JP2004088272A - Image transmission system - Google Patents

Image transmission system Download PDF

Info

Publication number
JP2004088272A
JP2004088272A JP2002244437A JP2002244437A JP2004088272A JP 2004088272 A JP2004088272 A JP 2004088272A JP 2002244437 A JP2002244437 A JP 2002244437A JP 2002244437 A JP2002244437 A JP 2002244437A JP 2004088272 A JP2004088272 A JP 2004088272A
Authority
JP
Japan
Prior art keywords
signals
image
imaging
pixels
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002244437A
Other languages
Japanese (ja)
Inventor
Hidefumi Tanaka
田中 英史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2002244437A priority Critical patent/JP2004088272A/en
Publication of JP2004088272A publication Critical patent/JP2004088272A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient image transmission system capable of transmitting an image with high definition and high image quality like those of a photograph at a high speed while converting the arrangement of pixels of the image by using an imaging apparatus with the number of pixels equal to and more than that of a high image quality television (HDTV: High Definition TV) image such as the High Vision system and capable of securing the security. <P>SOLUTION: A vertical address generator 24 and a horizontal address generator 25 in an arrangement conversion unit in a camera use division signals HDO', HD1', HD2', HD3' whose number of pixels as HDTV digital parallel signals is the same as that of prior arts in order to secure the security of image signals. As shown in Figure (E), the division signal HD0' results from reading pixel data at an interval of one both in longitudinal and lateral directions. The division signals HD1', HD2', HD3' result from reading pixel data at an interval of one both in the longitudinal and lateral directions while respectively changing the read position by one each both in the longitudinal and lateral directions. Thus, the four division signals HD0' to HD3' whose number of pixels is the same as that in a standard state but whose pixel arrangement differs from that in the standard state can be obtained in this way. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は画像伝送システムに係り、特にハイビジョン方式等の高画質テレビ(HDTV:High Definition TV)の画像以上の画素数を持つ撮像装置を用いて、写真並みの高精細高画質の画像を配列変換しながら高速伝送する画像伝送システムに関する。
【0002】
【従来の技術】
従来の画像伝送システムとして,フラットパネルモニタ用ディジタル伝送方式を用いた映像伝送システムが提案されている(特開2001−13927号公報)。これはDVI(Digital Visual Interface)規格によるものである。
【0003】
図4は従来のDVI規格による画像伝送システムの一例のブロック図と各部の信号説明図を示す。同図(A)において、カメラ10は被写体を撮像して、HDTV方式の画像の水平方向の1920画素、垂直方向の1080画素(すなわち、1920×1080画素)の4倍の画素数である、水平方向3840画素、垂直方向2160画素(すなわち、3840×2160画素)の高精細の撮像信号を、放送技術開発協議会(BTA:Broadcasting Technology Association)による規格BTAS−002Bによる直列デジタルハイビジョン信号のSDI信号(1920×1080画素)を4組並列に出力する。
【0004】
この4組のSDI信号は、図4(A)及び(B)に示すように、3840×2160画素の連続した画素配列を、それぞれ縦横に2分割して、1920×1080画素の4組の連続した画素配列HD0〜HD3に分割したものであり、SDI/DVI変換装置11に供給されて、DVI信号に変換される。
【0005】
すなわち、SDI/DVI変換装置11は、入力された4組のSDI信号をそれぞれ直列/並列変換部11aで各組並列信号に変換し、色差変換部11bで色差信号の変換を行い、画像再生用バッファ11cに一次蓄積した後、図4(A)、(C)に示すように、水平方向に4分割して960×2160画素の4組の連続した画素配列DV0〜DV3からなるDVI信号に変換して並列に読み出す。この4組のDVI信号は、TMDS(Transmission Minimized Differential Signaling)送信機11dに供給され、これより表示装置12に出力されて画像表示される。
【0006】
図5は従来の画像システムで用いられるカメラ10の一例の構成図及び信号説明図を示す。同図において、カメラ10は、まず、被写体をレンズ1により3840×2160画素の構成の撮像装置2に結像する。撮像装置2では同図(D)に示すように、その撮像領域が水平方向に8分割されて、480×2160画素の各分割撮像領域で被写体光像をそれぞれ光電変換し、これにより得られた8組のアナログ撮像信号S0〜S7を同図(E)に示すようにA/D変換装置3に並列に供給する。
【0007】
A/D変換装置3は入力された8組のアナログ撮像信号S0〜S7をディジタル撮像信号に変換して信号処理装置4に送り、ここで暗電流補正・白傷補正・利得調整・色差変換等の信号処理を行わせる。信号処理装置4から出力されたディジタル信号は、配列変換装置5に供給されて記憶された後、同図(A)に示すように、縦横各2分割された4分割信号HD0〜HD3を並列に出力する。
【0008】
この4分割信号HD0〜HD3は、各々1920×1080画素のHDTV用ディジタル並列信号である(BTAS−004B準拠)。各々図5(B)にHD0’〜HD3’で示すHDTV画像を示す上記の4分割信号HD0〜HD3は、同図(C)に示すように互いに並列に、かつ、各々並列に配列変換装置5からSDI変換装置6へ供給され、ここで各組並列の信号が各組直列のSDI信号に変換されてカメラ出力信号とされる。
【0009】
【発明が解決しようとする課題】
このようにして、HDTV方式の画像の4倍の画素数という高精細画像を複数のSDI信号に変換して伝送すれば、ハイビジョン標準信号として扱われるため、伝送が容易である。しかし、上記の従来の画像伝送システムでは、伝送する画像信号がハイビジョン標準信号のため、コピーが容易であり、画像情報の機密保持が困難である。また、機密保持のために機密保持用の機材を追加して設置することは、費用の高騰を招き、扱いも専門的になり、取り扱いが不便である。
【0010】
本発明は以上の点に鑑みなされたもので、ハイビジョン方式等の高画質テレビ(HDTV:High Definition TV)画像以上の画素数を持つ撮像装置を用いて、写真並みの高精細高画質の画像を配列変換しながら高速伝送し、かつ、効率的で、しかも機密保持可能な画像伝送システムを提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は上記の目的を達成するため、高精細度テレビ方式の画像よりも多い画素数の撮像領域が複数に分割されており、各分割撮像領域によりそれぞれ被写体光像を光電変換して得られた複数の第1の撮像信号を並列に出力する撮像手段と、撮像手段から出力された複数の第1の撮像信号を同時に記憶した後、撮像手段の全体の撮像領域の全画素数を等分割してそれぞれ標準信号と同じ画素数からなり、互いに画素が重ならならず、かつ、元の画素配列順序とは異なる所定の画素配列順序となるように読み出して配列変換をした複数の第2の撮像信号を並列に出力する第1の配列変換手段と、第1の配列変換手段から並列に出力された複数の第2の撮像信号を、複数の直列信号に変換する第1の変換手段と、第1の変換手段から出力された複数の直列信号を、上記の標準信号として同時に並列に伝送する伝送手段と、伝送手段により伝送された複数の直列信号の各々を、並列信号に変換する第2の変換手段と、第2の変換手段から出力された複数の並列信号を1画面分同時に記憶した後、撮像手段の全体の撮像領域を、撮像手段の分割撮像領域とは異なる所定方向に複数分割した各分割撮像領域の各画素からなるように読み出して配列変換をした複数の並列信号を出力する第2の配列変換手段とを有する構成としたものである。
【0012】
この発明では、撮像手段の全体の撮像領域の全画素数を等分割した画素数からなり、互いに画素が重ならならず、かつ、元の画素配列順序とは異なる所定の画素配列順序となるように読み出して配列変換をした複数の第2の撮像信号を、直列信号に変換した後並列に複数の標準信号として伝送するようにしたため、伝送される標準信号を本来の標準信号の画素配列とは異なる画素配列の信号として伝送できる。
【0013】
なお、上記の第1の変換手段から出力される複数の標準信号の各々はSDI信号であってもよく、上記の第2の配列変換手段から出力される複数の並列信号の各々はDVI信号であってもよい。
【0014】
【発明の実施の形態】
次に、本発明の実施の形態について図面と共に説明する。図1は本発明になる画像伝送システムの一実施の形態のブロック図と各部の信号説明図を示す。同図中、図4と同一構成部分には同一符号を付してある。図1(A)において、カメラ15は被写体を撮像して、HDTV方式の画像の水平方向の1920画素、垂直方向の1080画素(すなわち、1920×1080画素)の4倍の画素数である、水平方向3840画素、垂直方向2160画素(すなわち、3840×2160画素)の高精細の撮像信号を、放送技術開発協議会(BTA:Broadcasting Technology Association)による規格BTAS−002Bによる直列デジタルハイビジョン信号のSDI信号(1920×1080画素)を4組並列に出力する。ただし、本実施の形態では、このSDI信号(標準信号)は、従来とは異なる信号配列とした点に特徴がある。
【0015】
すなわち、カメラ15の基本的な構成は、従来と同様の図5の構成であるが、その中の配列変換装置5の構成が本実施の形態特有の構成とされている。本実施の形態のカメラ15内の配列変換装置の構成について図2及び図3と共に詳細に説明する。
【0016】
まず、信号処理装置(図5の4に相当)からは図5(D)に示した配列S0〜S7によるディジタル信号が出力されるから、これをカメラ15内の配列変換装置内に設置された図2(A)に示す書き込みアドレス発生装置#0(垂直アドレス発生装置20及び水平アドレス発生装置21)により、その配列変換装置内のメモリにそのままの配列(S0,S1,・・・,S7)で書き込まれる。
【0017】
なお、このメモリは通常は2つあり、一方のメモリが上記のディジタル信号S0〜S7を書き込んでいる1垂直走査期間で、他方のメモリが、直前の1垂直走査期間で書き込まれたディジタル信号S0〜S7を、以下説明する読み出しアドレス発生装置からの読み出しアドレスに基づいて読み出しを行う。また、これら2つのメモリに対する書き込みと読み出しは、1垂直走査期間毎に交互に切り換わる。
【0018】
ここで、従来の配列変換装置5では図2(B)に示す読み出しアドレス発生装置#1(垂直アドレス発生装置22、水平アドレス発生装置23)により、同図(B)に示すように縦横に各2分割された配列(HD0,HD1,HD2,HD3)で4分割のHDTVディジタル並列信号として同時に読み出していた。前述したように、この4分割信号HD0〜HD3は、各々1920×1080画素のHDTV用ディジタル並列信号である(BTAS−004B準拠)。本実施の形態では、機密保持を行わない場合は、この従来と同様の読み出し方法を標準状態として用いることが可能である。
【0019】
これに対し、本実施の形態では、画像信号として機密保持を行うために、図2(C)に示すように、後述する図3の構成の読み出しアドレス発生装置#2(垂直アドレス発生装置24及び水平アドレス発生装置25)により、HDTVディジタル並列信号としての画素数は従来のSDI信号(標準状態の標準信号)と同じ画素数であるが、画素配列が異なる4つの分割信号HD0’,HD1’,HD2’,HD3’を生成する。これらの4分割信号HD0’〜HD3’は、各々1920×1080画素のHDTV用ディジタル並列信号である。
【0020】
これらの4分割信号HD0’〜HD3’について、更に詳細に説明するに、例えば、図2(D)に示すように、メモリ全体の連続した画素データが垂直アドレスVadd、水平アドレスHaddによりDij(ただし、iはライン順番、jは画面左端からの水平画素順番)で連続的に示されるものとすると、これを読み出す際に、図2(E)に示すように、第1の分割信号HD0’は垂直読み出しアドレスV0’と、水平読み出しアドレスH20’により、D00、D02、D04、・・・、D20、D22、D24、・・・、と縦横とも一つ置きに画素データが読み出される。
【0021】
以下、同様に第2の分割信号HD1’、第3の分割信号HD2’、第4の分割信号HD3’は、図2(E)に示すように、垂直読み出しアドレスV1’、V2’、V3’と、水平読み出しアドレスH20’又はH21’により、それぞれ読み出し位置を縦横一つずつ変えて、縦横に一つ置きに読み出される。このようにして、標準状態と画素数は同じ4分割信号HD0’〜HD3’を得ることができるから、そのままSDI信号に変換してカメラ出力とすることができる。
【0022】
再び図1に戻って説明するに、カメラ15から4組並列に出力された図1(B)に示す上記のSDI信号HD0’〜HD3’は、SDI/DVI変換装置16に供給され、ここで4組のDVI信号に変換されて並列に出力される。すなわち、SDI/DVI変換装置16は、カメラ15から送られてきた各組直列信号である全部で4組のSDI信号HD0’、HD1’、HD2’、HD3’を、直列/並列変換部16aでそれぞれディジタル並列信号に変換した後、色差変換部16bでYPbPr信号から三原色信号であるRGB信号に変換し、画像再生用バッファメモリ16cに供給する。なお、この画像再生用バッファメモリ16cも通常2組設けられており、一方が書き込みをしているときは他方が読み出しを行い、かつ、その書き込み期間と読み出し期間が1垂直走査期間毎に交互に切り換わるようにされている。
【0023】
画像再生用バッファメモリ16cは、図1(C)に示すように、SDI/DVI変換装置16内に設けられているアドレス発生装置#3(垂直アドレス発生装置24’及び水平アドレス発生装置25’)からの垂直アドレスV0’又はV1’と水平アドレスH20”又はH21”に基づき、直列/並列変換部16a及び色差変換部16bを経たSDI信号HD0’、HD1’、HD2’、HD3’を、HD0”、HD1”、HD2”、HD3”の配列で記憶する。
【0024】
この時、アドレス発生装置#2が読み出すメモリと同じ記憶配列にすれば、画像再生用バッファメモリ16cで記憶された信号は標準状態と同じ配列となる。すなわち、画像再生用バッファメモリ16cには奇数ラインの信号HD0’及びHD1’は、同じラインの信号は同じラインに配列され、かつ、互いに1画素ずれるように交互に配列され、偶数ラインの信号HD2’及びHD3’は、同じラインの信号は同じラインに配列され、かつ、互いに1画素ずれるように交互に配列されることにより、図2(C)に示したメモリと同じ標準状態の記憶配列となる。
【0025】
ここで、アドレス発生装置#2(垂直アドレス発生装置24及び水平アドレス発生装置25)と、アドレス発生装置#3(垂直アドレス発生装置24’及び水平アドレス発生装置25’)は、例えば図3のブロック図に示す構成とされており、垂直アドレス発生装置24(24’)は2系列のV0カウンタ及びV1カウンタ31及び制御用メモリ32からなり、水平アドレス発生装置25(25’)も、2系列のH0カウンタ及びH1カウンタ33及び制御用メモリ34からなり、例えば、HDTV用の水平同期信号HD、垂直同期信号VD、クロックを基準にして、計4組のアドレスを発生する。アドレス配列は制御データを制御メモリ32、34に蓄積し、この蓄積データにより各カウンタ31、33を常時コントロールすることで設定する。
【0026】
再び図1に戻って説明する。画像再生用バッファメモリ16cに上記のように標準状態と同じ順番で1画面分の画素データが記憶されると、図1(E)に示すように、SDI/DVI変換装置16内に設けられているアドレス発生装置#4(垂直アドレス発生装置26及び水平アドレス発生装置27)からの読み出し垂直アドレスV、読み出し水平アドレスH0’〜H3’により、画像再生用バッファメモリ16cからDV0、DV1、DV2、DV3の配列で画素データが読み出される。
【0027】
上記の配列はDV0、DV1、DV2、DV3は、1画面を水平方向に4分割した、各々960×2160画素の画像信号であり、4組の連続した画素配列DV0〜DV3からなるDVI信号としてTMDS送信機(DVI規格にもとづくDVI伝送用信号変換器)16dに並列に図1(D)に示すように供給され、これによりDVI信号として出力する。この4組の並列出力されたDVI信号は、表示装置12に供給されて画像表示される。
【0028】
このように、本実施の形態によれば、カメラ15から出力される4組のSDI信号の信号配列が、画素数がハイビジョン標準信号と同一であるにも拘らず、その画素配列がハイビジョン標準信号とは異なる配列であるため、この信号をコピーしてそのまま従来と同様のSDI/DVI変換をして表示しても、正しい表示画像が得られず、よって機密保持を確保することができる。一方、本実施の形態では、SDI/DVI変換装置16により正しい配列に戻したDVI信号を出力することができるため、表示装置12により正常な画像表示ができる。
【0029】
なお、本発明は上記の実施の形態に限定されるものではなく、例えば、カメラ15内の配列変換装置で行う配列変換は、図2(C)〜(E)に示した縦横方向にそれぞれ1画素ずつずらす方法に限定されるものではなく、千鳥配列、垂直方向のみの分割、水平方向分割等任意に設定してもよい。ただし、必ず全画素数を等分割した画素数で、かつ、各画素は重ならないようにして複数組設定する必要がある。
【0030】
また、実際の使用時にはアドレス発生装置#2、#3は同配列に設定すれば、アドレス発生装置#4の配列は変更しなくともよい。従って、アドレス発生装置#0とアドレス発生装置#4は配列を固定しておき、アドレス発生装置#2、#3の配列のみを制御することにより、機密保持用の機材を用いなくても、伝送時の信号配列を機密保持性の高いものとすることができる。
【0031】
また、標準状態のアドレス発生装置#1についてはカメラ15側の配列変換装置とSDI/DVI変換装置16にもアドレス発生装置#2、#3と併設して設置しておき、機密性の必要が無い場合に切り替えて用いることもできる。更に、TMDS送信機16dの出力DVI信号は、表示装置12に供給する以外に、例えば記録媒体に記録したり、他の伝送路を用いて配信したりすることも可能である。
【0032】
【発明の効果】
以上説明したように、本発明によれば、撮像手段の全体の撮像領域の全画素数を等分割した画素数からなり、互いに画素が重ならならず、かつ、元の画素配列順序とは異なる所定の画素配列順序となるように読み出して配列変換をした複数の第2の撮像信号を、直列信号に変換した後並列に伝送することにより、伝送される信号を、画素数は標準信号と同じであるが、画素配列は標準信号以外の画素配列の信号として伝送するようにしたため、この信号をコピーして画素変換をしても所定の画素配列変換をしない限り正常な画素配列に戻せないため、機密保持を確保でき、機密保持性の非常に高い高精細画像信号を得ることができる。
【0033】
また、本発明によれば、伝送する信号は画素配列を除き画素数は従来の標準信号と同じであるので配列変換用メモリは標準状態のまま利用でき、また、画素配列を所定の順序に変更しているだけであり、暗号装置等の機密保持用の機材の追加設置を不要にしているので、システムコストの上昇を抑えることができ、専門的な取り扱いも不要にできる。
【図面の簡単な説明】
【図1】本発明の画像伝送システムの一実施の形態のブロック図と各部の信号説明図である。
【図2】図1中のカメラから出力されるSDI信号の画素配列例を説明する図である。
【図3】本発明のカメラ内の配列変換装置とSDI/DVI変換装置内のアドレス発声装置の一実施の形態のブロック図である。
【図4】従来の画像システムの一例のブロック図と各部の信号説明図である。
【図5】従来のカメラ内の一例のブロック図と各部の信号説明図である。
【符号の説明】
12 表示装置
15 カメラ
16 SDI/DVI変換装置
16a 直列/並列変換部
16b 色差変換部
16c 画像再生用バッファメモリ
16d TMDS送信機
20、22、24、24’、26 垂直アドレス発生装置
21、23、25、25’、27 水平アドレス発生装置
31 V0カウンタ・V1カウンタ
32、34 制御用メモリ
33 H0カウンタ・H1カウンタ
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image transmission system, and more particularly to array conversion of high-definition, high-quality images similar to photographs using an imaging device having a pixel number equal to or larger than that of a high-definition television (HDTV) such as a high-vision system. The present invention relates to an image transmission system that performs high-speed transmission while transmitting.
[0002]
[Prior art]
As a conventional image transmission system, a video transmission system using a digital transmission system for a flat panel monitor has been proposed (Japanese Patent Application Laid-Open No. 2001-13927). This is based on the DVI (Digital Visual Interface) standard.
[0003]
FIG. 4 shows a block diagram of an example of a conventional image transmission system based on the DVI standard and signal explanatory diagrams of respective units. In FIG. 1A, a camera 10 captures an image of a subject, and has a horizontal pixel number of 1920 pixels in the horizontal direction and 1080 pixels in the vertical direction (that is, 1920 × 1080 pixels) of the HDTV image. A high-definition image signal having 3840 pixels in the direction and 2160 pixels in the vertical direction (that is, 3840 × 2160 pixels) is converted into an SDI signal of a serial digital high-definition signal according to the standard BTAS-002B by the Broadcasting Technology Association (BTA). (1920 × 1080 pixels) are output in parallel.
[0004]
As shown in FIGS. 4 (A) and (B), the four sets of SDI signals are obtained by dividing a continuous pixel array of 3840 × 2160 pixels vertically and horizontally into two parts, thereby forming four sets of 1920 × 1080 pixels. And divided into pixel arrays HD0 to HD3, which are supplied to the SDI / DVI conversion device 11 and converted into DVI signals.
[0005]
That is, the SDI / DVI converter 11 converts the input four sets of SDI signals into parallel signals in each set by the serial / parallel converter 11a, converts the color difference signals by the color difference converter 11b, and converts After the primary accumulation in the buffer 11c, as shown in FIGS. 4A and 4C, it is divided into four in the horizontal direction and converted into a DVI signal composed of four continuous pixel arrays DV0 to DV3 of 960 × 2160 pixels. And read in parallel. These four sets of DVI signals are supplied to a TMDS (Transmission Minimized Differential Signaling) transmitter 11d, from which they are output to the display device 12 for image display.
[0006]
FIG. 5 shows a configuration diagram and a signal explanatory diagram of an example of the camera 10 used in the conventional image system. In FIG. 1, the camera 10 first forms an image of a subject on the imaging device 2 having a configuration of 3840 × 2160 pixels by the lens 1. In the imaging device 2, as shown in FIG. 3D, the imaging region is divided into eight in the horizontal direction, and the subject light image is photoelectrically converted in each of the divided imaging regions of 480 × 2160 pixels, and thus obtained. Eight sets of analog imaging signals S0 to S7 are supplied in parallel to the A / D converter 3 as shown in FIG.
[0007]
The A / D converter 3 converts the input eight sets of analog imaging signals S0 to S7 into digital imaging signals and sends them to the signal processor 4, where dark current correction, white defect correction, gain adjustment, color difference conversion, etc. Is performed. The digital signal output from the signal processing device 4 is supplied to and stored in the array conversion device 5, and then, as shown in FIG. Output.
[0008]
The quadrant signals HD0 to HD3 are HDTV digital parallel signals each having 1920 × 1080 pixels (based on BTAS-004B). The quadrant signals HD0 to HD3, which respectively show HDTV images HD0 ′ to HD3 ′ in FIG. 5B, are arranged in parallel with each other as shown in FIG. To the SDI conversion device 6, where the parallel signals of each group are converted into serial SDI signals of each group and used as camera output signals.
[0009]
[Problems to be solved by the invention]
In this way, if a high-definition image having four times the number of pixels of an HDTV image is converted into a plurality of SDI signals and transmitted, they are handled as high-definition standard signals, and transmission is easy. However, in the above-described conventional image transmission system, since the image signal to be transmitted is a Hi-Vision standard signal, copying is easy, and it is difficult to maintain confidentiality of image information. In addition, the installation of additional security equipment for confidentiality increases the cost, makes the handling specialized, and is inconvenient to handle.
[0010]
The present invention has been made in view of the above points, and uses an image pickup apparatus having a pixel number equal to or larger than a high-definition television (HDTV) image of a high-definition system or the like to produce a high-definition high-quality image comparable to a photograph. It is an object of the present invention to provide an image transmission system that performs high-speed transmission while performing array conversion, is efficient, and can maintain confidentiality.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention divides an imaging region having a larger number of pixels than an image in a high-definition television system into a plurality of regions, and obtains a subject light image by photoelectric conversion by each of the divided imaging regions. Imaging means for outputting the plurality of first imaging signals in parallel, and after simultaneously storing the plurality of first imaging signals output from the imaging means, equally divides the total number of pixels of the entire imaging area of the imaging means. A plurality of second pixels which are read out and converted so as to have the same number of pixels as the standard signal, do not overlap with each other, and have a predetermined pixel arrangement order different from the original pixel arrangement order First array conversion means for outputting imaging signals in parallel, first conversion means for converting a plurality of second imaging signals output in parallel from the first array conversion means to a plurality of serial signals, The duplicate output from the first conversion means Transmitting means for transmitting the serial signals of the plurality of serial signals simultaneously and in parallel as the standard signal, a second converting means for converting each of the plurality of serial signals transmitted by the transmitting means into a parallel signal, and a second converting means. After simultaneously storing a plurality of parallel signals output from the camera for one screen, the entire imaging area of the imaging means is composed of pixels of each divided imaging area which is divided into a plurality of parts in a predetermined direction different from the divided imaging area of the imaging means. And a second array conversion means for outputting a plurality of parallel signals read and array-converted as described above.
[0012]
According to the present invention, the number of pixels obtained by equally dividing the total number of pixels in the entire imaging area of the imaging unit is such that the pixels do not overlap each other and have a predetermined pixel arrangement order different from the original pixel arrangement order. The plurality of second imaging signals read and converted into a serial signal are converted into a serial signal and then transmitted as a plurality of standard signals in parallel, so that the transmitted standard signal is a pixel array of the original standard signal. The signals can be transmitted as signals of different pixel arrangements.
[0013]
Each of the plurality of standard signals output from the first conversion means may be an SDI signal, and each of the plurality of parallel signals output from the second array conversion means may be a DVI signal. There may be.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a block diagram of an image transmission system according to an embodiment of the present invention and a signal explanatory diagram of each unit. 4, the same components as those in FIG. 4 are denoted by the same reference numerals. In FIG. 1A, a camera 15 captures an image of a subject, and has a horizontal pixel number of 1920 pixels in the horizontal direction and 1080 pixels in the vertical direction (that is, 1920 × 1080 pixels) of the HDTV image. A high-definition image signal having 3840 pixels in the direction and 2160 pixels in the vertical direction (that is, 3840 × 2160 pixels) is converted into an SDI signal of a serial digital high-definition signal according to the standard BTAS-002B by the Broadcasting Technology Association (BTA). (1920 × 1080 pixels) are output in parallel. However, the present embodiment is characterized in that the SDI signal (standard signal) has a signal arrangement different from the conventional one.
[0015]
That is, the basic configuration of the camera 15 is the same as the conventional configuration in FIG. 5, but the configuration of the array conversion device 5 therein is a configuration specific to the present embodiment. The configuration of the array conversion device in the camera 15 of the present embodiment will be described in detail with reference to FIGS.
[0016]
First, since a signal processing device (corresponding to 4 in FIG. 5) outputs digital signals in the arrays S0 to S7 shown in FIG. 5D, the digital signals are installed in the array conversion device in the camera 15. By the write address generator # 0 (vertical address generator 20 and horizontal address generator 21) shown in FIG. 2A, the arrays (S0, S1,..., S7) are directly stored in the memory in the array converter. Is written.
[0017]
Usually, there are two memories. One memory is for one vertical scanning period in which the digital signals S0 to S7 are written, and the other memory is for the digital signal S0 written in the immediately preceding vertical scanning period. Steps S7 through S7 are performed based on a read address from a read address generator described below. Writing and reading to and from these two memories are alternately switched every vertical scanning period.
[0018]
Here, in the conventional array conversion device 5, the read address generator # 1 (vertical address generator 22, horizontal address generator 23) shown in FIG. In the two-divided array (HD0, HD1, HD2, HD3), the signals are simultaneously read as four-divided HDTV digital parallel signals. As described above, the quadrant signals HD0 to HD3 are HDTV digital parallel signals each having 1920 × 1080 pixels (based on BTAS-004B). In the present embodiment, when confidentiality is not maintained, it is possible to use the same reading method as in the related art as a standard state.
[0019]
On the other hand, in this embodiment, in order to maintain confidentiality as an image signal, as shown in FIG. 2C, a read address generator # 2 (vertical address generator 24 and The horizontal address generator 25) has the same number of pixels as the HDTV digital parallel signal as the conventional SDI signal (standard signal in the standard state), but has four divided signals HD0 ', HD1', HD2 ′ and HD3 ′ are generated. These quadrant signals HD0 'to HD3' are digital parallel signals for HDTV of 1920 × 1080 pixels.
[0020]
The four-divided signals HD0 'to HD3' will be described in more detail. For example, as shown in FIG. 2D, continuous pixel data of the entire memory is converted to a vertical address Vadd and a horizontal address Hadd by Dij (where , I is a line order, and j is a horizontal pixel order from the left end of the screen). When this is read out, as shown in FIG. .., D20, D22, D24,..., Every other pixel data is read in every vertical and horizontal direction by the vertical read address V0 ′ and the horizontal read address H20 ′.
[0021]
Hereinafter, similarly, as shown in FIG. 2E, the second divided signal HD1 ′, the third divided signal HD2 ′, and the fourth divided signal HD3 ′ are vertically read addresses V1 ′, V2 ′, V3 ′. And the horizontal read address H20 'or H21', the read position is changed one by one in the vertical and horizontal directions, and the data is read out alternately in the vertical and horizontal directions. In this manner, since the quadrant signals HD0 'to HD3' having the same standard state and the same number of pixels can be obtained, the signals can be directly converted into SDI signals and output to the camera.
[0022]
Referring again to FIG. 1, the above-mentioned SDI signals HD0 ′ to HD3 ′ shown in FIG. 1B output in parallel from the camera 15 are supplied to the SDI / DVI converter 16 where they are output. The signals are converted into four sets of DVI signals and output in parallel. In other words, the SDI / DVI converter 16 converts all four sets of SDI signals HD0 ′, HD1 ′, HD2 ′, HD3 ′, which are serial signals transmitted from the camera 15, by the serial / parallel converter 16a. After converting the signals into digital parallel signals, the color difference converter 16b converts the YPbPr signal into RGB signals, which are three primary color signals, and supplies the RGB signals to the image reproduction buffer memory 16c. Normally, two sets of the buffer memory 16c for image reproduction are also provided, and when one is writing, the other performs reading, and the writing period and the reading period alternate alternately every one vertical scanning period. It is designed to switch.
[0023]
As shown in FIG. 1C, the image reproduction buffer memory 16c includes an address generator # 3 (vertical address generator 24 'and horizontal address generator 25') provided in the SDI / DVI converter 16. SDI signals HD0 ', HD1', HD2 ', HD3' that have passed through the serial / parallel converter 16a and the color difference converter 16b are converted to HD0 "based on the vertical address V0 'or V1' and the horizontal address H20" or H21 ". , HD1 ", HD2", and HD3 ".
[0024]
At this time, if the storage arrangement is the same as that of the memory read by the address generator # 2, the signals stored in the image reproduction buffer memory 16c have the same arrangement as in the standard state. That is, in the buffer memory for image reproduction 16c, the signals HD0 'and HD1' of the odd lines are arranged such that the signals of the same line are arranged on the same line and are alternately arranged so as to be shifted by one pixel from each other. 'And HD3' have the same standard state storage arrangement as the memory shown in FIG. 2C by arranging the signals of the same line on the same line and alternately so as to shift each other by one pixel. Become.
[0025]
Here, the address generator # 2 (vertical address generator 24 and horizontal address generator 25) and the address generator # 3 (vertical address generator 24 'and horizontal address generator 25') are, for example, blocks shown in FIG. The vertical address generator 24 (24 ') is composed of two series of V0 and V1 counters 31 and a control memory 32, and the horizontal address generator 25 (25') is also composed of two series. It comprises an H0 counter, an H1 counter 33 and a control memory 34, and generates a total of four sets of addresses based on, for example, a horizontal synchronization signal HD for HDTV, a vertical synchronization signal VD, and a clock. The address array is set by accumulating control data in the control memories 32 and 34 and constantly controlling the counters 31 and 33 based on the accumulated data.
[0026]
Returning to FIG. 1, the description will be continued. When one screen of pixel data is stored in the image reproduction buffer memory 16c in the same order as in the standard state as described above, it is provided in the SDI / DVI conversion device 16 as shown in FIG. According to the read vertical address V and the read horizontal addresses H0 'to H3' from the address generator # 4 (the vertical address generator 26 and the horizontal address generator 27), DV0, DV1, DV2, DV3 are read from the image reproduction buffer memory 16c. The pixel data is read out in the array of.
[0027]
In the above arrangement, DV0, DV1, DV2, and DV3 are image signals of 960 × 2160 pixels each obtained by dividing one screen into four in the horizontal direction, and TMDS is used as a DVI signal including four continuous pixel arrays DV0 to DV3. The signal is supplied in parallel to a transmitter (a signal converter for DVI transmission based on the DVI standard) 16d as shown in FIG. 1D, and is output as a DVI signal. The four sets of DVI signals output in parallel are supplied to the display device 12 and displayed as images.
[0028]
As described above, according to the present embodiment, although the signal arrangement of the four sets of SDI signals output from the camera 15 has the same number of pixels as the HDTV standard signal, the pixel arrangement is changed to the HDTV standard signal. Therefore, even if this signal is copied and subjected to the same SDI / DVI conversion as before and displayed, a correct display image cannot be obtained, and thus confidentiality can be secured. On the other hand, in this embodiment, since the SDI / DVI conversion device 16 can output the DVI signal returned to the correct arrangement, the display device 12 can display a normal image.
[0029]
Note that the present invention is not limited to the above embodiment. For example, the array conversion performed by the array conversion device in the camera 15 is performed in the vertical and horizontal directions shown in FIGS. The method is not limited to the method of shifting each pixel, and may be set arbitrarily such as a staggered arrangement, division in only the vertical direction, division in the horizontal direction, and the like. However, it is necessary to set a plurality of sets, each of which is the number of pixels obtained by equally dividing the total number of pixels, and that each pixel does not overlap.
[0030]
When the address generators # 2 and # 3 are set in the same arrangement during actual use, the arrangement of the address generators # 4 does not need to be changed. Therefore, the address generator # 0 and the address generator # 4 are fixed in arrangement, and only the arrangement of the address generators # 2 and # 3 is controlled, so that transmission can be performed without using confidentiality equipment. The signal arrangement at the time can be made highly secure.
[0031]
The address generator # 1 in the standard state is also installed in the array converter on the camera 15 side and the SDI / DVI converter 16 along with the address generators # 2 and # 3. If there is not, it can be switched and used. Further, in addition to supplying the output DVI signal of the TMDS transmitter 16d to the display device 12, the output DVI signal can be recorded on a recording medium, for example, or distributed using another transmission path.
[0032]
【The invention's effect】
As described above, according to the present invention, the number of pixels obtained by equally dividing the total number of pixels in the entire imaging area of the imaging unit does not overlap each other, and differs from the original pixel arrangement order. By converting a plurality of second imaging signals read out and arranged in a predetermined pixel arrangement order into a serial signal and then transmitting the signals in parallel, the number of pixels transmitted is the same as that of the standard signal. However, since the pixel array is transmitted as a pixel array signal other than the standard signal, even if this signal is copied and subjected to pixel conversion, it cannot be returned to a normal pixel array unless a predetermined pixel array conversion is performed. Securing confidentiality and obtaining a high-definition image signal with extremely high confidentiality can be obtained.
[0033]
Further, according to the present invention, the number of pixels of the signal to be transmitted is the same as the conventional standard signal except for the pixel arrangement, so that the array conversion memory can be used in the standard state, and the pixel arrangement is changed to a predetermined order. This eliminates the need for additional installation of confidential equipment such as an encryption device, so that an increase in system cost can be suppressed and specialized handling can be eliminated.
[Brief description of the drawings]
FIG. 1 is a block diagram of an image transmission system according to an embodiment of the present invention and a signal explanatory diagram of each unit.
FIG. 2 is a diagram illustrating an example of a pixel array of an SDI signal output from a camera in FIG. 1;
FIG. 3 is a block diagram of an embodiment of an array conversion device in a camera and an address utterance device in an SDI / DVI conversion device according to the present invention.
FIG. 4 is a block diagram of an example of a conventional image system and a signal explanatory diagram of each unit.
FIG. 5 is a block diagram of an example in a conventional camera and a signal explanatory diagram of each unit.
[Explanation of symbols]
12 Display Device 15 Camera 16 SDI / DVI Converter 16a Serial / Parallel Converter 16b Color Difference Converter 16c Image Playback Buffer Memory 16d TMDS Transmitters 20, 22, 24, 24 ', 26 Vertical Address Generators 21, 23, 25 , 25 ', 27 Horizontal address generator 31 V0 counter / V1 counter 32, 34 Control memory 33 H0 counter / H1 counter

Claims (2)

高精細度テレビ方式の画像よりも多い画素数の撮像領域が複数に分割されており、各分割撮像領域によりそれぞれ被写体光像を光電変換して得られた複数の第1の撮像信号を並列に出力する撮像手段と、
前記撮像手段から出力された複数の第1の撮像信号を同時に記憶した後、前記撮像手段の全体の撮像領域の全画素数を等分割してそれぞれ標準信号と同じ画素数からなり、互いに画素が重ならならず、かつ、元の画素配列順序とは異なる所定の画素配列順序となるように読み出して配列変換をした複数の第2の撮像信号を並列に出力する第1の配列変換手段と、
前記第1の配列変換手段から並列に出力された前記複数の第2の撮像信号を、複数の直列信号に変換する第1の変換手段と、
前記第1の変換手段から出力された前記複数の直列信号を、前記標準信号として同時に並列に伝送する伝送手段と、
前記伝送手段により伝送された前記複数の直列信号の各々を、並列信号に変換する第2の変換手段と、
前記第2の変換手段から出力された前記複数の並列信号を1画面分同時に記憶した後、前記撮像手段の全体の撮像領域を、前記撮像手段の分割撮像領域とは異なる所定方向に複数分割した各分割撮像領域の各画素からなるように読み出して配列変換をした複数の並列信号を出力する第2の配列変換手段と
を有することを特徴とする画像伝送システム。
An imaging region having a larger number of pixels than an image of the high-definition television system is divided into a plurality of regions, and a plurality of first imaging signals obtained by subjecting a subject light image to photoelectric conversion by each divided imaging region are parallelized. Imaging means for outputting;
After simultaneously storing a plurality of first imaging signals output from the imaging unit, the total number of pixels of the entire imaging area of the imaging unit is equally divided to have the same number of pixels as the standard signal. A first array conversion unit that outputs a plurality of second image pickup signals that are not overlapped and are read and converted so as to have a predetermined pixel array order different from the original pixel array order, and
First conversion means for converting the plurality of second imaging signals output in parallel from the first array conversion means into a plurality of serial signals;
Transmitting means for simultaneously transmitting the plurality of serial signals output from the first converting means in parallel as the standard signal,
A second conversion unit that converts each of the plurality of serial signals transmitted by the transmission unit into a parallel signal;
After simultaneously storing the plurality of parallel signals output from the second conversion unit for one screen, the entire imaging region of the imaging unit is divided into a plurality of parts in a predetermined direction different from the divided imaging region of the imaging unit. An image transmission system, comprising: a second array conversion unit that outputs a plurality of parallel signals that are read out from each pixel of each divided imaging region and subjected to array conversion.
前記第1の変換手段から出力された前記複数の標準信号の各々はSDI信号であり、前記第2の配列変換手段から出力される前記複数の並列信号の各々はDVI信号であることを特徴とする請求項1記載の画像伝送システム。Each of the plurality of standard signals output from the first conversion unit is an SDI signal, and each of the plurality of parallel signals output from the second array conversion unit is a DVI signal. The image transmission system according to claim 1.
JP2002244437A 2002-08-26 2002-08-26 Image transmission system Pending JP2004088272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002244437A JP2004088272A (en) 2002-08-26 2002-08-26 Image transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002244437A JP2004088272A (en) 2002-08-26 2002-08-26 Image transmission system

Publications (1)

Publication Number Publication Date
JP2004088272A true JP2004088272A (en) 2004-03-18

Family

ID=32052888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002244437A Pending JP2004088272A (en) 2002-08-26 2002-08-26 Image transmission system

Country Status (1)

Country Link
JP (1) JP2004088272A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066582A1 (en) * 2007-11-22 2009-05-28 Sony Corporation Signal transmission device, signal transmission method, signal reception device, and signal reception method
JP2009147894A (en) * 2007-11-22 2009-07-02 Sony Corp Signal transmission device, and signal transmission method
JP2009284447A (en) * 2008-05-26 2009-12-03 Sony Corp Signal transmitting apparatus and signal transmitting method
JP2009296383A (en) * 2008-06-05 2009-12-17 Sony Corp Signal transmitting device, signal transmitting method, signal receiving device, and signal receiving method
JP2011044826A (en) * 2009-08-19 2011-03-03 Sony Corp Signal transmitter, signal transmission method, signal receiver, signal receiving method, and signal transmission system
WO2013038991A1 (en) * 2011-09-12 2013-03-21 ソニー株式会社 Transmission device, transmission method, reception device, reception method, and reception/transmission system
JP2013055485A (en) * 2011-09-02 2013-03-21 Nec Corp Image signal generation device, image signal generation method and program
WO2013077194A1 (en) * 2011-11-21 2013-05-30 シャープ株式会社 Data output device, data output method, and audio-visual equipment
WO2013094259A1 (en) * 2011-12-20 2013-06-27 シャープ株式会社 Display device
WO2013094258A1 (en) * 2011-12-20 2013-06-27 シャープ株式会社 Video output device, and display device
CN104284205B (en) * 2013-07-10 2018-12-21 索尼公司 Signal handling equipment, signal processing method, program and signal transmission system

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066582A1 (en) * 2007-11-22 2009-05-28 Sony Corporation Signal transmission device, signal transmission method, signal reception device, and signal reception method
JP2009130639A (en) * 2007-11-22 2009-06-11 Sony Corp Signal transmitting device, signal transmitting method, signal receiving device and signal receiving method
JP2009147894A (en) * 2007-11-22 2009-07-02 Sony Corp Signal transmission device, and signal transmission method
US8289445B2 (en) 2007-11-22 2012-10-16 Sony Corporation Signal transmitting device and signal transmitting method
US8421915B2 (en) 2007-11-22 2013-04-16 Sony Corporation HD signal transmitting device, HD signal transmitting method, HD signal receiving device, and signal receiving method using a conventional interface
CN101682739A (en) * 2007-11-22 2010-03-24 索尼株式会社 Signal transmission device, signal transmission method, signal reception device, and signal reception method
JP4557016B2 (en) * 2007-11-22 2010-10-06 ソニー株式会社 Signal transmitter
CN101682739B (en) * 2007-11-22 2013-01-23 索尼株式会社 Signal transmission device, signal transmission method, signal reception device, and signal reception method
JP4645638B2 (en) * 2007-11-22 2011-03-09 ソニー株式会社 Signal transmitting apparatus, signal transmitting method, signal receiving apparatus, and signal receiving method
JP2009284447A (en) * 2008-05-26 2009-12-03 Sony Corp Signal transmitting apparatus and signal transmitting method
US8311093B2 (en) 2008-05-26 2012-11-13 Sony Corporation Signal transmission apparatus and signal transmission method
CN101594540B (en) * 2008-05-26 2011-11-16 索尼株式会社 Signal transmission apparatus and signal transmission method
JP4692576B2 (en) * 2008-05-26 2011-06-01 ソニー株式会社 Signal transmitting apparatus and signal transmitting method
US8238332B2 (en) 2008-06-05 2012-08-07 Sony Corporation Signal transmitting and receiving devices, systems, and method for multiplexing parallel data in a horizontal auxiliary data space
JP4702402B2 (en) * 2008-06-05 2011-06-15 ソニー株式会社 Signal transmitting apparatus, signal transmitting method, signal receiving apparatus, and signal receiving method
JP2009296383A (en) * 2008-06-05 2009-12-17 Sony Corp Signal transmitting device, signal transmitting method, signal receiving device, and signal receiving method
JP2011044826A (en) * 2009-08-19 2011-03-03 Sony Corp Signal transmitter, signal transmission method, signal receiver, signal receiving method, and signal transmission system
JP2013055485A (en) * 2011-09-02 2013-03-21 Nec Corp Image signal generation device, image signal generation method and program
WO2013038991A1 (en) * 2011-09-12 2013-03-21 ソニー株式会社 Transmission device, transmission method, reception device, reception method, and reception/transmission system
JP2013062562A (en) * 2011-09-12 2013-04-04 Sony Corp Transmitter, transmission method, receiver, reception method and transmission/reception system
US10255875B2 (en) 2011-09-12 2019-04-09 Sony Corporation Transmission device, transmission method, reception device, reception method, and transmission/reception system
WO2013077194A1 (en) * 2011-11-21 2013-05-30 シャープ株式会社 Data output device, data output method, and audio-visual equipment
WO2013094259A1 (en) * 2011-12-20 2013-06-27 シャープ株式会社 Display device
WO2013094258A1 (en) * 2011-12-20 2013-06-27 シャープ株式会社 Video output device, and display device
CN104284205B (en) * 2013-07-10 2018-12-21 索尼公司 Signal handling equipment, signal processing method, program and signal transmission system

Similar Documents

Publication Publication Date Title
US10455190B2 (en) Camera system, video processing apparatus, and camera apparatus
CN1697490B (en) Video apparatus and image pickup apparatus
US20080094516A1 (en) Digital image processing method for analog transmission network, and camera apparatus, image processing apparatus and image processing system therefor
JP2004088272A (en) Image transmission system
JP5566048B2 (en) Display device and control method thereof
JP3893441B2 (en) Display device and control method thereof
US7209186B2 (en) Image processing apparatus and image processing method for high speed real-time processing
JP2004221955A (en) High-speed imaging signal recorder
JPH0965374A (en) Three-dimensional picture recording device and three-dimensional picture reproducing device
JP3700488B2 (en) Wide-angle image pickup device
JP4525388B2 (en) Imaging signal recording device
JP4487804B2 (en) Image signal conversion method and image signal conversion apparatus
JP3096562B2 (en) 3D image playback device
WO2004071101A1 (en) 3-dimensional video recording/reproduction device
JP7357734B2 (en) Imaging device and its control method
EP0993190A2 (en) Image data recording and reproducing method, apparatus and medium
KR20000028935A (en) Image data recording method, image data recording apparatus, image data reproducing method, image data reproducing apparatus, information recording medium and computer-readable recording medium
JP2007174097A (en) Video image signal processor
WO2011001483A1 (en) Video signal conversion device and video signal output device
JP2001057654A (en) High sensitivity image pickup device
JP4042106B2 (en) Image signal conversion method
JP3331227B2 (en) Imaging device
JP2006005707A (en) Image transmitting method
JP2003102038A (en) Three-dimensional video image recording method, three- dimensional video image reproducing method, three- dimensional video image recording format, and three- dimensional video image recording medium
JPS63256065A (en) Video processor unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603