JP2004089039A - Method for measuring microorganism - Google Patents

Method for measuring microorganism Download PDF

Info

Publication number
JP2004089039A
JP2004089039A JP2002252735A JP2002252735A JP2004089039A JP 2004089039 A JP2004089039 A JP 2004089039A JP 2002252735 A JP2002252735 A JP 2002252735A JP 2002252735 A JP2002252735 A JP 2002252735A JP 2004089039 A JP2004089039 A JP 2004089039A
Authority
JP
Japan
Prior art keywords
microorganisms
microorganism
counting
measured
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002252735A
Other languages
Japanese (ja)
Other versions
JP4278936B2 (en
Inventor
Yasumasa Oda
小田 康雅
Keiichi Inami
井波 圭一
Noriaki Koeda
小枝 徳晃
Takashi Sakata
坂田 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to JP2002252735A priority Critical patent/JP4278936B2/en
Publication of JP2004089039A publication Critical patent/JP2004089039A/en
Application granted granted Critical
Publication of JP4278936B2 publication Critical patent/JP4278936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring a microorganism, comprising directly detecting the microorganism, by which the specific microorganism can be detected in a short time. <P>SOLUTION: This method for measuring the microorganism comprises a process for selectively proliferating the microorganism of measurement target, a process for counting the proliferated microorganism, and a process for estimating the initial number of the microorganism from the counted number of the proliferated microorganism. Thereby, the specific microorganism is detected. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、特定の微生物を迅速に計測するための測定方法に関するものである。
【0002】
【従来の技術】
臨床、食品、環境水質、医薬品等の様々な分野で、微生物の検査が行われている。例えば、食品検査の分野では、食品衛生法に基づく規格基準、衛生規範等で、大腸菌群,大腸菌,黄色ブドウ球菌等の細菌数を検査することが定められている。また、食品製造業者においては、法規制とは別に、自主的衛生管理のために特定微生物の検査を行っている。
【0003】
従来、これらの検査は、公定法として定められた方法で行われるが、非常に煩雑かつ検査時間が長い(24〜48時間以上)ことから、特定の細菌を選択的に培養できる培地を用いた簡易培養法が一般的に用いられている。しかしながらこれらの方法を用いた場合でも、細菌が増殖してコロニーとして肉眼で判別できるようになるまで、24時間程度の時間が必要であり、より短時間で特定の細菌を計測できる方法が強く望まれている。また、コロニーのカウントは手間がかかり労力を要することから,より簡便な方法が望まれている。
【0004】
一方、これらの方法とは別に、試料を特定の微生物を増殖培養できる液体培地で培養し、微生物の増殖にともなって変化する特性値を測定することによって微生物を計測する方法が開発されている。これらの微生物の増殖を検出する特性値としては、溶存酸素の減少,二酸化炭素の増加によるpH低下(pH指示薬の吸光度変化を検出),電気抵抗の変化などが利用されている。しかしながらこれらの方法を用いた場合でも、細菌の増殖を特性値の変化として間接的に検出するため、かなりの時間を要する。例えば、溶存酸素の変化を検出するには、初期濃度10個/mlの細菌を検出するために、6〜8時間の培養が必要であると報告されている。
【0005】
【発明が解決しようとする課題】
本発明は、上記事情に鑑み、微生物を直接検出することにより、短時間で特定の微生物を検出する計測法を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明の微生物計測方法は、以下の工程で特定の細菌を短時間で検出することを特徴とする。
1)測定対象の微生物を選択的に増殖させる工程
2)増殖した微生物を計数する工程
3)増殖後の微生物数から、初期微生物数を推定する工程
【0007】
【発明の実施の形態】
測定対象の微生物を選択的に増殖させる工程とは、微生物を含む試料を、少なくとも測定対象の微生物が増殖可能であり、測定対象外の微生物の増殖を抑制することができる培地と混合して培養する工程である。具体的な方法は、測定対象とする試料,微生物によって異なり、実施の形態は特に限定されるものではない。微生物を選択的に増殖させる方法は、種々の方法が、文献,教科書等で開示されており、容易に入手可能である。例えば、測定対象とする微生物が細菌の場合は、特定の細菌を増殖させる液体培地が知られている。具体例としては、例えば、大腸菌を選択的に増殖させるためには、EC培地を用いて、44.5℃で培養する方法が、食品衛生検査指針に収載されている。大腸菌群を選択的に増殖させるためには、LB培地,BGLB培地などを用いて37℃で培養する方法が知られている。腸炎ビブリオを選択的に増殖させるには食塩ポリミキシン培地で37℃で培養する方法が知られている。サルモネラを選択的に増殖させるには、ラパポート培地で37℃で培養する方法が知られている。上記の例はほんの一例に過ぎず、上記以外にも特定の細菌を選択的に増殖させる培地が数多く報告されており、本発明の実施形態は上記に記載した培地例に限定されるものではない。
【0008】
培養に必要な時間は、測定対象とする細菌、培養条件によって異なるが、例えば、後述するように計数する工程としてフローサイトメータを使用する場合には、試料中の細菌濃度として10個/ml〜10個/ml以上が好適である。例えば、大腸菌を好適な培養条件で培養した場合、1個/mlの初期濃度の大腸菌を10個/ml以上の濃度まで増殖するには、約4〜5時間の培養時間が必要である。
【0009】
本法では、細菌を直接検出して計数するために、従来法に比べ短時間の培養で細菌を検出する事ができる。理論的には1個から細菌を検出可能であるが、実用的なフローサイトメータでは数μl〜数百μlの試料を測定するために、前述のように試料中の細菌濃度として10個/ml〜10個/ml以上の濃度が好適である。
【0010】
なお、測定対象試料が、食品試料等で固形物・半固形物の場合は、試料1容と生理食塩水等の溶液9容を混合し、ストマッカーで処理し、50μm程度のフィルターで処理することが好適である。
【0011】
増殖した微生物を計数する工程とは、前工程で増殖させた微生物を一個一個計数する工程であって、種々の粒子計測装置が利用可能である。使用する粒子計測装置は、約1〜20ミクロン程度の微粒子を計数できる粒子計測装置であれば特に限定されない。本発明に使用できる粒子計測装置としては、例えば、電気抵抗式粒子計測装置、フロー画像解析装置、フローサイトメータが好適に用いられる。試料が飲料水、清涼飲料水等で微生物以外の粒子成分を含まない場合は、電気抵抗式粒子計測装置が好適である。電気抵抗式粒子計測装置は、クールター原理として良く知られる測定原理を用いた粒子計測装置であり、例えば、シスメックス株式会社より販売されているSD−2000,CDA−500などの装置が好適に使用できる。これらの装置では、約100μm程度のオリフィスの両サイドに電極を置き、微粒子がオリフィスを通過する際に生じる電気抵抗の変化を電気パルスとして検出し、微粒子を計数することができるまた、同時に微粒子の体積を正確に計測することが可能であり、体積の違いによって、微生物と微生物以外の粒子(以下デブリスと称する)を区別して計数することができる。一方、微生物とデブリスの体積が同じ場合は、電気抵抗式粒子計測装置で微生物のみを正確に計数することは困難である。この場合は、何らかの方法で、微生物とデブリスを区別して計数する必要がある。この場合には、シスメックス株式会社より発売されているFPIAシリーズなどのフロー式画像解析装置が好適に使用できる。この装置では、フローセルを流れる粒子画像を撮像し解析することにより、微粒子を計測することができる。本装置では、粒子画像を得ることができるため、微生物とデブリスを容易に弁別可能である。より好適にはフローサイトメータの使用が好適である。フローサイトメータとしては、ベックマン・クールター社より発売されているEPICSシリーズ,ベクトン・ディッキンソン社より発売されているFACSシリーズが良く知られている。本発明の実施はこれらの機種に限定されるものではなく、一般的に定義されているフローサイトメータであれば特に限定されるものではない。本発明のフローサイトメータとは、検出部を流れる粒子にレーザ等の光を照射し、粒子から発生する散乱光、蛍光等の光学的情報から粒子の大きさ、形態、あるいは、粒子が細胞の場合は、核酸量、蛋白量等の情報を計測する装置を言う。
【0012】
フローサイトメータを用いる場合には、試料中の微生物をあらかじめ、微生物中の核酸(RNA,DNA)あるいは、蛋白、その他微生物の構成物質を特異的に染色する蛍光色素あるいは、蛍光色素を標識した抗体で染色することが好適である。特に核酸を染色する蛍光色素で染色することが好適である。染色に使用する染色液例としては、特開平9−104683,特開2001−258590に記載の試薬を用いた場合、1分以内に細菌を染色することができ、特に好適である。特にRNAを特異的に染色する蛍光色素を用いた場合には、増殖中の微生物は豊富なRNAを有し、強い蛍光を発することからデブリスと微生物の区別がより容易になるというメリットがある。さらに、RNA量は微生物の増殖活性を反映しており、蛍光強度は微生物の増殖活性の指標として使用することができる。染色液は基本的に蛍光色素と緩衝剤を含む水溶液であるが、染色性を改善するためあるいは微粒子の分散を改善するために界面活性剤等の添加物を含んでも良い。また、蛍光色素の安定性が悪い場合には,色素をエチレングリコール等の溶液で保存し、使用時に希釈液と混合して使用することが好適である。
【0013】
増殖後の微生物数から初期微生物数を推定する工程とは、測定対象とする初期濃度既知の特定微生物を、「測定対象の微生物を選択的に増殖させる工程」で増殖した後に、「増殖した微生物を計数する工程」で増殖後の微生物濃度を計数し、図1に示す、初期濃度−増殖後濃度の関係をプロットし得られた回帰直線式等を検量線として、初期濃度未知の試料を増殖した後の増殖後濃度から初期濃度を算出する工程を言う。
【0014】
本発明の実施例を以下に示す。本発明の実施形態は以下の実施例に限定されるものでは無い。
【0015】
【実施例】
初期濃度10,10,10,10,10個/mlとなるよう大腸菌をEC培地(日水製薬)に添加し、4時間44.5℃で培養し、大腸菌数を計数した。初期細菌濃度と4時間培養後の細菌数をプロットし、4時間培養後の細菌数から初期細菌濃度を推定するための検量線を作成した(図1)。
【0016】
大腸菌数の測定は以下の方法を用いた。
▲1▼測定試料調製
一定時間培養後の大腸菌試料50μlに希釈液340μlを添加して希釈後、染色液10μlを添加し、42℃で20秒間インキュベートし測定用試料を調製した。希釈液,染色液の組成は、以下の組成を使用した。
【0017】
(希釈液)
クエン酸二水塩    21.6g/l
ミリスチルトリメチルアンモニウムブロマイド 1g/l
精製水        1.0 l
NaOHでpH2.5に調製した
【0018】
(染色液)
下記の構造を有する色素 50mg
【0019】
【化1】

Figure 2004089039
エチレングリコール  1.0 l
【0020】
▲2▼細菌数測定
633nmの赤色半導体レーザを光源とするフローサイトメータを用いて、▲1▼で作成した試料を測定し、前方散乱光と赤色蛍光(650nm以上)を測定し、前方散乱光−赤色蛍光のスキャッタグラム(図2)を作成し、細菌領域内の粒子を細菌として計数し細菌濃度を求めた。
【0021】
試料測定例
食品試料1(レタス),食品試料2(鶏ささみ肉)25gを生理食塩水225mlとともにストマック処理したのち、約50μmのフィルターで濾過した試料1mlとEC培地10mlを混合し44.5℃で4時間培養したのち、上記の方法で細菌濃度を計測した。図3に試料1の測定例を示す。
【0022】
4時間培養後の計測値から図1の検量線を用いて初期細菌濃度を推定した。
【0023】
対照の測定法として、XM−G寒天培地(日水製薬製)を用いた混釈法で大腸菌濃度を求めた。コロニーの計数は培養24時間後に行った。
【0024】
表1に示すように本法と対照法の測定結果は良く一致しており、本法を用いて短時間で細菌濃度が計数可能であることが確認できた。
【0025】
【表1】
Figure 2004089039
【0026】
【発明の効果】
本発明によれば、短時間で特定微生物の初期濃度を計測することができる。
【図面の簡単な説明】
【図1】大腸菌をEC培地で4時間培養した場合の初期濃度と4時間培養後細菌濃度のプロットして求めた検量線である。
【図2】初期濃度10/ml試料の4時間培養後のスキャッタグラムである。
【図3】試料1の4時間培養後のスキャッタグラムである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a measurement method for quickly measuring a specific microorganism.
[0002]
[Prior art]
Microorganisms are tested in various fields such as clinical, food, environmental water quality, and pharmaceuticals. For example, in the field of food inspection, it is prescribed that the number of bacteria such as coliform bacteria, Escherichia coli, Staphylococcus aureus, etc. be inspected according to standards, hygiene standards, and the like based on the Food Sanitation Law. In addition, food manufacturers conduct inspections of specific microorganisms for voluntary hygiene management, independent of laws and regulations.
[0003]
Conventionally, these tests are performed by a method defined as an official method. However, since the test is extremely complicated and the test time is long (24 to 48 hours or more), a medium that can selectively culture a specific bacterium was used. A simple culture method is generally used. However, even when these methods are used, it takes about 24 hours for the bacteria to grow and be able to be visually discriminated as a colony, and a method capable of measuring a specific bacterium in a shorter time is strongly desired. It is rare. In addition, since the counting of colonies is troublesome and requires labor, a simpler method is desired.
[0004]
On the other hand, apart from these methods, a method of measuring a microorganism by culturing a sample in a liquid medium capable of growing and culturing a specific microorganism and measuring a characteristic value that changes with the growth of the microorganism has been developed. As characteristic values for detecting the growth of these microorganisms, a decrease in dissolved oxygen, a decrease in pH due to an increase in carbon dioxide (detection of a change in absorbance of a pH indicator), a change in electric resistance, and the like are used. However, even with these methods, considerable time is required for indirectly detecting bacterial growth as a change in characteristic value. For example, to detect changes in dissolved oxygen, in order to detect the initial concentration of 10 5 cells / ml of bacteria, it has been reported to require culturing for 6-8 hours.
[0005]
[Problems to be solved by the invention]
In view of the above circumstances, an object of the present invention is to provide a measurement method for detecting a specific microorganism in a short time by directly detecting the microorganism.
[0006]
[Means for Solving the Problems]
The microorganism measuring method of the present invention is characterized in that a specific bacterium is detected in a short time in the following steps.
1) a step of selectively growing the microorganism to be measured 2) a step of counting the number of grown microorganisms 3) a step of estimating the initial number of microorganisms from the number of microorganisms after the growth
BEST MODE FOR CARRYING OUT THE INVENTION
The step of selectively growing the microorganism to be measured refers to culturing a sample containing the microorganism by mixing it with a medium capable of at least growing the microorganism to be measured and suppressing the growth of microorganisms not to be measured. This is the step of doing. The specific method differs depending on the sample and the microorganism to be measured, and the embodiment is not particularly limited. Various methods for selectively growing microorganisms are disclosed in literatures, textbooks, and the like, and are easily available. For example, when the microorganism to be measured is a bacterium, a liquid medium for growing a specific bacterium is known. As a specific example, for example, in order to selectively grow Escherichia coli, a method of culturing at 44.5 ° C. using an EC medium is described in the Food Sanitation Examination Guidelines. In order to selectively grow E. coli, a method of culturing at 37 ° C. using an LB medium, a BGLB medium, or the like is known. In order to selectively grow Vibrio parahaemolyticus, a method of culturing at 37 ° C. in a saline polymyxin medium is known. In order to selectively grow Salmonella, a method of culturing at 37 ° C. in a rapaport medium is known. The above examples are merely examples, and many other media for selectively growing specific bacteria have been reported in addition to the above, and embodiments of the present invention are not limited to the above-described media examples. .
[0008]
The time required for the culture varies depending on the bacteria to be measured and the culture conditions. For example, when a flow cytometer is used as a counting step as described later, the bacterial concentration in the sample is 10 2 cells / ml. 10 or 3 cells / ml are preferred. For example, when Escherichia coli is cultured under suitable culture conditions, it takes about 4 to 5 hours to grow an E. coli at an initial concentration of 1 cell / ml to a concentration of 10 3 cells / ml or more.
[0009]
In this method, bacteria are directly detected and counted, so that bacteria can be detected in a shorter culture time than in the conventional method. Although it is theoretically possible to detect the bacteria from one, in order to measure a sample of several μl~ several hundred μl a practical flow cytometer, 10 2 as bacteria concentration in the sample as described above / ml to 10 3 cells / ml or more concentrations being preferred.
[0010]
If the sample to be measured is a food sample or other solid or semi-solid material, mix 1 volume of the sample with 9 volumes of a solution such as physiological saline, process with a stomacher, and process with a filter of about 50 μm. Is preferred.
[0011]
The step of counting the grown microorganisms is a step of counting the microorganisms grown in the previous step one by one, and various particle measuring devices can be used. The particle measuring device to be used is not particularly limited as long as the particle measuring device can count fine particles of about 1 to 20 microns. As the particle measuring device that can be used in the present invention, for example, an electric resistance type particle measuring device, a flow image analyzer, and a flow cytometer are suitably used. When the sample is drinking water, refreshing drink, or the like and does not contain particle components other than microorganisms, an electric resistance type particle measuring device is suitable. The electric resistance type particle measurement device is a particle measurement device using a measurement principle well known as the Coulter principle, and for example, devices such as SD-2000 and CDA-500 sold by Sysmex Corporation can be suitably used. . In these devices, electrodes are placed on both sides of an orifice of about 100 μm, and a change in electric resistance generated when the fine particles pass through the orifice is detected as an electric pulse, and the fine particles can be counted. It is possible to accurately measure the volume, and it is possible to distinguish and count microorganisms and particles other than microorganisms (hereinafter referred to as debris) depending on the difference in volume. On the other hand, when the volume of the microorganism is the same as that of the debris, it is difficult to accurately count only the microorganism with the electric resistance type particle measuring device. In this case, it is necessary to distinguish microorganisms and debris by some method and count them. In this case, a flow-type image analyzer such as the FPIA series sold by Sysmex Corporation can be suitably used. This device can measure fine particles by capturing and analyzing an image of particles flowing through the flow cell. In this device, since a particle image can be obtained, microorganisms and debris can be easily distinguished. More preferably, the use of a flow cytometer is preferred. Well-known flow cytometers include the EPICS series sold by Beckman Coulter and the FACS series sold by Becton Dickinson. The embodiment of the present invention is not limited to these models, and is not particularly limited as long as it is a generally defined flow cytometer. The flow cytometer of the present invention irradiates the particles flowing through the detection unit with light such as a laser, and scatters light generated from the particles, the size, shape, or the size of the particles based on optical information such as fluorescence. In this case, it refers to a device that measures information such as the amount of nucleic acids and the amount of proteins.
[0012]
When using a flow cytometer, the microorganisms in the sample are previously stained with a fluorescent dye that specifically stains nucleic acids (RNA, DNA), proteins, or other components of the microorganisms, or an antibody labeled with a fluorescent dye. It is preferred to stain with. In particular, it is preferable to stain the nucleic acid with a fluorescent dye. When a reagent described in JP-A-9-104683 and JP-A-2001-258590 is used as an example of a staining solution for staining, bacteria can be stained within one minute, which is particularly preferable. In particular, when a fluorescent dye that specifically stains RNA is used, the growing microorganism has abundant RNA and emits strong fluorescence, so that there is an advantage that it is easier to distinguish debris from the microorganism. Further, the amount of RNA reflects the growth activity of the microorganism, and the fluorescence intensity can be used as an indicator of the growth activity of the microorganism. The staining solution is basically an aqueous solution containing a fluorescent dye and a buffer, but may contain an additive such as a surfactant in order to improve the staining property or to improve the dispersion of the fine particles. When the stability of the fluorescent dye is poor, it is preferable to store the dye in a solution such as ethylene glycol and mix it with a diluent at the time of use.
[0013]
The step of estimating the initial number of microorganisms from the number of microorganisms after growth means that a specific microorganism having a known initial concentration to be measured is grown in the step of selectively growing the microorganisms to be measured, and then the `` grown microorganisms '' In the step of counting microorganisms, the concentration of the microorganism after growth is counted, and a sample having an unknown initial concentration is grown using the regression linear equation obtained by plotting the relationship between the initial concentration and the concentration after growth shown in FIG. 1 as a calibration curve. Refers to the step of calculating the initial concentration from the post-growth concentration after the growth.
[0014]
Examples of the present invention will be described below. Embodiments of the present invention are not limited to the following examples.
[0015]
【Example】
Was added to the initial concentration of 10 0, 10 1, 10 2, 10 3, 10 4 cells / ml and so as Escherichia coli EC medium (Nissui Seiyaku), were cultured in 4 hours 44.5 ° C., and counted the number of E. coli . The initial bacterial concentration and the number of bacteria after 4 hours of culture were plotted, and a calibration curve for estimating the initial bacterial concentration from the number of bacteria after 4 hours of culture was prepared (FIG. 1).
[0016]
The following method was used to measure the number of E. coli.
{Circle around (1)} Preparation of measurement sample After diluting 340 μl of a diluent with 50 μl of an Escherichia coli sample after culturing for a certain period of time, 10 μl of a staining solution was added, followed by incubation at 42 ° C. for 20 seconds to prepare a measurement sample. The following compositions were used for the composition of the diluting solution and the staining solution.
[0017]
(Diluted solution)
Citric acid dihydrate 21.6 g / l
Myristyl trimethyl ammonium bromide 1g / l
1.0 l purified water
The pH was adjusted to 2.5 with NaOH.
(Staining solution)
50 mg of a dye having the following structure
[0019]
Embedded image
Figure 2004089039
1.0 l of ethylene glycol
[0020]
(2) Bacterial number measurement Using a flow cytometer using a 633 nm red semiconductor laser as a light source, the sample prepared in (1) is measured, forward scattered light and red fluorescence (650 nm or more) are measured, and forward scattered light is measured. -A scattergram of red fluorescence (FIG. 2) was prepared and the particles in the bacterial area were counted as bacteria to determine the bacterial concentration.
[0021]
Sample Measurement Example 25 g of food sample 1 (lettuce) and 2 g of chicken sample (chicken fillet) were subjected to a stomach treatment together with 225 ml of physiological saline, and then 1 ml of a sample filtered through a filter of about 50 μm and 10 ml of EC medium were mixed and mixed at 44.5 ° C. After culturing for 4 hours, the bacterial concentration was measured by the above method. FIG. 3 shows a measurement example of the sample 1.
[0022]
The initial bacterial concentration was estimated from the measured values after 4 hours of culture using the calibration curve of FIG.
[0023]
As a control measurement method, the concentration of Escherichia coli was determined by a pour method using XM-G agar medium (manufactured by Nissui Pharmaceutical). Colony counting was performed 24 hours after culturing.
[0024]
As shown in Table 1, the measurement results of the present method and the control method were in good agreement, and it was confirmed that the bacterial concentration could be counted in a short time using the present method.
[0025]
[Table 1]
Figure 2004089039
[0026]
【The invention's effect】
According to the present invention, the initial concentration of a specific microorganism can be measured in a short time.
[Brief description of the drawings]
FIG. 1 is a calibration curve obtained by plotting the initial concentration when E. coli is cultured for 4 hours in an EC medium and the bacterial concentration after 4 hours of culture.
FIG. 2 is a scattergram of a sample at an initial concentration of 10 3 / ml after culturing for 4 hours.
FIG. 3 is a scattergram of Sample 1 after culturing for 4 hours.

Claims (5)

1)測定対象の微生物を選択的に増殖させる工程
2)増殖した微生物を計数する工程
3)増殖後の微生物数から、初期微生物数を推定する工程
からなる微生物計測方法。
A microorganism measurement method comprising: 1) selectively growing microorganisms to be measured; 2) counting the number of grown microorganisms; and 3) estimating the initial number of microorganisms from the number of grown microorganisms.
測定対象の微生物が細菌であり、選択的に増殖させる工程が、細菌を選択的に増殖させる培地で培養する工程である請求項1の微生物計測方法。The microorganism measurement method according to claim 1, wherein the microorganism to be measured is a bacterium, and the step of selectively growing is a step of culturing in a medium for selectively growing the bacterium. 微生物を計数する工程が、フローサイトメータ,フロー式画像解析装置,電気抵抗式粒子計数分析装置からなる群から選ばれた少なくともひとつの装置で微生物を計数する工程である、請求項1の微生物計測方法。2. The microorganism measurement according to claim 1, wherein the step of counting microorganisms is a step of counting microorganisms using at least one device selected from the group consisting of a flow cytometer, a flow-type image analyzer, and an electric resistance particle counter. Method. 微生物を計数する工程が、計数の前に増殖した微生物を含む試料を核酸特異性のある蛍光色素で染色する工程を含むフローサイトメータで微生物を計数する工程である請求項3の微生物計測方法。4. The method for measuring microorganisms according to claim 3, wherein the step of counting the microorganisms is a step of counting the microorganisms with a flow cytometer including a step of staining a sample containing the microorganisms grown before counting with a fluorescent dye having nucleic acid specificity. 初期微生物数を推定する工程が、初期濃度既知の微生物を増殖培養し測定したデータから作成した検量線を用いる方法である請求項1の特定微生物計数方法。2. The method for counting specific microorganisms according to claim 1, wherein the step of estimating the initial number of microorganisms is a method using a calibration curve created from data obtained by growing and culturing microorganisms having a known initial concentration.
JP2002252735A 2002-08-30 2002-08-30 Microorganism measurement method Expired - Fee Related JP4278936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002252735A JP4278936B2 (en) 2002-08-30 2002-08-30 Microorganism measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002252735A JP4278936B2 (en) 2002-08-30 2002-08-30 Microorganism measurement method

Publications (2)

Publication Number Publication Date
JP2004089039A true JP2004089039A (en) 2004-03-25
JP4278936B2 JP4278936B2 (en) 2009-06-17

Family

ID=32058937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002252735A Expired - Fee Related JP4278936B2 (en) 2002-08-30 2002-08-30 Microorganism measurement method

Country Status (1)

Country Link
JP (1) JP4278936B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058233A (en) * 2007-08-29 2009-03-19 Nagasaki Prefecture Method for determining contamination level of bathing facility, method for determining microbicidal effect of microbicide in bathtub water and method for controlling water quality of bathtub water
JP2012029687A (en) * 2010-07-02 2012-02-16 Meiji Co Ltd Detection method of coliform bacilli
CN115824932A (en) * 2022-12-07 2023-03-21 瑞芯智造(深圳)科技有限公司 Method and kit for detecting concentration of sulfate reducing bacteria

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058233A (en) * 2007-08-29 2009-03-19 Nagasaki Prefecture Method for determining contamination level of bathing facility, method for determining microbicidal effect of microbicide in bathtub water and method for controlling water quality of bathtub water
JP2012029687A (en) * 2010-07-02 2012-02-16 Meiji Co Ltd Detection method of coliform bacilli
CN115824932A (en) * 2022-12-07 2023-03-21 瑞芯智造(深圳)科技有限公司 Method and kit for detecting concentration of sulfate reducing bacteria

Also Published As

Publication number Publication date
JP4278936B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
EP1089078B1 (en) Reagent and method for analyzing solid components in urine
EP1136563B1 (en) Method of staining, and detecting and counting bacteria
Clarke et al. Improved detection of bacteria by flow cytometry using a combination of antibody and viability markers
JP4236893B2 (en) Bacteria counting method and bacteria counting apparatus
EP2326727A2 (en) Flow cytometry-based systems and methods for detecting microbes
JP2008500558A (en) Extensive identification with fully automated monoclonal antibodies
JPH07503795A (en) Methods and materials used to determine particle counts in flow cytometers
JPH06500462A (en) Cell isolation, enrichment and analysis methods and kits
US6803208B2 (en) Automated epifluorescence microscopy for detection of bacterial contamination in platelets
EP2834367A1 (en) Sample preparation for flow cytometry
WO2002008454A2 (en) Method and device for viable and nonviable prokaryotic and eukaryotic cell quantitation
Yu et al. Rapid detection and enumeration of total bacteria in drinking water and tea beverages using a laboratory-built high-sensitivity flow cytometer
JPH09119926A (en) Analysis method of urine specimen
US6165740A (en) Method and device for flow-cytometric microorganism analysis
EP3112864B1 (en) Urine sample analysis method and use of a reagent kit for urine sample analysis
JP4278936B2 (en) Microorganism measurement method
Lee Quantitation of microorganisms
JPH10215859A (en) Filter device for trapping microbe, microbial numbermeasuring kit and method for measuring microbial number
JP2001149091A (en) Method for assaying microorganism and device therefor
US5288642A (en) Shelf-stable milk calibration standards
US20040023319A1 (en) Rapid enumeration of viable spores by flow cytometry
WO2001036661A2 (en) Method and apparatus for prokaryotic and eukaryotic cell quantitation
CN112063683A (en) Method and kit for detecting antibiotic residues in food and production and circulation processes thereof
JP2005102645A (en) Method for determining sterilization effect on microorganism
Naramura et al. Novel system to detect bacteria in real time in aquatic environments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080805

A131 Notification of reasons for refusal

Effective date: 20081202

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090311

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees