムが好ましい。無機燐酸系化合物としては、燐酸、オルト燐酸、ピロ燐酸若しくはトリポリ燐酸などのポリ燐酸、又はこれらの塩が例示される。代表的なポリ燐酸としては、ピロ燐酸2ナトリウム、ピロ燐酸4ナトリウム、トリポリ燐酸ナトリウム、テトラポリ燐酸ナトリウム、ヘプタポリ燐酸ナトリウム、デカポリ燐酸ナトリウム、メタ燐酸ナトリウム、ヘキサメタ燐酸ナトリウム、又はこれらのカリウム塩などが挙げられる。燐酸、ピロ燐酸、およびこれらの塩を単独または組み合わせが好ましく、燐酸、ピロ燐酸塩および硝酸塩の組み合わせが最も好ましい。
【0025】
有機燐酸系化合物としては、アミノトリ(メチレンホスホン酸)、1−ヒドロキシエチリデン−1,1,−ジホスホン酸、エチレンジアミンテトラ(メチレンホスホン酸)、ヘキサメチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、ニトリロメチレンホスホン酸若しくは1,2−プロピレンジアミンテトラ(メチレンホスホン酸)、又はこれらの塩が挙げられる。
【0026】
酢酸系化合物としては、エチレンジアミンテトラ酢酸、ジエチレントリアミンペンタ酢酸、トリエチレンテトラミンヘキサ酢酸、N−ヒドロキシエチルエチレンジアミンテトラ酢酸、ニトリロトリ酢酸又はこれらの塩が挙げられる。錫系化合物としては、酸化錫、メタ錫酸、錫酸のアルカリ金属塩、錫酸のアルカリ土類金属塩又は蓚酸錫等の錫塩が挙げられる。
【0027】
本発明の水に含有する安定剤は、通常、総量として200ppm以下であり、好ましくは100ppm以下、より好ましくは50ppm以下、更に好ましくは10ppm以下である。安定剤を含有する水は、水に安定剤をバッチ式、バッチ連続式または連続式で添加することにより調製される。
【0028】
過酸化水素の分解や逆浸透膜劣化を抑制するため、逆浸透膜の接触処理に用いる過酸化水素水溶液中にも安定剤が含有することが好ましく、前記水に含有する安定剤などが例示される。
【0029】
過酸化水素水溶液の逆浸透膜による接触処理と安定剤を含有する水による逆浸透膜の接触処理を切り替える際に、過酸化水素水溶液濃度変化に関わらず過酸化水素の安定性を一定とすることにより逆浸透膜劣化を著しく抑制できるため、逆浸透膜で処理する過酸化水素および水に含有する安定剤は、同種もしくは同等の安定化効果を有するものが好ましく、同種でありかつ同量であるものがより好ましい。
【0030】
本発明の逆浸透膜の処理装置は、逆浸透膜を固定支持する耐圧容器と加圧手段を有する逆浸透法により液体を精製する装置が用いられる。上記処理により、透過液と濃縮液に分離される。処理圧力としては逆浸透膜が許容する範囲内であれば問題なく、通常5MPa以下であり、好ましくは0.1〜5MPaの範囲であり、より好ましく0.5〜2MPaである。処理温度は、過酸化水素水の分解反応を助長するような温度でなければ問題ない。好ましくは−20〜40℃の範囲である。より好ましくは5℃〜30℃の範囲である。
【0031】
過酸化水素水溶液から水への置換は、通常逆浸透装置空き容量に対して水を3倍容量以上用い、好ましくは5倍容量以上、より好ましくは10倍容量以上、最も好ましくは20倍容量以上用いる。
【0032】
【実施例】
以下、実施例により、本発明について更に詳しく説明するが、本発明はかかる実施例により制限を受けるものではない。全炭素濃度は、島津製作所株式会社製の全炭素濃度測定装置TOC−5000を用いた。検量線は、10,20,30ppmフタル酸水素カリウム水溶液を用いて作成した。
【0033】
実施例1
全炭素濃度115.0重量ppm、安定剤として燐酸50ppm、ピロ燐酸2ナトリウム30ppmおよび硝酸アンモニウム10ppm含有する62重量%過酸化水素水をフィルムテック・コーポレーション製の逆浸透膜BW−30を装着した平膜型の連続通液セル(膜面積60cm)にポンプで0.8MPaに加圧し流量0.25 l/h、温度25℃で200時間通液した。逆浸透膜を透過して得られた過酸化水素水中の全炭素濃度は10.6重量ppmであった。
【0034】
次に供給速度41.7L/(h・m)で水1400mlにより装置内に通液した。上記水の量は、装置空容積の20倍量に相当する。その他の処理条件は、処理温度25℃、処理圧力0.8MPa、水通液および放置した合計24or70時間とした。上記操作を更に6回繰り返した。各回の平均透過速度、過酸化水素水溶液中の全炭素濃度を測定した。結果を表1に示す。
【0035】
【表1】
Figure 2004089962
【0036】
実施例2
実施例1と同様に過酸化水素を通液し、次に燐酸50ppm、ピロ燐酸2ナトリウム30ppm、硝酸アンモニウム10ppmを含有する水1400mlにより装置内に通液した。上記水の量は、装置空容積の20倍量に相当する。その他の処理条件は、水の供給速度400ml/h、処理温度25℃、処理圧力0.8MPa、水通液および放置した合計時間24or70時間とした。上記操作を更に6回繰り返した。各回の平均透過速度、過酸化水素水溶液中の全炭素濃度を測定した。結果を表2に示す。
【0037】
【表2】
Figure 2004089962
【0038】
比較例1
安定剤を含有しない水を供給速度66.7L/(h・m)で供給したこと以外は実施例1と同様に行った。結果を表3に示す。
【0039】
【表3】
Figure 2004089962
【0040】
【発明の効果】
本発明により、逆浸透膜劣化を顕著に抑制することができ、高純度の過酸化水素水溶液を長時間安定して製造できる。精製された過酸化水溶液は半導体工業においてウエハー洗浄等に好適に使用される。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for treating a reverse osmosis membrane used for purifying an aqueous hydrogen peroxide solution. The purified aqueous hydrogen peroxide solution is used as a bleaching agent in the pulp and paper industry, a disinfectant in the medical field, a wastewater treatment / odor control agent in the environmental field, a fuel cell / rocket propellant in the energy field, and a semiconductor field. It is useful as a cleaning agent for wafers and the like.
[0002]
[Prior art]
Typical production methods of an aqueous hydrogen peroxide solution include an anthraquinone method using anthraquinones as a reaction medium, an alcohol oxidation method, a direct method of directly reacting hydrogen and oxygen, and an electrolysis method. Hydrogen peroxide obtained by the method for producing hydrogen peroxide using an organic medium includes a reaction medium, a solvent, and organic impurities and equipment materials derived from a derivative thereof, a catalyst, and Fe, Cr, Ni, derived from water and the like. Metal components such as Al and Pd and inorganic impurities such as boron and silicon are included. Hydrogen peroxide obtained by the method for producing hydrogen peroxide using an aqueous medium contains inorganic impurities derived from acids, alkalis, catalysts, equipment materials, water, and the like.
[0003]
As a method for purifying hydrogen peroxide, a solvent washing method, a distillation method, an ion exchange method and the like are known. In recent years, a method of efficiently removing organic impurities, inorganic impurities, or both in a hydrogen peroxide aqueous solution by a reverse osmosis membrane method has been proposed. For example, a method of treating an aqueous solution of 5 to 50% by weight of hydrogen peroxide at a pressure of 100 to 1500 psi, a temperature of 0 to 100 ° C., and a pH of 1 to 6 using an aromatic polyamide membrane is disclosed (for example, see Patent Document 1). .). Further, a method has been proposed in which a hydrogen peroxide decomposition inhibitor is added to a purified aqueous solution of peroxide to be brought into contact with a reverse osmosis membrane (for example, see Patent Document 2).
[0004]
Here, the contact treatment of the aqueous hydrogen peroxide solution with the reverse osmosis membrane is generally performed in a batch, batch continuous, or continuous manner. Deterioration cannot be suppressed, and even a water replacement operation usually performed by those skilled in the art cannot sufficiently suppress the deterioration.
[0005]
On the other hand, as a method for treating a reverse osmosis membrane, a method has been disclosed in which phosphate is added to raw water to prevent generation of scale such as silica and heavy metals in a reverse osmosis internal device (for example, see Patent Document 3). Further, a method of treating a reverse osmosis membrane by adding 0.1 to 5 ppm of phosphate to raw water containing an oxidizing agent is disclosed (for example, see Patent Document 4).
[0006]
These methods are intended to suppress film degradation to oxidizing agents such as hydrogen peroxide and chlorine in the order of ppm contained in raw water. I haven't. Further, these methods are characterized by adding a stabilizer only to a stock solution for the purpose of desalting, and the effect of suppressing film deterioration is not necessarily sufficient.
[0007]
[Patent Document 1]
US Patent No. 4,879,043 [Patent Document 2]
Japanese Patent Application Laid-Open No. H11-139811 [Patent Document 3]
JP-A-52-151670 [Patent Document 4]
JP-A-63-69586
[Problems to be solved by the invention]
An object of the present invention is to solve the problems of the prior art and to provide a method for suppressing membrane deterioration of a reverse osmosis membrane.
[0009]
[Means for Solving the Problems]
The present inventors have made intensive studies to solve the above problems, reverse with the water containing contact treatment, or stabilizers of the reverse osmosis membrane by the supply rate of 65L / (h · m 2) or less of water It has been found that the contact treatment of the osmosis membrane can significantly prolong the life of the reverse osmosis membrane in the purification of hydrogen peroxide, and have completed the present invention.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
As the aqueous hydrogen peroxide solution purified by the reverse osmosis membrane, those obtained from known hydrogen peroxide production methods such as an electrolysis method, a direct method, and an anthraquinone method are used. Among them, those produced by the anthraquinone method are preferable. The concentration of the aqueous hydrogen peroxide solution is 20 to 75% by weight, preferably 30 to 70% by weight, and more preferably 45 to 65% by weight.
[0011]
Usually, an aqueous hydrogen peroxide solution having a metal (eg, iron, chromium, nickel, aluminum, sodium, calcium, lithium, zinc, lead, manganese, etc.) concentration and a nonmetal (eg, silicon, boron, etc.) concentration of 200 ppb or less is used. An aqueous solution of hydrogen peroxide of 100 ppb or less is preferred, and an aqueous solution of hydrogen peroxide of 50 ppb or less is more preferred.
[0012]
The total carbon concentration in the aqueous hydrogen peroxide solution is generally 1000 ppm or less, preferably 250 ppm or less, more preferably 150 ppm or less, and particularly preferably 100 ppm or less.
[0013]
The aqueous hydrogen peroxide solution is produced by a single purification method or a combination of a plurality of methods selected from known purification methods such as distillation method, synthetic resin adsorption method, cation exchange method, anion exchange method and chelate exchange method. Including the purified aqueous hydrogen peroxide solution used in the above.
[0014]
The reverse osmosis membrane to which the treatment method of the present invention is applied has a dense layer on at least one side of the membrane, and an asymmetric membrane having fine pores having a large pore diameter gradually from the dense layer toward the inside or the other side of the membrane. There is a composite membrane having a very thin active layer formed of another material on the dense layer of the membrane, with a composite membrane being more preferred.
[0015]
The composite reverse osmosis membrane is obtained by forming a functional membrane layer which controls separation by an interfacial polycondensation reaction, a crosslinking reaction, a polymer coating, a monomer polymerization method, etc. on a porous support. The functional film layer has a thickness of 10,000 angstroms or less, and is generally a nonporous dense layer having micropores of several angstroms to tens of angstroms or having no pores. As the porous support, for example, there is a membrane having an asymmetric structure having a dense layer having fine pores on one side and pores having a larger diameter than the other. The support may be in the form of a flat membrane or a hollow fiber. In the case of a flat membrane, the support may be lined with a substrate made of fibers such as a woven fabric or a nonwoven fabric.
[0016]
Examples of the material of the porous support include polysulfone, polyether sulfone, polyphenylene sulfide sulfone, polymers having a sulfone group such as polyphenylene sulfone, polyether polymers such as polyphenylene oxide, thioether polymers such as polyphenylene sulfide, and vinyl such as polyacrylonitrile. Known materials such as polyamide-based polymers, polyamides such as nylon 6 and nylon 66, polyesters such as polyethylene terephthalate and polybutylene terephthalate, and imide-based polymers such as polyimide can be used.
[0017]
Examples of the components of the functional film layer include crosslinked polyamide, aromatic polyamide, crosslinked wholly aromatic polyamide, polyamic acid, polyimide, polyamide hydrazide, polyimidazolone, polysulfonamide, polybenzimidazole, polyarylene oxide, cellulose acetate, and the like. .
[0018]
As the form of the membrane, a known form such as a flat membrane, a tubular membrane, or a hollow fiber membrane can be used. Further, the membrane separation element incorporates the flat membrane, the tubular membrane, the hollow fiber membrane, and the like together with other members such as a support plate, a net, and an outer cylinder. The form may be a known form such as a plate and frame type, a spiral type, a tubular type, or a hollow fiber type, but the present invention is not limited by these forms.
[0019]
As described above, the following is known as the skin structure of the aromatic polyamide film (Kamiyama surface p66-76 (408-418) Vol. 3 No. 2, 1993). Among them, aromatic polyamides having the skin structures 2) and 3) are preferable, and 3) is most preferable.
[0020]
Embedded image
Figure 2004089962
[0021]
The water used for the treatment of the reverse osmosis membrane of the present invention is water containing a stabilizer or water produced by a method such as filtration, ion exchange, distillation or reverse osmosis membrane, and a combination thereof. Water containing a stabilizer is preferable in order to suppress the water content. Usually, water having a total carbon concentration of 1 ppm or less is used, water of 0.1 ppm or less is more preferred, and water of 0.05 ppm or less is most preferred. The specific resistance of water is usually 10 MΩ · cm or more, preferably 15 MΩ · cm or more, and more preferably 17 MΩ · cm or more.
[0022]
In the present invention, film deterioration is suppressed by setting the water supply speed to a certain value or less. The feed rate of water is at 65L / (h · m 2) or less, preferably 55L / (h · m 2) or less, more preferably 1~45L / (h · m 2) .
[0023]
The stabilizer contained in the water used for the treatment of the reverse osmosis membrane is a substance having an effect of inhibiting hydrogen peroxide decomposition, and a known substance having an effect of inhibiting hydrogen peroxide decomposition is used. A nitric acid compound, an inorganic phosphoric acid compound, an organic phosphoric acid compound, an acetic acid compound, and a tin compound may be mentioned, and these may be used alone or in combination.
[0024]
Examples of the nitric acid compound include nitrates such as nitric acid, sodium nitrate, potassium nitrate, and ammonium nitrate. Among them, ammonium nitrate is preferred. Examples of the inorganic phosphoric acid compound include polyphosphoric acid such as phosphoric acid, orthophosphoric acid, pyrophosphoric acid and tripolyphosphoric acid, and salts thereof. Representative polyphosphates include disodium pyrophosphate, tetrasodium pyrophosphate, sodium tripolyphosphate, sodium tetrapolyphosphate, sodium heptapolyphosphate, sodium decapolyphosphate, sodium metaphosphate, sodium hexametaphosphate, and potassium salts thereof. Can be Phosphoric acid, pyrophosphoric acid and salts thereof are preferably used alone or in combination, and a combination of phosphoric acid, pyrophosphate and nitrate is most preferable.
[0025]
Examples of the organic phosphoric acid compound include aminotri (methylenephosphonic acid), 1-hydroxyethylidene-1,1, -diphosphonic acid, ethylenediaminetetra (methylenephosphonic acid), hexamethylenediaminetetra (methylenephosphonic acid), and diethylenetriaminepenta (methylenephosphonic acid). Acid), nitrilomethylenephosphonic acid or 1,2-propylenediaminetetra (methylenephosphonic acid), or salts thereof.
[0026]
Examples of the acetic acid compound include ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, N-hydroxyethylethylenediaminetetraacetic acid, nitrilotriacetic acid, and salts thereof. Examples of the tin-based compound include tin oxide, metastannic acid, alkali metal salts of stannic acid, alkaline earth metal salts of stannic acid, and tin salts such as tin oxalate.
[0027]
The total amount of the stabilizer contained in the water of the present invention is 200 ppm or less, preferably 100 ppm or less, more preferably 50 ppm or less, and still more preferably 10 ppm or less. Water containing a stabilizer is prepared by adding the stabilizer to the water in a batch, batch continuous or continuous manner.
[0028]
In order to suppress the decomposition of hydrogen peroxide and the deterioration of the reverse osmosis membrane, it is preferable that a stabilizer is also contained in the aqueous hydrogen peroxide solution used for the contact treatment of the reverse osmosis membrane, and the stabilizer contained in the water is exemplified. You.
[0029]
When switching between the contact treatment of a hydrogen peroxide solution with a reverse osmosis membrane and the contact treatment of a reverse osmosis membrane with water containing a stabilizer, keep the stability of hydrogen peroxide constant regardless of the change in the concentration of the hydrogen peroxide solution. Because the degradation of the reverse osmosis membrane can be significantly suppressed, the stabilizer contained in the hydrogen peroxide and water to be treated with the reverse osmosis membrane is preferably the same or has the same stabilizing effect, and is the same and the same amount. Are more preferred.
[0030]
As the reverse osmosis membrane treatment apparatus of the present invention, an apparatus for purifying a liquid by a reverse osmosis method having a pressure-resistant container fixedly supporting the reverse osmosis membrane and a pressurizing means is used. By the above treatment, the liquid is separated into a permeate and a concentrate. The treatment pressure is not problematic as long as it is within the range permitted by the reverse osmosis membrane, and is usually 5 MPa or less, preferably 0.1 to 5 MPa, more preferably 0.5 to 2 MPa. There is no problem if the treatment temperature is not a temperature that promotes the decomposition reaction of the hydrogen peroxide solution. Preferably, it is in the range of -20 to 40 ° C. More preferably, it is in the range of 5 ° C to 30 ° C.
[0031]
The replacement of the aqueous hydrogen peroxide solution with water is usually performed using at least 3 times the volume of the available capacity of the reverse osmosis device, preferably at least 5 times the volume, more preferably at least 10 times the volume, and most preferably at least 20 times the volume. Used.
[0032]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited by the examples. For the total carbon concentration, a total carbon concentration measuring device TOC-5000 manufactured by Shimadzu Corporation was used. Calibration curves were created using 10, 20, and 30 ppm aqueous potassium hydrogen phthalate.
[0033]
Example 1
A flat membrane equipped with a reverse osmosis membrane BW-30 manufactured by Filmtech Corporation and a 62% by weight aqueous hydrogen peroxide solution containing a total carbon concentration of 115.0 wt ppm, a stabilizer of 50 ppm of phosphoric acid, 30 ppm of disodium pyrophosphate and 10 ppm of ammonium nitrate. The pressure was increased to 0.8 MPa by a pump through a continuous liquid flowing cell (membrane area: 60 cm 2 ), and the liquid was passed at a flow rate of 0.25 l / h at a temperature of 25 ° C. for 200 hours. The total carbon concentration in the hydrogen peroxide solution obtained through the reverse osmosis membrane was 10.6 ppm by weight.
[0034]
Then at a feed rate 41.7L / (h · m 2) was passed through into the apparatus by the water 1400 ml. The amount of water corresponds to 20 times the empty volume of the apparatus. Other processing conditions were a processing temperature of 25 ° C., a processing pressure of 0.8 MPa, a water flow, and a standing time of 24 or 70 hours in total. The above operation was further repeated six times. The average permeation rate and the total carbon concentration in the aqueous hydrogen peroxide solution were measured each time. Table 1 shows the results.
[0035]
[Table 1]
Figure 2004089962
[0036]
Example 2
Hydrogen peroxide was passed in the same manner as in Example 1, and then passed through the apparatus with 1400 ml of water containing 50 ppm of phosphoric acid, 30 ppm of disodium pyrophosphate, and 10 ppm of ammonium nitrate. The amount of water corresponds to 20 times the empty volume of the apparatus. Other treatment conditions were a water supply rate of 400 ml / h, a treatment temperature of 25 ° C., a treatment pressure of 0.8 MPa, a total flow time of 24 hours, and a standing time of 24 hours or 70 hours. The above operation was further repeated six times. The average permeation rate and the total carbon concentration in the aqueous hydrogen peroxide solution were measured each time. Table 2 shows the results.
[0037]
[Table 2]
Figure 2004089962
[0038]
Comparative Example 1
Except that supplying containing no stabilizer water at a feed rate 66.7L / (h · m 2) was performed in the same manner as in Example 1. Table 3 shows the results.
[0039]
[Table 3]
Figure 2004089962
[0040]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, reverse osmosis membrane deterioration can be suppressed remarkably and a high-purity hydrogen peroxide aqueous solution can be manufactured stably for a long time. The purified aqueous peroxide solution is suitably used for wafer cleaning in the semiconductor industry.

Claims (3)

逆浸透膜に65L/(h・m)以下の供給速度で水を通液する逆浸透膜の処理方法。Processing method of the reverse osmosis membrane for passing liquid water in 65L / (h · m 2) or less of the feed rate to the reverse osmosis membrane. 逆浸透膜に安定剤を含有する水を通液する逆浸透膜の処理方法。A method for treating a reverse osmosis membrane in which water containing a stabilizer is passed through the reverse osmosis membrane. 請求項1又は2記載の方法で処理された逆浸透膜に過酸化水素水を接触させる過酸化水素水の精製方法。A method for purifying a hydrogen peroxide solution, wherein the hydrogen peroxide solution is brought into contact with the reverse osmosis membrane treated by the method according to claim 1.
JP2002258671A 2002-09-04 2002-09-04 Reverse osmosis membrane treatment method Expired - Lifetime JP4102980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002258671A JP4102980B2 (en) 2002-09-04 2002-09-04 Reverse osmosis membrane treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002258671A JP4102980B2 (en) 2002-09-04 2002-09-04 Reverse osmosis membrane treatment method

Publications (2)

Publication Number Publication Date
JP2004089962A true JP2004089962A (en) 2004-03-25
JP4102980B2 JP4102980B2 (en) 2008-06-18

Family

ID=32063229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002258671A Expired - Lifetime JP4102980B2 (en) 2002-09-04 2002-09-04 Reverse osmosis membrane treatment method

Country Status (1)

Country Link
JP (1) JP4102980B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330159A (en) * 2004-05-21 2005-12-02 Mitsubishi Gas Chem Co Inc Method for producing chlorine-free bleaching agent for chemical pulp from sodium chloride
JP2011068533A (en) * 2009-09-28 2011-04-07 Santoku Kagaku Kogyo Kk Method for producing purified hydrogen peroxide solution
JP2012188318A (en) * 2011-03-10 2012-10-04 Santoku Kagaku Kogyo Kk Method for producing purified hydrogen peroxide solution
FR3022899A1 (en) * 2014-06-30 2016-01-01 Arkema France METHOD OF PURIFYING HYDROGEN PEROXIDE AND SOLUTION OF HYDROGEN PEROXIDE
CN109772168A (en) * 2019-02-25 2019-05-21 苏州晶瑞化学股份有限公司 Utilize the method for reverse osmosis membrane Coupling Adsorption resin separation dioxygen Organic substance in water
WO2022270454A1 (en) * 2021-06-22 2022-12-29 三菱瓦斯化学株式会社 Method for producing purified aqueous hydrogen peroxide solution
CN115646211A (en) * 2022-12-26 2023-01-31 杭州水处理技术研究开发中心有限公司 Positively charged nanofiltration membrane and preparation method and application thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330159A (en) * 2004-05-21 2005-12-02 Mitsubishi Gas Chem Co Inc Method for producing chlorine-free bleaching agent for chemical pulp from sodium chloride
JP2011068533A (en) * 2009-09-28 2011-04-07 Santoku Kagaku Kogyo Kk Method for producing purified hydrogen peroxide solution
JP2012188318A (en) * 2011-03-10 2012-10-04 Santoku Kagaku Kogyo Kk Method for producing purified hydrogen peroxide solution
CN106660792A (en) * 2014-06-30 2017-05-10 阿肯马法国公司 Hydrogen peroxide purification process and hyrodgen peroxide solution
WO2016001539A1 (en) * 2014-06-30 2016-01-07 Arkema France Hydrogen peroxide purification process and hyrodgen peroxide solution
US20170113932A1 (en) * 2014-06-30 2017-04-27 Arkema France Hyrogen peroxide purification process and hyrogen peroxide
FR3022899A1 (en) * 2014-06-30 2016-01-01 Arkema France METHOD OF PURIFYING HYDROGEN PEROXIDE AND SOLUTION OF HYDROGEN PEROXIDE
US10822235B2 (en) 2014-06-30 2020-11-03 Arkema France Hydrogen peroxide purification process and hydrogen peroxide
CN113353891A (en) * 2014-06-30 2021-09-07 阿科玛法国公司 Method for purifying hydrogen peroxide and hydrogen peroxide solution
CN113387331A (en) * 2014-06-30 2021-09-14 阿科玛法国公司 Method for purifying hydrogen peroxide and hydrogen peroxide solution
CN109772168A (en) * 2019-02-25 2019-05-21 苏州晶瑞化学股份有限公司 Utilize the method for reverse osmosis membrane Coupling Adsorption resin separation dioxygen Organic substance in water
WO2022270454A1 (en) * 2021-06-22 2022-12-29 三菱瓦斯化学株式会社 Method for producing purified aqueous hydrogen peroxide solution
CN115646211A (en) * 2022-12-26 2023-01-31 杭州水处理技术研究开发中心有限公司 Positively charged nanofiltration membrane and preparation method and application thereof
CN115646211B (en) * 2022-12-26 2023-04-18 杭州水处理技术研究开发中心有限公司 Positively charged nanofiltration membrane and preparation method and application thereof

Also Published As

Publication number Publication date
JP4102980B2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
JP4996925B2 (en) Apparatus and method for osmotic membrane distillation
US5571419A (en) Method of producing pure water
JP5704979B2 (en) Method for producing purified hydrogen peroxide water
WO2012133664A1 (en) Ultrapure water producing system and ultrapure water producing method
JP3575271B2 (en) Pure water production method
JPH10286441A (en) Cleaning method of hollow yarn membrane module and filtration device used for the method
JP4102980B2 (en) Reverse osmosis membrane treatment method
JP2011131210A (en) Device and method for treating nitrogen compound-containing acidic solutions
US20180104652A1 (en) Reverse osmosis membrane cleaning method and reverse osmosis membrane cleaning apparatus
JP3565098B2 (en) Ultrapure water production method and apparatus
KR20090094041A (en) Systems and methods for process stream treatment
JP2007307561A (en) High-purity water producing apparatus and method
JP3137831B2 (en) Membrane processing equipment
JP2008542002A (en) Improved method for desalination
JP3547018B2 (en) Reverse osmosis treatment method and fresh water method
JP2004244345A (en) Fungicide for water treatment, method for water treatment and apparatus for water treatment
JPH0780259A (en) Treatment of reverse osmosis membrane and reverse osmosis membrane separation element
WO2016136957A1 (en) Method for treating water containing organic material, and device for treating water containing organic material
JP4400123B2 (en) Liquid separation membrane and liquid processing method
JP2003001070A (en) Method of refining hydrogen peroxide water
JPH0780260A (en) Treatment of reverse osmosis membrane and reverse osmosis membrane separation element
JP2001239136A (en) Treating system and operating method therefor
JP2005144211A (en) Composite semi-permeable membrane, its production method and treatment method for fluid separation element
JP3350124B2 (en) Raw water treatment method by membrane module
JPH07328391A (en) Treatment of reverse osmosis membrane separation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080311

R151 Written notification of patent or utility model registration

Ref document number: 4102980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

EXPY Cancellation because of completion of term