JP2004088137A - Small-sized high frequency vibrator - Google Patents

Small-sized high frequency vibrator Download PDF

Info

Publication number
JP2004088137A
JP2004088137A JP2002222395A JP2002222395A JP2004088137A JP 2004088137 A JP2004088137 A JP 2004088137A JP 2002222395 A JP2002222395 A JP 2002222395A JP 2002222395 A JP2002222395 A JP 2002222395A JP 2004088137 A JP2004088137 A JP 2004088137A
Authority
JP
Japan
Prior art keywords
vibration
vibrator
frequency
crystal raw
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002222395A
Other languages
Japanese (ja)
Inventor
Kazunari Takahashi
高橋 一成
Manabu Ishikawa
石川 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2002222395A priority Critical patent/JP2004088137A/en
Publication of JP2004088137A publication Critical patent/JP2004088137A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized high frequency vibrator whereby stable desired principal vibration without production of spurious radiation is produced by the vibrator that makes AT-cut fundamental wave thickness share vibration with a frequency of 100 MHz or over and is integrally formed with a vibration section of a crystal raw thin plate and a reinforcement section made of a crystal raw thick plate surrounding the surrounding part of the vibration section. <P>SOLUTION: An energy confinement coefficient of the vibrator is selected to be 3.5 or over and a length of a vibration plane is selected to be a multiple of 1.4 to 2.0 with respect to a length of an electrode plane to attain the purpose above in the vibrator that makes the AT-cut fundamental wave thickness share vibration with a frequency of 100 MHz or over and is integrally formed with the vibration section of the crystal raw thin plate and the reinforcement section made of the crystal raw thick plate surrounding the surrounding part of the vibration section. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は水晶デバイスに属し主として通信分野の伝送系装置に使用される水晶発振器に用いられる100MHz以上のATカットの基本波厚み滑り振動をする小型高周波振動子に関する。
【0002】
【従来の技術】
従来の水晶素板薄板の振動部とその周囲を囲う水晶素板厚板の補強部とが一体と成った形状をした周波数 100MHz以上のATカットの基本波厚み滑り振動をする振動子においては、不要なスプリアス振動の発生回避の為に電極面の大きさに対して例えば図5のように振動面の大きさを出き得る限り大きくとる形状とすることが一般的であった。
【0003】
一方最近の傾向では通信分野の伝送系装置等を中核としてその搭載部品の非常に急激な市場からの小型化や低背化、加えて軽量化や低価格化の要求がある。
【0004】
【発明が解決しようとする課題】
しかしながら、前述の振動子の振動部が薄板状であることから振動子の振動部の周囲の僅かな機械的な歪みの影響も受けやすく、その機械的な歪みは振動部の薄板の厚みを変化させてその結果、主振動以外の多数の不要なスプリアス振動の発生を招く問題があった。
【0005】
また、この薄板状の振動部に加わる機械的な歪みの影響を避けるために、従来は薄板状の振動部を振動子の支持部分から少なくとも1mm以上の間隔を持たせる必要があり、このことが振動子素板全体の大きさの小型化を著しく制限するという問題があった。
【0006】
本発明は、以上のような技術的背景のもとでなされたものであり、従がってその目的は、水晶素板薄板の振動部とその周囲を囲う水晶素板厚板の補強部とが一体と成った形状をした周波数 100MHz以上のATカットの基本波厚み滑り振動をする振動子において、スプリアスの発生のない安定した所望の主振動が得られる小型高周波振動子を提供することである。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本発明は水晶素板薄板の振動部とその周囲を囲う水晶素板厚板の補強部とが一体に成った周波数 100MHz以上のATカットの基本波厚み滑り振動をする振動子において、振動子のエネルギー閉じ込め係数を3.5以上とし、かつ前記の振動子の電極面長に対して振動面長を1.4倍から2.0倍とすることを特徴とする。
【0008】
【発明の実施の形態】
以下に図面を参照しながら本発明の実施の一形態について説明する。
なお、各図においての同一の符号は同じ対象を示すものとする。
【0009】
図1は本発明である小型高周波振動子の概略の断面図である。図1にあるようにこの振動子3の振動面6は水晶のX軸もしくはZ’軸に平行でかつY’軸に対して垂直な方向となっている。また図1においては振動周波数を外部に出力する接続電極7が示されている。
【0010】
図2はZ’軸方向からみた本発明である小型高周波振動子の概略の断面図である。図2においては、振動面電極8のみが図示されており振動周波数を外部に出力する接続電極7は省略されている。
【0011】
図3はX軸方向からみた本発明である小型高周波振動子の概略の断面図である。図3においては振動面電極8のみが図示されており振動周波数を外部に出力する接続電極7は省略されている。
【0012】
図5は従来の小型高周波振動子の概略断面図である。図5においては、振動面電極9のみが図示されており振動周波数を外部に出力する接続電極7は省略されている。図5にあるように従来の100MHz以上の基本波厚み滑り振動においては電極面長4に対して振動面長5を大きくとることにより振動面6が水晶素板11 の端面12からの影響をうけてスプリアスが発生することを回避していた。
図6は従来における小型高周波振動子の概略の斜視図である。なお図6においてX軸とZ’軸は、図5と同じように相互に入れ替わっても構うものではない。
【0013】
従来からエネルギー閉じ込め係数の式として以下の式が知られている。
エネルギー閉じ込め係数= ( Δ /2  )× ( L/H )
ここでΔはプレートバック量、 Lは振動子の電極面長4、Hは水晶素板11の振動部の厚みである。
ここでプレートバック量は水晶素板の周波数の変化量であり、従ってこのプレートバック量は以下のように示される。
プレートバック量 Δ=(水晶素板の厚みで決まる周波数−水晶素板に振動子の電極を付けたときの周波数)/水晶素板の厚みで決まる周波数
【0014】
図4は本発明における振動モードの規格化変位分布を示した図である。図4において実線は主振動モード(S0)、点線は高調波モード(S1)を示す。この図4より振動面長5が電極面長4の1.4倍以上で主振動モード(S0)の規格化変位が0.1以下と成り振動面長が2.0倍においては主振動モード(S0)だけでなく3次の高調波モード(S1)についても規格化変位がほぼ零と成ることが判る。
【0015】
発明者はエネルギー閉じ込め効果により、図4に示すような、前述のエネルギー閉じ込め係数が3.5以上において振動子の電極面長4に対して振動面長5を1.4倍から2.0倍としたとき主振動及び図4中にある主振動だけでなく4次までの高次の高調波モードの振動変位が十分に減衰し、その結果振動面長5を小さくしても不要なスプリアスの発生の回避が出来、振動面6の端面12からの影響を非常に小さく出来ることを見出し本発明を創出するに至った。
【発明の効果】
【0016】
本発明によれば、周波数が100MHz以上の振動面長を小さくした、すなわち小型の高周波振動子を得ることが出来る。
【0017】
また本発明によれば、振動面の端面の影響による不要なスプリアスの発生を無くし、その結果著しく振動子の歩留まりを向上し、その製造コストを低減することが出来る。
【図面の簡単な説明】
【図1】本発明である小型高周波振動子の概略の断面図である。
【図2】本発明であるZ’軸方向からみた小型高周波振動子の概略の断面図である。
【図3】本発明であるX軸方向からみた小型高周波振動子の概略の断面図である。
【図4】本発明における閉じ込め係数が3.5のときの振動モードの規格化変位分布の図である。
【図5】従来の小型高周波振動子の概略断面図である。
【図6】従来の小型高周波振動子の概略の斜視図である。
【符号の説明】
1 水晶素板薄板の振動部
2 水晶素板厚板の補強部
3 振動子
4 電極面長
5 振動面長
6 振動面
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a small high-frequency vibrator that belongs to a crystal device and mainly performs an AT-cut fundamental-wave thickness-slip vibration of 100 MHz or more and is used for a crystal oscillator mainly used in a transmission system device in the communication field.
[0002]
[Prior art]
In the case of a vibrator that performs an AT-cut fundamental wave thickness-slip vibration with a frequency of 100 MHz or more, in which a vibrating portion of a conventional quartz thin plate and a reinforcing portion of a thick quartz plate surrounding the periphery are integrally formed, In order to avoid the generation of unnecessary spurious vibrations, it is common to adopt a shape in which the size of the vibrating surface is made as large as possible, as shown in FIG. 5, for example, as shown in FIG.
[0003]
On the other hand, in recent trends, there has been a demand for a reduction in size and height as well as a reduction in weight and a reduction in price from a very rapid market for components mounted on a transmission system device in the communication field as a core.
[0004]
[Problems to be solved by the invention]
However, since the vibrating part of the vibrator is a thin plate, it is easily affected by slight mechanical distortion around the vibrating part of the vibrator, and the mechanical distortion changes the thickness of the thin plate of the vibrating part. As a result, there has been a problem that many unnecessary spurious vibrations other than the main vibration are generated.
[0005]
In addition, in order to avoid the influence of mechanical strain applied to the thin plate-shaped vibrating portion, conventionally, the thin plate-shaped vibrating portion needs to have a distance of at least 1 mm or more from the supporting portion of the vibrator. There is a problem that the size reduction of the whole vibrator element plate is significantly restricted.
[0006]
The present invention has been made under the above-mentioned technical background, and accordingly, the object thereof is to provide a vibrating portion of a thin quartz plate and a reinforcing portion of a thick quartz plate surrounding the vibrating portion. An object of the present invention is to provide a small-sized high-frequency vibrator capable of obtaining a stable desired main vibration without generation of spurious in a vibrator having an AT-cut fundamental wave thickness-slip vibration having a frequency of 100 MHz or more and having an integrated shape. .
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an AT-cut fundamental wave thickness-slip vibration having a frequency of 100 MHz or more, in which a vibrating portion of a thin quartz plate and a reinforcing portion of a thick quartz plate surrounding the vibrating portion are integrated. Wherein the energy confinement coefficient of the vibrator is 3.5 or more, and the vibrating surface length is 1.4 to 2.0 times the electrode surface length of the vibrator. I do.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
Note that the same reference numerals in each drawing indicate the same objects.
[0009]
FIG. 1 is a schematic sectional view of a small high-frequency vibrator according to the present invention. As shown in FIG. 1, the vibrating surface 6 of the vibrator 3 is in a direction parallel to the X axis or Z ′ axis of the crystal and perpendicular to the Y ′ axis. FIG. 1 shows a connection electrode 7 for outputting a vibration frequency to the outside.
[0010]
FIG. 2 is a schematic cross-sectional view of the small high-frequency vibrator according to the present invention as viewed from the Z′-axis direction. In FIG. 2, only the vibration surface electrode 8 is shown, and the connection electrode 7 for outputting the vibration frequency to the outside is omitted.
[0011]
FIG. 3 is a schematic sectional view of the small high-frequency vibrator according to the present invention as viewed from the X-axis direction. In FIG. 3, only the vibration surface electrode 8 is shown, and the connection electrode 7 for outputting the vibration frequency to the outside is omitted.
[0012]
FIG. 5 is a schematic sectional view of a conventional small high-frequency vibrator. In FIG. 5, only the vibration surface electrode 9 is shown, and the connection electrode 7 for outputting the vibration frequency to the outside is omitted. As shown in FIG. 5, in the conventional fundamental thickness-shear vibration of 100 MHz or more, the vibrating surface 6 is affected by the end surface 12 of the quartz crystal plate 11 by making the vibrating surface length 5 larger than the electrode surface length 4. This prevents spurious emissions.
FIG. 6 is a schematic perspective view of a conventional small high-frequency vibrator. Note that, in FIG. 6, the X axis and the Z ′ axis may be interchanged as in FIG.
[0013]
Conventionally, the following equation is known as an equation of the energy confinement coefficient.
Energy confinement factor = (Δ 1/2   ) ×   (L / H)
Here, Δ is the plate back amount, L is the electrode surface length 4 of the vibrator, and H is the thickness of the vibrating portion of the quartz crystal plate 11.
Here, the plate back amount is a change amount of the frequency of the quartz crystal plate, and therefore, the plate back amount is expressed as follows.
Amount of plate back Δ = (frequency determined by quartz plate thickness−frequency when vibrator electrode is attached to quartz plate) / frequency determined by quartz plate thickness
FIG. 4 is a diagram showing a normalized displacement distribution of the vibration mode in the present invention. In FIG. 4, the solid line indicates the main vibration mode (S0), and the dotted line indicates the harmonic mode (S1). As shown in FIG. 4, when the vibration surface length 5 is 1.4 times or more the electrode surface length 4 and the normalized displacement of the main vibration mode (S0) is 0.1 or less, and when the vibration surface length is 2.0 times, the main vibration mode It can be seen that the normalized displacement becomes substantially zero not only for (S0) but also for the third harmonic mode (S1).
[0015]
According to the energy confinement effect, the inventor increased the vibration surface length 5 from 1.4 to 2.0 times the electrode surface length 4 of the vibrator when the above-described energy confinement coefficient was 3.5 or more as shown in FIG. In this case, not only the main vibration and the main vibration shown in FIG. 4 but also the vibration displacement of the higher harmonic modes up to the fourth order are sufficiently attenuated. As a result, even if the vibration surface length 5 is reduced, unnecessary spurious It has been found that generation can be avoided and the influence of the end face 12 of the vibrating surface 6 can be made very small, and the present invention has been created.
【The invention's effect】
[0016]
According to the present invention, it is possible to obtain a small-sized high-frequency vibrator having a reduced vibration surface length having a frequency of 100 MHz or more.
[0017]
Further, according to the present invention, unnecessary spurious generation due to the influence of the end face of the vibrating surface is eliminated, and as a result, the yield of the vibrator is remarkably improved, and the manufacturing cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a small high-frequency vibrator according to the present invention.
FIG. 2 is a schematic cross-sectional view of a small high-frequency vibrator viewed from a Z′-axis direction according to the present invention.
FIG. 3 is a schematic cross-sectional view of a small high-frequency vibrator viewed from the X-axis direction according to the present invention.
FIG. 4 is a diagram showing a normalized displacement distribution of a vibration mode when the confinement coefficient is 3.5 in the present invention.
FIG. 5 is a schematic sectional view of a conventional small high-frequency vibrator.
FIG. 6 is a schematic perspective view of a conventional small high-frequency vibrator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vibration part of thin quartz plate 2 Reinforcement part of thick quartz plate 3 Vibrator 4 Electrode surface length 5 Vibration surface length 6 Vibration surface

Claims (1)

水晶素板薄板の振動部とその周囲を囲う水晶素板厚板の補強部とが一体に成った周波数 100MHz以上のATカットの基本波厚み滑り振動をする振動子において、振動子のエネルギー閉じ込め係数が3.5以上で、かつ該振動子の電極面長に対して振動面長を1.4倍から2.0倍とすることを特徴とする小型高周波振動子。Energy confinement coefficient of vibrator for AT-cut fundamental wave thickness-slip vibration with frequency 100MHz or more, in which vibrating part of thin quartz plate and reinforcing part of thick quartz plate surrounding it are integrated Is 3.5 or more, and the vibrating surface length is 1.4 to 2.0 times the electrode surface length of the vibrator.
JP2002222395A 2002-06-27 2002-07-31 Small-sized high frequency vibrator Pending JP2004088137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002222395A JP2004088137A (en) 2002-06-27 2002-07-31 Small-sized high frequency vibrator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002188080 2002-06-27
JP2002222395A JP2004088137A (en) 2002-06-27 2002-07-31 Small-sized high frequency vibrator

Publications (1)

Publication Number Publication Date
JP2004088137A true JP2004088137A (en) 2004-03-18

Family

ID=32071725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002222395A Pending JP2004088137A (en) 2002-06-27 2002-07-31 Small-sized high frequency vibrator

Country Status (1)

Country Link
JP (1) JP2004088137A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010187307A (en) * 2009-02-13 2010-08-26 Seiko Instruments Inc At cut quartz resonator and manufacturing method thereof
JP2013207337A (en) * 2012-03-27 2013-10-07 Seiko Epson Corp Vibration element, vibrator, electronic device, and electronic apparatus
CN103368519A (en) * 2012-03-27 2013-10-23 精工爱普生株式会社 Resonator element, resonator, electronic device, electronic apparatus, and mobile object
JP2014154994A (en) * 2013-02-07 2014-08-25 Seiko Epson Corp Vibration element, vibrator, electronic device, electronic apparatus, and mobile

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010187307A (en) * 2009-02-13 2010-08-26 Seiko Instruments Inc At cut quartz resonator and manufacturing method thereof
JP2013207337A (en) * 2012-03-27 2013-10-07 Seiko Epson Corp Vibration element, vibrator, electronic device, and electronic apparatus
CN103368519A (en) * 2012-03-27 2013-10-23 精工爱普生株式会社 Resonator element, resonator, electronic device, electronic apparatus, and mobile object
CN103368519B (en) * 2012-03-27 2017-06-23 精工爱普生株式会社 Vibrating elements, oscillator, electronic device, electronic equipment and moving body
JP2014154994A (en) * 2013-02-07 2014-08-25 Seiko Epson Corp Vibration element, vibrator, electronic device, electronic apparatus, and mobile

Similar Documents

Publication Publication Date Title
JP4341583B2 (en) Mesa crystal unit
JP4341671B2 (en) Mesa crystal unit
JP5625432B2 (en) Piezoelectric vibration element and piezoelectric vibrator
EP0680142A1 (en) Piezoelectric resonators for overtone oscillations
JP2010098531A (en) Piezoelectric vibration piece and piezoelectric device
JP2004088137A (en) Small-sized high frequency vibrator
JP2008022378A (en) Crystal vibration piece and method of manufacturing same
JP2003087087A (en) Crystal transducer
JP2010187307A (en) At cut quartz resonator and manufacturing method thereof
JPH031710A (en) Piezoelectric vibration
JP2009232447A (en) At cut crystal vibrator and method for manufacturing the same
JP2009089441A (en) Piezoelectric vibrating element, piezoelectric vibrator, and piezoelectric oscillator
JP2004096163A (en) Crystal oscillator
JPH09139651A (en) Crystal oscillator for overtone
JP2002190717A (en) High frequency piezoelectric device
JP2004207913A (en) Crystal vibrator
JP2640936B2 (en) Piezoelectric resonator for overtone oscillation using higher-order mode vibration
JP2003273703A (en) Quartz vibrator and its manufacturing method
JP2001326554A (en) Piezoelectric vibrator
JPH0888536A (en) Overtone rectangular crystal oscillator
JP2004179879A (en) Piezoelectric substrate, piezoelectric vibration element, piezoelectric vibrator, and piezoelectric oscillator
JP4049368B2 (en) Small high frequency vibrator
JP2004304448A (en) Crystal diaphragm
JP2008228195A (en) Contour-shear vibrating chip, contour-shear vibration device and method of manufacturing the contour-shear vibrating chip
JPH0515528U (en) AT-cut overtone crystal unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050720

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20071116

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20071121

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507