JP2008022378A - Crystal vibration piece and method of manufacturing same - Google Patents

Crystal vibration piece and method of manufacturing same Download PDF

Info

Publication number
JP2008022378A
JP2008022378A JP2006193279A JP2006193279A JP2008022378A JP 2008022378 A JP2008022378 A JP 2008022378A JP 2006193279 A JP2006193279 A JP 2006193279A JP 2006193279 A JP2006193279 A JP 2006193279A JP 2008022378 A JP2008022378 A JP 2008022378A
Authority
JP
Japan
Prior art keywords
excitation
crystal
electrode
quartz
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006193279A
Other languages
Japanese (ja)
Inventor
Shigeru Shiraishi
茂 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2006193279A priority Critical patent/JP2008022378A/en
Publication of JP2008022378A publication Critical patent/JP2008022378A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inverted mesa type crystal vibration piece and a method of manufacturing the same that can suitably be made practical by suppressing a leak of vibration from an excitation part to increase an energy confinement effect and make a CI value small, securing mechanical strength, and improving shock resistance. <P>SOLUTION: The crystal vibration piece 21 has: a crystal element piece comprising a thin excitation part 22, a thick reinforced frame 23 disposed across a through groove 24, and support parts 25 and 26 which are formed on the same plane as the excitation part with the same thickness and couple the excitation part and the reinforced frame together in one body; excitation electrodes 27a and 27b provided on top and reverse surfaces of the excitation part; connection electrodes 28 and 29 provided at the reinforced frame; and lead-out electrodes 30 and 31 which connect the respective excitation electrodes to the corresponding connection electrodes. The support parts are heated at a temperature higher than the αβ transition point of a crystal by irradiating metal thin films formed on their surfaces with laser light to form a twin crystal. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、薄肉の振動部に励振電極を形成した所謂逆メサ型の水晶振動片及びその製造方法に関する。   The present invention relates to a so-called inverted mesa type crystal vibrating piece in which an excitation electrode is formed on a thin vibrating part and a manufacturing method thereof.

最近、携帯電話等の情報通信機器の分野では、情報伝送の大容量化及び高速化に対応して、振動子、共振子、発振器等の圧電デバイスの高周波化が要求されている。特に厚みすべり振動モードの圧電振動子は、高周波化を図るために、圧電振動片の励振部の厚さを薄くする必要がある。そこで、高周波化を実現しつつ機械的強度を向上させるために、圧電振動片を薄肉の励振部とその周囲に厚肉の補強枠とを一体化した構造からなる逆メサ型の圧電振動子が良く知られている。更に、薄肉の励振部と補強枠との間にスリットまたは溝を形成して、補強枠から励振部に外力が伝わりにくくし、信頼性を高めた水晶振動子が提案されている(例えば、特許文献1,2を参照)。   Recently, in the field of information communication equipment such as mobile phones, piezoelectric devices such as vibrators, resonators, and oscillators have been required to have higher frequencies in response to an increase in capacity and speed of information transmission. In particular, in the thickness-shear vibration mode piezoelectric vibrator, it is necessary to reduce the thickness of the excitation portion of the piezoelectric vibrating piece in order to increase the frequency. Therefore, in order to improve mechanical strength while realizing high frequency, an inverted mesa type piezoelectric vibrator having a structure in which a piezoelectric vibrating piece is integrated with a thin excitation part and a thick reinforcing frame around it is provided. Well known. Furthermore, a crystal resonator has been proposed in which a slit or groove is formed between the thin-walled excitation portion and the reinforcement frame to make it difficult for external force to be transmitted from the reinforcement frame to the excitation portion (for example, patents). References 1 and 2).

図4(A)(B)は、このような逆メサ型水晶振動片の典型例を示している。この水晶振動片1は、厚みすべり振動モードの水晶振動子に多用されているATカットの矩形水晶薄板である。水晶振動片1は、中央に矩形薄肉の励振部2と、その周囲に矩形厚肉の補強枠部3とを有する水晶素子片からなる。励振部2と補強枠部3とは、所定幅の貫通溝4により分離され、かつ該励振部の長手方向両側辺の中央付近で支持部5,6により一体に結合されている。励振部2には、表裏主面には1対の励振電極7a、7bが形成され、補強枠部3には、一方の長手方向端部に左右1対の接続電極8、9が形成されている。前記各励振電極は、それぞれ支持部5,6から補強枠部3に引き出された引出電極10,11を介して、対応する接続電極8、9と電気的に接続されている。   4A and 4B show typical examples of such an inverted mesa type crystal vibrating piece. The crystal resonator element 1 is an AT-cut rectangular crystal thin plate that is frequently used for a thickness-shear vibration mode crystal resonator. The quartz crystal resonator element 1 is composed of a quartz element piece having a rectangular thin excitation portion 2 in the center and a rectangular thick reinforcement frame portion 3 around the excitation portion 2. The excitation portion 2 and the reinforcing frame portion 3 are separated by a through groove 4 having a predetermined width, and are integrally coupled by support portions 5 and 6 in the vicinity of the center of both longitudinal sides of the excitation portion. The excitation portion 2 has a pair of excitation electrodes 7a and 7b formed on the front and back main surfaces, and the reinforcing frame portion 3 has a pair of left and right connection electrodes 8 and 9 formed on one longitudinal end. Yes. Each of the excitation electrodes is electrically connected to the corresponding connection electrodes 8 and 9 via the extraction electrodes 10 and 11 extracted from the support portions 5 and 6 to the reinforcing frame portion 3, respectively.

この典型例の逆メサ型水晶振動片1は、支持部5,6が励振部2と同一平面をなしかつ同じ厚さを有する。そのため、図4(B)上部に示す振動分布から分かるように、励振部2の振動が支持部5,6から補強枠部3に漏れ、その結果CI値が大きくなるという問題を生じる。そこで、図5(A)(B)に示すように、各支持部5,6を、それと励振部2及び補強枠部3との間に段差5a,5b,6a,6bを設けて薄肉化した逆メサ型水晶振動片が提案されている(例えば、特許文献1を参照)。これにより、図5(B)上部の振動分布に示すように、支持部5,6から補強枠部3への振動の漏れが大幅に低減し、CI特性を劣化させないエネルギ閉じ込め効果が得られる。   In the inverted mesa crystal vibrating piece 1 of this typical example, the support portions 5 and 6 are flush with the excitation portion 2 and have the same thickness. Therefore, as can be seen from the vibration distribution shown in the upper part of FIG. 4B, the vibration of the excitation part 2 leaks from the support parts 5 and 6 to the reinforcing frame part 3, resulting in a problem that the CI value increases. Therefore, as shown in FIGS. 5A and 5B, each of the support portions 5 and 6 is thinned by providing steps 5a, 5b, 6a, and 6b between the support portions 5 and the excitation portion 2 and the reinforcing frame portion 3. An inverted mesa type crystal vibrating piece has been proposed (see, for example, Patent Document 1). Thereby, as shown in the vibration distribution in the upper part of FIG. 5B, the leakage of vibration from the support parts 5 and 6 to the reinforcing frame part 3 is greatly reduced, and an energy confinement effect that does not deteriorate the CI characteristics can be obtained.

また、水晶平板に逆メサ部を設けかつその両面に励振電極を形成するとともに、励振電極を形成した部分の周辺部に双晶部を形成した逆メサ型水晶振動片が提案されている(例えば、特許文献3を参照)。特許文献3によれば、水晶が双晶化すると共振周波数が高くなるので、水晶を薄肉化した場合と同様の効果が得られ、水晶振動片の強度を確保しつつ、エネルギ閉じ込め効果を得ることができる。   In addition, a reverse mesa type quartz vibrating piece has been proposed in which inverted mesa portions are provided on a quartz plate and excitation electrodes are formed on both sides thereof, and twin portions are formed around the excitation electrode portions (for example, , See Patent Document 3). According to Patent Document 3, since the resonance frequency increases when the crystal is twinned, the same effect as when the crystal is thinned is obtained, and the energy confinement effect is obtained while ensuring the strength of the crystal vibrating piece. Can do.

水晶の双晶化は、水晶をそのαβ転移点以上の温度に加熱して、水晶の電気軸即ちX軸を反転させることにより可能である。特に、水晶振動子において微細な部分を双晶化したり素子の微細化に対応するためには、レーザ光の照射による加熱方法が、制御性に優れ、極めて局所的に加熱できることから有利なことが知られている(例えば、特許文献4、非特許文献1,2を参照)。   Quartz twinning is possible by heating the quartz to a temperature above its αβ transition point and reversing the electrical axis of the quartz, ie the X axis. In particular, in order to cope with the twinning of fine portions and the miniaturization of elements in a quartz resonator, the heating method by laser light irradiation is advantageous because it has excellent controllability and can be heated extremely locally. It is known (see, for example, Patent Document 4 and Non-Patent Documents 1 and 2).

また、ATカット水晶板のX軸を反転させた場合、X軸の反転領域におけるカットオフ周波数は非反転領域よりも1.47倍高い周波数になることが報告されている(例えば、非特許文献2を参照)。そのため、X軸の反転領域では振動が大幅に減衰される。非特許文献2では、X軸の反転領域を隣接する振動子間の分離壁として利用し、弾性結合が起こらないことを実験的に検証している。   Further, when the X axis of the AT-cut quartz plate is inverted, it has been reported that the cutoff frequency in the X axis inversion region is 1.47 times higher than that in the non-inversion region (for example, non-patent document). 2). Therefore, the vibration is greatly attenuated in the inversion region of the X axis. In Non-Patent Document 2, the inversion region of the X axis is used as a separation wall between adjacent vibrators to experimentally verify that elastic coupling does not occur.

野毛悟,宇野武彦、「レーザ光照射を用いた人工双晶形成法」、第19回超音波エレクトロニクスの基礎と応用に関するシンポジウム講演予稿集、平成10年11月、Vol.19、p.187−188Satoru Noge, Takehiko Uno, “Artificial Twin Formation Using Laser Light Irradiation”, Proceedings of the 19th Symposium on Basics and Applications of Ultrasonic Electronics, November 1998, Vol. 19, p. 187-188 野毛悟、「水晶振動子の集積化技術とセンサシステムへの応用に関する研究」、東京都立大学大学院工学研究科,学位論文公聴会、平成16年12月3日Satoru Noge, “Research on crystal resonator integration technology and its application to sensor systems”, Graduate School of Engineering, Tokyo Metropolitan University, Public Dissertation Thesis, December 3, 2004 特開昭61−189715号公報JP-A 61-189715 特開平10−32456号公報JP-A-10-32456 特開2004−48717号公報JP 2004-48717 A 特開平11−346136号公報Japanese Patent Laid-Open No. 11-346136

しかしながら、特許文献1に記載の逆メサ型水晶振動片のように、励振部と補強枠部とを結合する支持部を薄肉化した場合、機械的強度が低下するという問題が生じる。十分に振動の漏れを抑制するためには、支持部を相当薄くしなければならず、特に落下等に対する耐衝撃性が低下するので、実用化する際に大きな障害となる。   However, when the support part which couple | bonds an excitation part and a reinforcement frame part is made thin like the reverse mesa type | mold crystal vibrating piece of patent document 1, the problem that mechanical strength falls arises. In order to sufficiently suppress the leakage of vibration, the support portion must be made very thin, and particularly the impact resistance against dropping or the like is lowered, which becomes a great obstacle when put to practical use.

また、特許文献4に記載の逆メサ型水晶振動片のように、励振電極形成部分の周囲に双晶部を形成する場合、レーザ光照射による加熱処理の場合でも、処理領域を高精度に制御することが困難である。しかも、励振電極形成部分がその全周に亘ってレーザ光照射領域と隣接しているため、レーザ光の高温が励振電極形成部分の水晶に作用して振動特性に悪影響を及ぼす虞がある。   Further, as in the case of the inverted mesa type crystal vibrating piece described in Patent Document 4, when the twin portion is formed around the excitation electrode forming portion, the processing region is controlled with high accuracy even in the case of the heat treatment by laser light irradiation. Difficult to do. In addition, since the excitation electrode forming portion is adjacent to the laser light irradiation region over the entire circumference, there is a possibility that the high temperature of the laser light acts on the quartz crystal in the excitation electrode forming portion and adversely affects the vibration characteristics.

そこで本発明は、上述した従来の問題点に鑑みてなされたものであり、その目的は、薄肉励振部と厚肉補強部とを支持部で一体に結合した逆メサ型水晶振動片において、励振部から補強枠部への振動の漏れを有効に抑制し、エネルギ閉じ込め効果を高めて振動特性の安定性を図り、CI値を小さくして高性能化を実現すると共に、その機械的強度を確保して、落下等に対する耐衝撃性を向上させ、実用化を図ることにある。   Accordingly, the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide an excitation in an inverted mesa type crystal vibrating piece in which a thin-walled excitation part and a thick-walled reinforcement part are integrally coupled by a support part. Effectively suppresses leakage of vibration from the part to the reinforcement frame, enhances the energy confinement effect, stabilizes the vibration characteristics, reduces the CI value, achieves high performance, and secures its mechanical strength Thus, the impact resistance against dropping or the like is improved to be put to practical use.

更に本発明の目的は、かかる水晶振動片を高精度にかつ容易に、その振動特性に影響を与えることなく安定して製造し得る実用的な方法を提供することにある。   It is another object of the present invention to provide a practical method capable of manufacturing such a quartz crystal vibrating piece with high accuracy and stability without affecting its vibration characteristics.

本発明によれば、上記目的を達成するために、薄肉の励振部、その周囲に貫通溝を挟んで配置した厚肉の補強枠部、及び貫通溝において前記励振部と同一平面及び同一厚さに形成されて励振部と補強枠部とを一体に結合する支持部からなる水晶素子片と、励振部の表裏各面に設けられた励振電極と、補強枠部に設けられた接続電極と、励振電極を接続電極と接続するために補強枠部及び支持部に設けられた引出電極とを有し、支持部が双晶化された水晶振動片が提供される。   According to the present invention, in order to achieve the above object, a thin excitation part, a thick reinforcing frame part arranged with a through groove around it, and a through groove with the same plane and the same thickness as the excitation part A crystal element piece formed of a support part integrally connecting the excitation part and the reinforcement frame part, excitation electrodes provided on the front and back surfaces of the excitation part, connection electrodes provided on the reinforcement frame part, In order to connect the excitation electrode to the connection electrode, there is provided a quartz crystal vibrating piece having a reinforcing frame portion and an extraction electrode provided on the support portion, the support portion being twinned.

このように励振部と同一厚さの支持部を双晶化することにより、その機械的強度を確保しつつ、支持部における振動の減衰作用により、補強枠部への振動の漏れを有効に抑制することができる。従って、CI値を小さくし、かつエネルギ閉じ込め効果を高めることができ、高性能かつ高安定性の逆メサ型水晶振動片を実用化することができる。   In this way, by twining the support part with the same thickness as the excitation part, vibration leakage to the reinforcement frame part is effectively suppressed by damping the vibration in the support part while ensuring its mechanical strength. can do. Therefore, the CI value can be reduced and the energy confinement effect can be enhanced, and a high-performance and high-stability inverted mesa crystal resonator element can be put to practical use.

或る実施例では、水晶素子片がATカット水晶薄板により形成される。従来技術に関連して上述したように、双晶化したATカット水晶は1.47倍も高い周波数が得られるので、支持部において振動を大幅に減衰させることができ、優れたエネルギ閉じ込め効果が得られる。   In one embodiment, the quartz element piece is formed of an AT-cut quartz sheet. As described above in relation to the prior art, a twinned AT-cut quartz can obtain a frequency as high as 1.47 times, so that vibrations can be greatly damped in the support portion, and an excellent energy confinement effect can be obtained. can get.

本発明の別の側面によれば、上述した本発明の水晶振動片を形成するために、水晶ウエハを励振部の厚さにハーフエッチングして励振部、貫通溝及び支持部の形状に対応する薄肉部を形成する工程と、薄肉部をエッチングして貫通溝を形成しかつ補強枠部、励振部及び支持部を画定する工程と、支持部を加熱して双晶化する工程と、補強枠部、励振部及び支持部に励振電極、接続電極及び引出電極をパターニングする工程とを有する水晶振動片の製造方法が提供される。   According to another aspect of the present invention, in order to form the quartz crystal resonator element of the present invention described above, the quartz wafer is half-etched to the thickness of the excitation unit to correspond to the shapes of the excitation unit, the through groove, and the support unit. A step of forming a thin portion, a step of etching through the thin portion to form a through groove and defining a reinforcing frame portion, an excitation portion and a supporting portion, a step of heating the supporting portion to form a twinning, and a reinforcing frame And a step of patterning the excitation electrode, the connection electrode, and the extraction electrode on the excitation portion, the excitation portion, and the support portion.

このように従来の製造工程をそのまま利用して、加熱による支持部の双晶化工程を加えるだけで、容易にかつ低コストで本発明の水晶振動片を製造することができる。   In this way, the quartz crystal resonator element of the present invention can be manufactured easily and at low cost by simply using the conventional manufacturing process as it is and adding the twinning process of the support portion by heating.

或る実施例では、支持部の双晶化が、該支持部の表面に金属薄膜を形成し、該金属薄膜にレーザ光を照射して、支持部のみを選択的に水晶のαβ転移点以上の温度に加熱することにより行われる。レーザ光照射による加熱は、もとより制御が容易であることに加え、励振部と補強枠部とが貫通溝により物理的に分離されているので、支持部のみを所望の温度に加熱するように制御することが非常に容易である。   In one embodiment, the twinning of the support part is performed by forming a metal thin film on the surface of the support part, irradiating the metal thin film with a laser beam, and selectively supporting only the support part above the αβ transition point of the crystal. It is carried out by heating to a temperature of Heating by laser light irradiation is easy to control as well as the excitation part and the reinforcing frame part are physically separated by the through groove, so that only the support part is heated to the desired temperature. It is very easy to do.

この場合、或る実施例では、貫通溝の形成が、薄肉部の形成後に、水晶ウエハの表面に金属材料の耐蝕膜を形成し、該耐蝕膜をフォトエッチングによりパターニングして、貫通溝を形成しようとする水晶ウエハ表面を露出させ、該水晶ウエハ露出面をエッチングすることにより行われ、貫通溝の形成後に、支持部の表面に形成した耐蝕膜の部分を残存させることにより、支持部を双晶化するための金属薄膜を形成する。従来の製造工程において形成される耐蝕膜をそのまま利用するので、追加の成膜工程が不要であり、低コストでかつ効率良く支持部の双晶化を行うことができる。   In this case, in one embodiment, the through groove is formed by forming a corrosion resistant film of a metal material on the surface of the quartz wafer after forming the thin portion, and patterning the corrosion resistant film by photoetching to form the through groove. The surface of the crystal wafer to be exposed is exposed, and the exposed surface of the crystal wafer is etched. After the through groove is formed, the portion of the anticorrosion film formed on the surface of the support portion is left, so that the support portion is doubled. A metal thin film for crystallization is formed. Since the corrosion-resistant film formed in the conventional manufacturing process is used as it is, an additional film-forming process is unnecessary, and the support portion can be twinned efficiently at low cost.

別の実施例では、励振電極、接続電極及び引出電極のパターニングが、貫通溝の形成後に、水晶ウエハの表面に電極膜を形成し、該電極膜をフォトエッチングすることにより行われ、この電極膜をフォトエッチングする際に、支持部の表面に形成した電極膜の部分を残存させることにより、支持部を双晶化するための金属薄膜を形成する。この場合にも、同様に従来の製造工程において形成される電極膜をそのまま利用するので、追加の成膜工程が不要であり、低コストでかつ効率良く支持部の双晶化を行うことができる。   In another embodiment, patterning of the excitation electrode, the connection electrode, and the extraction electrode is performed by forming an electrode film on the surface of the quartz wafer after forming the through groove, and photoetching the electrode film. When photoetching is performed, a portion of the electrode film formed on the surface of the support portion is left to form a metal thin film for twinning the support portion. In this case as well, since the electrode film formed in the conventional manufacturing process is used as it is, an additional film forming process is unnecessary, and the twinning of the support portion can be efficiently performed at low cost. .

以下に、本発明の好適な実施例について添付図面を参照しつつ詳細に説明する。
図1(A)(B)は、本発明を適用し厚みすべり振動モードの逆メサ型水晶振動片の好適な実施例を概略的に示している。本実施例の水晶振動片21は、従来から厚みすべり振動モードの水晶振動子に多く使用されているATカットの矩形水晶薄板で形成されている。ATカット水晶板は、水晶をそのX軸回りにZ軸から所定の約35度のカットアングルで切り出したもので、水晶振動片21は、その対向する長手方向の2辺が水晶のX軸方向に延長し、かつ対向する幅方向の2辺が水晶のZ軸に関して前記所定の角度をなすZ´方向に延長するように配向している。水晶振動片21の表裏両主面は、水晶のY軸に関して前記所定の角度をなすY´方向に直交する、別言すればY軸に直交する平面に関して前記所定の角度で傾斜している。
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIGS. 1A and 1B schematically show a preferred embodiment of an inverted mesa type quartz vibrating piece in a thickness-shear vibration mode to which the present invention is applied. The quartz crystal resonator element 21 of the present embodiment is formed of an AT-cut rectangular quartz crystal plate that has been conventionally used in a thickness-shear vibration mode quartz crystal resonator. The AT-cut quartz plate is obtained by cutting a quartz crystal around the X axis at a predetermined cut angle of about 35 degrees from the Z axis. The crystal vibrating piece 21 has two opposite longitudinal sides on the X axis direction of the quartz crystal. And two opposite sides in the width direction are oriented so as to extend in the Z ′ direction forming the predetermined angle with respect to the Z axis of the crystal. Both main surfaces of the crystal vibrating piece 21 are inclined at the predetermined angle with respect to the Y ′ direction that forms the predetermined angle with respect to the Y axis of the crystal, in other words, with respect to the plane orthogonal to the Y axis.

水晶振動片21は、中央に矩形薄肉の励振部22と、その周囲に配置された矩形厚肉の補強枠部23とからなる水晶素子片を有する。励振部22と補強枠部23とは、それらの間に設けた所定幅の貫通溝24により分離され、かつ励振部22の長手方向即ちX軸方向の各辺の中央付近に配置した支持部25,26により、一体に結合されている。両支持部25,26は、励振部22と同じ厚さを有し、かつそれと同一平面をなすように形成されている。別の実施例では、前記支持部を励振部22の長手方向各辺の中央以外の位置に設けることができ、また、2個所以上の支持部を設けることができる。   The quartz crystal vibrating piece 21 has a quartz crystal element piece including a rectangular thin-walled excitation portion 22 at the center and a rectangular thick-walled reinforcing frame portion 23 arranged around the excitation portion 22. The excitation portion 22 and the reinforcing frame portion 23 are separated by a through groove 24 having a predetermined width provided therebetween, and the support portion 25 is disposed in the longitudinal direction of the excitation portion 22, that is, near the center of each side in the X-axis direction. , 26 are connected together. Both support parts 25 and 26 have the same thickness as the excitation part 22 and are formed so as to be flush with the excitation part 22. In another embodiment, the support part can be provided at a position other than the center of each side in the longitudinal direction of the excitation part 22, and two or more support parts can be provided.

励振部22の表裏主面には、同じ矩形パターンの1対の励振電極27a、27bがそれぞれ形成されている。補強枠部23の一方の長手方向端部には、その表裏主面にそれぞれ前記励振電極を外部に接続するための左右1対の接続電極28、29が形成されている。更に、補強枠部23の表側主面には、一方の接続電極28と接続された引出電極30が形成され、その裏側主面には、他方の接続電極9と接続された引出電極31が形成されている。   A pair of excitation electrodes 27a and 27b having the same rectangular pattern are formed on the front and back main surfaces of the excitation unit 22, respectively. A pair of left and right connection electrodes 28 and 29 for connecting the excitation electrode to the outside are formed on the front and back main surfaces of one end portion in the longitudinal direction of the reinforcing frame portion 23. Further, an extraction electrode 30 connected to one connection electrode 28 is formed on the front side main surface of the reinforcing frame portion 23, and an extraction electrode 31 connected to the other connection electrode 9 is formed on the back side main surface thereof. Has been.

引出電極30は、接続電極28から隣接する一方のX軸方向の側辺に沿って延長し、該側辺の中央付近で屈曲して支持部25の表側主面を通過し、励振部22表面の励振電極27aと接続されている。引出電極31は、接続電極29から隣接する他方のX軸方向の側辺に沿って延長し、該側辺の中央付近で屈曲して支持部26の裏側主面を通過し、励振部22裏面の励振電極27bと接続されている。更に引出電極31は、前記長手方向端部の側面に形成された電極膜31aにより、補強枠部23表側主面の接続電極9と接続されている。   The extraction electrode 30 extends from the connection electrode 28 along one adjacent side in the X-axis direction, bends near the center of the side, passes through the front main surface of the support portion 25, and the surface of the excitation portion 22. The excitation electrode 27a is connected. The extraction electrode 31 extends from the connection electrode 29 along the other side in the X-axis direction, bends near the center of the side, passes through the back side main surface of the support portion 26, and the back surface of the excitation unit 22 The excitation electrode 27b is connected. Furthermore, the extraction electrode 31 is connected to the connection electrode 9 on the front side main surface of the reinforcing frame 23 by an electrode film 31a formed on the side surface of the longitudinal end portion.

また、水晶は、そのエッチング速度が結晶方位別に異なり、Z軸方向(水晶振動片21の幅方向Z´に関して約35度の傾きをなす)に大きく、X軸方向(水晶振動片21の長手方向)に小さく、Y軸方向(水晶振動片21の面方向Y´に関して約35度の傾きをなす)には更に小さいという、エッチング速度の結晶軸依存性を有する。このため、薄肉の励振部22と厚肉の補強枠部23との段差は、X軸方向に延長する対向2辺のうち、+Z´側が内側に向けて比較的緩やかに傾斜するのに対し、−Z´側は略垂直にエッチングされる。これらと直交してZ´方向に延長する対向2辺は、−X側がやや急峻に傾斜するのに対し、+X側は更に急峻にエッチングされる。   In addition, the etching rate of crystal differs depending on the crystal orientation, and is large in the Z-axis direction (inclination of about 35 degrees with respect to the width direction Z ′ of the crystal vibrating piece 21) and in the X-axis direction (longitudinal direction of the crystal vibrating piece 21). ) And the crystal axis dependence of the etching rate, which is further smaller in the Y-axis direction (inclination of about 35 degrees with respect to the surface direction Y ′ of the crystal vibrating piece 21). For this reason, the step between the thin excitation portion 22 and the thick reinforcement frame portion 23 is inclined relatively gently toward the inner side of the + Z ′ side of the two opposing sides extending in the X-axis direction, The −Z ′ side is etched substantially vertically. The opposite two sides extending in the Z ′ direction perpendicular to these are slightly steeply inclined on the −X side, whereas the + X side is etched more steeply.

支持部25,26は、その厚み全体が双晶化されている。前記支持部の双晶化は、後述するようにレーザ光の照射によって、水晶のαβ転移点以上の温度に加熱して、水晶の電気軸即ちX軸を反転させることにより行うことができる。支持部25,26は、励振部22と同一の厚さを有するので、機械的強度を確保しつつ、双晶化していない他の部分よりも共振周波数が1.47倍高くなる。これにより、図1(B)上部の振動分布に示すように、励振部22による振動が前記支持部で大幅に減衰し、補強枠部23への振動の漏れが大幅に低減する。従って、CI値を小さくし、高いエネルギ閉じ込め効果を得ることができる。   The entire thickness of the support portions 25 and 26 is twinned. As will be described later, twinning of the support can be performed by irradiating laser light to a temperature equal to or higher than the αβ transition point of the crystal and inverting the electric axis of the crystal, that is, the X axis. Since the support portions 25 and 26 have the same thickness as the excitation portion 22, the resonance frequency is 1.47 times higher than other portions that are not twinned while ensuring mechanical strength. Thereby, as shown in the vibration distribution in the upper part of FIG. 1B, the vibration by the excitation part 22 is greatly attenuated by the support part, and the leakage of vibration to the reinforcing frame part 23 is greatly reduced. Therefore, the CI value can be reduced and a high energy confinement effect can be obtained.

本発明の水晶振動片21は、以下に説明するように、フォトリソグラフィ技術を用いてATカット水晶板の表裏主面を異方性ウェットエッチングする従来の方法を利用して形成することができる。具体的には、先ず所定厚さの水晶ウエハを準備してその両面を鏡面研磨で仕上げた後、例えばCr/Au薄膜からなる耐フッ酸性の耐蝕膜をスパッタリング又は蒸着により全面に形成する。この水晶ウエハの両面全面にレジスト膜を塗布し、補強枠部23の内側の貫通溝24を含むメサ形状をパターニングしたフォトマスクを用いて、紫外線で前記レジスト膜を露光する。   As will be described below, the quartz crystal resonator element 21 of the present invention can be formed by using a conventional method in which the front and back main surfaces of an AT-cut quartz plate are anisotropically etched using a photolithography technique. Specifically, a quartz wafer having a predetermined thickness is first prepared and both surfaces thereof are finished by mirror polishing, and then a hydrofluoric acid-resistant corrosion-resistant film made of, for example, a Cr / Au thin film is formed on the entire surface by sputtering or vapor deposition. A resist film is applied to both surfaces of the quartz wafer, and the resist film is exposed to ultraviolet rays using a photomask in which a mesa shape including the through groove 24 inside the reinforcing frame portion 23 is patterned.

前記レジスト膜の露光部分を除去し、それにより露出した耐蝕膜の部分を適当なエッチング液で除去して前記メサ形状をパターニングする。これにより前記水晶ウエハの表面を露出させ、その露出面を例えばフッ酸を主成分とする水晶用エッチング液で、励振部22の所望の厚さまでハーフエッチングする。残存するレジスト膜を適当な剥離液又は酸素プラズマなどにより完全に除去し、更に残存する耐蝕膜を剥離液で完全に除去する。   The exposed portion of the resist film is removed, and the exposed portion of the corrosion-resistant film is removed with an appropriate etching solution to pattern the mesa shape. As a result, the surface of the quartz wafer is exposed, and the exposed surface is half-etched to a desired thickness of the excitation unit 22 using, for example, a quartz etching solution mainly containing hydrofluoric acid. The remaining resist film is completely removed with an appropriate stripping solution or oxygen plasma, and the remaining corrosion-resistant film is completely removed with a stripping solution.

次に、この水晶ウエハの両面全面に同様にして耐蝕膜を形成し、かつレジスト膜を塗布し、貫通溝24の形状をパターニングしたフォトマスクを用いて、紫外線で前記レジスト膜を露光する。このレジスト膜の露光部分を除去し、それにより露出した耐蝕膜の部分を適当なエッチング液で除去して前記水晶ウエハの表面を露出させる。そして、前記水晶ウエハの露出面を同様にフッ酸を主成分とする水晶用エッチング液などでエッチングして、貫通溝4を形成する。残存するレジスト膜及び耐蝕膜を同様にして完全に除去する。これにより、水晶振動片1の厚み方向を含む外形を加工した水晶素子片が得られる。   Next, in the same manner, a corrosion-resistant film is formed on both surfaces of the quartz wafer, a resist film is applied, and the resist film is exposed with ultraviolet rays using a photomask in which the shape of the through groove 24 is patterned. The exposed portion of the resist film is removed, and the exposed portion of the corrosion-resistant film is removed with an appropriate etching solution to expose the surface of the quartz wafer. Then, the exposed surface of the crystal wafer is similarly etched with a crystal etching solution containing hydrofluoric acid as a main component to form the through grooves 4. The remaining resist film and corrosion resistant film are completely removed in the same manner. Thereby, the crystal element piece which processed the external shape including the thickness direction of the crystal vibrating piece 1 is obtained.

このようにして得られた水晶素子片の支持部25,26の表側又は裏側の表面に、図2に示すように、例えばCr膜又はNi膜からなる金属薄膜32,33を形成する。YAGレーザ等のレーザ装置を用いて、前記金属薄膜に焦点を合わせてレーザ光を照射し、前記支持部のみを水晶のαβ転移点以上の温度に加熱する。レーザ光照射は、所望の部分を局所的に加熱するように制御可能であるから、各支持部25,26を選択的に、その水晶のX軸を反転させて双晶化することができる。特に本発明では、支持部25,26の周囲において励振部22が貫通溝24により補強枠部23から物理的に分離されているので、前記支持部のみを所望の温度に加熱するように制御することが非常に容易である。   As shown in FIG. 2, metal thin films 32 and 33 made of, for example, a Cr film or a Ni film are formed on the front or back surfaces of the support portions 25 and 26 of the crystal element pieces obtained in this way. Using a laser device such as a YAG laser, the metal thin film is focused and irradiated with laser light, and only the support is heated to a temperature equal to or higher than the αβ transition point of quartz. Since the laser beam irradiation can be controlled so as to locally heat a desired portion, each support portion 25 and 26 can be selectively twinned by reversing the X axis of the crystal. Particularly in the present invention, since the excitation part 22 is physically separated from the reinforcing frame part 23 by the through groove 24 around the support parts 25 and 26, control is performed so that only the support part is heated to a desired temperature. It is very easy.

この場合、貫通溝24の形成後に残存する前記耐蝕膜を剥離する際に、前記支持部の一方の表面に形成した前記耐蝕膜のCr膜を残存させて、双晶化するための前記金属薄膜とすることができる。このように従来の製造工程において形成される耐蝕膜をそのまま利用すれば、金属薄膜32,33のために追加の成膜工程が不要になるので、低コストでかつ効率良く前記支持部の双晶化を行うことができる。レーザ光照射後の金属薄膜32,33は、支持部表面から完全に除去する。   In this case, when peeling off the corrosion-resistant film remaining after the formation of the through-groove 24, the metal thin film for twinning by leaving the Cr film of the corrosion-resistant film formed on one surface of the support portion. It can be. Thus, if the corrosion resistant film formed in the conventional manufacturing process is used as it is, an additional film forming process is not required for the metal thin films 32 and 33, so that the twin of the supporting portion can be efficiently produced at low cost. Can be made. The metal thin films 32 and 33 after the laser beam irradiation are completely removed from the surface of the support part.

次に、この水晶素子片の表面全面に、例えばCr/Au薄膜からなる電極膜をスパッタリング又は蒸着により形成し、かつレジスト膜を塗布する。励振電極27a,27b、引出電極30,31及び接続電極28,29の形状をパターニングしたフォトマスクを用いて、紫外線で前記レジスト膜を露光する。このレジスト膜の露光部分を除去し、それにより露出した前記電極膜の部分を適当なエッチング液で除去して、前記励振電極、引出電極及び接続電極をパターニングする。最後に、残存するレジスト膜を完全に除去すると、本発明の水晶振動片21が完成する。更に、この水晶振動片を公知のパッケージに搭載すると、本発明の逆メサ型ATカット水晶振動子が得られる。   Next, an electrode film made of, for example, a Cr / Au thin film is formed on the entire surface of the crystal element piece by sputtering or vapor deposition, and a resist film is applied. The resist film is exposed with ultraviolet rays using a photomask in which the shapes of the excitation electrodes 27a and 27b, the extraction electrodes 30 and 31 and the connection electrodes 28 and 29 are patterned. The exposed portion of the resist film is removed, and the exposed portion of the electrode film is removed with an appropriate etching solution, and the excitation electrode, the extraction electrode, and the connection electrode are patterned. Finally, when the remaining resist film is completely removed, the crystal vibrating piece 21 of the present invention is completed. Furthermore, when this crystal resonator element is mounted on a known package, the inverted mesa AT-cut crystal resonator of the present invention is obtained.

別の実施例では、励振電極27a,27b、引出電極30,31及び接続電極28,29をパターニングするために、前記水晶素子片の外形加工後にその表面に形成される前記電極膜を利用して、双晶化するための前記金属薄膜を形成することができる。図3に示すように、前記水晶素子片の表面に電極膜34,35を形成し、支持部25,26の前記引出電極を形成しない側の表面に金属薄膜32,33を残すようにパターニングする。このとき、金属薄膜32,33は前記電極膜の下層のCr薄膜だけでよい。レーザ光は、反対側の電極膜34,35部分に影響を与えないように、その反対側から金属薄膜32,33に照射する。レーザ光照射後の金属薄膜32,33は除去しなくても良い。この場合も、同様に金属薄膜32,33のために追加の成膜工程が不要であり、低コストでかつ効率良く支持部の双晶化を行うことができる。   In another embodiment, in order to pattern the excitation electrodes 27a and 27b, the extraction electrodes 30 and 31, and the connection electrodes 28 and 29, the electrode film formed on the surface of the crystal element piece after the outer shape processing is used. The metal thin film for twinning can be formed. As shown in FIG. 3, electrode films 34 and 35 are formed on the surface of the crystal element piece, and patterning is performed so that the metal thin films 32 and 33 are left on the surfaces of the support portions 25 and 26 where the extraction electrodes are not formed. . At this time, the metal thin films 32 and 33 may be only the Cr thin film under the electrode film. The laser light is applied to the metal thin films 32 and 33 from the opposite side so as not to affect the electrode films 34 and 35 on the opposite side. The metal thin films 32 and 33 after the laser light irradiation may not be removed. In this case as well, an additional film forming process is not required for the metal thin films 32 and 33, and the support portion can be twinned efficiently at low cost.

また、水晶振動片21は、大型の水晶ウエハを用いて一度に多数個を形成することができる。両面を鏡面仕上げした所定厚さの大型の水晶ウエハを準備し、上述した製造工程に従って多数の水晶振動片21を縦及び横方向に連続して形成する。この水晶ウエハをダイシングすることにより、個々の振動片に分割することができる。   Further, a large number of crystal vibrating pieces 21 can be formed at a time using a large crystal wafer. A large-sized quartz wafer having a predetermined thickness with both surfaces mirror-finished is prepared, and a large number of quartz vibrating pieces 21 are continuously formed in the vertical and horizontal directions according to the manufacturing process described above. The quartz wafer can be divided into individual vibrating pieces by dicing.

上記実施例では、本発明を厚みすべり振動モードの水晶振動片に適用した場合について説明したが、同様に薄肉励振部と厚肉補強枠部とを有する逆メサ型の水晶振動片であれば、本発明はモノリシッククリスタルフィルタの水晶振動片にも適用することができる。この場合、薄肉励振部には、その一方の主面に分離された複数の励振電極が設けられる。接続電極及び引出電極は、補強枠部及び支持部の励振電極と同じ側の主面に形成することができる。   In the above embodiment, the case where the present invention is applied to the quartz-crystal vibrating piece in the thickness-shear vibration mode has been described, but if it is an inverted mesa type quartz-crystal vibrating piece having a thin-walled excitation portion and a thick reinforcing frame portion, The present invention can also be applied to a crystal vibrating piece of a monolithic crystal filter. In this case, the thin excitation portion is provided with a plurality of excitation electrodes separated on one main surface thereof. The connection electrode and the extraction electrode can be formed on the main surface on the same side as the excitation electrode of the reinforcing frame portion and the support portion.

以上、本発明の好適実施例について詳細に説明したが、当業者に明らかなように、本発明はその技術的範囲内において上記各実施例に様々な変更・変形を加えて実施することができる。例えば、水晶振動片のメサ形状は、異方性ウェットエッチング以外にドライエッチングや機械的加工方法により形成することもできる。更に、水晶ウエハから個々の振動片を個片化する際に、ダイシング以外の機械的加工やウェットエッチングを用いることができる。また、ATカット以外の水晶からなる水晶振動片についても同様に適用することができる。   The preferred embodiments of the present invention have been described in detail above. However, as will be apparent to those skilled in the art, the present invention can be carried out with various modifications and changes made to the above embodiments within the technical scope thereof. . For example, the mesa shape of the crystal vibrating piece can be formed by dry etching or a mechanical processing method other than anisotropic wet etching. Further, when individual vibrating pieces are separated from the quartz wafer, mechanical processing other than dicing or wet etching can be used. Further, the present invention can be similarly applied to a crystal vibrating piece made of a crystal other than the AT cut.

(A)図は本発明を適用したATカット水晶振動片の実施例を示す平面図、(B)図はそのI−I線における断面図及び該断面における振動の分布図。(A) is a plan view showing an embodiment of an AT-cut quartz crystal resonator element to which the present invention is applied, and (B) is a cross-sectional view taken along the line II and a vibration distribution diagram in the cross-section. 支持部を双晶化する工程を説明する図1(A)のI−I線における部分拡大断面図。The partial expanded sectional view in the II line of Drawing 1 (A) explaining the process of twining a support part. 支持部を双晶化する別の工程を説明する図2と同様の部分拡大断面図。The partial expanded sectional view similar to FIG. 2 explaining another process of twinning a support part. (A)図は従来のATカット水晶振動片の典型例を示す平面図、(B)図はそのIV−IV線における断面図及び該断面における振動の分布図。FIG. 4A is a plan view showing a typical example of a conventional AT-cut quartz crystal vibrating piece, and FIG. 4B is a sectional view taken along line IV-IV and a distribution diagram of vibrations in the section. (A)図は従来技術の別のATカット水晶振動片を示す平面図、(B)図はそのV−V線における断面図及び該断面における振動の分布図。(A) is a plan view showing another AT-cut quartz crystal resonator element according to the prior art, and (B) is a cross-sectional view taken along line VV and a vibration distribution diagram in the cross-section.

符号の説明Explanation of symbols

1,21…水晶振動片、2,22…励振部、3,23…補強枠部、4,24…貫通溝、5,6,25,26…支持部、5a,5b,6a,6b…段差、7a,7b,27a,27b…励振電極、8,9,28,29…接続電極、10,11,30,31…引出電極、11a,31a…電極膜、32,33…金属薄膜、34,35…電極膜。 DESCRIPTION OF SYMBOLS 1,21 ... Crystal vibrating piece, 2,22 ... Excitation part, 3,23 ... Reinforcement frame part, 4,24 ... Through groove, 5, 6, 25, 26 ... Support part, 5a, 5b, 6a, 6b ... Step 7a, 7b, 27a, 27b ... excitation electrodes, 8, 9, 28, 29 ... connection electrodes, 10, 11, 30, 31 ... extraction electrodes, 11a, 31a ... electrode films, 32, 33 ... metal thin films, 34, 35 ... Electrode film.

Claims (6)

薄肉の励振部、その周囲に貫通溝を挟んで配置した厚肉の補強枠部、前記貫通溝において前記励振部と同一平面及び同一厚さに形成されて前記励振部と前記補強枠部とを一体に結合する支持部からなる水晶素子片と、前記励振部の表裏各面に設けられた励振電極と、前記補強枠部に設けられた接続電極と、前記励振電極を前記接続電極と接続するために前記補強枠部及び前記支持部に設けられた引出電極とを有し、前記支持部が双晶化されていることを特徴とする水晶振動片。   A thin-walled excitation part, a thick reinforcing frame part arranged with a through-groove sandwiched around it, and the excitation part and the reinforcing frame part formed in the through-groove in the same plane and the same thickness as the excitation part A crystal element piece composed of a support unit coupled integrally, an excitation electrode provided on each surface of the excitation unit, a connection electrode provided on the reinforcing frame, and the excitation electrode connected to the connection electrode For this purpose, the quartz crystal vibrating piece includes the reinforcing frame part and an extraction electrode provided on the support part, wherein the support part is twinned. 前記水晶素子片がATカット水晶薄板からなることを特徴とする請求項1に記載の水晶振動片。   The quartz crystal resonator element according to claim 1, wherein the quartz element piece is made of an AT-cut quartz thin plate. 請求項1又は2に記載される水晶振動片を形成するために、水晶ウエハを前記励振部の厚さにハーフエッチングして前記励振部、前記貫通溝及び前記支持部の形状に対応する薄肉部を形成する工程と、前記薄肉部をエッチングして前記貫通溝を形成しかつ前記補強枠部、前記励振部及び前記支持部を画定する工程と、前記支持部を加熱して双晶化する工程と、前記補強枠部、前記励振部及び前記支持部に前記励振電極、前記接続電極及び前記引出電極をパターニングする工程とを有することを特徴とする水晶振動片の製造方法。   To form the quartz crystal resonator element according to claim 1 or 2, a quartz wafer is half-etched to a thickness of the excitation part, and a thin part corresponding to the shape of the excitation part, the through groove, and the support part Forming the through-groove by etching the thin portion and defining the reinforcing frame portion, the excitation portion and the support portion, and heating and twinning the support portion And a step of patterning the excitation electrode, the connection electrode, and the extraction electrode on the reinforcement frame portion, the excitation portion, and the support portion. 前記支持部の双晶化が、前記支持部の表面に金属薄膜を形成し、前記金属薄膜にレーザ光を照射して、前記支持部のみを選択的に水晶のαβ転移点以上の温度に加熱することにより行われることを特徴とする請求項3に記載の水晶振動片の製造方法。   The twinning of the support part forms a metal thin film on the surface of the support part, irradiates the metal thin film with laser light, and selectively heats only the support part to a temperature equal to or higher than the αβ transition point of the crystal. The method for manufacturing a quartz crystal vibrating piece according to claim 3, wherein the method is performed. 前記貫通溝の形成が、前記薄肉部の形成後に、前記水晶ウエハの表面に金属材料の耐蝕膜を形成し、前記耐蝕膜をフォトエッチングによりパターニングして、前記貫通溝を形成しようとする前記水晶ウエハ表面を露出させ、前記水晶ウエハの露出面をエッチングすることにより行われ、前記貫通溝の形成後に、前記支持部の表面に形成した前記耐蝕膜の部分を残存させることにより、前記支持部を双晶化するための前記金属薄膜を形成することを特徴とする請求項4に記載の水晶振動片の製造方法。   The through-groove is formed by forming a corrosion-resistant film of a metal material on the surface of the crystal wafer after forming the thin-walled portion, and patterning the corrosion-resistant film by photoetching to form the through-groove. It is performed by exposing the wafer surface and etching the exposed surface of the quartz wafer, and after forming the through groove, leaving the portion of the corrosion-resistant film formed on the surface of the support portion, The method for manufacturing a quartz crystal vibrating piece according to claim 4, wherein the metal thin film for twinning is formed. 前記励振電極、接続電極及び引出電極のパターニングが、前記貫通溝の形成後に、前記水晶ウエハの表面に電極膜を形成し、前記電極膜をフォトエッチングすることにより行われ、前記電極膜をフォトエッチングする際に、前記支持部の表面に形成した前記電極膜の部分を残存させることにより、前記支持部を双晶化するための前記金属薄膜を形成することを特徴とする請求項4に記載の水晶振動片の製造方法。   The excitation electrode, the connection electrode, and the extraction electrode are patterned by forming an electrode film on the surface of the crystal wafer after the formation of the through groove and photoetching the electrode film. 5. The metal thin film for twinning the support part is formed by leaving a part of the electrode film formed on the surface of the support part when performing the process. A method of manufacturing a quartz crystal vibrating piece.
JP2006193279A 2006-07-13 2006-07-13 Crystal vibration piece and method of manufacturing same Withdrawn JP2008022378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006193279A JP2008022378A (en) 2006-07-13 2006-07-13 Crystal vibration piece and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006193279A JP2008022378A (en) 2006-07-13 2006-07-13 Crystal vibration piece and method of manufacturing same

Publications (1)

Publication Number Publication Date
JP2008022378A true JP2008022378A (en) 2008-01-31

Family

ID=39077999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006193279A Withdrawn JP2008022378A (en) 2006-07-13 2006-07-13 Crystal vibration piece and method of manufacturing same

Country Status (1)

Country Link
JP (1) JP2008022378A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026809A (en) * 2011-07-21 2013-02-04 Nippon Dempa Kogyo Co Ltd Piezoelectric vibrating piece and piezoelectric device
JP2013098813A (en) * 2011-11-02 2013-05-20 Nippon Dempa Kogyo Co Ltd Piezoelectric vibrating piece and piezoelectric device
JP2013157838A (en) * 2012-01-31 2013-08-15 Daishinku Corp Thickness-shear vibration type crystal piece, thickness-shear vibration type crystal piece with electrode, crystal diaphragm, crystal oscillator, and crystal-controlled oscillator
CN108844820A (en) * 2018-05-07 2018-11-20 武汉科技大学 A kind of prestressed, reinforced self-test anchor ring based on the offset of Piezoelectric Impedance characteristic frequency
RU196148U1 (en) * 2019-11-20 2020-02-18 Общество с ограниченной ответственностью НПП «МЕТЕОР-КУРС» HIGH FREQUENCY Piezoelectric element in the form of inverse mesostructure
WO2024024614A1 (en) * 2022-07-28 2024-02-01 株式会社大真空 Quartz crystal vibration plate and quartz crystal vibration device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026809A (en) * 2011-07-21 2013-02-04 Nippon Dempa Kogyo Co Ltd Piezoelectric vibrating piece and piezoelectric device
US9106200B2 (en) 2011-07-21 2015-08-11 Nihon Dempa Kogyo Co., Ltd. Piezoelectric vibrating piece and piezoelectric device
JP2013098813A (en) * 2011-11-02 2013-05-20 Nippon Dempa Kogyo Co Ltd Piezoelectric vibrating piece and piezoelectric device
JP2013157838A (en) * 2012-01-31 2013-08-15 Daishinku Corp Thickness-shear vibration type crystal piece, thickness-shear vibration type crystal piece with electrode, crystal diaphragm, crystal oscillator, and crystal-controlled oscillator
CN108844820A (en) * 2018-05-07 2018-11-20 武汉科技大学 A kind of prestressed, reinforced self-test anchor ring based on the offset of Piezoelectric Impedance characteristic frequency
RU196148U1 (en) * 2019-11-20 2020-02-18 Общество с ограниченной ответственностью НПП «МЕТЕОР-КУРС» HIGH FREQUENCY Piezoelectric element in the form of inverse mesostructure
WO2024024614A1 (en) * 2022-07-28 2024-02-01 株式会社大真空 Quartz crystal vibration plate and quartz crystal vibration device

Similar Documents

Publication Publication Date Title
JP4301200B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP4305542B2 (en) AT cut quartz crystal resonator element and manufacturing method thereof
JP4442521B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP4967707B2 (en) Piezoelectric vibrator and manufacturing method thereof
JP4609196B2 (en) Piezoelectric vibrating piece, piezoelectric device, electronic apparatus and mobile phone device
JP2007258918A (en) Piezoelectric device
US20090289531A1 (en) Piezoelectric resonator
JP2007258917A (en) Piezoelectric device
JP2008022378A (en) Crystal vibration piece and method of manufacturing same
KR20120054542A (en) Piezoelectric vibrator element and piezoelectric vibrator
JP2006311090A (en) Piezoelectric resonator element and piezoelectric device
JP2008236439A (en) Quartz oscillating piece
JP4593203B2 (en) Tuning fork crystal unit and method for manufacturing the same
US8907549B2 (en) Tuning fork configured to generate flexural vibration in reverse phase to the contour vibration of first and second vibrating bodies
JP2003258601A (en) Surface acoustic wave apparatus and communication device using it
JP5088664B2 (en) Method for manufacturing piezoelectric vibrating piece
JP2007318350A (en) Piezoelectric vibrating reed and manufacturing method thereof
TWI618354B (en) Tuning fork type piezoelectric vibrating piece and tuning fork type piezoelectric vibrator
JP2009044237A (en) Frequency adjustment method of piezoelectric device, and piezoelectric device and mask for frequency adjustment
JP2008219827A (en) Piezoelectric vibration chip and piezoelectric device
JP4196641B2 (en) Ultra-thin piezoelectric device and manufacturing method thereof
JPH04127709A (en) At cut crystal oscillator
JP2008301111A (en) Edge mode piezoelectric vibration chip and frequency adjustment method thereof
JP2001230654A (en) Piezoelectric vibrating element and producing method therefor
JP2017060054A (en) Piezoelectric vibration piece and piezoelectric vibrator

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006