JP4239525B2 - Light emitting diode - Google Patents

Light emitting diode Download PDF

Info

Publication number
JP4239525B2
JP4239525B2 JP2002249954A JP2002249954A JP4239525B2 JP 4239525 B2 JP4239525 B2 JP 4239525B2 JP 2002249954 A JP2002249954 A JP 2002249954A JP 2002249954 A JP2002249954 A JP 2002249954A JP 4239525 B2 JP4239525 B2 JP 4239525B2
Authority
JP
Japan
Prior art keywords
light emitting
light
dimensional
emitting diode
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002249954A
Other languages
Japanese (ja)
Other versions
JP2004088007A (en
Inventor
好伸 末広
光一 太田
明弘 三沢
利典 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002249954A priority Critical patent/JP4239525B2/en
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to US10/495,644 priority patent/US7781787B2/en
Priority to AU2002365761A priority patent/AU2002365761A1/en
Priority to PCT/JP2002/011968 priority patent/WO2003049207A1/en
Priority to EP02804348A priority patent/EP1453107A4/en
Priority to TW091133621A priority patent/TW569476B/en
Priority to CNB028226461A priority patent/CN100369274C/en
Publication of JP2004088007A publication Critical patent/JP2004088007A/en
Application granted granted Critical
Publication of JP4239525B2 publication Critical patent/JP4239525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、発光素子の発光面と対向した反射面によって少なくとも発光素子の発光軸と略垂直な二次元方向へ光を反射する小型の発光ダイオード(以下、「発光部」という。)が組み込まれた発光ダイオードに関するものである。
【0002】
なお、本明細書中においては、LEDチップそのものは「発光素子」と呼び、LEDチップを搭載したパッケージ樹脂またはレンズ系等の光学装置を含む全体を「発光ダイオード」または「LED」と呼ぶこととする。
【0003】
【従来の技術】
LEDは単色光源として用いた場合、白熱電球のようにフィルターロスがなく、また発熱はあるものの高温になる箇所はなく、薄型化を図ることができる。しかし、従来のフレネルレンズ併用方式の灯具においては、以下のような問題点があった。
【0004】
従来のフレネルレンズ併用方式の灯具について、図8を参照して説明する。図8は、従来のフレネルレンズ併用方式の灯具の構造を示す断面図である。この灯具40は、凸レンズ形のLED41、フレネルレンズ42、及び前面カバーレンズ43を備えている。そして、LED41から発せられる光は、凸レンズ形の放射面によってある程度集光されてフレネルレンズ42に至り、フレネルレンズ42で配光制御されて平行光として前方へ放射され、前面カバーレンズ43から外部放射される。
【0005】
しかしながら、フレネルレンズ42と光源の距離の制約により図に示されるように灯具40として厚いものとなり、また横方向にレンズ制御できない光が放射されるため光利用効率が低い。そこで、二次元方向放射LEDと、その周囲に設置された二次元方向放射光を略垂直方向に反射する反射部材と、前面カバーレンズとからなる灯具とすることによって、薄型で光利用効率が高い灯具とすることができる。
【0006】
【発明が解決しようとする課題】
しかしながら、二次元方向放射LEDを小型のものにすると、発光素子に対する立体角が小さくなり放射効率が低くなる。また、大型のものにすると、かかるLEDはリードフレームに複数連で形成されるが、その間隔はパッケージ直径程度なので取り数が少なくなりLED封止樹脂硬化時間は一般に1時間以上かかるので、量産性に劣る。さらに、LED封止樹脂の内部応力が大きくなるので、発光素子への応力ダメージ、パッケージのクラックが生じやすくなり、信頼性に劣るものとなる。
【0007】
そこで、本発明は、放射効率が高く、量産性に優れ、信頼性が高い二次元方向放射型の発光ダイオードの提供を課題とするものである。
【0008】
【課題を解決するための手段】
請求項1の発明にかかる発光ダイオードは、光透過性材料によって埋設された発光素子から放射された光を、発光素子の発光面の中心を通る垂直軸(Z軸)と略垂直な二次元平面方向へ光を反射する二次元方向反射面を有する発光部と、前記発光部の少なくとも二次元方向の周囲で、光学的に結合され、前記二次元方向反射面を延長してなる反射面を有するリフレクタ部とを具備し、前記発光部は、その上面の中心部分には微小な平坦面、続いて前記二次元方向反射面が形成され、更に、前記リフレクタ部の上面が前記発光部の上面の前記二次元方向反射面を延長して形成された曲面になっており、前記発光素子から放射され前記リフレクタ部の上面で反射された光は前記二次元平面方向に放射されることを特徴とするものである。
【0009】
このように、このLEDは、二次元方向反射面を備えた発光部とその周囲に少なくとも光学的に結合されたリフレクタ部を備えており、リフレクタ部は二次元方向反射面を延長した反射面を有している。したがって、このLEDはリフレクタ部の大きさの二次元方向放射LEDと同等なものとなり、発光素子に対して大きな立体角を形成できるため、放射効率の高いLEDとなる。
【0010】
また、かかる発光部はリードフレームに複数連で形成されるが小型にできることから、同一立体角を発光素子封止樹脂で形成するのに対して、その間隔はパッケージ直径程度で取り数を増すことができる。そして、LED封止樹脂硬化時間は一般に1時間以上であるため、量産性に優れたLEDとなる。さらに、同一立体角を発光素子封止樹脂で形成するのに対して、LED封止樹脂の内部応力を小さく抑えることができるので、発光素子への応力ダメージ、パッケージのクラックが生じない信頼性の高いものとできる。
【0011】
このようにして、放射効率が高く、量産性に優れ、信頼性が高い二次元方向放射型の発光ダイオードとなる。
【0012】
請求項2の発明にかかる発光ダイオードは、請求項1の構成において、前記リフレクタ部は厚さが薄く形成され、前記発光部から放射された光のうち前記反射面と対向する面に至った光をも前記二次元平面方向へ反射するものである。
【0013】
これによって、反射面で反射されて二次元方向へ反射される光に加えて、反射面と対向する面においても発光部からの光が全反射されて二次元方向へ放射されるので、より放射効率の高いLEDとなる。
【0014】
このようにして、放射効率がより高く、量産性に優れ、信頼性が高い二次元方向放射型の発光ダイオードとなる。
【0015】
請求項3の発明にかかる発光ダイオードは、請求項1の構成において、前記リフレクタ部は前記反射面と対向し前記二次元方向反射面及び前記反射面によって前記二次元平面方向へ反射された光を前記二次元平面方向と略垂直な方向へ反射する階段状反射面を有するものである。
【0016】
これによって、発光ダイオードの周囲に反射部材を設けなくても、リフレクタ部が反射部材の役目をして二次元方向と略垂直な方向へ光を反射する。したがって、小型で放射効率の高い灯具として用いることができる発光ダイオードとなる。
【0017】
このようにして、小型で放射効率の高い灯具として用いることができ、量産性に優れ、信頼性が高い発光ダイオードとなる。
【0018】
請求項4の発明にかかる発光ダイオードは、請求項1乃至請求項3の構成において、前記発光部の前記二次元方向反射面は、発光素子あるいは発光素子周辺を焦点とし、楕円、放物線、双曲線、あるいはこれらの近似曲線のいずれかの一部を前記発光素子の発光面の中心を通る垂直軸(Z軸)の周りに回転させた形状をしているものである。
【0019】
これによって、発光素子から発せられた光のうち、所定の範囲内の光が二次元方向反射面としての光学面に至り、これらの光は光学面への入射角が臨界角より大きいため全て全反射されて側面に向かう。ここで、光学面は発光素子あるいは発光素子周辺を焦点とし、楕円、放物線、双曲線、あるいはこれらの近似曲線のいずれかの一部を前記発光素子の発光面の中心を通る垂直軸の周りに回転させた形状をしているため、光学面で反射された光は全て水平面に平行に進み、二次元方向に放射される。そして、リフレクタ部の上面はこの光学面と連続した形状をしているため、リフレクタ部の上面で反射された光も全て水平面に平行に進み、二次元方向に放射される。
【0020】
このようにして、二次元方向への放射効率が高く、量産性に優れ、信頼性が高い発光ダイオードとなる。
【0021】
そして、発光ダイオードは、埋設された発光素子の発光面に対向する部分が外側へ突出した円錐形である光源部と、少なくとも前記円錐形部分に結合し、前記光源部から放射された光を、少なくとも二次元平面方向へ光を反射する二次元方向反射面を有する反射部とを具備するものである。
【0022】
したがって、光源部から放射されて反射部で反射された光は、少なくとも二次元平面方向へ放射され、発光ダイオード全体が二次元方向放射光源としての働きをする。このように、少なくとも二次元平面方向へ光を反射する二次元方向反射面を有する発光部とリフレクタ部の組み合わせでなくても、二次元方向へ高い放射効率で光を放射できる発光ダイオードとなる。
【0023】
このようにして、二次元方向への放射効率が高く、量産性に優れ、信頼性が高い発光ダイオードとなる。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0025】
実施の形態1
まず、本発明の発光ダイオードの実施の形態1について、図1乃至図3を参照して説明する。図1(a)は本発明の実施の形態1にかかる発光ダイオードの全体構成を示す平面図、(b)は縦断面図である。図2は本発明の実施の形態1にかかる発光ダイオードの二次元方向放射光源としての特性を示す説明図である。図3は本発明の実施の形態1にかかる発光ダイオードを用いた灯具の構成を示す縦断面図である。
【0026】
まず、本実施の形態1のLED2の構造について、図1を参照して説明する。図1に示されるように、LED2は発光部3にリフレクタ部4を取り付けてなる。発光部3は、立設された1対のリード5a,5bのうちリード5aに発光素子8をマウントし、発光素子8とリード5bとは図示しないワイヤで電気的接続をとっている。これらのリード5a,5bの先端、発光素子8、ワイヤが樹脂封止用金型にセットされて、透明エポキシ樹脂によって図に示すような断面形状に樹脂封止されている。
【0027】
ここで、発光部3の上面3aの中心部分には微小な平坦面が形成されている。この中心点に続いて二次元方向放射面としての反射面3aとして発光素子8の発光面の中心を略焦点とし、X軸方向を対称軸とする放物線の一部をZ軸の周りに回転させた傘のような形状をしている。また、発光部3の側面は、発光素子8を中心とする球面の一部をなしている。発光素子8から上方に放射された光は反射面3aで略水平方向に反射されて、360度二次元方向に放射される。また、発光素子8から側方に放射された光は球面の一部をなす側面から二次元方向に放射される。
【0028】
このような径の小さい二次元方向放射の発光部3は量産性に優れ、信頼性が高いが光学的に不利である。そこで、かかる発光部3の外側に、リング状のリフレクタ部4が取り付けられる。リフレクタ部4は発光部3と同等の屈折率のアクリル樹脂で形成され、光学接合剤によって物理的、光学的に接合されている。なお、必ずしも物理的接合は必要ではない。また、発光部3とリフレクタ部4との隙間は僅かであり、それぞれの界面は略平行であるので、光学接合剤を用いなくても光損失は小さく、必ずしも光学接合剤を用いなくても良い。
【0029】
なお、発光部3は発光素子8を封止するとともに反射面3aを形成してあるので、発光素子8に対し反射面3aが近接したものとでき、ワイヤ高さ程度の0.3mmとすることも可能である。近接することで幾何学的に大きな立体角をとることができ、他の部材で反射面3aを形成するよりも光学的に有利である。
【0030】
リフレクタ部4の上面4aは、発光部3の上面3aと連続した曲面になっており、発光素子8から放射されリフレクタ部4の上面4aで反射された光は、略水平に360度二次元方向に放射される。ここで、発光部3の外径はφ5であり、リフレクタ部4の外径はφ20である。リフレクタ部4を取り付けることによる光学的利点について、図2を参照して説明する。図2に示されるように、発光部3のみの場合は発光素子8の中心を通る垂線からθ1の角度内の光しか二次元方向に放射されないのに対して、リフレクタ部4を取り付けることによって垂線からθ2の角度内の光まで二次元方向に放射されるので、θ1〜θ2の角度内に放射される光をも有効に二次元方向に放射することができる。
【0031】
なお、図2では断面による二次元表示であるが、実際にはθ1〜θ2範囲の立体角内の光であるので、顕著な効果を得ることができる。
【0032】
このような本実施の形態1の発光ダイオード2を用いた灯具について、図3を参照して説明する。図3に示されるように、本実施の形態1のLED2を用いた灯具1は、中心に発光素子を内蔵した二次元方向放射光源としてのLED2が載置され、その周囲に設置された反射部材6の階段状の表面のうち略45度の斜めの部分6aが反射面となっている。そして、これらを覆う前面カバーレンズ7を備えている。LED2のリード5に電力を供給すると、LED2の発光部3の周囲に取り付けられたリフレクタ部4の側面から360度の二次元方向に向かって発光素子の光が放射され、これらの光は反射部材6の反射面6aで略垂直方向に反射されて、前面カバーレンズ7から外部放射される。
【0033】
なお、ここで二次元方向とは、LED2に対する、その周辺に設置された反射部材6の反射面6aへの方向を意味する。厳密にLED2からZ軸に対して垂直な平面方向ではなく、LED2からの光が、LED2の周囲に設置された反射面へ効率良く照射されるものであれば良い。
【0034】
このように、本実施の形態1の発光ダイオード2を用いた灯具1は、極めて薄型で、LED2から放射される光の大部分が有効利用され、前面カバーレンズ7から極めて効率良く外部放射される。
【0035】
実施の形態2
次に、本発明の発光ダイオードの実施の形態2について、図4を参照して説明する。図4は本発明の実施の形態2にかかる発光ダイオードの全体構成を示す縦断面図である。
【0036】
図4に示されるように、本実施の形態2のLED12は、発光部3の構造は実施の形態1と同様である。しかし、リフレクタ部14の底面14bが発光素子8のマウント面近くまで上がって、リフレクタ部14が薄くなっている。これによって、発光素子8から上方へ放射される光のみでなく、発光素子8の側面から下方へ放射される光のリフレクタ部14の底面14bに対する入射角も大きくなって臨界角を超えるので、リフレクタ部14の底面14bで全反射されてリフレクタ部14の側面から二次元方向に放射される。
【0037】
また、発光素子8が大きさを有するために、リフレクタ部14の上面14aで反射されて図示のように水平方向に放射されずに下方に反射される光もあるが、このような光もリフレクタ部14の底面14bで全反射されてリフレクタ部14の側面から二次元方向に放射される。
【0038】
これによって、LED12から二次元方向に放射される光量が増加し、放射効率のより良い二次元方向放射LEDとなる。
【0039】
実施の形態3
次に、本発明の発光ダイオードの実施の形態3について、図5を参照して説明する。図5は本発明の実施の形態3にかかる発光ダイオードの全体構成を示す縦断面図である。
【0040】
図5に示されるように、本実施の形態3のLED21は、発光部3の構造は実施の形態1と同様である。しかし、リフレクタ部24の底面が階段状に形成されて斜面の部分が反射面24bとなっており、上面3a,24aから二次元方向に反射されてきた光を反射面24bで上方へ反射する。上方へ反射された光はリフレクタ部24の上面24aから外部放射されるが、この際上面24aにおいて屈折が起こるため屈折後の光が略垂直に外部放射されるように反射面24bによる反射方向を制御する。そして、反射面24bの二次元放射光に対する角度が全反射とならない角度になるようであれば、反射面24bに外部から金属蒸着等の鏡面処理を施して高い反射率を確保する必要がある。
【0041】
このようにして、リフレクタ部24の底面に二次元放射光を略垂直方向に反射する反射面24bを形成することによって、小型の灯具としての役目を果たす発光ダイオード21となる。
【0042】
実施の形態4
次に、本発明の発光ダイオードの実施の形態4について、図6を参照して説明する。図6(a)は本発明の実施の形態4にかかる発光ダイオードの全体構成を示す平面図、(b)は縦断面図である。
【0043】
図6に示されるように、本実施の形態4のLED31は、発光部3の構造は実施の形態1と同様である。しかし、リフレクタ部34の外形が上記各実施の形態においては円形であったが、本実施の形態4においては楕円形になっている。また、リフレクタ部34の底面は実施の形態3と同様に階段状に形成され、斜面の部分が反射面34bとなっており、上面3a,34aから二次元方向に反射されてきた光を反射面34bで上方へ反射する。上方へ反射された光はリフレクタ部34の上面34aから外部放射されるが、この際上面34aにおいて屈折が起こるため屈折後の光が略垂直に外部放射されるように反射面34bによる反射方向を制御する。そして、反射面34bの二次元放射光に対する角度が全反射とならない角度になるようであれば、反射面34bに外部から金属蒸着等の鏡面処理を施して高い反射率を確保する必要がある。
【0044】
さらに、図6(a)に示されるように、リフレクタ部34の底面は8個のセグメントに分かれ、隣り合うセグメント同士の反射面34bが互い違いになるように形成されている。そして、各反射面34bを発光部3からの照射密度に応じて曲率を持たせることによって、発光ダイオード31全体の輝度を均一にすることができる。この結果、上方から見た場合、発光ダイオード31の全体の輝度が均一でキラキラ光る自然なイメージの発光ダイオードとできる。さらに、発光ダイオード31は消灯している際にも外部光が反射して全体が均一にキラキラ光る非常に見栄えの良い発光ダイオードとなる。
【0045】
実施の形態5
次に、本発明の発光ダイオードの実施の形態5について、図7を参照して説明する。図7は本発明の実施の形態5にかかる発光ダイオードの全体構成を示す縦断面図である。
【0046】
図7に示されるように、本実施の形態5のLED51は、上記各実施の形態と異なり、光源部53と反射部54とからなる。即ち、光源部53は、立設された1対のリード55a,55bのうちリード55aに発光素子8をマウントし、発光素子8とリード55bとは図示しないワイヤで電気的接続をとっている。これらのリード55a,55bの先端、発光素子8、ワイヤが樹脂封止用金型にセットされて、透明エポキシ樹脂によって図に示すような円錐形と円柱形とが接続された形状に樹脂封止される。
【0047】
そして、透明エポキシ樹脂と同等の屈折率を有するアクリル樹脂からなり、中央部分に光源部53の円錐部分と対応する凹部を有する反射部54が、円錐部分において光学接合剤によって物理的、光学的に接合されている。なお、必ずしも物理的接合は必要ではない。また、光源部53と反射部54との隙間は僅かであり、それぞれの界面は略平行であるので、光学接合剤を用いなくても光損失は小さく、必ずしも光学接合剤を用いなくても良い。
【0048】
反射部54の上面54aは、発光素子8から放射された光が略二次元平行方向に反射される二次元方向反射面となっている。したがって、1対のリード55a,55bに電力を供給して発光素子8を発光させると、上方へ向かって上面54aで反射された光は略水平に360度二次元方向に反射され、反射部54の側面から外部放射される。
【0049】
このように、二次元平面方向へ光を反射する二次元方向反射面を有する発光部とリフレクタ部の組み合わせでなくても、二次元方向へ高い放射効率で光を放射できる発光ダイオードとなる。なお、反射部54は必ずしも光源部53の円錐部分にのみ結合するものに限られず、その下の光源部53の円柱部分にまで結合するものでも良い。
【0050】
上記各実施の形態においては、発光素子として赤色発光素子を用いた場合を想定しているが、何色の発光素子を用いても構わない。また、発光部及び光源部において発光素子等を封止する光透過性材料として透明エポキシ樹脂を用いているが、透明シリコン樹脂を始めとするその他の材料を用いても良い。
【0051】
また、発光部の上面の中心部分の平坦面は凹面や凸面でも良く、あるいは中心部分から反射面が形成されたものでも良い。反射面はX軸を対称軸とする放物線の一部をZ軸の周りに回転させた形状に限らず、発光素子あるいは発光素子の周辺を焦点とする楕円、放物線、双曲線、あるいはこれらの近似曲線の一部をZ軸の周りに回転させた形状としても、所定範囲へ光を放射することができる。
【0052】
また、上記各実施の形態においては、リフレクタ部及び反射部の外形を円形あるいは楕円形としているが、その他の形状としても構わない。さらに、リフレクタ部及び反射部の素材としてはアクリル樹脂を用いているが、発光部の封止材料と同等の屈折率を有するものであれば、どのような素材を用いても構わない。
【0053】
発光ダイオードのその他の部分の構成、形状、数量、材質、大きさ、接続関係等についても、上記各実施の形態に限定されるものではない。
【0054】
【発明の効果】
以上説明したように、請求項1の発明にかかる発光ダイオードは、光透過性材料によって埋設された発光素子から放射された光を、少なくとも二次元平面方向へ光を反射する二次元方向反射面を有する発光部と、前記発光部の少なくとも二次元方向の周囲で、光学的に結合され、前記二次元方向反射面を延長してなる反射面を有するリフレクタ部とを具備するものである。
【0055】
このように、このLEDは、二次元方向反射面を備えた発光部とその周囲に少なくとも光学的に結合されたリフレクタ部を備えており、リフレクタ部は二次元方向反射面を延長した反射面を有している。したがって、このLEDはリフレクタ部の大きさの二次元方向放射LEDと同等なものとなり、発光素子に対して大きな立体角を形成できるため、放射効率の高いLEDとなる。
【0056】
また、かかる発光部はリードフレームに複数連で形成されるが小型にできることから、同一立体角を発光素子封止樹脂で形成するのに対して、その間隔はパッケージ直径程度で取り数を増すことができる。そして、LED封止樹脂硬化時間は一般に1時間以上であるため、量産性に優れたLEDとなる。さらに、同一立体角を発光素子封止樹脂で形成するのに対して、LED封止樹脂の内部応力を小さく抑えることができるので、発光素子への応力ダメージ、パッケージのクラックが生じない信頼性の高いものとできる。
【0057】
このようにして、放射効率が高く、量産性に優れ、信頼性が高い二次元方向放射型の発光ダイオードとなる。
【0058】
請求項2の発明にかかる発光ダイオードは、請求項1の構成において、前記リフレクタ部は厚さが薄く形成され、前記発光部から放射された光のうち前記反射面と対向する面に至った光をも二次元方向へ反射するものである。
【0059】
これによって、反射面で反射されて二次元方向へ反射される光に加えて、反射面と対向する面においても発光部からの光が全反射されて二次元方向へ放射されるので、より放射効率の高いLEDとなる。
【0060】
このようにして、放射効率がより高く、量産性に優れ、信頼性が高い二次元方向放射型の発光ダイオードとなる。
【0061】
請求項3の発明にかかる発光ダイオードは、請求項1の構成において、前記リフレクタ部は前記反射面と対向し前記二次元方向反射面及び反射面によって前記二次元方向へ反射された光を前記二次元方向と略垂直な方向へ反射する階段状反射面を有するものである。
【0062】
これによって、発光ダイオードの周囲に反射部材を設けなくても、リフレクタ部が反射部材の役目をして二次元方向と略垂直な方向へ光を反射する。したがって、小型で放射効率の高い灯具として用いることができる発光ダイオードとなる。
【0063】
このようにして、小型で放射効率の高い灯具として用いることができ、量産性に優れ、信頼性が高い発光ダイオードとなる。
【0064】
請求項4の発明にかかる発光ダイオードは、請求項1乃至請求項3の構成において、前記発光部の二次元方向反射面は、発光素子あるいは発光素子周辺を焦点とし、楕円、放物線、双曲線、あるいはこれらの近似曲線のいずれかの一部を前記発光素子の発光面の中心を通る垂直軸の周りに回転させた形状をしているものである。
【0065】
これによって、発光素子から発せられた光のうち、所定の範囲内の光が二次元方向反射面としての光学面に至り、これらの光は光学面への入射角が臨界角より大きいため全て全反射されて側面に向かう。ここで、光学面は発光素子あるいは発光素子周辺を焦点とし、楕円、放物線、双曲線、あるいはこれらの近似曲線のいずれかの一部を前記発光素子の発光面の中心を通る垂直軸の周りに回転させた形状をしているため、光学面で反射された光は全て水平面に平行に進み、二次元方向に放射される。そして、リフレクタ部の上面はこの光学面と連続した形状をしているため、リフレクタ部の上面で反射された光も全て水平面に平行に進み、二次元方向に放射される。
【0066】
このようにして、二次元方向への放射効率が高く、量産性に優れ、信頼性が高い発光ダイオードとなる。
【0067】
そして、前記発光ダイオードは、埋設された発光素子の発光面に対向する部分が外側へ突出した円錐形である光源部と、少なくとも前記円錐形部分に結合し、前記光源部から放射された光を、少なくとも二次元平面方向へ光を反射する二次元方向反射面を有する反射部とを具備するものである。
【0068】
したがって、光源部から放射されて反射部で反射された光は、少なくとも二次元平面方向へ放射され、発光ダイオード全体が二次元方向放射光源としての働きをする。このように、少なくとも二次元平面方向へ光を反射する二次元方向反射面を有する発光部とリフレクタ部の組み合わせでなくても、二次元方向へ高い放射効率で光を放射できる発光ダイオードとなる。
【0069】
このようにして、二次元方向への放射効率が高く、量産性に優れ、信頼性が高い発光ダイオードとなる。
【図面の簡単な説明】
【図1】 図1(a)は本発明の実施の形態1にかかる発光ダイオードの全体構成を示す平面図、(b)は縦断面図である。
【図2】 図2は本発明の実施の形態1にかかる発光ダイオードの二次元方向放射光源としての特性を示す説明図である。
【図3】 図3は本発明の実施の形態1にかかる発光ダイオードを用いた灯具の構成を示す縦断面図である。
【図4】 図4は本発明の実施の形態2にかかる発光ダイオードの全体構成を示す縦断面図である。
【図5】 図5は本発明の実施の形態3にかかる発光ダイオードの全体構成を示す縦断面図である。
【図6】 図6(a)は本発明の実施の形態4にかかる発光ダイオードの全体構成を示す平面図、(b)は縦断面図である。
【図7】 図7は本発明の実施の形態5にかかる発光ダイオードの全体構成を示す縦断面図である。
【図8】 図8は、従来のフレネルレンズ併用方式の灯具の構造を示す断面図である。
【符号の説明】
2,12,21,31,51 発光ダイオード
3 発光部
3a 二次元方向放射面
4,14,24,34 リフレクタ部
4a,14a,24a,34a 反射面
8 発光素子
14b 反射面と対向する面
24b,34b 階段状反射面
53 光源部
54 反射部
[0001]
BACKGROUND OF THE INVENTION
The present invention incorporates a small light-emitting diode (hereinafter referred to as “light-emitting portion”) that reflects light in a two-dimensional direction at least substantially perpendicular to the light-emitting axis of the light-emitting element by a reflecting surface facing the light-emitting surface of the light-emitting element. The present invention relates to a light emitting diode.
[0002]
In the present specification, the LED chip itself is referred to as a “light emitting element”, and the whole including the optical device such as a package resin or a lens system on which the LED chip is mounted is referred to as a “light emitting diode” or “LED”. To do.
[0003]
[Prior art]
When an LED is used as a monochromatic light source, there is no filter loss unlike an incandescent light bulb, and although there is heat generation, there is no place where the temperature is high, and the LED can be thinned. However, the conventional Fresnel lens combined type lamp has the following problems.
[0004]
A conventional Fresnel lens combined lamp will be described with reference to FIG. FIG. 8 is a cross-sectional view illustrating the structure of a conventional lamp using a Fresnel lens. The lamp 40 includes a convex lens-shaped LED 41, a Fresnel lens 42, and a front cover lens 43. The light emitted from the LED 41 is condensed to some extent by the convex lens-shaped radiation surface, reaches the Fresnel lens 42, is distributed by the Fresnel lens 42, and is emitted forward as parallel light. Is done.
[0005]
However, due to the restriction of the distance between the Fresnel lens 42 and the light source, the lamp 40 becomes thick as shown in the figure, and light that cannot be controlled in the lateral direction is emitted, so that the light utilization efficiency is low. Therefore, by using a lamp composed of a two-dimensional direction emission LED, a reflection member that reflects the two-dimensional direction emission light installed around the LED, and a front cover lens, it is thin and has high light use efficiency. It can be a lamp.
[0006]
[Problems to be solved by the invention]
However, when the two-dimensional direction emission LED is made small, the solid angle with respect to the light emitting element is reduced, and the radiation efficiency is lowered. In addition, when the LED is made large, such LEDs are formed in a plurality of lead frames on the lead frame, but since the distance between them is about the package diameter, the number is reduced, and the LED sealing resin curing time generally takes 1 hour or more. Inferior to Furthermore, since the internal stress of the LED sealing resin is increased, stress damage to the light emitting element and cracking of the package are likely to occur, resulting in poor reliability.
[0007]
Therefore, an object of the present invention is to provide a two-dimensional radiation type light emitting diode having high radiation efficiency, excellent mass productivity, and high reliability.
[0008]
[Means for Solving the Problems]
The light emitting diode according to the first aspect of the present invention is a two-dimensional plane substantially perpendicular to the vertical axis (Z axis) passing through the center of the light emitting surface of the light emitting element for emitting light emitted from the light emitting element embedded with the light transmissive material. A light emitting unit having a two-dimensional direction reflecting surface that reflects light in a direction, and a reflecting surface that is optically coupled at least around the two-dimensional direction of the light emitting unit and extends the two-dimensional direction reflecting surface A reflector portion, and the light emitting portion is formed with a fine flat surface at the center of the upper surface thereof, followed by the two-dimensional reflection surface, and the upper surface of the reflector portion is the upper surface of the light emitting portion. The curved surface is formed by extending the two-dimensional direction reflecting surface, and the light emitted from the light emitting element and reflected by the upper surface of the reflector unit is emitted in the two-dimensional plane direction. Is.
[0009]
As described above, the LED includes a light emitting unit having a two-dimensional direction reflecting surface and a reflector unit optically coupled to the periphery of the light emitting unit, and the reflector unit has a reflecting surface obtained by extending the two-dimensional direction reflecting surface. Have. Therefore, this LED is equivalent to the two-dimensional direction emission LED having the size of the reflector portion, and can form a large solid angle with respect to the light emitting element, so that the LED has high emission efficiency.
[0010]
In addition, since the light emitting portion is formed in a plurality of lines on the lead frame, it can be reduced in size. Therefore, the same solid angle is formed with the light emitting element sealing resin, whereas the interval is increased by the package diameter. Can do. And since LED sealing resin hardening time is generally 1 hour or more, it becomes LED excellent in mass-productivity. Furthermore, since the same solid angle is formed with the light emitting element sealing resin, the internal stress of the LED sealing resin can be kept small, so that the stress damage to the light emitting element and the crack of the package do not occur. It can be expensive.
[0011]
In this manner, a two-dimensional direction emission type light emitting diode having high radiation efficiency, excellent mass productivity, and high reliability is obtained.
[0012]
The light-emitting diode according to a second aspect of the present invention is the light-emitting diode according to the first aspect, wherein the reflector portion is formed with a small thickness, and the light that has reached the surface facing the reflecting surface among the light emitted from the light-emitting portion. Are also reflected in the two-dimensional plane direction.
[0013]
As a result, in addition to the light reflected by the reflecting surface and reflected in the two-dimensional direction, the light from the light emitting part is also totally reflected and radiated in the two-dimensional direction on the surface facing the reflecting surface. It becomes LED with high efficiency.
[0014]
In this manner, a two-dimensional direction emission type light emitting diode having higher radiation efficiency, excellent mass productivity, and high reliability is obtained.
[0015]
According to a third aspect of the present invention, there is provided the light emitting diode according to the first aspect, wherein the reflector portion faces the reflecting surface and reflects the light reflected in the two-dimensional plane direction by the two-dimensional reflecting surface and the reflecting surface . It has a step-like reflecting surface that reflects in a direction substantially perpendicular to the two-dimensional plane direction.
[0016]
As a result, even without providing a reflecting member around the light emitting diode, the reflector serves as a reflecting member and reflects light in a direction substantially perpendicular to the two-dimensional direction. Therefore, it becomes a light emitting diode that can be used as a lamp having a small size and high radiation efficiency.
[0017]
In this manner, the light-emitting diode can be used as a small and highly radiant lamp, has excellent mass productivity, and has high reliability.
[0018]
According to a fourth aspect of the present invention, there is provided the light emitting diode according to the first to third aspects, wherein the two-dimensional reflecting surface of the light emitting section is focused on the light emitting element or the periphery of the light emitting element, and has an ellipse, a parabola, a hyperbola, Alternatively, a part of any one of these approximate curves is rotated around a vertical axis (Z axis) passing through the center of the light emitting surface of the light emitting element.
[0019]
As a result, of the light emitted from the light emitting element, the light within a predetermined range reaches the optical surface as the two-dimensional direction reflecting surface, and all of these lights are all incident because the incident angle to the optical surface is larger than the critical angle. Reflected toward the side. Here, the optical surface is focused on the light emitting element or the periphery of the light emitting element, and an ellipse, a parabola, a hyperbola, or a part of any of these approximate curves is rotated around a vertical axis passing through the center of the light emitting surface of the light emitting element. Due to the shape, all the light reflected by the optical surface travels parallel to the horizontal plane and is emitted in a two-dimensional direction. And since the upper surface of a reflector part has the shape which followed this optical surface, all the light reflected on the upper surface of a reflector part advances in parallel with a horizontal surface, and is radiated | emitted in a two-dimensional direction.
[0020]
In this way, a light emitting diode having high radiation efficiency in a two-dimensional direction, excellent mass productivity, and high reliability is obtained.
[0021]
And the light emitting diode is coupled to the light source part in which the part facing the light emitting surface of the embedded light emitting element protrudes outward, and at least the conical part, and the light emitted from the light source part is And a reflecting portion having a two-dimensional direction reflecting surface that reflects light in at least a two-dimensional plane direction.
[0022]
Therefore, the light emitted from the light source unit and reflected by the reflecting unit is emitted at least in the two-dimensional plane direction, and the entire light emitting diode functions as a two-dimensional direction emission light source. Thus, even if it is not a combination of a light emitting part having a two-dimensional direction reflecting surface that reflects light at least in a two-dimensional plane direction and a reflector part, a light emitting diode that can emit light with high radiation efficiency in the two-dimensional direction is obtained.
[0023]
In this way, a light emitting diode having high radiation efficiency in a two-dimensional direction, excellent mass productivity, and high reliability is obtained.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0025]
Embodiment 1
First, a first embodiment of a light-emitting diode according to the present invention will be described with reference to FIGS. FIG. 1A is a plan view showing the overall configuration of the light-emitting diode according to the first embodiment of the present invention, and FIG. FIG. 2 is an explanatory diagram showing characteristics of the light-emitting diode according to the first embodiment of the present invention as a two-dimensional direction radiation source. FIG. 3 is a longitudinal sectional view showing a configuration of a lamp using the light emitting diode according to the first embodiment of the present invention.
[0026]
First, the structure of the LED 2 of the first embodiment will be described with reference to FIG. As shown in FIG. 1, the LED 2 is formed by attaching a reflector portion 4 to a light emitting portion 3. The light emitting unit 3 mounts the light emitting element 8 on the lead 5a of the pair of standing leads 5a and 5b, and the light emitting element 8 and the lead 5b are electrically connected by a wire (not shown). The tips of the leads 5a and 5b, the light emitting element 8, and the wires are set in a resin sealing mold and sealed with a transparent epoxy resin in a cross-sectional shape as shown in the drawing.
[0027]
Here, a minute flat surface is formed at the central portion of the upper surface 3 a of the light emitting unit 3. Following this center point, a part of a parabola with the center of the light emitting surface of the light emitting element 8 as a focal point as a reflecting surface 3a serving as a two-dimensional radiating surface and having an X axis direction as a symmetric axis is rotated around the Z axis. It is shaped like an umbrella. Further, the side surface of the light emitting unit 3 forms a part of a spherical surface centering on the light emitting element 8. The light emitted upward from the light emitting element 8 is reflected in the substantially horizontal direction by the reflecting surface 3a and is emitted in a two-dimensional direction of 360 degrees. The light emitted from the light emitting element 8 to the side is emitted in a two-dimensional direction from the side surface forming a part of the spherical surface.
[0028]
Such a small-diameter two-dimensionally radiating light emitting section 3 is excellent in mass productivity and high in reliability, but is optically disadvantageous. Therefore, a ring-shaped reflector 4 is attached to the outside of the light emitting unit 3. The reflector unit 4 is formed of an acrylic resin having a refractive index equivalent to that of the light emitting unit 3 and is physically and optically bonded by an optical bonding agent. Note that physical bonding is not always necessary. Further, since the gap between the light emitting unit 3 and the reflector unit 4 is slight and the interfaces are substantially parallel, the optical loss is small without using an optical bonding agent, and the optical bonding agent is not necessarily used. .
[0029]
In addition, since the light emitting part 3 seals the light emitting element 8 and forms the reflecting surface 3a, the reflecting surface 3a can be close to the light emitting element 8, and the wire height is about 0.3 mm. Is also possible. By being close to each other, a large solid angle can be obtained geometrically, which is optically more advantageous than the case where the reflecting surface 3a is formed by other members.
[0030]
The upper surface 4a of the reflector unit 4 is a curved surface that is continuous with the upper surface 3a of the light emitting unit 3, and the light emitted from the light emitting element 8 and reflected by the upper surface 4a of the reflector unit 4 is approximately 360 degrees in a two-dimensional direction. To be emitted. Here, the outer diameter of the light emitting part 3 is φ5, and the outer diameter of the reflector part 4 is φ20. The optical advantage by attaching the reflector part 4 is demonstrated with reference to FIG. As shown in FIG. 2, in the case of only the light emitting unit 3, only light within an angle θ 1 from the perpendicular passing through the center of the light emitting element 8 is radiated in a two-dimensional direction. To the light within the angle θ2 is emitted in the two-dimensional direction, so that the light emitted within the angle θ1 to θ2 can also be effectively emitted in the two-dimensional direction.
[0031]
In FIG. 2, the cross-sectional two-dimensional display is used, but since the light is actually within a solid angle in the range of θ1 to θ2, a remarkable effect can be obtained.
[0032]
A lamp using the light emitting diode 2 of the first embodiment will be described with reference to FIG. As shown in FIG. 3, the lamp 1 using the LED 2 of the first embodiment has the LED 2 as a two-dimensional radiating light source including a light emitting element at the center, and a reflecting member installed around the LED 2. An inclined portion 6a of approximately 45 degrees out of the six stepped surfaces is a reflecting surface. And the front cover lens 7 which covers these is provided. When power is supplied to the lead 5 of the LED 2, the light of the light emitting element is emitted in a two-dimensional direction of 360 degrees from the side surface of the reflector unit 4 attached around the light emitting unit 3 of the LED 2. 6 is reflected in a substantially vertical direction by the reflecting surface 6 a and is emitted from the front cover lens 7 to the outside.
[0033]
In addition, a two-dimensional direction means here the direction to the reflective surface 6a of the reflection member 6 installed in the periphery with respect to LED2. Strictly, it is not limited to the planar direction perpendicular to the Z-axis from the LED 2, but it is sufficient that the light from the LED 2 is efficiently irradiated to the reflection surface installed around the LED 2.
[0034]
As described above, the lamp 1 using the light emitting diode 2 according to the first embodiment is extremely thin, most of the light emitted from the LED 2 is effectively used, and is externally radiated from the front cover lens 7 very efficiently. .
[0035]
Embodiment 2
Next, a second embodiment of the light emitting diode of the present invention will be described with reference to FIG. FIG. 4 is a longitudinal sectional view showing the entire configuration of the light emitting diode according to the second embodiment of the present invention.
[0036]
As shown in FIG. 4, in the LED 12 of the second embodiment, the structure of the light emitting unit 3 is the same as that of the first embodiment. However, the bottom surface 14b of the reflector part 14 rises to near the mounting surface of the light emitting element 8, and the reflector part 14 is thinned. As a result, not only the light emitted upward from the light emitting element 8 but also the incident angle of the light emitted downward from the side surface of the light emitting element 8 with respect to the bottom surface 14b of the reflector portion 14 increases and exceeds the critical angle. The light is totally reflected by the bottom surface 14 b of the portion 14 and is radiated in a two-dimensional direction from the side surface of the reflector portion 14.
[0037]
Further, since the light emitting element 8 has a size, there is also light that is reflected by the upper surface 14a of the reflector portion 14 and is reflected downward without being emitted in the horizontal direction as shown in the figure. The light is totally reflected by the bottom surface 14 b of the portion 14 and is radiated in a two-dimensional direction from the side surface of the reflector portion 14.
[0038]
As a result, the amount of light emitted from the LED 12 in the two-dimensional direction increases, and the two-dimensional direction-emitting LED with better radiation efficiency is obtained.
[0039]
Embodiment 3
Next, Embodiment 3 of the light emitting diode of the present invention will be described with reference to FIG. FIG. 5 is a longitudinal sectional view showing the overall configuration of the light emitting diode according to the third embodiment of the present invention.
[0040]
As shown in FIG. 5, in the LED 21 of the third embodiment, the structure of the light emitting unit 3 is the same as that of the first embodiment. However, the bottom surface of the reflector portion 24 is formed in a stepped shape and the slope portion is the reflecting surface 24b, and the light reflected in the two-dimensional direction from the upper surfaces 3a and 24a is reflected upward by the reflecting surface 24b. The light reflected upward is radiated to the outside from the upper surface 24a of the reflector section 24. At this time, since refraction occurs at the upper surface 24a, the direction of reflection by the reflecting surface 24b is changed so that the refracted light is radiated to the outside substantially vertically. Control. If the angle of the reflecting surface 24b with respect to the two-dimensional emitted light is such that it is not totally reflected, the reflecting surface 24b must be subjected to a mirror treatment such as metal deposition from the outside to ensure a high reflectivity.
[0041]
In this way, by forming the reflection surface 24b that reflects the two-dimensional radiation light in the substantially vertical direction on the bottom surface of the reflector portion 24, the light emitting diode 21 that serves as a small lamp is obtained.
[0042]
Embodiment 4
Next, a fourth embodiment of the light emitting diode of the present invention will be described with reference to FIG. FIG. 6A is a plan view showing the entire configuration of the light emitting diode according to the fourth embodiment of the present invention, and FIG. 6B is a longitudinal sectional view thereof.
[0043]
As shown in FIG. 6, in the LED 31 of the fourth embodiment, the structure of the light emitting unit 3 is the same as that of the first embodiment. However, the outer shape of the reflector portion 34 is circular in each of the above embodiments, but in the fourth embodiment, it is oval. Further, the bottom surface of the reflector portion 34 is formed in a stepped shape as in the third embodiment, and the slope portion is a reflecting surface 34b, and the light reflected in the two-dimensional direction from the upper surfaces 3a and 34a is reflected on the reflecting surface. Reflects upward at 34b. The light reflected upward is externally radiated from the upper surface 34a of the reflector section 34. At this time, since refraction occurs at the upper surface 34a, the direction of reflection by the reflective surface 34b is changed so that the refracted light is externally radiated substantially vertically. Control. If the angle of the reflecting surface 34b with respect to the two-dimensional emitted light is such that it is not totally reflected, the reflecting surface 34b needs to be subjected to mirror processing such as metal vapor deposition from the outside to ensure high reflectivity.
[0044]
Furthermore, as shown in FIG. 6A, the bottom surface of the reflector portion 34 is divided into eight segments, and the reflecting surfaces 34b of adjacent segments are formed alternately. And by giving each reflective surface 34b curvature according to the irradiation density from the light emission part 3, the brightness | luminance of the light emitting diode 31 whole can be made uniform. As a result, when viewed from above, the light emitting diode 31 can be a light emitting diode having a natural image in which the entire luminance of the light emitting diode 31 is uniform and shines. Further, even when the light emitting diode 31 is extinguished, the external light is reflected and the whole is uniformly shining and becomes a very nice light emitting diode.
[0045]
Embodiment 5
Next, a light emitting diode according to a fifth embodiment of the present invention will be described with reference to FIG. FIG. 7 is a longitudinal sectional view showing the entire configuration of the light emitting diode according to the fifth embodiment of the present invention.
[0046]
As shown in FIG. 7, the LED 51 according to the fifth embodiment includes a light source unit 53 and a reflection unit 54 unlike the above embodiments. That is, the light source unit 53 mounts the light emitting element 8 on the lead 55a among the pair of standing leads 55a and 55b, and the light emitting element 8 and the lead 55b are electrically connected by a wire (not shown). The tips of these leads 55a and 55b, the light emitting element 8, and the wires are set in a resin sealing mold, and resin-sealed into a shape in which a conical shape and a cylindrical shape as shown in the figure are connected by a transparent epoxy resin. Is done.
[0047]
Then, the reflecting portion 54 made of an acrylic resin having a refractive index equivalent to that of the transparent epoxy resin and having a concave portion corresponding to the conical portion of the light source portion 53 in the central portion is physically and optically formed by the optical bonding agent in the conical portion. It is joined. Note that physical bonding is not always necessary. In addition, since the gap between the light source unit 53 and the reflection unit 54 is very small and the respective interfaces are substantially parallel, light loss is small without using an optical bonding agent, and it is not always necessary to use an optical bonding agent. .
[0048]
The upper surface 54a of the reflecting portion 54 is a two-dimensional direction reflecting surface on which light emitted from the light emitting element 8 is reflected in a substantially two-dimensional parallel direction. Therefore, when electric power is supplied to the pair of leads 55a and 55b to cause the light emitting element 8 to emit light, the light reflected by the upper surface 54a upward is reflected approximately 360 degrees in a two-dimensional direction, and the reflecting portion 54 Radiated from the side of the outside.
[0049]
Thus, even if it is not the combination of the light emission part which has a two-dimensional direction reflective surface which reflects light to a two-dimensional plane direction, and a reflector part, it becomes a light emitting diode which can radiate | emit light with high radiation efficiency to a two-dimensional direction. Note that the reflecting portion 54 is not necessarily limited to one that is coupled only to the conical portion of the light source portion 53, and may be coupled to the cylindrical portion of the light source portion 53 below the reflecting portion 54.
[0050]
In each of the above embodiments, it is assumed that a red light emitting element is used as the light emitting element, but any color light emitting element may be used. In addition, although a transparent epoxy resin is used as a light transmissive material for sealing the light emitting element and the like in the light emitting portion and the light source portion, other materials such as a transparent silicon resin may be used.
[0051]
Further, the flat surface at the central portion of the upper surface of the light emitting unit may be a concave surface or a convex surface, or a reflecting surface may be formed from the central portion. The reflecting surface is not limited to a shape in which a part of a parabola with the X axis as a symmetric axis is rotated around the Z axis, but an ellipse, a parabola, a hyperbola, or an approximate curve of these that focuses on the periphery of the light emitting element Even if a part of is rotated around the Z axis, light can be emitted to a predetermined range.
[0052]
In each of the above embodiments, the outer shape of the reflector portion and the reflecting portion is circular or elliptical, but other shapes may be used. Furthermore, although acrylic resin is used as the material for the reflector part and the reflecting part, any material may be used as long as it has a refractive index equivalent to that of the sealing material for the light emitting part.
[0053]
The configuration, shape, quantity, material, size, connection relationship, and the like of the other parts of the light emitting diode are not limited to the above embodiments.
[0054]
【The invention's effect】
As described above, the light-emitting diode according to the first aspect of the present invention has a two-dimensional direction reflecting surface that reflects light emitted from a light-emitting element embedded with a light-transmitting material in at least a two-dimensional plane direction. And a reflector unit having a reflection surface that is optically coupled and extends the reflection surface in the two-dimensional direction at least around the two-dimensional direction of the light-emitting unit.
[0055]
As described above, the LED includes a light emitting unit having a two-dimensional direction reflecting surface and a reflector unit optically coupled to the periphery of the light emitting unit, and the reflector unit has a reflecting surface obtained by extending the two-dimensional direction reflecting surface. Have. Therefore, this LED is equivalent to the two-dimensional direction emission LED having the size of the reflector portion, and can form a large solid angle with respect to the light emitting element, so that the LED has high emission efficiency.
[0056]
In addition, since the light emitting portion is formed in a plurality of lines on the lead frame, it can be reduced in size. Therefore, the same solid angle is formed with the light emitting element sealing resin, whereas the interval is increased by the package diameter. Can do. And since LED sealing resin hardening time is generally 1 hour or more, it becomes LED excellent in mass-productivity. Furthermore, since the same solid angle is formed with the light emitting element sealing resin, the internal stress of the LED sealing resin can be kept small, so that the stress damage to the light emitting element and the crack of the package do not occur. It can be expensive.
[0057]
In this manner, a two-dimensional direction emission type light emitting diode having high radiation efficiency, excellent mass productivity, and high reliability is obtained.
[0058]
The light-emitting diode according to a second aspect of the present invention is the light-emitting diode according to the first aspect, wherein the reflector portion is formed with a small thickness, and the light that has reached the surface facing the reflecting surface among the light emitted from the light-emitting portion. Is also reflected in a two-dimensional direction.
[0059]
As a result, in addition to the light reflected by the reflecting surface and reflected in the two-dimensional direction, the light from the light emitting part is also totally reflected and radiated in the two-dimensional direction on the surface facing the reflecting surface. It becomes LED with high efficiency.
[0060]
In this manner, a two-dimensional direction emission type light emitting diode having higher radiation efficiency, excellent mass productivity, and high reliability is obtained.
[0061]
A light emitting diode according to a third aspect of the present invention is the light emitting diode according to the first aspect, wherein the reflector portion faces the reflection surface, and the light reflected in the two-dimensional direction by the two-dimensional reflection surface and the reflection surface is reflected in the two-dimensional direction. It has a step-like reflecting surface that reflects in a direction substantially perpendicular to the dimensional direction.
[0062]
As a result, even without providing a reflecting member around the light emitting diode, the reflector serves as a reflecting member and reflects light in a direction substantially perpendicular to the two-dimensional direction. Therefore, it becomes a light emitting diode that can be used as a lamp having a small size and high radiation efficiency.
[0063]
In this manner, the light-emitting diode can be used as a small and highly radiant lamp, has excellent mass productivity, and has high reliability.
[0064]
A light-emitting diode according to a fourth aspect of the present invention is the light-emitting diode according to any one of the first to third aspects, wherein the two-dimensional reflecting surface of the light-emitting portion is focused on the light-emitting element or the periphery of the light-emitting element, and an ellipse, parabola, hyperbola, A part of any one of these approximate curves is rotated around a vertical axis passing through the center of the light emitting surface of the light emitting element.
[0065]
As a result, of the light emitted from the light emitting element, the light within a predetermined range reaches the optical surface as the two-dimensional direction reflecting surface, and all of these lights are all incident because the incident angle to the optical surface is larger than the critical angle. Reflected toward the side. Here, the optical surface is focused on the light emitting element or the periphery of the light emitting element, and an ellipse, a parabola, a hyperbola, or a part of any of these approximate curves is rotated around a vertical axis passing through the center of the light emitting surface of the light emitting element. Due to the shape, all the light reflected by the optical surface travels parallel to the horizontal plane and is emitted in a two-dimensional direction. And since the upper surface of a reflector part has the shape which followed this optical surface, all the light reflected on the upper surface of a reflector part advances in parallel with a horizontal surface, and is radiated | emitted in a two-dimensional direction.
[0066]
In this way, a light emitting diode having high radiation efficiency in a two-dimensional direction, excellent mass productivity, and high reliability is obtained.
[0067]
The light emitting diode includes a light source part having a conical shape in which a part facing the light emitting surface of the embedded light emitting element protrudes outward, and at least the conical part is coupled to emit light emitted from the light source part. And a reflection part having a two-dimensional direction reflection surface that reflects light in at least a two-dimensional plane direction.
[0068]
Therefore, the light emitted from the light source unit and reflected by the reflecting unit is emitted at least in the two-dimensional plane direction, and the entire light emitting diode functions as a two-dimensional direction emission light source. Thus, even if it is not a combination of a light emitting part having a two-dimensional direction reflecting surface that reflects light at least in a two-dimensional plane direction and a reflector part, a light emitting diode that can emit light with high radiation efficiency in the two-dimensional direction is obtained.
[0069]
In this way, a light emitting diode having high radiation efficiency in a two-dimensional direction, excellent mass productivity, and high reliability is obtained.
[Brief description of the drawings]
FIG. 1A is a plan view showing an overall configuration of a light emitting diode according to a first embodiment of the present invention, and FIG. 1B is a longitudinal sectional view thereof.
FIG. 2 is an explanatory diagram illustrating characteristics of the light-emitting diode according to the first embodiment of the present invention as a two-dimensional direction emission light source.
FIG. 3 is a longitudinal sectional view showing a configuration of a lamp using the light emitting diode according to the first embodiment of the present invention.
FIG. 4 is a longitudinal sectional view showing an overall configuration of a light emitting diode according to a second embodiment of the present invention.
FIG. 5 is a longitudinal sectional view showing an overall configuration of a light emitting diode according to a third embodiment of the present invention.
FIG. 6A is a plan view showing an entire configuration of a light emitting diode according to a fourth embodiment of the present invention, and FIG. 6B is a longitudinal sectional view thereof.
FIG. 7 is a longitudinal sectional view showing an entire configuration of a light emitting diode according to a fifth embodiment of the present invention.
FIG. 8 is a cross-sectional view showing the structure of a conventional Fresnel lens combined lamp.
[Explanation of symbols]
2, 12, 21, 31, 51 Light emitting diode 3 Light emitting portion 3a Two-dimensional radiating surface 4, 14, 24, 34 Reflector portions 4a, 14a, 24a, 34a Reflecting surface 8 Light emitting element 14b Surface 24b facing the reflecting surface, 34b Step-like reflective surface 53 Light source part 54 Reflective part

Claims (4)

光透過性材料によって埋設された発光素子(8)から放射された光を、発光素子(8)の発光面の中心を通る垂直軸(Z軸)と略垂直な二次元平面方向へ光を反射する二次元方向反射面(3a)を有する発光部(3)と、
前記発光部(3)の少なくとも二次元方向の周囲で、光学的に結合され、前記二次元方向反射面(3a)を延長してなる反射面(4a , 14a,24a,34a)を有するリフレクタ部(4 , 14,24,34)を具備し、
前記発光部(3)は、その上面の中心部分には微小な平坦面、続いて前記二次元方向反射面(3a)が形成され、更に、前記リフレクタ部(4 , 14,24,34)の上面が前記発光部(3)の上面の前記二次元方向反射面(3a)を延長して形成された曲面になっており、前記発光素子(8)から放射され前記リフレクタ部(4 , 14,24,34)の上面で反射された光は前記二次元平面方向に放射されることを特徴とする発光ダイオード。
Light emitted from the light emitting element (8) embedded with the light transmissive material is reflected in a two-dimensional plane direction substantially perpendicular to the vertical axis (Z axis) passing through the center of the light emitting surface of the light emitting element (8). A light emitting part (3) having a two-dimensional direction reflecting surface (3a) to be
A reflector unit having a reflecting surface (4a , 14a, 24a, 34a) that is optically coupled and extends the reflecting surface (3a) in the two-dimensional direction at least around the light emitting unit (3). (4 , 14 , 24 , 34) ,
The light emitting part (3) is formed with a fine flat surface at the center of the upper surface thereof, followed by the two-dimensional reflecting surface (3a), and further, the reflector part (4 , 14 , 24 , 34). The upper surface is a curved surface formed by extending the two-dimensional reflection surface (3a) on the upper surface of the light emitting unit (3), and is radiated from the light emitting element (8) and the reflector units (4 , 14 ,. 24, 34) is reflected in the two-dimensional plane direction, and the light emitting diode.
前記リフレクタ部(14)は厚さが薄く形成され、前記発光部(3)から放射された光のうち前記反射面(14a)と対向する面(14b)に至った光をも前記二次元平面方向へ反射することを特徴とする請求項1に記載の発光ダイオード。The reflector part (14) is formed to be thin, and the light reaching the surface (14b) facing the reflecting surface (14a) out of the light emitted from the light emitting part (3) is also the two-dimensional plane. The light emitting diode according to claim 1, wherein the light emitting diode reflects in a direction. 前記リフレクタ部(24 , 34)は、前記反射面(24b,34b)と対向し、前記二次元方向反射面(3a)及び前記反射面(24b,34b)によって前記二次元平面方向へ反射された光を前記二次元平面方向と略垂直な方向へ反射する階段状反射面(24b,34b)を有することを特徴とする請求項1に記載の発光ダイオード。The reflector part (24 , 34) faces the reflection surface (24b, 34b) and is reflected in the two-dimensional plane direction by the two-dimensional reflection surface (3a) and the reflection surface (24b, 34b) . the light emitting diode according to claim 1, characterized in that it comprises a stepped reflecting surface which reflects light to the two-dimensional plane direction substantially perpendicular (24b, 34b). 前記発光部(3)の前記二次元方向反射面(3a)は、発光素子(8)あるいは発光素子(8)周辺を焦点とし、楕円、放物線、双曲線、あるいはこれらの近似曲線のいずれかの一部を前記発光素子(8)の発光面の中心を通る垂直軸(Z軸)の周りに回転させた形状をしていることを特徴とする請求項1乃至請求項3のいずれか1つに記載の発光ダイオード。The two-dimensional direction reflection surface (3a) of the light emitting unit (3) is focused on the periphery of the light emitting element (8) or the light emitting element (8) , and is one of an ellipse, a parabola, a hyperbola, or an approximate curve thereof. 4. The shape according to claim 1, wherein the portion is rotated around a vertical axis (Z axis) passing through the center of the light emitting surface of the light emitting element (8). The light emitting diode as described.
JP2002249954A 2001-11-16 2002-08-29 Light emitting diode Expired - Fee Related JP4239525B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002249954A JP4239525B2 (en) 2002-08-29 2002-08-29 Light emitting diode
AU2002365761A AU2002365761A1 (en) 2001-11-16 2002-11-15 Light-emitting diode, led light, and light apparatus
PCT/JP2002/011968 WO2003049207A1 (en) 2001-11-16 2002-11-15 Light-emitting diode, led light, and light apparatus
EP02804348A EP1453107A4 (en) 2001-11-16 2002-11-15 Light-emitting diode, led light, and light apparatus
US10/495,644 US7781787B2 (en) 2001-11-16 2002-11-15 Light-emitting diode, led light, and light apparatus
TW091133621A TW569476B (en) 2001-11-16 2002-11-15 Light emitting diode, LED lighting module, and lamp apparatus
CNB028226461A CN100369274C (en) 2001-11-16 2002-11-15 Light-emitting diode, led light, and light apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002249954A JP4239525B2 (en) 2002-08-29 2002-08-29 Light emitting diode

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008282907A Division JP5228807B2 (en) 2008-11-04 2008-11-04 Light emitting method of light emitting diode

Publications (2)

Publication Number Publication Date
JP2004088007A JP2004088007A (en) 2004-03-18
JP4239525B2 true JP4239525B2 (en) 2009-03-18

Family

ID=32056903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002249954A Expired - Fee Related JP4239525B2 (en) 2001-11-16 2002-08-29 Light emitting diode

Country Status (1)

Country Link
JP (1) JP4239525B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4747726B2 (en) * 2004-09-09 2011-08-17 豊田合成株式会社 Light emitting device
US7745832B2 (en) * 2004-09-24 2010-06-29 Epistar Corporation Semiconductor light-emitting element assembly with a composite substrate
JP3875247B2 (en) * 2004-09-27 2007-01-31 株式会社エンプラス Light emitting device, surface light source device, display device, and light flux controlling member
KR100688767B1 (en) 2004-10-15 2007-02-28 삼성전기주식회사 Lens for LED light source
KR100657281B1 (en) 2004-10-29 2006-12-14 삼성전자주식회사 Side emitting device, back light unit using the same as a light source and liquid display apparatus employing it
KR100754169B1 (en) * 2004-11-24 2007-09-03 삼성전자주식회사 Side emitting device, back light unit using the same as a light source and liquid display apparatus employing it
KR100803341B1 (en) * 2005-04-30 2008-02-13 주식회사 우영 Back light unit with LED package
KR100631992B1 (en) * 2005-07-19 2006-10-09 삼성전기주식회사 Light emitting diode package having dual lens structure for laterally emitting light
JP4799341B2 (en) 2005-10-14 2011-10-26 株式会社東芝 Lighting device
JP4891626B2 (en) * 2006-02-15 2012-03-07 株式会社 日立ディスプレイズ Liquid crystal display
KR101221066B1 (en) 2006-10-30 2013-02-12 삼성전자주식회사 Side emitting lens, backlight unit and liquid crystal display having the same
KR101915816B1 (en) * 2011-01-04 2018-11-06 엘지전자 주식회사 Display apparatus
JP5903672B2 (en) * 2011-05-20 2016-04-13 パナソニックIpマネジメント株式会社 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME

Also Published As

Publication number Publication date
JP2004088007A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
TW569476B (en) Light emitting diode, LED lighting module, and lamp apparatus
US6674096B2 (en) Light-emitting diode (LED) package and packaging method for shaping the external light intensity distribution
JP4799341B2 (en) Lighting device
JP5228807B2 (en) Light emitting method of light emitting diode
JP4182783B2 (en) LED package
JP3753011B2 (en) Reflective light emitting diode
CN1259732C (en) Optical device for optical element and equipment using the same
JP3639428B2 (en) Light source device
JP4239525B2 (en) Light emitting diode
US20110062470A1 (en) Reduced angular emission cone illumination leds
JP2003008081A (en) Side face emitting light emitting diode
JPH01130578A (en) Light emitting diode
JP4134640B2 (en) Lamp
JP2003218408A (en) Light emitting diode and led light
JP2009054593A (en) Lamp fitting
JP2004128434A (en) Light emitter and lighting fixture
JP4239476B2 (en) Light emitting diode, LED light and reflector
JP3791323B2 (en) Optical device for optical elements
CN108488756A (en) Front headlight of motor vehicle and motor vehicle
CN102544330A (en) Optical device
JP2004087630A (en) Light emitting diode and led light
JP4656159B2 (en) Lamp
JPH02191379A (en) Light emitting diode
JP4239477B2 (en) Light emitting diode and LED light
JPH01143368A (en) Led display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4239525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees