JP2004088007A - Light emitting diode - Google Patents

Light emitting diode Download PDF

Info

Publication number
JP2004088007A
JP2004088007A JP2002249954A JP2002249954A JP2004088007A JP 2004088007 A JP2004088007 A JP 2004088007A JP 2002249954 A JP2002249954 A JP 2002249954A JP 2002249954 A JP2002249954 A JP 2002249954A JP 2004088007 A JP2004088007 A JP 2004088007A
Authority
JP
Japan
Prior art keywords
light
light emitting
dimensional
emitting diode
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002249954A
Other languages
Japanese (ja)
Other versions
JP4239525B2 (en
Inventor
Yoshinobu Suehiro
末広 好伸
Koichi Ota
太田 光一
Akihiro Misawa
三沢 明弘
Toshinori Takahashi
高橋 利典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002249954A priority Critical patent/JP4239525B2/en
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to US10/495,644 priority patent/US7781787B2/en
Priority to AU2002365761A priority patent/AU2002365761A1/en
Priority to TW091133621A priority patent/TW569476B/en
Priority to EP02804348A priority patent/EP1453107A4/en
Priority to PCT/JP2002/011968 priority patent/WO2003049207A1/en
Priority to CNB028226461A priority patent/CN100369274C/en
Publication of JP2004088007A publication Critical patent/JP2004088007A/en
Application granted granted Critical
Publication of JP4239525B2 publication Critical patent/JP4239525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance light emitting diode efficiency in radiating in two-dimensional directions, and to improve its mass productivity and reliability. <P>SOLUTION: A light emitting diode 2 has a reflector 4 attached to its light emitting unit 3. Light emitted upward from a light emitting element 8 is reflected almost horizontally by a reflecting surface 3a and then radiated two-dimensionally in all directions. Light emitted sidewise from the light emitting element 8 is radiated in two-dimensional directions from the sides constituting a part of the spherical surface. The small-diameter light emitting unit 3 for two-dimensional radiation is excellent in mass productivity and high in reliability, but it has to have a ring-shape reflector 4 attached to its outside for covering its optical disadvantage. The reflector 4 is formed of an acrylic resin similar to the material of the light emitting unit 3, and is physically and optically coupled to the light emitting unit 3 with an optical adhesive. The upper surface 4a of the reflector 4 connects to the upper surface 3a of the light emitting unit 3 for the formation of a curved surface, and the light emitted by the light emitting element 8 and reflected by the upper surface 4a of the reflector 4 is radiated almost horizontally and in all two-dimensional directions. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、発光素子の発光面と対向した反射面によって少なくとも発光素子の発光軸と略垂直な二次元方向へ光を反射する小型の発光ダイオード(以下、「発光部」という。)が組み込まれた発光ダイオードに関するものである。
【0002】
なお、本明細書中においては、LEDチップそのものは「発光素子」と呼び、LEDチップを搭載したパッケージ樹脂またはレンズ系等の光学装置を含む全体を「発光ダイオード」または「LED」と呼ぶこととする。
【0003】
【従来の技術】
LEDは単色光源として用いた場合、白熱電球のようにフィルターロスがなく、また発熱はあるものの高温になる箇所はなく、薄型化を図ることができる。しかし、従来のフレネルレンズ併用方式の灯具においては、以下のような問題点があった。
【0004】
従来のフレネルレンズ併用方式の灯具について、図8を参照して説明する。図8は、従来のフレネルレンズ併用方式の灯具の構造を示す断面図である。この灯具40は、凸レンズ形のLED41、フレネルレンズ42、及び前面カバーレンズ43を備えている。そして、LED41から発せられる光は、凸レンズ形の放射面によってある程度集光されてフレネルレンズ42に至り、フレネルレンズ42で配光制御されて平行光として前方へ放射され、前面カバーレンズ43から外部放射される。
【0005】
しかしながら、フレネルレンズ42と光源の距離の制約により図に示されるように灯具40として厚いものとなり、また横方向にレンズ制御できない光が放射されるため光利用効率が低い。そこで、二次元方向放射LEDと、その周囲に設置された二次元方向放射光を略垂直方向に反射する反射部材と、前面カバーレンズとからなる灯具とすることによって、薄型で光利用効率が高い灯具とすることができる。
【0006】
【発明が解決しようとする課題】
しかしながら、二次元方向放射LEDを小型のものにすると、発光素子に対する立体角が小さくなり放射効率が低くなる。また、大型のものにすると、かかるLEDはリードフレームに複数連で形成されるが、その間隔はパッケージ直径程度なので取り数が少なくなりLED封止樹脂硬化時間は一般に1時間以上かかるので、量産性に劣る。さらに、LED封止樹脂の内部応力が大きくなるので、発光素子への応力ダメージ、パッケージのクラックが生じやすくなり、信頼性に劣るものとなる。
【0007】
そこで、本発明は、放射効率が高く、量産性に優れ、信頼性が高い二次元方向放射型の発光ダイオードの提供を課題とするものである。
【0008】
【課題を解決するための手段】
請求項1の発明にかかる発光ダイオードは、光透過性材料によって埋設された発光素子から放射された光を、少なくとも二次元平面方向へ光を反射する二次元方向反射面を有する発光部と、前記発光部の少なくとも二次元方向の周囲で、光学的に結合され、前記二次元方向反射面を延長してなる反射面を有するリフレクタ部とを具備するものである。
【0009】
このように、このLEDは、二次元方向反射面を備えた発光部とその周囲に少なくとも光学的に結合されたリフレクタ部を備えており、リフレクタ部は二次元方向反射面を延長した反射面を有している。したがって、このLEDはリフレクタ部の大きさの二次元方向放射LEDと同等なものとなり、発光素子に対して大きな立体角を形成できるため、放射効率の高いLEDとなる。
【0010】
また、かかる発光部はリードフレームに複数連で形成されるが小型にできることから、同一立体角を発光素子封止樹脂で形成するのに対して、その間隔はパッケージ直径程度で取り数を増すことができる。そして、LED封止樹脂硬化時間は一般に1時間以上であるため、量産性に優れたLEDとなる。さらに、同一立体角を発光素子封止樹脂で形成するのに対して、LED封止樹脂の内部応力を小さく抑えることができるので、発光素子への応力ダメージ、パッケージのクラックが生じない信頼性の高いものとできる。
【0011】
このようにして、放射効率が高く、量産性に優れ、信頼性が高い二次元方向放射型の発光ダイオードとなる。
【0012】
請求項2の発明にかかる発光ダイオードは、請求項1の構成において、前記リフレクタ部は厚さが薄く形成され、前記発光部から放射された光のうち前記反射面と対向する面に至った光をも二次元方向へ反射するものである。
【0013】
これによって、反射面で反射されて二次元方向へ反射される光に加えて、反射面と対向する面においても発光部からの光が全反射されて二次元方向へ放射されるので、より放射効率の高いLEDとなる。
【0014】
このようにして、放射効率がより高く、量産性に優れ、信頼性が高い二次元方向放射型の発光ダイオードとなる。
【0015】
請求項3の発明にかかる発光ダイオードは、請求項1の構成において、前記リフレクタ部は前記反射面と対向し前記二次元方向反射面及び反射面によって前記二次元方向へ反射された光を前記二次元方向と略垂直な方向へ反射する階段状反射面を有するものである。
【0016】
これによって、発光ダイオードの周囲に反射部材を設けなくても、リフレクタ部が反射部材の役目をして二次元方向と略垂直な方向へ光を反射する。したがって、小型で放射効率の高い灯具として用いることができる発光ダイオードとなる。
【0017】
このようにして、小型で放射効率の高い灯具として用いることができ、量産性に優れ、信頼性が高い発光ダイオードとなる。
【0018】
請求項4の発明にかかる発光ダイオードは、請求項1乃至請求項3の構成において、前記発光部の二次元方向反射面は、発光素子あるいは発光素子周辺を焦点とし、楕円、放物線、双曲線、あるいはこれらの近似曲線のいずれかの一部を前記発光素子の発光面の中心を通る垂直軸の周りに回転させた形状をしているものである。
【0019】
これによって、発光素子から発せられた光のうち、所定の範囲内の光が二次元方向反射面としての光学面に至り、これらの光は光学面への入射角が臨界角より大きいため全て全反射されて側面に向かう。ここで、光学面は発光素子あるいは発光素子周辺を焦点とし、楕円、放物線、双曲線、あるいはこれらの近似曲線のいずれかの一部を前記発光素子の発光面の中心を通る垂直軸の周りに回転させた形状をしているため、光学面で反射された光は全て水平面に平行に進み、二次元方向に放射される。そして、リフレクタ部の上面はこの光学面と連続した形状をしているため、リフレクタ部の上面で反射された光も全て水平面に平行に進み、二次元方向に放射される。
【0020】
このようにして、二次元方向への放射効率が高く、量産性に優れ、信頼性が高い発光ダイオードとなる。
【0021】
請求項5の発明にかかる発光ダイオードは、埋設された発光素子の発光面に対向する部分が外側へ突出した円錐形である光源部と、少なくとも前記円錐形部分に結合し、前記光源部から放射された光を、少なくとも二次元平面方向へ光を反射する二次元方向反射面を有する反射部とを具備するものである。
【0022】
したがって、光源部から放射されて反射部で反射された光は、少なくとも二次元平面方向へ放射され、発光ダイオード全体が二次元方向放射光源としての働きをする。このように、少なくとも二次元平面方向へ光を反射する二次元方向反射面を有する発光部とリフレクタ部の組み合わせでなくても、二次元方向へ高い放射効率で光を放射できる発光ダイオードとなる。
【0023】
このようにして、二次元方向への放射効率が高く、量産性に優れ、信頼性が高い発光ダイオードとなる。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0025】
実施の形態1
まず、本発明の発光ダイオードの実施の形態1について、図1乃至図3を参照して説明する。図1(a)は本発明の実施の形態1にかかる発光ダイオードの全体構成を示す平面図、(b)は縦断面図である。図2は本発明の実施の形態1にかかる発光ダイオードの二次元方向放射光源としての特性を示す説明図である。図3は本発明の実施の形態1にかかる発光ダイオードを用いた灯具の構成を示す縦断面図である。
【0026】
まず、本実施の形態1のLED2の構造について、図1を参照して説明する。図1に示されるように、LED2は発光部3にリフレクタ部4を取り付けてなる。発光部3は、立設された1対のリード5a,5bのうちリード5aに発光素子8をマウントし、発光素子8とリード5bとは図示しないワイヤで電気的接続をとっている。これらのリード5a,5bの先端、発光素子8、ワイヤが樹脂封止用金型にセットされて、透明エポキシ樹脂によって図に示すような断面形状に樹脂封止されている。
【0027】
ここで、発光部3の上面3aの中心部分には微小な平坦面が形成されている。この中心点に続いて二次元方向放射面としての反射面3aとして発光素子8の発光面の中心を略焦点とし、X軸方向を対称軸とする放物線の一部をZ軸の周りに回転させた傘のような形状をしている。また、発光部3の側面は、発光素子8を中心とする球面の一部をなしている。発光素子8から上方に放射された光は反射面3aで略水平方向に反射されて、360度二次元方向に放射される。また、発光素子8から側方に放射された光は球面の一部をなす側面から二次元方向に放射される。
【0028】
このような径の小さい二次元方向放射の発光部3は量産性に優れ、信頼性が高いが光学的に不利である。そこで、かかる発光部3の外側に、リング状のリフレクタ部4が取り付けられる。リフレクタ部4は発光部3と同等の屈折率のアクリル樹脂で形成され、光学接合剤によって物理的、光学的に接合されている。なお、必ずしも物理的接合は必要ではない。また、発光部3とリフレクタ部4との隙間は僅かであり、それぞれの界面は略平行であるので、光学接合剤を用いなくても光損失は小さく、必ずしも光学接合剤を用いなくても良い。
【0029】
なお、発光部3は発光素子8を封止するとともに反射面3aを形成してあるので、発光素子8に対し反射面3aが近接したものとでき、ワイヤ高さ程度の0.3mmとすることも可能である。近接することで幾何学的に大きな立体角をとることができ、他の部材で反射面3aを形成するよりも光学的に有利である。
【0030】
リフレクタ部4の上面4aは、発光部3の上面3aと連続した曲面になっており、発光素子8から放射されリフレクタ部4の上面4aで反射された光は、略水平に360度二次元方向に放射される。ここで、発光部3の外径はφ5であり、リフレクタ部4の外径はφ20である。リフレクタ部4を取り付けることによる光学的利点について、図2を参照して説明する。図2に示されるように、発光部3のみの場合は発光素子8の中心を通る垂線からθ1の角度内の光しか二次元方向に放射されないのに対して、リフレクタ部4を取り付けることによって垂線からθ2の角度内の光まで二次元方向に放射されるので、θ1〜θ2の角度内に放射される光をも有効に二次元方向に放射することができる。
【0031】
なお、図2では断面による二次元表示であるが、実際にはθ1〜θ2範囲の立体角内の光であるので、顕著な効果を得ることができる。
【0032】
このような本実施の形態1の発光ダイオード2を用いた灯具について、図3を参照して説明する。図3に示されるように、本実施の形態1のLED2を用いた灯具1は、中心に発光素子を内蔵した二次元方向放射光源としてのLED2が載置され、その周囲に設置された反射部材6の階段状の表面のうち略45度の斜めの部分6aが反射面となっている。そして、これらを覆う前面カバーレンズ7を備えている。LED2のリード5に電力を供給すると、LED2の発光部3の周囲に取り付けられたリフレクタ部4の側面から360度の二次元方向に向かって発光素子の光が放射され、これらの光は反射部材6の反射面6aで略垂直方向に反射されて、前面カバーレンズ7から外部放射される。
【0033】
なお、ここで二次元方向とは、LED2に対する、その周辺に設置された反射部材6の反射面6aへの方向を意味する。厳密にLED2からZ軸に対して垂直な平面方向ではなく、LED2からの光が、LED2の周囲に設置された反射面へ効率良く照射されるものであれば良い。
【0034】
このように、本実施の形態1の発光ダイオード2を用いた灯具1は、極めて薄型で、LED2から放射される光の大部分が有効利用され、前面カバーレンズ7から極めて効率良く外部放射される。
【0035】
実施の形態2
次に、本発明の発光ダイオードの実施の形態2について、図4を参照して説明する。図4は本発明の実施の形態2にかかる発光ダイオードの全体構成を示す縦断面図である。
【0036】
図4に示されるように、本実施の形態2のLED12は、発光部3の構造は実施の形態1と同様である。しかし、リフレクタ部14の底面14bが発光素子8のマウント面近くまで上がって、リフレクタ部14が薄くなっている。これによって、発光素子8から上方へ放射される光のみでなく、発光素子8の側面から下方へ放射される光のリフレクタ部14の底面14bに対する入射角も大きくなって臨界角を超えるので、リフレクタ部14の底面14bで全反射されてリフレクタ部14の側面から二次元方向に放射される。
【0037】
また、発光素子8が大きさを有するために、リフレクタ部14の上面14aで反射されて図示のように水平方向に放射されずに下方に反射される光もあるが、このような光もリフレクタ部14の底面14bで全反射されてリフレクタ部14の側面から二次元方向に放射される。
【0038】
これによって、LED12から二次元方向に放射される光量が増加し、放射効率のより良い二次元方向放射LEDとなる。
【0039】
実施の形態3
次に、本発明の発光ダイオードの実施の形態3について、図5を参照して説明する。図5は本発明の実施の形態3にかかる発光ダイオードの全体構成を示す縦断面図である。
【0040】
図5に示されるように、本実施の形態3のLED21は、発光部3の構造は実施の形態1と同様である。しかし、リフレクタ部24の底面が階段状に形成されて斜面の部分が反射面24bとなっており、上面3a,24aから二次元方向に反射されてきた光を反射面24bで上方へ反射する。上方へ反射された光はリフレクタ部24の上面24aから外部放射されるが、この際上面24aにおいて屈折が起こるため屈折後の光が略垂直に外部放射されるように反射面24bによる反射方向を制御する。そして、反射面24bの二次元放射光に対する角度が全反射とならない角度になるようであれば、反射面24bに外部から金属蒸着等の鏡面処理を施して高い反射率を確保する必要がある。
【0041】
このようにして、リフレクタ部24の底面に二次元放射光を略垂直方向に反射する反射面24bを形成することによって、小型の灯具としての役目を果たす発光ダイオード21となる。
【0042】
実施の形態4
次に、本発明の発光ダイオードの実施の形態4について、図6を参照して説明する。図6(a)は本発明の実施の形態4にかかる発光ダイオードの全体構成を示す平面図、(b)は縦断面図である。
【0043】
図6に示されるように、本実施の形態4のLED31は、発光部3の構造は実施の形態1と同様である。しかし、リフレクタ部34の外形が上記各実施の形態においては円形であったが、本実施の形態4においては楕円形になっている。また、リフレクタ部34の底面は実施の形態3と同様に階段状に形成され、斜面の部分が反射面34bとなっており、上面3a,34aから二次元方向に反射されてきた光を反射面34bで上方へ反射する。上方へ反射された光はリフレクタ部34の上面34aから外部放射されるが、この際上面34aにおいて屈折が起こるため屈折後の光が略垂直に外部放射されるように反射面34bによる反射方向を制御する。そして、反射面34bの二次元放射光に対する角度が全反射とならない角度になるようであれば、反射面34bに外部から金属蒸着等の鏡面処理を施して高い反射率を確保する必要がある。
【0044】
さらに、図6(a)に示されるように、リフレクタ部34の底面は8個のセグメントに分かれ、隣り合うセグメント同士の反射面34bが互い違いになるように形成されている。そして、各反射面34bを発光部3からの照射密度に応じて曲率を持たせることによって、発光ダイオード31全体の輝度を均一にすることができる。この結果、上方から見た場合、発光ダイオード31の全体の輝度が均一でキラキラ光る自然なイメージの発光ダイオードとできる。さらに、発光ダイオード31は消灯している際にも外部光が反射して全体が均一にキラキラ光る非常に見栄えの良い発光ダイオードとなる。
【0045】
実施の形態5
次に、本発明の発光ダイオードの実施の形態5について、図7を参照して説明する。図7は本発明の実施の形態5にかかる発光ダイオードの全体構成を示す縦断面図である。
【0046】
図7に示されるように、本実施の形態5のLED51は、上記各実施の形態と異なり、光源部53と反射部54とからなる。即ち、光源部53は、立設された1対のリード55a,55bのうちリード55aに発光素子8をマウントし、発光素子8とリード55bとは図示しないワイヤで電気的接続をとっている。これらのリード55a,55bの先端、発光素子8、ワイヤが樹脂封止用金型にセットされて、透明エポキシ樹脂によって図に示すような円錐形と円柱形とが接続された形状に樹脂封止される。
【0047】
そして、透明エポキシ樹脂と同等の屈折率を有するアクリル樹脂からなり、中央部分に光源部53の円錐部分と対応する凹部を有する反射部54が、円錐部分において光学接合剤によって物理的、光学的に接合されている。なお、必ずしも物理的接合は必要ではない。また、光源部53と反射部54との隙間は僅かであり、それぞれの界面は略平行であるので、光学接合剤を用いなくても光損失は小さく、必ずしも光学接合剤を用いなくても良い。
【0048】
反射部54の上面54aは、発光素子8から放射された光が略二次元平行方向に反射される二次元方向反射面となっている。したがって、1対のリード55a,55bに電力を供給して発光素子8を発光させると、上方へ向かって上面54aで反射された光は略水平に360度二次元方向に反射され、反射部54の側面から外部放射される。
【0049】
このように、二次元平面方向へ光を反射する二次元方向反射面を有する発光部とリフレクタ部の組み合わせでなくても、二次元方向へ高い放射効率で光を放射できる発光ダイオードとなる。なお、反射部54は必ずしも光源部53の円錐部分にのみ結合するものに限られず、その下の光源部53の円柱部分にまで結合するものでも良い。
【0050】
上記各実施の形態においては、発光素子として赤色発光素子を用いた場合を想定しているが、何色の発光素子を用いても構わない。また、発光部及び光源部において発光素子等を封止する光透過性材料として透明エポキシ樹脂を用いているが、透明シリコン樹脂を始めとするその他の材料を用いても良い。
【0051】
また、発光部の上面の中心部分の平坦面は凹面や凸面でも良く、あるいは中心部分から反射面が形成されたものでも良い。反射面はX軸を対称軸とする放物線の一部をZ軸の周りに回転させた形状に限らず、発光素子あるいは発光素子の周辺を焦点とする楕円、放物線、双曲線、あるいはこれらの近似曲線の一部をZ軸の周りに回転させた形状としても、所定範囲へ光を放射することができる。
【0052】
また、上記各実施の形態においては、リフレクタ部及び反射部の外形を円形あるいは楕円形としているが、その他の形状としても構わない。さらに、リフレクタ部及び反射部の素材としてはアクリル樹脂を用いているが、発光部の封止材料と同等の屈折率を有するものであれば、どのような素材を用いても構わない。
【0053】
発光ダイオードのその他の部分の構成、形状、数量、材質、大きさ、接続関係等についても、上記各実施の形態に限定されるものではない。
【0054】
【発明の効果】
以上説明したように、請求項1の発明にかかる発光ダイオードは、光透過性材料によって埋設された発光素子から放射された光を、少なくとも二次元平面方向へ光を反射する二次元方向反射面を有する発光部と、前記発光部の少なくとも二次元方向の周囲で、光学的に結合され、前記二次元方向反射面を延長してなる反射面を有するリフレクタ部とを具備するものである。
【0055】
このように、このLEDは、二次元方向反射面を備えた発光部とその周囲に少なくとも光学的に結合されたリフレクタ部を備えており、リフレクタ部は二次元方向反射面を延長した反射面を有している。したがって、このLEDはリフレクタ部の大きさの二次元方向放射LEDと同等なものとなり、発光素子に対して大きな立体角を形成できるため、放射効率の高いLEDとなる。
【0056】
また、かかる発光部はリードフレームに複数連で形成されるが小型にできることから、同一立体角を発光素子封止樹脂で形成するのに対して、その間隔はパッケージ直径程度で取り数を増すことができる。そして、LED封止樹脂硬化時間は一般に1時間以上であるため、量産性に優れたLEDとなる。さらに、同一立体角を発光素子封止樹脂で形成するのに対して、LED封止樹脂の内部応力を小さく抑えることができるので、発光素子への応力ダメージ、パッケージのクラックが生じない信頼性の高いものとできる。
【0057】
このようにして、放射効率が高く、量産性に優れ、信頼性が高い二次元方向放射型の発光ダイオードとなる。
【0058】
請求項2の発明にかかる発光ダイオードは、請求項1の構成において、前記リフレクタ部は厚さが薄く形成され、前記発光部から放射された光のうち前記反射面と対向する面に至った光をも二次元方向へ反射するものである。
【0059】
これによって、反射面で反射されて二次元方向へ反射される光に加えて、反射面と対向する面においても発光部からの光が全反射されて二次元方向へ放射されるので、より放射効率の高いLEDとなる。
【0060】
このようにして、放射効率がより高く、量産性に優れ、信頼性が高い二次元方向放射型の発光ダイオードとなる。
【0061】
請求項3の発明にかかる発光ダイオードは、請求項1の構成において、前記リフレクタ部は前記反射面と対向し前記二次元方向反射面及び反射面によって前記二次元方向へ反射された光を前記二次元方向と略垂直な方向へ反射する階段状反射面を有するものである。
【0062】
これによって、発光ダイオードの周囲に反射部材を設けなくても、リフレクタ部が反射部材の役目をして二次元方向と略垂直な方向へ光を反射する。したがって、小型で放射効率の高い灯具として用いることができる発光ダイオードとなる。
【0063】
このようにして、小型で放射効率の高い灯具として用いることができ、量産性に優れ、信頼性が高い発光ダイオードとなる。
【0064】
請求項4の発明にかかる発光ダイオードは、請求項1乃至請求項3の構成において、前記発光部の二次元方向反射面は、発光素子あるいは発光素子周辺を焦点とし、楕円、放物線、双曲線、あるいはこれらの近似曲線のいずれかの一部を前記発光素子の発光面の中心を通る垂直軸の周りに回転させた形状をしているものである。
【0065】
これによって、発光素子から発せられた光のうち、所定の範囲内の光が二次元方向反射面としての光学面に至り、これらの光は光学面への入射角が臨界角より大きいため全て全反射されて側面に向かう。ここで、光学面は発光素子あるいは発光素子周辺を焦点とし、楕円、放物線、双曲線、あるいはこれらの近似曲線のいずれかの一部を前記発光素子の発光面の中心を通る垂直軸の周りに回転させた形状をしているため、光学面で反射された光は全て水平面に平行に進み、二次元方向に放射される。そして、リフレクタ部の上面はこの光学面と連続した形状をしているため、リフレクタ部の上面で反射された光も全て水平面に平行に進み、二次元方向に放射される。
【0066】
このようにして、二次元方向への放射効率が高く、量産性に優れ、信頼性が高い発光ダイオードとなる。
【0067】
請求項5の発明にかかる発光ダイオードは、埋設された発光素子の発光面に対向する部分が外側へ突出した円錐形である光源部と、少なくとも前記円錐形部分に結合し、前記光源部から放射された光を、少なくとも二次元平面方向へ光を反射する二次元方向反射面を有する反射部とを具備するものである。
【0068】
したがって、光源部から放射されて反射部で反射された光は、少なくとも二次元平面方向へ放射され、発光ダイオード全体が二次元方向放射光源としての働きをする。このように、少なくとも二次元平面方向へ光を反射する二次元方向反射面を有する発光部とリフレクタ部の組み合わせでなくても、二次元方向へ高い放射効率で光を放射できる発光ダイオードとなる。
【0069】
このようにして、二次元方向への放射効率が高く、量産性に優れ、信頼性が高い発光ダイオードとなる。
【図面の簡単な説明】
【図1】図1(a)は本発明の実施の形態1にかかる発光ダイオードの全体構成を示す平面図、(b)は縦断面図である。
【図2】図2は本発明の実施の形態1にかかる発光ダイオードの二次元方向放射光源としての特性を示す説明図である。
【図3】図3は本発明の実施の形態1にかかる発光ダイオードを用いた灯具の構成を示す縦断面図である。
【図4】図4は本発明の実施の形態2にかかる発光ダイオードの全体構成を示す縦断面図である。
【図5】図5は本発明の実施の形態3にかかる発光ダイオードの全体構成を示す縦断面図である。
【図6】図6(a)は本発明の実施の形態4にかかる発光ダイオードの全体構成を示す平面図、(b)は縦断面図である。
【図7】図7は本発明の実施の形態5にかかる発光ダイオードの全体構成を示す縦断面図である。
【図8】図8は、従来のフレネルレンズ併用方式の灯具の構造を示す断面図である。
【符号の説明】
2,12,21,31,51 発光ダイオード
3 発光部
3a 二次元方向放射面
4,14,24,34 リフレクタ部
4a,14a,24a,34a 反射面
8 発光素子
14b 反射面と対向する面
24b,34b 階段状反射面
53 光源部
54 反射部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention incorporates a small-sized light-emitting diode (hereinafter, referred to as a “light-emitting portion”) that reflects light at least in a two-dimensional direction substantially perpendicular to the light-emitting axis of the light-emitting element by a reflecting surface facing the light-emitting surface of the light-emitting element. And a light emitting diode.
[0002]
In this specification, the LED chip itself is referred to as a “light emitting element”, and the entirety including an optical device such as a package resin or a lens system on which the LED chip is mounted is referred to as a “light emitting diode” or “LED”. I do.
[0003]
[Prior art]
When an LED is used as a monochromatic light source, there is no filter loss unlike an incandescent light bulb, and although there is heat generation, there are no hot spots, and thinning can be achieved. However, the following problems have been encountered in a conventional lighting device using a Fresnel lens.
[0004]
A conventional lamp with a Fresnel lens combination will be described with reference to FIG. FIG. 8 is a cross-sectional view showing the structure of a conventional lamp using a Fresnel lens. The lamp 40 includes a convex lens-shaped LED 41, a Fresnel lens 42, and a front cover lens 43. The light emitted from the LED 41 is condensed to some extent by the radiation surface of the convex lens, reaches the Fresnel lens 42, is radiated by the Fresnel lens 42, is radiated forward as parallel light, and is externally radiated from the front cover lens 43. Is done.
[0005]
However, as shown in the figure, the lamp 40 is thick due to the restriction of the distance between the Fresnel lens 42 and the light source, and light that cannot be lens-controlled in the lateral direction is emitted, so that the light use efficiency is low. Therefore, by using a two-dimensional light emitting LED, a reflecting member installed around the two-dimensional light emitting LED that reflects the two-dimensional light in a substantially vertical direction, and a front cover lens, the light fixture is thin and has high light use efficiency. It can be a lamp.
[0006]
[Problems to be solved by the invention]
However, when the two-dimensional directional LED is reduced in size, the solid angle with respect to the light emitting element is reduced and the radiation efficiency is reduced. In addition, when the LED is made large, such LEDs are formed in a plurality of rows on the lead frame. However, since the interval is about the package diameter, the number of LEDs is small, and the curing time of the LED sealing resin generally takes one hour or more. Inferior. Furthermore, since the internal stress of the LED sealing resin increases, stress damage to the light emitting element and cracks in the package are likely to occur, resulting in poor reliability.
[0007]
Accordingly, it is an object of the present invention to provide a two-dimensional directional light emitting diode having high radiation efficiency, excellent mass productivity, and high reliability.
[0008]
[Means for Solving the Problems]
The light emitting diode according to the first aspect of the present invention is a light emitting unit having a two-dimensional direction reflecting surface that reflects light emitted from a light emitting element embedded with a light transmissive material in at least a two-dimensional plane direction, And a reflector portion having a reflecting surface that is optically coupled at least around the light emitting portion in the two-dimensional direction and is formed by extending the reflecting surface in the two-dimensional direction.
[0009]
As described above, the LED includes the light emitting unit having the two-dimensional reflecting surface and the reflector unit that is at least optically coupled around the light emitting unit, and the reflector unit includes a reflecting surface obtained by extending the two-dimensional reflecting surface. Have. Therefore, this LED is equivalent to a two-dimensional radiating LED having the size of the reflector portion, and can form a large solid angle with respect to the light emitting element, so that the LED has high radiation efficiency.
[0010]
In addition, since such light emitting portions are formed in a plurality on the lead frame but can be miniaturized, the same solid angle is formed by the light emitting element encapsulating resin, but the interval is about the package diameter and the number of the light emitting portions is increased. Can be. In addition, since the LED encapsulating resin curing time is generally one hour or longer, the LED is excellent in mass productivity. Furthermore, while the same solid angle is formed by the light-emitting element sealing resin, the internal stress of the LED sealing resin can be suppressed to a small value, so that stress damage to the light-emitting element and cracking of the package do not occur. Can be expensive.
[0011]
Thus, a two-dimensional directional light emitting diode having high radiation efficiency, excellent mass productivity, and high reliability is obtained.
[0012]
According to a second aspect of the present invention, in the light emitting diode according to the first aspect, the reflector portion is formed to have a small thickness, and light emitted from the light emitting portion reaches a surface facing the reflection surface. Is also reflected in the two-dimensional direction.
[0013]
As a result, in addition to the light reflected on the reflecting surface and reflected in the two-dimensional direction, the light from the light emitting portion is totally reflected and emitted in the two-dimensional direction on the surface facing the reflecting surface, so that more light is emitted. A highly efficient LED is obtained.
[0014]
In this way, a two-dimensional directional light emitting diode having higher radiation efficiency, excellent mass productivity, and high reliability is obtained.
[0015]
According to a third aspect of the present invention, in the light emitting diode according to the first aspect, the reflector portion faces the reflecting surface, and reflects the light reflected in the two-dimensional direction by the two-dimensional reflecting surface and the reflecting surface. It has a step-like reflecting surface that reflects in a direction substantially perpendicular to the dimensional direction.
[0016]
Thus, even without providing a reflection member around the light emitting diode, the reflector portion serves as a reflection member and reflects light in a direction substantially perpendicular to the two-dimensional direction. Therefore, a light emitting diode which is small and can be used as a lamp having high radiation efficiency is obtained.
[0017]
In this manner, a light emitting diode that can be used as a small-sized lamp with high radiation efficiency, has excellent mass productivity, and has high reliability.
[0018]
According to a fourth aspect of the present invention, in the light emitting diode according to any one of the first to third aspects, the two-dimensional reflecting surface of the light emitting portion focuses on the light emitting element or the periphery of the light emitting element, and has an ellipse, a parabola, a hyperbola, or Any one of these approximation curves has a shape rotated around a vertical axis passing through the center of the light emitting surface of the light emitting element.
[0019]
As a result, of the light emitted from the light emitting element, light within a predetermined range reaches the optical surface as a two-dimensional reflecting surface, and all of these lights have an incident angle to the optical surface larger than the critical angle, so that all of the light is totally reflected. Reflected toward the side. Here, the optical surface is focused on the light emitting element or the periphery of the light emitting element, and rotates an ellipse, a parabola, a hyperbola, or a part of any of these approximate curves around a vertical axis passing through the center of the light emitting surface of the light emitting element. Due to this shape, all light reflected on the optical surface travels parallel to the horizontal plane and is emitted in a two-dimensional direction. Since the upper surface of the reflector section has a shape that is continuous with the optical surface, all the light reflected on the upper surface of the reflector section also travels parallel to the horizontal plane and is emitted in the two-dimensional direction.
[0020]
In this manner, a highly reliable light emitting diode having high radiation efficiency in two-dimensional directions, excellent mass productivity, and high reliability can be obtained.
[0021]
A light-emitting diode according to a fifth aspect of the present invention is a light-emitting diode in which a portion facing a light-emitting surface of a buried light-emitting element has a conical shape protruding outward, and is coupled to at least the conical portion and emits light from the light-source portion. And a reflector having a two-dimensional reflecting surface that reflects the light in at least a two-dimensional plane direction.
[0022]
Therefore, the light emitted from the light source unit and reflected by the reflection unit is emitted at least in a two-dimensional plane direction, and the entire light emitting diode functions as a two-dimensional emission light source. As described above, a light emitting diode that can emit light in a two-dimensional direction with high radiation efficiency without using a combination of a light emitting unit having a two-dimensional reflecting surface that reflects light at least in a two-dimensional plane direction and a reflector unit.
[0023]
In this manner, a highly reliable light emitting diode having high radiation efficiency in two-dimensional directions, excellent mass productivity, and high reliability can be obtained.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0025]
Embodiment 1
First, a light emitting diode according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1A is a plan view showing the entire configuration of the light emitting diode according to the first embodiment of the present invention, and FIG. 1B is a longitudinal sectional view. FIG. 2 is an explanatory diagram illustrating characteristics of the light emitting diode according to the first embodiment of the present invention as a two-dimensional directional light source. FIG. 3 is a longitudinal sectional view showing a configuration of a lamp using the light emitting diode according to the first embodiment of the present invention.
[0026]
First, the structure of the LED 2 according to the first embodiment will be described with reference to FIG. As shown in FIG. 1, the LED 2 includes a light emitting unit 3 and a reflector unit 4 attached thereto. The light emitting section 3 mounts the light emitting element 8 on the lead 5a of the pair of upright leads 5a and 5b, and electrically connects the light emitting element 8 and the lead 5b with a wire (not shown). The tips of the leads 5a, 5b, the light emitting element 8, and the wire are set in a resin sealing mold, and are sealed with a transparent epoxy resin in a sectional shape as shown in the figure.
[0027]
Here, a minute flat surface is formed at the center of the upper surface 3a of the light emitting section 3. Following this center point, a part of a parabola having the center of the light emitting surface of the light emitting element 8 as a substantially focal point and a symmetric axis in the X axis direction is rotated about the Z axis as a reflecting surface 3a as a two-dimensional emitting surface. It is shaped like an umbrella. The side surface of the light emitting unit 3 forms a part of a spherical surface centered on the light emitting element 8. The light emitted upward from the light emitting element 8 is reflected in a substantially horizontal direction by the reflection surface 3a, and is emitted in a 360-degree two-dimensional direction. Further, the light radiated laterally from the light emitting element 8 is radiated in a two-dimensional direction from the side surface forming a part of the spherical surface.
[0028]
Such a light emitting portion 3 for two-dimensional radiation with a small diameter is excellent in mass productivity and has high reliability but is optically disadvantageous. Therefore, a ring-shaped reflector unit 4 is attached to the outside of the light emitting unit 3. The reflector section 4 is formed of an acrylic resin having the same refractive index as that of the light emitting section 3 and is physically and optically bonded by an optical bonding agent. Note that physical bonding is not necessarily required. In addition, since the gap between the light emitting unit 3 and the reflector unit 4 is small and their respective interfaces are substantially parallel, light loss is small without using an optical bonding agent, and it is not always necessary to use an optical bonding agent. .
[0029]
In addition, since the light emitting section 3 seals the light emitting element 8 and forms the reflecting surface 3a, the reflecting surface 3a can be close to the light emitting element 8, and the height is about 0.3 mm, which is about the wire height. Is also possible. By approaching, a large solid angle can be obtained geometrically, which is optically advantageous over forming the reflection surface 3a with another member.
[0030]
The upper surface 4a of the reflector unit 4 has a curved surface that is continuous with the upper surface 3a of the light emitting unit 3, and the light emitted from the light emitting element 8 and reflected by the upper surface 4a of the reflector unit 4 is substantially horizontally oriented in a 360-degree two-dimensional direction. Is radiated. Here, the outer diameter of the light emitting unit 3 is φ5, and the outer diameter of the reflector unit 4 is φ20. The optical advantage of attaching the reflector unit 4 will be described with reference to FIG. As shown in FIG. 2, in the case of only the light emitting unit 3, only light within an angle of θ1 is emitted in a two-dimensional direction from a perpendicular passing through the center of the light emitting element 8. Since light is radiated in the two-dimensional direction up to light within the angle of θ2, light radiated within the angle of θ1 to θ2 can also be effectively radiated in the two-dimensional direction.
[0031]
Although FIG. 2 shows a two-dimensional display by a cross section, a remarkable effect can be obtained because the light is actually within a solid angle in the range of θ1 to θ2.
[0032]
Such a lamp using the light emitting diode 2 of the first embodiment will be described with reference to FIG. As shown in FIG. 3, the lamp 1 using the LED 2 according to the first embodiment has an LED 2 as a two-dimensional directional radiation light source having a light emitting element built-in at the center, and a reflection member installed around the LED 2. An approximately 45-degree oblique portion 6a of the stepped surface 6 is a reflection surface. Further, a front cover lens 7 that covers these components is provided. When power is supplied to the lead 5 of the LED 2, light from the light emitting element is radiated in a two-dimensional direction of 360 degrees from the side surface of the reflector unit 4 attached around the light emitting unit 3 of the LED 2, and these lights are reflected by the reflecting member. The light is reflected in a substantially vertical direction by the reflecting surface 6a of the light source 6, and is emitted from the front cover lens 7 to the outside.
[0033]
Here, the two-dimensional direction means the direction of the LED 2 toward the reflection surface 6a of the reflection member 6 installed around the LED 2. Strictly, it is sufficient that the light from the LED 2 is not efficiently radiated from the LED 2 in a plane direction perpendicular to the Z axis, but is efficiently radiated to the reflection surface provided around the LED 2.
[0034]
As described above, the lamp 1 using the light emitting diode 2 according to the first embodiment is extremely thin, most of the light emitted from the LED 2 is effectively used, and the external light is extremely efficiently emitted from the front cover lens 7. .
[0035]
Embodiment 2
Next, a light emitting diode according to a second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a longitudinal sectional view showing the entire configuration of the light emitting diode according to the second embodiment of the present invention.
[0036]
As shown in FIG. 4, the LED 12 according to the second embodiment has the same structure of the light emitting unit 3 as the first embodiment. However, the bottom surface 14b of the reflector portion 14 is raised close to the mounting surface of the light emitting element 8, and the reflector portion 14 is thin. As a result, not only the light radiated upward from the light emitting element 8 but also the light radiated downward from the side surface of the light emitting element 8 to the bottom surface 14b of the reflector portion 14 becomes larger and exceeds the critical angle. The light is totally reflected by the bottom surface 14b of the portion 14 and is emitted in a two-dimensional direction from the side surface of the reflector portion 14.
[0037]
Further, since the light emitting element 8 has a size, some light is reflected by the upper surface 14a of the reflector portion 14 and is not radiated in the horizontal direction as shown in the figure but is reflected downward, but such light is also reflected by the reflector. The light is totally reflected by the bottom surface 14b of the portion 14 and is emitted in a two-dimensional direction from the side surface of the reflector portion 14.
[0038]
As a result, the amount of light radiated in the two-dimensional direction from the LED 12 increases, and the two-dimensional radiating LED with higher radiation efficiency is obtained.
[0039]
Embodiment 3
Next, a light emitting diode according to a third embodiment of the present invention will be described with reference to FIG. FIG. 5 is a longitudinal sectional view showing the entire configuration of the light emitting diode according to the third embodiment of the present invention.
[0040]
As shown in FIG. 5, the LED 21 according to the third embodiment has the same structure of the light emitting unit 3 as the first embodiment. However, the bottom surface of the reflector portion 24 is formed in a step-like shape, and the slope portion is a reflection surface 24b, and light reflected two-dimensionally from the upper surfaces 3a, 24a is reflected upward by the reflection surface 24b. The light reflected upward is radiated externally from the upper surface 24a of the reflector portion 24. At this time, refraction occurs on the upper surface 24a, so that the direction of reflection by the reflecting surface 24b is changed so that the refracted light is radiated to the outside almost vertically. Control. If the angle of the reflecting surface 24b with respect to the two-dimensional radiated light does not become the total reflection, it is necessary to secure a high reflectivity by subjecting the reflecting surface 24b to mirror treatment such as metal deposition from the outside.
[0041]
By forming the reflecting surface 24b for reflecting the two-dimensional radiated light in a substantially vertical direction on the bottom surface of the reflector portion 24 in this manner, the light emitting diode 21 serves as a small lamp.
[0042]
Embodiment 4
Next, a fourth embodiment of the light emitting diode of the present invention will be described with reference to FIG. FIG. 6A is a plan view showing the entire configuration of the light emitting diode according to the fourth embodiment of the present invention, and FIG. 6B is a longitudinal sectional view.
[0043]
As shown in FIG. 6, the LED 31 of the fourth embodiment has the same structure of the light emitting unit 3 as that of the first embodiment. However, the outer shape of the reflector portion 34 is circular in each of the above embodiments, but is elliptical in the fourth embodiment. Further, the bottom surface of the reflector portion 34 is formed in a step-like manner as in the third embodiment, the slope portion is a reflection surface 34b, and the light reflected two-dimensionally from the upper surfaces 3a, 34a is reflected by the reflection surface. The light is reflected upward at 34b. The light reflected upward is radiated externally from the upper surface 34a of the reflector portion 34. At this time, since the light is refracted on the upper surface 34a, the direction of reflection by the reflecting surface 34b is changed so that the refracted light is radiated to the outside almost vertically. Control. Then, if the angle of the reflecting surface 34b with respect to the two-dimensional radiated light does not become the total reflection, it is necessary to secure a high reflectivity by externally performing mirror processing such as metal deposition on the reflecting surface 34b.
[0044]
Further, as shown in FIG. 6A, the bottom surface of the reflector portion 34 is divided into eight segments, and the reflecting surfaces 34b of the adjacent segments are formed so as to be alternate. Then, by giving each reflecting surface 34b a curvature in accordance with the irradiation density from the light emitting section 3, the brightness of the entire light emitting diode 31 can be made uniform. As a result, when viewed from above, the light emitting diode 31 can be a natural image in which the overall brightness of the light emitting diode 31 is uniform and sparkling. Further, even when the light emitting diode 31 is turned off, external light is reflected and the whole becomes uniform and glittering, so that the light emitting diode has a very good appearance.
[0045]
Embodiment 5
Next, a fifth embodiment of the light emitting diode of the present invention will be described with reference to FIG. FIG. 7 is a longitudinal sectional view showing the entire configuration of the light emitting diode according to the fifth embodiment of the present invention.
[0046]
As shown in FIG. 7, unlike the above embodiments, the LED 51 of the fifth embodiment includes a light source unit 53 and a reflection unit 54. That is, in the light source unit 53, the light emitting element 8 is mounted on the lead 55a of the pair of standing leads 55a and 55b, and the light emitting element 8 and the lead 55b are electrically connected by a wire (not shown). The tips of the leads 55a and 55b, the light emitting element 8, and the wire are set in a resin sealing mold, and the transparent epoxy resin is used to seal the resin into a conical shape and a cylindrical shape as shown in the figure. Is done.
[0047]
A reflecting portion 54 made of an acrylic resin having a refractive index equivalent to that of the transparent epoxy resin and having a concave portion corresponding to the conical portion of the light source portion 53 at the center portion is physically and optically formed by an optical bonding agent at the conical portion. Are joined. Note that physical bonding is not necessarily required. Further, since the gap between the light source 53 and the reflector 54 is small and the respective interfaces are substantially parallel, the light loss is small without using an optical bonding agent, and the optical bonding agent does not always have to be used. .
[0048]
The upper surface 54a of the reflector 54 is a two-dimensional reflecting surface on which light emitted from the light emitting element 8 is reflected in a substantially two-dimensional parallel direction. Therefore, when power is supplied to the pair of leads 55a and 55b to cause the light emitting element 8 to emit light, the light reflected by the upper surface 54a upward is reflected substantially horizontally in a 360-degree two-dimensional direction, and is reflected by the reflecting portion 54. Radiation from the sides of the
[0049]
As described above, a light emitting diode that can emit light in a two-dimensional direction with high radiation efficiency without using a combination of a light emitting unit having a two-dimensional direction reflecting surface that reflects light in a two-dimensional plane direction and a reflector unit. The reflecting portion 54 is not necessarily limited to the one that couples only to the conical portion of the light source portion 53, and may be one that couples to the cylindrical portion of the light source portion 53 thereunder.
[0050]
In each of the above embodiments, it is assumed that a red light emitting element is used as the light emitting element, but any color light emitting element may be used. Although a transparent epoxy resin is used as a light transmitting material for sealing a light emitting element and the like in the light emitting portion and the light source portion, other materials such as a transparent silicon resin may be used.
[0051]
In addition, the flat surface at the center of the upper surface of the light emitting unit may be concave or convex, or may have a reflective surface formed from the center. The reflecting surface is not limited to a shape in which a part of a parabola having the X axis as a symmetric axis is rotated around the Z axis, but may be an ellipse, a parabola, a hyperbola, or an approximate curve thereof focusing on the light emitting element or the periphery of the light emitting element. Can be radiated to a predetermined range even when a part of is rotated around the Z axis.
[0052]
Further, in each of the above embodiments, the outer shape of the reflector portion and the reflecting portion is circular or elliptical, but may be other shapes. Further, acrylic resin is used as a material of the reflector portion and the reflection portion, but any material having a refractive index equivalent to that of the sealing material of the light emitting portion may be used.
[0053]
The configuration, shape, quantity, material, size, connection relationship, and the like of other portions of the light emitting diode are not limited to the above embodiments.
[0054]
【The invention's effect】
As described above, the light-emitting diode according to the first aspect of the present invention has a two-dimensional reflecting surface that reflects light emitted from a light-emitting element embedded with a light-transmitting material in at least a two-dimensional plane direction. And a reflector unit having a reflecting surface that is optically coupled around at least the two-dimensional direction of the light emitting unit and extends the reflecting surface in the two-dimensional direction.
[0055]
As described above, the LED includes the light emitting unit having the two-dimensional reflecting surface and the reflector unit that is at least optically coupled around the light emitting unit, and the reflector unit includes a reflecting surface obtained by extending the two-dimensional reflecting surface. Have. Therefore, this LED is equivalent to a two-dimensional radiating LED having the size of the reflector portion, and can form a large solid angle with respect to the light emitting element, so that the LED has high radiation efficiency.
[0056]
In addition, since such light emitting portions are formed in a plurality on the lead frame but can be miniaturized, the same solid angle is formed by the light emitting element encapsulating resin, but the interval is about the package diameter and the number of the light emitting portions is increased. Can be. In addition, since the LED encapsulating resin curing time is generally one hour or longer, the LED is excellent in mass productivity. Furthermore, while the same solid angle is formed by the light-emitting element sealing resin, the internal stress of the LED sealing resin can be suppressed to a small value, so that stress damage to the light-emitting element and cracking of the package do not occur. Can be expensive.
[0057]
Thus, a two-dimensional directional light emitting diode having high radiation efficiency, excellent mass productivity, and high reliability is obtained.
[0058]
According to a second aspect of the present invention, in the light emitting diode according to the first aspect, the reflector portion is formed to have a small thickness, and light emitted from the light emitting portion reaches a surface facing the reflection surface. Is also reflected in the two-dimensional direction.
[0059]
As a result, in addition to the light reflected on the reflecting surface and reflected in the two-dimensional direction, the light from the light emitting portion is totally reflected and emitted in the two-dimensional direction on the surface facing the reflecting surface, so that more light is emitted. A highly efficient LED is obtained.
[0060]
In this way, a two-dimensional directional light emitting diode having higher radiation efficiency, excellent mass productivity, and high reliability is obtained.
[0061]
According to a third aspect of the present invention, in the light emitting diode according to the first aspect, the reflector portion faces the reflecting surface, and reflects the light reflected in the two-dimensional direction by the two-dimensional reflecting surface and the reflecting surface. It has a step-like reflecting surface that reflects in a direction substantially perpendicular to the dimensional direction.
[0062]
Thus, even without providing a reflection member around the light emitting diode, the reflector portion serves as a reflection member and reflects light in a direction substantially perpendicular to the two-dimensional direction. Therefore, a light emitting diode which is small and can be used as a lamp having high radiation efficiency is obtained.
[0063]
In this manner, a light emitting diode that can be used as a small-sized lamp with high radiation efficiency, has excellent mass productivity, and has high reliability.
[0064]
According to a fourth aspect of the present invention, in the light emitting diode according to any one of the first to third aspects, the two-dimensional reflecting surface of the light emitting portion focuses on the light emitting element or the periphery of the light emitting element, and has an ellipse, a parabola, a hyperbola, or Any one of these approximation curves has a shape rotated around a vertical axis passing through the center of the light emitting surface of the light emitting element.
[0065]
As a result, of the light emitted from the light emitting element, light within a predetermined range reaches the optical surface as a two-dimensional reflecting surface, and all of these lights have an incident angle to the optical surface larger than the critical angle, so that all of the light is totally reflected. Reflected toward the side. Here, the optical surface is focused on the light emitting element or the periphery of the light emitting element, and rotates an ellipse, a parabola, a hyperbola, or a part of any of these approximate curves around a vertical axis passing through the center of the light emitting surface of the light emitting element. Due to this shape, all light reflected on the optical surface travels parallel to the horizontal plane and is emitted in a two-dimensional direction. Since the upper surface of the reflector section has a shape that is continuous with the optical surface, all the light reflected on the upper surface of the reflector section also travels parallel to the horizontal plane and is emitted in the two-dimensional direction.
[0066]
In this manner, a highly reliable light emitting diode having high radiation efficiency in two-dimensional directions, excellent mass productivity, and high reliability can be obtained.
[0067]
A light emitting diode according to a fifth aspect of the present invention is configured such that a portion facing a light emitting surface of a buried light emitting element has a conical shape protruding outward, and is coupled to at least the conical portion and emits light from the light source portion. And a reflector having a two-dimensional reflecting surface that reflects the light in at least a two-dimensional plane direction.
[0068]
Therefore, the light emitted from the light source unit and reflected by the reflection unit is emitted at least in a two-dimensional plane direction, and the entire light emitting diode functions as a two-dimensional emission light source. Thus, a light emitting diode that can emit light in two-dimensional directions with high radiation efficiency without using a combination of a light-emitting unit having a two-dimensional reflecting surface that reflects light in at least a two-dimensional plane direction and a reflector unit.
[0069]
In this manner, a highly reliable light emitting diode having high radiation efficiency in two-dimensional directions, excellent mass productivity, and high reliability can be obtained.
[Brief description of the drawings]
FIG. 1A is a plan view showing the entire configuration of a light emitting diode according to a first embodiment of the present invention, and FIG. 1B is a longitudinal sectional view.
FIG. 2 is an explanatory diagram showing characteristics of the light-emitting diode according to the first embodiment of the present invention as a two-dimensional directional light source;
FIG. 3 is a longitudinal sectional view showing a configuration of a lamp using the light emitting diode according to the first embodiment of the present invention.
FIG. 4 is a longitudinal sectional view illustrating an entire configuration of a light emitting diode according to a second embodiment of the present invention.
FIG. 5 is a longitudinal sectional view showing the entire configuration of the light emitting diode according to the third embodiment of the present invention.
FIG. 6A is a plan view showing an entire configuration of a light emitting diode according to a fourth embodiment of the present invention, and FIG. 6B is a longitudinal sectional view.
FIG. 7 is a longitudinal sectional view showing the entire configuration of a light emitting diode according to a fifth embodiment of the present invention.
FIG. 8 is a cross-sectional view showing the structure of a conventional lamp using a Fresnel lens.
[Explanation of symbols]
2,12,21,31,51 Light emitting diode 3 Light emitting portion 3a Two-dimensional emitting surface 4,14,24,34 Reflector portion 4a, 14a, 24a, 34a Reflecting surface 8 Light emitting element 14b Surface 24b facing the reflecting surface, 34b Step-shaped reflective surface 53 Light source 54 Reflector

Claims (5)

光透過性材料によって埋設された発光素子から放射された光を、少なくとも二次元平面方向へ光を反射する二次元方向反射面を有する発光部と、
前記発光部の少なくとも二次元方向の周囲で、光学的に結合され、前記二次元方向反射面を延長してなる反射面を有するリフレクタ部と
を具備することを特徴とする発光ダイオード。
Light emitted from the light-emitting element embedded by the light-transmitting material, a light-emitting unit having a two-dimensional direction reflecting surface that reflects light in at least a two-dimensional plane direction,
A light emitting diode, comprising: a reflector portion having a reflecting surface that is optically coupled around at least a two-dimensional direction of the light emitting portion and extends the two-dimensional reflecting surface.
前記リフレクタ部は厚さが薄く形成され、前記発光部から放射された光のうち前記反射面と対向する面に至った光をも前記二次元方向へ反射することを特徴とする請求項1に記載の発光ダイオード。The reflector according to claim 1, wherein the reflector is formed to have a small thickness, and also reflects, of the light emitted from the light emitting unit, light that reaches a surface facing the reflection surface in the two-dimensional direction. A light emitting diode as described. 前記リフレクタ部は、前記反射面と対向し、前記二次元方向反射面及び反射面によって前記二次元方向へ反射された光を前記二次元方向と略垂直な方向へ反射する階段状反射面を有することを特徴とする請求項1に記載の発光ダイオード。The reflector unit has a step-like reflecting surface facing the reflecting surface and reflecting the light reflected in the two-dimensional direction by the two-dimensional reflecting surface and the reflecting surface in a direction substantially perpendicular to the two-dimensional direction. The light emitting diode according to claim 1, wherein: 前記発光部の二次元方向反射面は、発光素子あるいは発光素子周辺を焦点とし、楕円、放物線、双曲線、あるいはこれらの近似曲線のいずれかの一部を前記発光素子の発光面の中心を通る垂直軸の周りに回転させた形状をしていることを特徴とする請求項1乃至請求項3のいずれか1つに記載の発光ダイオード。The two-dimensional reflecting surface of the light-emitting unit has a light-emitting element or a periphery of the light-emitting element as a focal point, and an ellipse, a parabola, a hyperbola, or a part of any of these approximated curves passes through the center of the light-emitting element. The light emitting diode according to claim 1, wherein the light emitting diode has a shape rotated around an axis. 埋設された発光素子の発光面に対向する部分が外側へ突出した円錐形である光源部と、
少なくとも前記円錐形部分に結合し、前記光源部から放射された光を、少なくとも二次元平面方向へ光を反射する二次元方向反射面を有する反射部と
を具備することを特徴とする発光ダイオード。
A light source section in which a portion facing the light emitting surface of the embedded light emitting element has a conical shape protruding outward,
A light-emitting diode, comprising: a reflecting portion coupled to at least the conical portion and having a two-dimensional reflecting surface for reflecting light emitted from the light source portion in at least a two-dimensional plane direction.
JP2002249954A 2001-11-16 2002-08-29 Light emitting diode Expired - Fee Related JP4239525B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002249954A JP4239525B2 (en) 2002-08-29 2002-08-29 Light emitting diode
AU2002365761A AU2002365761A1 (en) 2001-11-16 2002-11-15 Light-emitting diode, led light, and light apparatus
TW091133621A TW569476B (en) 2001-11-16 2002-11-15 Light emitting diode, LED lighting module, and lamp apparatus
EP02804348A EP1453107A4 (en) 2001-11-16 2002-11-15 Light-emitting diode, led light, and light apparatus
US10/495,644 US7781787B2 (en) 2001-11-16 2002-11-15 Light-emitting diode, led light, and light apparatus
PCT/JP2002/011968 WO2003049207A1 (en) 2001-11-16 2002-11-15 Light-emitting diode, led light, and light apparatus
CNB028226461A CN100369274C (en) 2001-11-16 2002-11-15 Light-emitting diode, led light, and light apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002249954A JP4239525B2 (en) 2002-08-29 2002-08-29 Light emitting diode

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008282907A Division JP5228807B2 (en) 2008-11-04 2008-11-04 Light emitting method of light emitting diode

Publications (2)

Publication Number Publication Date
JP2004088007A true JP2004088007A (en) 2004-03-18
JP4239525B2 JP4239525B2 (en) 2009-03-18

Family

ID=32056903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002249954A Expired - Fee Related JP4239525B2 (en) 2001-11-16 2002-08-29 Light emitting diode

Country Status (1)

Country Link
JP (1) JP4239525B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093711A (en) * 2004-09-24 2006-04-06 Shogen Koden Kofun Yugenkoshi Semiconductor light-emitting element assembly
JP2006108640A (en) * 2004-09-09 2006-04-20 Toyoda Gosei Co Ltd Light emitting device
JP2006148132A (en) * 2004-11-24 2006-06-08 Samsung Electronics Co Ltd Side light-emitting device, backlight unit using the same as light source, and liquid crystal display apparatus employing the same
JP2007027765A (en) * 2005-07-19 2007-02-01 Samsung Electro-Mechanics Co Ltd Led package having dual lens structure of lateral light emission
KR100688767B1 (en) 2004-10-15 2007-02-28 삼성전기주식회사 Lens for LED light source
JP2007220765A (en) * 2006-02-15 2007-08-30 Hitachi Displays Ltd Liquid display device
KR100803341B1 (en) * 2005-04-30 2008-02-13 주식회사 우영 Back light unit with LED package
US7543965B2 (en) 2004-10-29 2009-06-09 Samsung Electronic Co., Ltd Side light-emitting device, backlight unit having the side light-emitting device, and liquid crystal display apparatus employing the backlight unit
US7648256B2 (en) 2005-10-14 2010-01-19 Kabushiki Kaisha Toshiba Lighting system having lenses for light sources emitting rays at different wavelengths
US7738189B2 (en) 2006-10-30 2010-06-15 Samsung Electronics Co., Ltd. Side emitting lens, and backlight unit and liquid crystal display including the same
KR100971639B1 (en) * 2004-09-27 2010-07-22 가부시키가이샤 엔프라스 Light emitting device, surface light source device, display device, and light flux control device
JP2012243641A (en) * 2011-05-20 2012-12-10 Panasonic Corp Light emitting device, and lighting device using the same
KR101915816B1 (en) * 2011-01-04 2018-11-06 엘지전자 주식회사 Display apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108640A (en) * 2004-09-09 2006-04-20 Toyoda Gosei Co Ltd Light emitting device
JP2006093711A (en) * 2004-09-24 2006-04-06 Shogen Koden Kofun Yugenkoshi Semiconductor light-emitting element assembly
KR100971639B1 (en) * 2004-09-27 2010-07-22 가부시키가이샤 엔프라스 Light emitting device, surface light source device, display device, and light flux control device
KR100688767B1 (en) 2004-10-15 2007-02-28 삼성전기주식회사 Lens for LED light source
US7543965B2 (en) 2004-10-29 2009-06-09 Samsung Electronic Co., Ltd Side light-emitting device, backlight unit having the side light-emitting device, and liquid crystal display apparatus employing the backlight unit
US7566148B2 (en) 2004-11-24 2009-07-28 Samsung Electronics Co., Ltd. Side light-emitting device, backlight unit having the side light-emitting device, and liquid crystal display apparatus employing the backlight unit
KR100754169B1 (en) * 2004-11-24 2007-09-03 삼성전자주식회사 Side emitting device, back light unit using the same as a light source and liquid display apparatus employing it
JP2006148132A (en) * 2004-11-24 2006-06-08 Samsung Electronics Co Ltd Side light-emitting device, backlight unit using the same as light source, and liquid crystal display apparatus employing the same
KR100803341B1 (en) * 2005-04-30 2008-02-13 주식회사 우영 Back light unit with LED package
JP2007027765A (en) * 2005-07-19 2007-02-01 Samsung Electro-Mechanics Co Ltd Led package having dual lens structure of lateral light emission
US7648256B2 (en) 2005-10-14 2010-01-19 Kabushiki Kaisha Toshiba Lighting system having lenses for light sources emitting rays at different wavelengths
JP2007220765A (en) * 2006-02-15 2007-08-30 Hitachi Displays Ltd Liquid display device
US7738189B2 (en) 2006-10-30 2010-06-15 Samsung Electronics Co., Ltd. Side emitting lens, and backlight unit and liquid crystal display including the same
KR101915816B1 (en) * 2011-01-04 2018-11-06 엘지전자 주식회사 Display apparatus
JP2012243641A (en) * 2011-05-20 2012-12-10 Panasonic Corp Light emitting device, and lighting device using the same

Also Published As

Publication number Publication date
JP4239525B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
TW569476B (en) Light emitting diode, LED lighting module, and lamp apparatus
JP4182783B2 (en) LED package
JP3753011B2 (en) Reflective light emitting diode
US6674096B2 (en) Light-emitting diode (LED) package and packaging method for shaping the external light intensity distribution
JP4799341B2 (en) Lighting device
US8231248B2 (en) LED unit
TWI323519B (en) Light emitting device with a lens of silicone
US8120048B2 (en) LED unit
JP5228807B2 (en) Light emitting method of light emitting diode
US8269243B2 (en) LED unit
JP4239525B2 (en) Light emitting diode
JP5167099B2 (en) Lighting device
JPH01130578A (en) Light emitting diode
JP4134640B2 (en) Lamp
JP2003218408A (en) Light emitting diode and led light
JP2004128434A (en) Light emitter and lighting fixture
JP4239476B2 (en) Light emitting diode, LED light and reflector
JP2007081063A (en) Light-emitting device
JP6541126B2 (en) Light flux control member, light emitting device and lighting device
JP4656159B2 (en) Lamp
JP2004087630A (en) Light emitting diode and led light
JPH0422356B2 (en)
JPH0550754U (en) Light emitting device
JP2002111070A (en) Reflective light-emitting diode
JP4239477B2 (en) Light emitting diode and LED light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4239525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees