JP2004087731A - Laminated piezoelectric element and jet device - Google Patents

Laminated piezoelectric element and jet device Download PDF

Info

Publication number
JP2004087731A
JP2004087731A JP2002245841A JP2002245841A JP2004087731A JP 2004087731 A JP2004087731 A JP 2004087731A JP 2002245841 A JP2002245841 A JP 2002245841A JP 2002245841 A JP2002245841 A JP 2002245841A JP 2004087731 A JP2004087731 A JP 2004087731A
Authority
JP
Japan
Prior art keywords
conductive
piezoelectric element
external electrodes
divided
columnar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002245841A
Other languages
Japanese (ja)
Other versions
JP3990613B2 (en
Inventor
Shigenobu Nakamura
中村 成信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002245841A priority Critical patent/JP3990613B2/en
Publication of JP2004087731A publication Critical patent/JP2004087731A/en
Application granted granted Critical
Publication of JP3990613B2 publication Critical patent/JP3990613B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated piezoelectric element that is equipped with external electrodes and internal electrodes, which are hardly disconnected from each other, and superior in durability even when it is made to operate continuously in a high electric field under a high pressure for a long time, and to provide a spray device. <P>SOLUTION: The laminated piezoelectric element is equipped with a columnar laminate 1a composed of a piezoelectric materials 1 and the internal electrodes 2 which are alternately laminated and the external electrodes 4 which are provided on the sides of the columnar laminate 1a. A projecting conductive terminals 5 projecting from the side of the columnar laminate 1a is provided to every other end of the internal electrodes 2, the external electrode 4 formed of a plate-like conductive member is joined to the tips of the projecting conductive terminals 5, the external electrode 4 is divided into a plurality of parts in the lamination direction of the columnar laminate 1a, and the divided external electrodes 4a are connected together with a conductive auxiliary member 7. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、積層型圧電素子及び噴射装置に関し、例えば、自動車用燃料噴射装置、光学装置等の精密位置決め装置や振動防止用の駆動素子等に用いられる積層型圧電素子及び噴射装置に関するものである。
【0002】
【従来技術】
従来より、積層型圧電素子としては、圧電体と内部電極を交互に積層した積層型圧電アクチュエータが知られている。積層型圧電アクチュエータには、同時焼成タイプと、圧電磁器と内部電極板を交互に積層したスタックタイプとの2種類に分類されており、低電圧化、製造コスト低減の面から考慮すると、同時焼成タイプの積層型圧電アクチュエータが薄層化に対して有利であるために、その優位性を示しつつある。
【0003】
図5は、従来の積層型圧電アクチュエータを示すもので、このアクチュエータでは、圧電体51と内部電極52が交互に積層されて柱状積層体53が形成され、その積層方向における両端面には不活性層55が積層されている。内部電極52は、その一方の端部が左右交互に絶縁体61で被覆され、その上から帯状外部電極70が内部電極52と左右各々一層おきに導通するように形成されている。帯状外部電極70上には、さらにリード線76が半田77により固定されている。
【0004】
ところで、近年においては、小型の圧電アクチュエータで大きな圧力下において大きな変位量を確保するため、より高い電界を印加し、長期間連続駆動させることが行われている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記した圧電アクチュエータでは、高電界、高圧力下で長期間連続駆動させた場合、圧電体51間に形成された内部電極52と、正極、負極用の外部電極70との間で剥離が発生し、一部の圧電体51に電圧供給されなくなり、駆動中に変位特性が変化するという問題があった。
【0006】
また、特開平7−283451号公報や特開平8−51240号公報などには、一層おきの内部電極の端部にメッキにより導電性凸部を形成することが開示されているが、該導電性凸部と積層体との接合強度が弱いために、駆動中に前記導電性凸部と内部電極端部が剥離し、圧電体の一部に電圧が供給されなくなり、変位特性が低下するといった問題があった。
【0007】
このような問題を解決するために、本出願人は、先に、内部電極の端部に一層おきに柱状積層体の側面から突出する突起状導電性端子を設け、該突起状導電性端子と、板状導電部材からなる外部電極とを接合した積層型圧電素子を出願した(特願2002−50252号)。
【0008】
このような積層型圧電素子では、積層型圧電体を駆動すると、突起状導電性端子が変形してアクチュエータの伸縮によって生じる応力を吸収するため、高電界、高圧力下で長期間連続運転させた場合でも、外部電極と内部電極との断線を抑制することができ、耐久性を大幅に向上できるものの、外部電極を1枚の板状導電部材により構成すると、アクチュエータの伸縮により外部電極に過大な応力が発生するため、高電界、高圧力下で長期間連続運転における外部電極のさらなる耐久性向上が要望されている。
【0009】
本発明は、高電界、高圧力下で長期間連続駆動させた場合でも、外部電極と内部電極とが断線することがなく、耐久性に優れた積層型圧電素子及び噴射装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の積層型圧電素子は、圧電体と内部電極とを交互に積層してなる柱状積層体と、該柱状積層体の側面に設けられ、前記内部電極が一層おきに交互に接続された一対の外部電極とを具備してなる積層型圧電素子であって、前記内部電極の端部に一層おきに前記柱状積層体の側面から突出する突起状導電性端子を設け、該突起状導電性端子の先端部に板状導電部材からなる外部電極を接合してなるとともに、前記外部電極が、前記柱状積層体の積層方向に複数に分割されており、該分割外部電極が導電性補助部材によって連結されていることを特徴とする。
【0011】
本発明の積層型圧電素子では、内部電極の端部に一層おきに柱状積層体の側面から突出する突起状導電性端子を設け、該突起状導電性端子と、板状導電部材からなる外部電極とを接合したため、積層型圧電体が積層方向に駆動すると、突起状導電性端子が変形してアクチュエータの伸縮によって生じる応力を吸収するため、高電界、高圧力下で長期間連続運転させた場合でも、外部電極と内部電極との断線を抑制することができ、耐久性を大幅に向上できる。
【0012】
また、本発明では、外部電極が、前記柱状積層体の積層方向に複数に分割されているため、外部電極に作用する応力を分散でき、高電界下で駆動させた場合においても、外部電極にクラックが生じたり断線したりする問題が生じることはない。
【0013】
さらに、外部電極の外側には導電性補助部材が設けられ、各々の外部電極は導電性補助部材によって連結されているため、アクチュエータに大電流を投入し、高速で駆動させる場合においても、大電流を導電性補助部材に流すことができるため、外部電極が局所発熱を起こして断線するのを防ぐことができ、耐久性を大幅に向上させることができる。
【0014】
また、本発明の積層型圧電素子は、柱状積層体側面の突起状導電性端子間には、内部電極端が露出する凹溝が形成されていることを特徴とする。このような積層型圧電素子では、いわゆる部分電極構造の積層型圧電素子に比較して発生応力を低減できるとともに、突起状導電性端子を介して外部電極に接続する内部電極端部の厚みを柱状積層体中央部の内部電極の厚みよりも有効的に厚くすることができるため、内部電極と外部電極の間で接点不良の問題が生じるのを防ぐことができる。
【0015】
さらに、本発明の積層型圧電素子は、一部の突起状導電性端子には、複数の分割外部電極が接合されていることを特徴とする。このような構成によれば、分割外部電極は一部の内部電極に並列に接続されることになり、分割外部電極の積層方向端部付近において分割外部電極と突起状導電性端子との接続を確実に行うことができ、高電界下で駆動させた場合においても内部電極と外部電極の接点不良を防止できる。
【0016】
また、本発明の積層型圧電素子は、柱状積層体の積層方向端部に設けられた分割外部電極の積層方向の長さは、柱状積層体の積層方向中央部に設けられた分割外部電極の積層方向の長さよりも短いことを特徴とする。このような構成によれば、柱状積層体の積層方向両端部に近いほど柱状積層体の伸縮によって外部電極に発生する応力が大きくなるため、積層方向両端部に近いほど分割外部電極の長さを短くすることにより、分割外部電極に作用する応力を分散できる。
【0017】
さらに、本発明では、柱状積層体の側面に複数の分割外部電極が直線状に配列されており、前記複数の分割外部電極の対向する部分に凹凸部が形成され、これらの凹凸部が噛合していることを特徴とする。このような構成によれば、分割外部電極の凹凸部では、内部電極に2つの分割外部電極が並列に接続されており、この部分の2つの分割外部電極の幅の和と、単一で内部電極に接続されている分割外部電極の部分の幅を略同一にすることができ、これにより、外部電極全体の幅を増すことなく、信頼性のある外部電極を形成することができる。
【0018】
また、本発明では、導電性補助部材が、導電性のメッシュ部材を埋設した導電性接着剤からなることを特徴とする。このような構成によれば、導電性補助部材としてフレキシブルな導電性接着剤を用いることにより、アクチュエータの伸縮によって生じる応力を吸収することができ、導電性補助部材が剥離したり、断線したりするといった問題が生じるのを防ぐことができる。また、該導電性接着剤に導電性のメッシュ部材を埋設しているため、アクチュエータの伸縮によって該導電性接着剤にクラックが生じるといった問題が発生するのを防ぐことができる。
【0019】
また、本発明の噴射装置は、噴射孔を有する収納容器と、該収納容器内に収容された上記積層型圧電素子と、該積層型圧電素子の駆動により前記噴射孔から液体を噴出させるバルブとを具備するものである。
【0020】
このような噴射装置では、上記したように、積層型圧電素子自体において外部電極と内部電極との断線を抑制でき、耐久性を大幅に向上できるため、噴射装置の耐久性をも向上できる。
【0021】
【発明の実施の形態】
図1は本発明の積層型圧電アクチュエータからなる積層型圧電素子の一実施例を示すもので、(a)は斜視図、(b)は(a)のA−A’線に沿った縦断面図、(c)は(a)の一部を拡大して示す斜視図、(d)は内部電極と外部電極の接合部近傍の拡大図である。
【0022】
積層型圧電アクチュエータは、図1に示すように、複数の圧電体1と複数の内部電極2とを交互に積層してなる四角柱状の柱状積層体1aの側面において、内部電極2の端部を一層おきに絶縁体3で被覆し、絶縁体3で被覆していない内部電極2の端部に、積層型圧電素子の伸縮方向に変形可能な突起状導電性端子5を設け、これらの突起状導電性端子5の先端部に板状導電部材からなる外部電極4を接合して構成されている。
【0023】
板状導電部材は、図2に示すように、柱状積層体1aの積層方向に複数に分割され、即ち、外部電極4が複数の分割外部電極4aから構成されている。これらの複数の分割外部電極4aは、図1(d)に示すように、その外側に設けられた導電性補助部材7によって連結されており、該導電性補助部材7は、導電性接着剤7a中に導電性のメッシュ状部材7bを埋設して構成されている。各導電性補助部材7にはリード線6が接続固定されている。
【0024】
圧電体1は、例えば、チタン酸ジルコン酸鉛Pb(Zr,Ti)O(以下PZTと略す)、或いはチタン酸バリウムBaTiOを主成分とする圧電セラミックス材料等で形成されている。この圧電セラミックスは、その圧電特性を示す圧電歪み定数d33が高いものが望ましい。
【0025】
また、圧電体1の厚み、つまり内部電極2間の距離は50〜250μmが望ましい。これは、積層型圧電アクチュエータは電圧を印加してより大きな変位量を得るために、積層数を増加させる方法がとられるが、積層数を増加させた場合に圧電体1の厚みが厚すぎるとアクチュエータの小型化、低背化ができなくなり、一方、圧電体1の厚みが薄すぎると絶縁破壊しやすいからである。
【0026】
圧電体1の間には内部電極2が配されているが、この内部電極2は銀−パラジウム等の金属材料で形成されており、各圧電体1に所定の電圧を印加し、圧電体1に逆圧電効果による変位を起こさせる作用をなす。
【0027】
また、柱状積層体1a側面の突起状導電性端子5間には、深さ50〜500μm、積層方向の幅30〜200μmの凹溝11が形成されており、この凹溝11内にガラス、エポキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、シリコーンゴム等が充填されて絶縁体3が形成されている。この絶縁体3は、柱状積層体1aとの接合を強固とするために、柱状積層体1aの変位に対して追従する弾性率が低い材料、具体的にはシリコーンゴム等からなることが好適である。
【0028】
突起状導電性端子5と絶縁体3は、外部電極4が形成される柱状積層体1aの側面に露出した内部電極2に交互に形成されている。
【0029】
即ち、凹溝11内に充填された絶縁体3により内部電極2の端部が互い違いに一層おきに絶縁され、内部電極2の絶縁されていない他方の端部は、突起状導電性端子5を介して板状導電部材からなる外部電極4と接合されている。
【0030】
柱状積層体1aの対向する側面には、それぞれ板状導電部材からなる外部電極4が突起状導電性端子5を介して内部電極2に接続固定されており、外部電極4には、積層されている内部電極2が一層おきに電気的に接続されている。外部電極4は、接続されている各内部電極2に圧電体1を逆圧電効果により変位させるに必要な電圧を共通に供給する作用をなす。
【0031】
突起状導電性端子5の積層方向と同一方向の厚みBは、図1(c)に示すように、外部電極4と内部電極2との接続部の抵抗を低くし、且つアクチュエータの駆動時に生じる応力を十分に吸収するという点から、1μm以上且つ圧電体1厚みの1/2以下であることが望ましい。特には、厚みBは5〜25μmが望ましい。
【0032】
また、突起状導電性端子5の突出高さhは、アクチュエータの伸縮によって生じる応力を十分に吸収するという点から、圧電体1厚みの1/20以上であることが望ましい。特には突出高さhは、15〜50μmが望ましい。
【0033】
さらに、分割外部電極4aの厚みtは、アクチュエータの伸縮に追従し、分割外部電極4aと突起状導電性端子5の間、若しくは突起状導電性端子5と内部電極2の間で断線を生じないという点から、50μm以下であることが望ましい。
【0034】
本発明では、外部電極4が突起状導電性端子5を介して内部電極2と接続されているため、アクチュエータを高電界、高圧力下で長期間連続駆動させた場合でも、突起状導電性端子5がアクチュエータの伸縮によって生じる応力を吸収し、外部電極4と内部電極2の断線を抑制することができ、耐久性に優れたアクチュエータを提供することができる。
【0035】
また、外部電極4は、図2に示したように、柱状積層体1aの積層方向に複数に分割されており、各々はその外側に設けられた導電性補助部材7によって接続されている。尚、図2では導電性補助部材7は省略した。
【0036】
本発明では、外部電極4は積層方向に分割されているため、アクチュエータの伸縮によって生じる応力を分散することができ、外部電極4の信頼性を向上させることができる。即ち、外部電極4を一枚の板状導電部材により構成すると、アクチュエータの伸縮により外部電極4に過大な応力が発生し、破断する等の危険性があったが、本発明では、外部電極4を、柱状積層体1aの積層方向に配列された複数の分割外部電極4aにより構成したため、伸縮により外部電極4に発生する応力を分散することができ、外部電極4の信頼性を向上できる。
【0037】
さらに、導電性補助部材7には、図1に示したように、リード線6が半田により接続固定されている。このリード線6は導電性補助部材7および外部電極4を外部の電圧供給部に接続する作用をなす。
【0038】
また、分割外部電極4aの外側には、各々の分割外部電極4aを電気的に接続し、また、高速でアクチュエータを駆動させる場合に投入する大電流を優先的に流すことができる導電性補助部材7を備えているため、アクチュエータに大電流を投入し、高速で駆動させる場合においても、大電流を導電性補助部材7に流すことができるため、分割外部電極4aが局所発熱を起こして断線するのを防ぐことができ、耐久性を大幅に向上させることができる。
【0039】
内部電極2は、銀、銀−パラジウム合金、銀−白金合金、等の銀が主成分の金属および合金からなる。また、突起状導電性端子5および分割外部電極4aに関しても主成分が銀であることが望ましい。これは、内部電極2と突起状導電性端子5および分割外部電極4aの主成分を同一の銀とすることにより、突起状導電性端子5と内部電極2の間、及び突起状導電性端子5と分割外部電極4aの間で、銀が相互拡散し、これにより、各々の間での接合強度を強固にすることができるためである。また、突起状導電性端子5と分割外部電極4aは、アクチュエータの伸縮によって生じる応力を十分に吸収するという点からも、ヤング率の低い銀、若しくは銀が主成分の合金が望ましい。
【0040】
柱状積層体1aの積層方向に分割された分割外部電極4aは、図2(b−1)(b−2)(c−1)(c−2)に示すように、一部並列に内部電極2と接続されていることが望ましい。即ち、分割外部電極4aの繋ぎ目の部分は、柱状積層体1aの側方から見て重なっており、一部の突起状導電性端子5には、複数の分割外部電極4aが接合されていることが望ましい。
【0041】
これにより、分割外部電極4aの積層方向の端部付近において、分割外部電極4aと突起状導電性端子5との接続を確実に行い、高電界下で駆動させた場合においても内部電極2と外部電極4の接点不良を防止することができる。なお、複数の分割外部電極4aに接続される内部電極2は、1層以上であれば何層でも良い。
【0042】
尚、図2(a−1)は、一つの絶縁体3を挟んで分割外部電極4a同士を直線状に配列した状態、(a−2)は、圧電体1側面で分離されている状態、(b−1)は2つの分割外部電極4aが1層の内部電極2に並列に接続されている状態、(b−2)は2つの分割外部電極4aが2層の内部電極2に並列に接続されている状態、(c−1)は2つの分割外部電極4aの先端部がL字状とされ、これらが噛合し、2つの分割外部電極4aが1層の内部電極2に並列に接続されている状態、(c−2)は2つの分割外部電極4aの先端部がL字状とされ、これらが噛合し、2つの分割外部電極4aが2層の内部電極2に並列に接続されている状態を示すものである。
【0043】
図2(c−1)(c−2)に示す分割外部電極4aでは、先端部をL字状の凹凸部4a1、4a2としたが、凹凸部は、鋸歯状でも良く、少なくとも一つの突出部を有するものであれば良い。
【0044】
また、分割外部電極4aは柱状積層体1aの積層方向両端部に近いほど、分割外部電極4aの長さが短いこと、即ち、柱状積層体1aの積層方向端部に設けられた分割外部電極4aの積層方向の長さは、柱状積層体1aの積層方向中央部に設けられた分割外部電極4aの積層方向の長さよりも短いことが望ましい。
【0045】
これは、積層方向両端部に近い分割外部電極4aほど柱状積層体1aの伸縮によって発生する応力が大きいため、積層方向端に近いほど分割外部電極4aの長さを短くすることにより、外部電極4に作用する応力を分散させることができる。
【0046】
さらに、図2(c−1)(c−2)に示すように、柱状積層体1aの側面に複数の分割外部電極4aが直線状に配列しており、隣設する分割外部電極4aの対向する部分に凹凸部4a1、4a2が形成され、これらの凹凸4a1、4a2が噛合していることが望ましい。これにより、2つの分割外部電極4aが並列に内部電極2に接続されている部分の幅(積層方向に直交する方向の長さ)の和と、単一で内部電極2に接続されている部分の幅をほぼ同一とでき、2つの分割外部電極4aの連結部において、外部電極4の全体に占める幅を増すことがなく、信頼性のある外部電極4を形成することができる。また、分割外部電極4aが直線状に配列されているので、導電性補助部材7の形成も容易である。
【0047】
また、図1(d)に示すように、複数の分割外部電極4aの外側に設けられ、各々の分割外部電極4aを連結する導電性補助部材7は、導電性のメッシュ状部材7bを埋設した導電性接着剤7aであることが望ましい。これは、導電性補助部材7をフレキシブルな導電性接着剤7aとすることにより、アクチュエータの伸縮によって生じる応力を吸収することができ、導電性補助部材7が剥離したり、断線したりするといった問題が生じるのを防ぐことができる。また、該導電性接着剤7aに導電性のメッシュ部材7bを埋設しているため、アクチュエータの伸縮によって該導電性接着剤7aにクラックが生じるといった問題が発生するのを防ぐことができる。
【0048】
この場合、導電性接着剤7aは、耐熱性および抵抗値を考慮して、ポリイミドに銀粉末を分散させたものが望ましい。また、導電性のメッシュ状部材7bは、銀、ニッケル、銅、金、アルミニウム等の導電性を備えた金属及びそれらの合金からなるメッシュ若しくはメッシュ状の板で、導電性接着剤7aにクラックが生じるのを防ぐ役目をもつ。
【0049】
次に、本発明の積層型圧電素子の製法について説明する。まず、柱状積層体1aを作製する。複数の圧電体1と複数の内部電極2とを交互に積層して成る柱状積層体1aは、PZT等の圧電セラミックスの仮焼粉末と、アクリル系、ブチラール系等の有機高分子から成るバインダーと、DBP(フタル酸ジオチル)、DOP(フタル酸ジブチル)等の可塑剤とを混合してスラリーを作製し、該スラリーを周知のドクターブレード法やカレンダーロール法等のテープ成型法により圧電体1となるセラミックグリーンシートを作製する。
【0050】
次に、銀−パラジウム粉末にバインダー、可塑剤等を添加混合して導電性ペーストを作製し、これを前記各グリーンシートの上面にスクリーン印刷等によって1〜40μmの厚みに印刷する。
【0051】
そして、上面に導電性ペーストが印刷されたグリーンシートを積層し、この積層体について所定の温度で脱バインダーを行った後、900〜1200℃で焼成することによって作製される。
【0052】
その後、図3(a)に示すようにダイシング装置等により柱状積層体1aの側面に一層おきに凹溝11を形成する。
【0053】
次に、図3(b)に示すように、凹溝11間における柱状積層体1a側面に、粒径0.1〜10μmの銀粉末を50〜80体積%と、残部が粒径0.1〜10μmでケイ素を主成分とする軟化点が600〜950℃のガラス粉末20〜50体積%からなる混合物にバインダーを加えて作製した銀ガラス導電性ペースト21を塗布、乾燥する。
【0054】
さらに、この銀ガラス導電性ペースト21に、図3(c)に示すように、板状導電部材からなる分割外部電極4aを押圧するように荷重を加えた状態で700〜950℃で熱処理することにより、銀ガラス導電性ペースト21中のガラスが溶融し、溶融したガラス中に存在する銀成分が内部電極2の端部に集合し、図2(d)に示すように、柱状積層体1aの側面から突出する突起状導電性端子5が形成されるとともに、該突起状導電性端子5の先端部に分割外部電極4aを接合することができる。
【0055】
また、熱処理時には、銀ガラス導電ペースト21中の銀成分が内部電極2の端部2aに拡散していき、内部電極2の端部2aの厚みが、柱状積層体1a中央部における内部電極2(内部電極2の中央部2b)の厚みよりも厚くなる。これにより、内部電極2の端部2aにおける突起状導電性端子5の接合強度を向上できる。
【0056】
即ち、ペーストにガラス成分を分散させておくことにより、上述の熱処理時ににガラスが軟化し、この状態において圧電体1には拡散しにくい銀が内部電極2の端部2aに拡散して寄り集まるため、図3(d)に示すような突起状導電性端子5を形成できる。そして、内部電極2および銀ガラス導電性ペースト21および分割外部電極4a中の銀成分が相互に拡散して、内部電極2と突起状導電性端子5の間および突起状導電性端子5と分割外部電極4aの間で強固に接合がなされる。また、該突起状導電性端子5の根元付近には、銀ガラス導電性ペースト21中のガラスが寄り集まって隆起部5aを形成し、該突起状導電性端子5を保持している。
【0057】
突起状導電性端子5は柱状積層体1aの側面の一部に形成されており、レール状に形成され、その長さは分割外部電極4aの幅とほぼ同一とされている。尚、突起状導電性端子5の長さは、分割外部電極4aの幅よりも短くても良い。
【0058】
銀ガラス導電性ペースト21中の銀粉末を50〜80体積%、残部のガラス粉末を20〜50体積%としたのは、この範囲内とすることにより、突起状導電端子5を構成する銀成分が適量となり、形成される突起状導電性端子5の突出高さhを高くできるとともに、銀ガラス導電性ペースト21中の固形分残部であるガラス成分が適量となるため、該銀ガラス導電性ペースト21の焼き付け時に溶融するガラス成分も適量であり、銀成分が内部電極2端部に容易に集合し、突起状導電性端子5の突出高さhを高くできる。
【0059】
なお、上述の突起状導電性端子5の形成と、該突起状導電性端子5と分割外部電極4aの接合の熱処理時に加える荷重は圧力にして、2〜500kPaが望ましい。この範囲とすることにより、突起状導電性端子5と板状導電部材4aとの間で拡散接合を十分に行うことができ、接合部の強度を高くできるとともに、圧力が適度となるため、突起状導電性端子5の変形を防止できる。
【0060】
尚、予め、柱状積層体1aの凹溝11間に対応する分割外部電極4aの部分に、銀ガラス導電性ペースト21を塗布乾燥し、分割外部電極4aを柱状積層体1aに押圧するように荷重を加えた状態で熱処理してもよい。また、分割外部電極4aの全面に銀ガラス導電性ペースト21を塗布乾燥し、この分割外部電極4aを、導電性ペースト塗布面側を柱状積層体1aの内部電極2が露出した面に押圧し、熱処理しても、突起状導電性端子5が形成し、その先端部に分割外部電極4aを接続することができる。この場合にはさらに工程を短縮することができる。
【0061】
その後、図3(e)に示すように、分割外部電極4aの外側に、導電材として針状やフレーク状などの非球形の銀粉末を15〜80体積%と、残部がマトリックスとして弾性率が20GPa以下で、伸度が10%以上の樹脂を20〜85体積%と溶剤を混合した導電性接着剤ペーストを塗布し、該導電性接着剤7aに導電性のメッシュ部材7bを埋設した後、150〜300℃で該導電性接着剤7aを加熱硬化させ、導電性補助部材7を形成する。
【0062】
その後、図3(f)に示すように、凹溝11内に絶縁体3を充填し、リード線6を接続することにより本発明の積層型圧電素子が完成する。
【0063】
そして、リード線6を介して一対の外部電極4に0.1〜3kV/mmの直流電圧を印加し、柱状積層体1aを分極処理することによって、製品としての積層型圧電アクチュエータが完成し、リード線6を外部の電圧供給部に接続し、リード線6及び外部電極4を介して内部電極2に電圧を印加させれば、各圧電体1は逆圧電効果によって大きく変位し、これによって例えばエンジンに燃料を噴射供給する自動車用燃料噴射弁として機能する。
【0064】
また、上記例では、柱状積層体1aの対向する側面に外部電極4を形成した例について説明したが、本発明では、例えば隣設する側面に一対の外部電極4を形成してもよい。
【0065】
図4は、本発明の噴射装置を示すもので、図において符号31は収納容器を示している。この収納容器31の一端には噴射孔33が設けられ、また収納容器31内には、噴射孔33を開閉することができるニードルバルブ35が収容されている。
【0066】
噴射孔33には燃料通路37が連通可能に設けられ、この燃料通路37は外部の燃料供給源に連結され、燃料通路37に常時一定の高圧で燃料が供給されている。従って、ニードルバルブ35が噴射孔33を開放すると、燃料通路37に供給されていた燃料が一定の高圧で内燃機関の図示しない燃料室内に噴出されるように形成されている。
【0067】
また、ニードルバルブ35の上端部は直径が大きくなっており、収納容器31に形成されたシリンダ39と摺動可能なピストン41となっている。そして、収納容器31内には、上記した圧電アクチュエータ43が収納されている。
【0068】
このような噴射装置では、圧電アクチュエータ43が電圧を印加されて伸長すると、ピストン41が押圧され、ニードルバルブ35が噴射孔33を閉塞し、燃料の供給が停止される。また、電圧の印加が停止されると圧電アクチュエータ43が収縮し、皿バネ45がピストン41を押し返し、噴射孔33が燃料通路37と連通して燃料の噴射が行われるようになっている。
【0069】
【実施例】
まず、柱状積層体を作製した。圧電体は厚み150μmのPZTで形成し、内部電極は厚み3μmの銀−パラジウム合金によって形成し、圧電体及び内部電極の各々の積層数は300層とした。なお、柱状積層体の全長は、不活性部を含め50mmとした。
【0070】
次に、柱状積層体の外部電極形成面に露出した一層おきの内部電極の端部を含む柱状積層体の側面に、深さ150μm、幅75μmの凹溝を形成した。その後、凹溝間における柱状積層体側面に、平均粒径5μmの銀粉末を60体積%と、残部が平均粒径5μmでケイ素を主成分とする軟化点が750℃のガラス粉末40体積%からなる混合物にバインダーを加えて作製した銀ガラス導電性ペーストを塗布、乾燥した。
【0071】
さらに、この銀ガラス導電性ペーストに、銀からなる厚み25μmの複数の板状導電部材を30kPaで押圧した状態で900℃で熱処理を行い、柱状積層体から突出する突起状導電性端子を形成するとともに、該突起状導電性端子の先端部に板状導電部材(分割外部電極)を接合した。なお、板状導電部材は、図2(c−2)に示すようなくさび形で、その長さは、柱状積層体の端部から、5mm、10mm、18mm、10mm、5mmとし、内部電極に並列に接続される部分は、図2(c−2)に示すように内部電極2層分とした。
【0072】
その後、板状導電部材の外側に、導電材としてフレーク状の平均粒径5μmの銀粉末を50体積%と、残部がマトリックスとして弾性率が10GPaで、伸度が30%のポリイミド樹脂を50体積%と溶剤を混合した導電性接着剤ペーストを塗布し、該導電性接着剤ペーストにニッケルよりなる厚み50μmのメッシュ部材を埋設した後、220℃で該導電性接着剤を加熱硬化させ、導電性補助部材を形成した。
【0073】
その後、凹溝に絶縁体としてシリコーンゴムを充填し、導電性補助部材にリード線を接続し、正極及び負極の外部電極にリード線を介して3kV/mmの直流電界を15分間印加して分極処理を行い、図1に示すような積層型圧電アクチュエータを作製した。
【0074】
なお、突起状導電性端子には、銀とパラジウムが分散していた。また、このときの、突起状導電性端子の高さは平均で20μmで、導電性接着剤のボイド率は10%であった。突起状導電性端子の根元部はガラスで被覆され、隆起部を形成していた。
【0075】
得られた積層型圧電アクチュエータに150Vの直流電圧を印加した結果、積層方向に40μmの変位量が得られた。さらに、このアクチュエータに室温で0〜+150Vの交流電圧を120Hzの周波数にて印加し駆動試験を行った結果、1×10サイクルまで駆動したところ40μmの変位量が得られ、外部電極の異常は見られなかった。
【0076】
一方、比較例として、内部電極の一方の端部を左右交互にガラスからなる絶縁体で被覆し、その上から上記した銀ガラス導電性ペーストを塗布して700℃で熱処理を行い、外部電極が内部電極と左右各々一層おきに導通した図5に示すアクチュエータを作製し、上記と同様の試験を行ったところ、駆動試験で1×10サイクルで外部電極にスパークが発生した。
【0077】
【発明の効果】
本発明の積層型圧電素子によれば、内部電極の端部に一層おきに前記柱状積層体の側面から突出する突起状導電性端子を設け、該突起状導電性端子の先端部に、柱状積層体の積層方向に複数に分割された板状導電部材からなる分割外部電極を接合し、分割外部電極を導電性補助部材によって連結したので、積層型圧電素子の伸縮に対して突起状導電性端子が揺動し、外部電極に生じる応力を十分に吸収でき、また、外部電極は積層方向に分割されているため、積層型圧電素子の伸縮によって生じる応力を分散することができ、これにより外部電極と内部電極の間の接点不良や、外部電極が断線するといった問題を防ぐことができ、高信頼性を備えた積層型圧電素子を提供することができる。
【図面の簡単な説明】
【図1】本発明の積層型圧電素子を示すもので、(a)は斜視図、(b)は(a)のA−A’線に沿った縦断面図、(c)は(a)の一部を拡大して示す斜視図、(d)は(b)の一部を拡大して示す断面図である。
【図2】柱状積層体側面への分割外部電極の配列を示す側面図である。
【図3】本発明の積層型圧電素子の製法を説明するための工程図である。
【図4】本発明の噴射装置を示す説明図である。
【図5】従来の積層型圧電アクチュエータの縦断面図である。
【符号の説明】
1・・・圧電体
1a・・・柱状積層体
2・・・内部電極
2a・・・内部電極の端部
2b・・・内部電極の中央部
4・・・外部電極
4a・・・分割外部電極
4a1、4a2・・・凹凸部
5・・・突起状導電性端子
7・・・導電性補助部材
7a・・・導電性接着剤
7b・・・導電性のメッシュ状部材
11・・・凹溝
31・・・収納容器
33・・・噴射孔
35・・・バルブ
43・・・圧電アクチュエータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a laminated piezoelectric element and an injection device, for example, a laminated piezoelectric element and an injection device used for a precision positioning device such as a fuel injection device for an automobile, an optical device, and a driving element for preventing vibration. .
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a laminated piezoelectric element, a laminated piezoelectric actuator in which piezoelectric bodies and internal electrodes are alternately laminated is known. Multi-layer piezoelectric actuators are classified into two types: a co-firing type and a stack type in which piezoelectric ceramics and internal electrode plates are alternately laminated. Considering lower voltage and lower manufacturing cost, co-firing The advantage of the multilayer piezoelectric actuator of the type is that it is advantageous for thinning, and is showing its superiority.
[0003]
FIG. 5 shows a conventional laminated piezoelectric actuator. In this actuator, a piezoelectric body 51 and an internal electrode 52 are alternately laminated to form a columnar laminated body 53, and both ends in the laminating direction are inactive. The layer 55 is laminated. One end of the internal electrode 52 is alternately covered with an insulator 61 on the left and right sides, and the band-shaped external electrode 70 is formed so as to be electrically connected to the internal electrode 52 from every other layer on the left and right sides. A lead wire 76 is further fixed on the belt-shaped external electrode 70 by solder 77.
[0004]
By the way, in recent years, in order to secure a large displacement amount under a large pressure with a small piezoelectric actuator, a higher electric field is applied, and the piezoelectric actuator is driven continuously for a long period of time.
[0005]
[Problems to be solved by the invention]
However, in the above-described piezoelectric actuator, when the piezoelectric actuator is continuously driven under a high electric field and a high pressure for a long period of time, peeling occurs between the internal electrode 52 formed between the piezoelectric bodies 51 and the external electrodes 70 for the positive electrode and the negative electrode. As a result, there is a problem that the voltage is not supplied to some of the piezoelectric bodies 51 and the displacement characteristics change during driving.
[0006]
Also, Japanese Patent Application Laid-Open Nos. Hei 7-283451 and Hei 8-51240 disclose that a conductive convex portion is formed by plating at the end of every other internal electrode. Since the bonding strength between the protrusion and the laminate is weak, the conductive protrusion and the end of the internal electrode are peeled off during driving, and a voltage is not supplied to a part of the piezoelectric body, resulting in a problem that the displacement characteristics are reduced. was there.
[0007]
In order to solve such a problem, the present applicant first provides a protruding conductive terminal projecting from the side surface of the columnar laminate at every other end of the internal electrode, and (Japanese Patent Application No. 2002-50252) filed a multilayer piezoelectric element in which an external electrode made of a plate-shaped conductive member is bonded.
[0008]
In such a multi-layer piezoelectric element, when the multi-layer piezoelectric element is driven, the protruding conductive terminals are deformed to absorb the stress generated by the expansion and contraction of the actuator, so that the multi-layer piezoelectric element is operated continuously for a long time under a high electric field and high pressure Even in such a case, the disconnection between the external electrode and the internal electrode can be suppressed, and the durability can be greatly improved. However, if the external electrode is formed of a single plate-shaped conductive member, an excessive amount of the external electrode due to expansion and contraction of the actuator occurs. Because of the occurrence of stress, there is a demand for further improvement of the durability of the external electrode in continuous operation under a high electric field and high pressure for a long period of time.
[0009]
The present invention provides a laminated piezoelectric element and an ejection device that are excellent in durability without disconnection between an external electrode and an internal electrode even when driven continuously for a long time under a high electric field and high pressure. Aim.
[0010]
[Means for Solving the Problems]
A laminated piezoelectric element according to the present invention includes a columnar laminated body in which a piezoelectric body and an internal electrode are alternately laminated, and a pair in which the internal electrodes are alternately connected every other layer provided on a side surface of the columnar laminated body. And a protruding conductive terminal protruding from a side surface of the columnar laminate at every other end of the internal electrode, wherein the protruding conductive terminal is provided. An external electrode made of a plate-shaped conductive member is joined to the tip of the column, and the external electrode is divided into a plurality in the stacking direction of the columnar laminate, and the divided external electrodes are connected by a conductive auxiliary member. It is characterized by having been done.
[0011]
In the laminated piezoelectric element of the present invention, a protruding conductive terminal protruding from the side surface of the columnar laminate is provided at every other end of the internal electrode, and the protruding conductive terminal and an external electrode comprising a plate-shaped conductive member are provided. When the laminated piezoelectric element is driven in the laminating direction, the protruding conductive terminals are deformed to absorb the stress generated by the expansion and contraction of the actuator. However, disconnection between the external electrode and the internal electrode can be suppressed, and the durability can be greatly improved.
[0012]
Further, in the present invention, since the external electrode is divided into a plurality in the stacking direction of the columnar laminate, the stress acting on the external electrode can be dispersed, and even when driven under a high electric field, the external electrode is There is no problem of cracking or disconnection.
[0013]
Further, a conductive auxiliary member is provided outside the external electrode, and each external electrode is connected by the conductive auxiliary member. Therefore, even when a large current is applied to the actuator and the actuator is driven at a high speed, a large current is applied. Can flow through the conductive auxiliary member, so that the external electrode can be prevented from being locally heated and disconnected, and the durability can be greatly improved.
[0014]
Further, the laminated piezoelectric element of the present invention is characterized in that a concave groove for exposing an internal electrode end is formed between the protruding conductive terminals on the side surfaces of the columnar laminated body. In such a multilayer piezoelectric element, the generated stress can be reduced as compared with a multilayer piezoelectric element having a so-called partial electrode structure, and the thickness of the end of the internal electrode connected to the external electrode via the protruding conductive terminal is reduced to a columnar shape. Since the thickness can be effectively made larger than the thickness of the internal electrode at the center of the laminate, it is possible to prevent the problem of poor contact between the internal electrode and the external electrode.
[0015]
Further, the multilayer piezoelectric element of the present invention is characterized in that a plurality of divided external electrodes are joined to some of the protruding conductive terminals. According to such a configuration, the divided external electrodes are connected in parallel to some of the internal electrodes, and the connection between the divided external electrodes and the protruding conductive terminals is made near the end of the divided external electrodes in the stacking direction. This can be performed reliably, and even when driven under a high electric field, a contact failure between the internal electrode and the external electrode can be prevented.
[0016]
Further, in the laminated piezoelectric element of the present invention, the length of the divided external electrode provided at the end of the columnar laminated body in the laminating direction is the same as that of the divided external electrode provided at the central part of the columnar laminated body in the laminating direction. The length is shorter than the length in the stacking direction. According to such a configuration, the stress generated in the external electrode due to expansion and contraction of the columnar laminate increases as the columnar laminate approaches both ends in the stacking direction. By reducing the length, the stress acting on the divided external electrodes can be dispersed.
[0017]
Further, in the present invention, a plurality of divided external electrodes are linearly arranged on the side surface of the columnar laminate, and a concavo-convex portion is formed at a portion facing the plurality of divided external electrodes, and these concavo-convex portions are meshed with each other. It is characterized by having. According to such a configuration, in the concavo-convex portion of the divided external electrode, the two divided external electrodes are connected in parallel to the internal electrode, and the sum of the widths of the two divided external electrodes in this portion and the single internal The widths of the divided external electrodes connected to the electrodes can be made substantially the same, whereby a reliable external electrode can be formed without increasing the overall width of the external electrodes.
[0018]
In the present invention, the conductive auxiliary member is made of a conductive adhesive in which a conductive mesh member is embedded. According to such a configuration, by using a flexible conductive adhesive as the conductive auxiliary member, it is possible to absorb the stress generated by the expansion and contraction of the actuator, and the conductive auxiliary member is peeled or disconnected. Such a problem can be prevented. Further, since the conductive adhesive is embedded with the conductive mesh member, it is possible to prevent a problem that cracks are generated in the conductive adhesive due to expansion and contraction of the actuator.
[0019]
Further, the injection device of the present invention includes a storage container having an injection hole, the stacked piezoelectric element housed in the storage container, and a valve that ejects liquid from the injection hole by driving the stacked piezoelectric element. Is provided.
[0020]
In such an injection device, as described above, disconnection between the external electrode and the internal electrode in the multilayer piezoelectric element itself can be suppressed, and the durability can be greatly improved. Therefore, the durability of the injection device can also be improved.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
1A and 1B show an embodiment of a laminated piezoelectric element comprising a laminated piezoelectric actuator according to the present invention, wherein FIG. 1A is a perspective view, and FIG. 1B is a longitudinal section taken along line AA ′ of FIG. FIG. 1C is an enlarged perspective view showing a part of FIG. 1A, and FIG. 2D is an enlarged view near a joint between an internal electrode and an external electrode.
[0022]
As shown in FIG. 1, the laminated piezoelectric actuator is configured such that an end of the internal electrode 2 is formed on a side surface of a square columnar laminated body 1a formed by alternately laminating a plurality of piezoelectric bodies 1 and a plurality of internal electrodes 2. At every other end of the internal electrode 2 covered with the insulator 3 and not covered with the insulator 3, a protruding conductive terminal 5 which is deformable in the direction of expansion and contraction of the laminated piezoelectric element is provided. An external electrode 4 made of a plate-shaped conductive member is joined to the tip of the conductive terminal 5.
[0023]
As shown in FIG. 2, the plate-shaped conductive member is divided into a plurality in the stacking direction of the columnar laminated body 1a, that is, the external electrode 4 includes a plurality of divided external electrodes 4a. As shown in FIG. 1D, the plurality of divided external electrodes 4a are connected by a conductive auxiliary member 7 provided outside thereof, and the conductive auxiliary member 7 is formed of a conductive adhesive 7a. The conductive mesh member 7b is embedded therein. A lead wire 6 is connected and fixed to each conductive auxiliary member 7.
[0024]
The piezoelectric body 1 is formed of, for example, a piezoelectric ceramic material mainly containing lead zirconate titanate Pb (Zr, Ti) O 3 (hereinafter abbreviated as PZT) or barium titanate BaTiO 3 . The piezoelectric ceramics are those piezoelectric strain constant d 33 indicating the piezoelectric characteristic is high is preferable.
[0025]
The thickness of the piezoelectric body 1, that is, the distance between the internal electrodes 2 is desirably 50 to 250 μm. This is because, in order to obtain a larger displacement amount by applying a voltage, a method of increasing the number of stacked layers is adopted in the stacked piezoelectric actuator. However, when the number of stacked layers is increased, if the thickness of the piezoelectric body 1 is too large, This is because it is impossible to reduce the size and height of the actuator. On the other hand, if the thickness of the piezoelectric body 1 is too thin, dielectric breakdown easily occurs.
[0026]
An internal electrode 2 is disposed between the piezoelectric bodies 1. The internal electrode 2 is formed of a metal material such as silver-palladium, and applies a predetermined voltage to each of the piezoelectric bodies 1. The effect of causing a displacement due to the inverse piezoelectric effect is produced.
[0027]
Further, a concave groove 11 having a depth of 50 to 500 μm and a width of 30 to 200 μm in the laminating direction is formed between the protruding conductive terminals 5 on the side surface of the columnar laminate 1 a. The insulator 3 is formed by filling a resin, a polyimide resin, a polyamideimide resin, a silicone rubber, and the like. The insulator 3 is preferably made of a material having a low elastic modulus that follows the displacement of the columnar laminate 1a, specifically, silicone rubber or the like, in order to strengthen the bonding with the columnar laminate 1a. is there.
[0028]
The protruding conductive terminals 5 and the insulators 3 are alternately formed on the internal electrodes 2 exposed on the side surfaces of the columnar laminate 1a on which the external electrodes 4 are formed.
[0029]
That is, the ends of the internal electrodes 2 are alternately insulated by the insulator 3 filled in the concave grooves 11, and the other ends of the internal electrodes 2 which are not insulated are connected to the protruding conductive terminals 5. It is joined to the external electrode 4 made of a plate-like conductive member through the intermediary.
[0030]
External electrodes 4 each made of a plate-like conductive member are connected and fixed to the internal electrode 2 via a protruding conductive terminal 5 on opposite side surfaces of the columnar laminate 1a. The internal electrodes 2 are electrically connected every other layer. The external electrode 4 functions to commonly supply a voltage necessary for displacing the piezoelectric body 1 to the connected internal electrodes 2 by the inverse piezoelectric effect.
[0031]
As shown in FIG. 1C, the thickness B of the protruding conductive terminals 5 in the same direction as the lamination direction reduces the resistance of the connection between the external electrode 4 and the internal electrode 2 and is generated when the actuator is driven. From the viewpoint of sufficiently absorbing the stress, it is desirable that the thickness be 1 μm or more and 以下 or less of the thickness of the piezoelectric body 1. In particular, the thickness B is desirably 5 to 25 μm.
[0032]
Further, the protrusion height h of the protruding conductive terminal 5 is desirably 1/20 or more of the thickness of the piezoelectric body 1 from the viewpoint that the stress generated by expansion and contraction of the actuator is sufficiently absorbed. In particular, the protrusion height h is desirably 15 to 50 μm.
[0033]
Further, the thickness t of the divided external electrode 4a follows the expansion and contraction of the actuator and does not cause disconnection between the divided external electrode 4a and the protruding conductive terminal 5, or between the protruding conductive terminal 5 and the internal electrode 2. From this point, it is desirable that the thickness be 50 μm or less.
[0034]
In the present invention, since the external electrode 4 is connected to the internal electrode 2 via the protruding conductive terminal 5, even when the actuator is continuously driven for a long time under a high electric field and high pressure, the protruding conductive terminal is used. 5 absorbs the stress generated by expansion and contraction of the actuator, can suppress disconnection between the external electrode 4 and the internal electrode 2, and can provide an actuator with excellent durability.
[0035]
Further, as shown in FIG. 2, the external electrode 4 is divided into a plurality in the laminating direction of the columnar laminate 1a, and each is connected by a conductive auxiliary member 7 provided outside thereof. In FIG. 2, the conductive auxiliary member 7 is omitted.
[0036]
In the present invention, since the external electrodes 4 are divided in the stacking direction, the stress generated by the expansion and contraction of the actuator can be dispersed, and the reliability of the external electrodes 4 can be improved. That is, if the external electrode 4 is formed of a single plate-shaped conductive member, there is a danger that the external electrode 4 may generate excessive stress due to expansion and contraction of the actuator and break. Is composed of a plurality of divided external electrodes 4a arranged in the stacking direction of the columnar laminate 1a, so that stress generated in the external electrodes 4 due to expansion and contraction can be dispersed, and the reliability of the external electrodes 4 can be improved.
[0037]
Further, as shown in FIG. 1, the lead wire 6 is connected and fixed to the conductive auxiliary member 7 by soldering. The lead wire 6 serves to connect the conductive auxiliary member 7 and the external electrode 4 to an external voltage supply unit.
[0038]
Outside the divided external electrodes 4a, each divided external electrode 4a is electrically connected, and a conductive auxiliary member capable of preferentially flowing a large current to be supplied when driving the actuator at high speed. 7, even when a large current is applied to the actuator and the actuator is driven at a high speed, a large current can flow to the conductive auxiliary member 7, so that the divided external electrodes 4 a generate local heat and are disconnected. Can be prevented, and the durability can be greatly improved.
[0039]
The internal electrode 2 is made of a metal and an alloy mainly composed of silver, such as silver, a silver-palladium alloy, and a silver-platinum alloy. It is also desirable that the main component of the protruding conductive terminal 5 and the divided external electrode 4a be silver. This is because the main components of the internal electrode 2, the protruding conductive terminal 5 and the divided external electrode 4 a are made of the same silver, so that the space between the protruding conductive terminal 5 and the internal electrode 2 and the protruding conductive terminal 5 This is because silver is mutually diffused between the and the divided external electrodes 4a, and thereby, the bonding strength between them can be strengthened. In addition, silver having a low Young's modulus or an alloy containing silver as a main component is preferable for the protruding conductive terminal 5 and the split external electrode 4a from the viewpoint of sufficiently absorbing the stress generated by expansion and contraction of the actuator.
[0040]
As shown in FIGS. 2 (b-1), (b-2), (c-1) and (c-2), the divided external electrodes 4a divided in the laminating direction of the columnar laminate 1a are partially parallel to the internal electrodes. 2 is desirably connected. That is, the joint portions of the divided external electrodes 4a overlap when viewed from the side of the columnar laminate 1a, and a plurality of the divided external electrodes 4a are joined to some of the protruding conductive terminals 5. It is desirable.
[0041]
As a result, the divided external electrode 4a is reliably connected to the protruding conductive terminal 5 near the end of the divided external electrode 4a in the stacking direction, and the internal electrode 2 and the external electrode are electrically connected even when driven under a high electric field. Contact failure of the electrode 4 can be prevented. The number of the internal electrodes 2 connected to the plurality of divided external electrodes 4a may be any number as long as it is at least one layer.
[0042]
2 (a-1) shows a state in which the divided external electrodes 4a are linearly arranged with one insulator 3 interposed therebetween, FIG. 2 (a-2) shows a state in which the divided external electrodes 4a are separated on the side of the piezoelectric body 1, (B-1) shows a state in which two divided external electrodes 4a are connected in parallel to one layer of internal electrodes 2 and (b-2) shows a state in which two divided external electrodes 4a are connected in parallel to two layers of internal electrodes 2. In the connected state, (c-1) shows that the two divided external electrodes 4a have L-shaped tips, which are engaged with each other, and the two divided external electrodes 4a are connected in parallel to the single-layered internal electrode 2. In the state (c-2), the leading ends of the two divided external electrodes 4a are L-shaped, they are engaged with each other, and the two divided external electrodes 4a are connected in parallel to the two layers of the internal electrodes 2. It shows the state where it is.
[0043]
In the divided external electrodes 4a shown in FIGS. 2 (c-1) and 2 (c-2), the tip portions are L-shaped uneven portions 4a1 and 4a2, but the uneven portions may be saw-toothed, and at least one projecting portion may be provided. What is necessary is just to have.
[0044]
Further, the closer the split external electrode 4a is to both ends in the stacking direction of the columnar laminate 1a, the shorter the length of the split external electrode 4a is, that is, the length of the split external electrode 4a provided at the end of the columnar laminate 1a in the stacking direction is increased. Is preferably shorter than the length in the stacking direction of the divided external electrodes 4a provided at the center of the columnar stacked body 1a in the stacking direction.
[0045]
This is because the stress generated by expansion and contraction of the columnar laminate 1a is greater at the divided external electrodes 4a closer to both ends in the stacking direction. Can be dispersed.
[0046]
Further, as shown in FIGS. 2 (c-1) and 2 (c-2), a plurality of divided external electrodes 4a are linearly arranged on the side surface of the columnar laminated body 1a, and the opposing divided external electrodes 4a are opposed to each other. It is desirable that uneven portions 4a1 and 4a2 are formed at the portions where the irregularities are formed, and these uneven portions 4a1 and 4a2 are meshed with each other. Thereby, the sum of the width (length in the direction orthogonal to the laminating direction) of the portion where the two divided external electrodes 4a are connected to the internal electrode 2 in parallel and the portion where the single divided external electrode 4a is connected to the internal electrode 2 Can be made substantially the same, and a reliable external electrode 4 can be formed without increasing the width occupied by the external electrode 4 at the connection portion of the two divided external electrodes 4a. Further, since the divided external electrodes 4a are linearly arranged, the formation of the conductive auxiliary member 7 is also easy.
[0047]
Further, as shown in FIG. 1D, the conductive auxiliary member 7 provided outside the plurality of divided external electrodes 4a and connecting each divided external electrode 4a has a conductive mesh member 7b embedded therein. Desirably, the conductive adhesive 7a is used. This is because, when the conductive auxiliary member 7 is made of a flexible conductive adhesive 7a, the stress generated by the expansion and contraction of the actuator can be absorbed, and the conductive auxiliary member 7 is separated or disconnected. Can be prevented from occurring. In addition, since the conductive mesh member 7b is embedded in the conductive adhesive 7a, it is possible to prevent a problem that a crack occurs in the conductive adhesive 7a due to expansion and contraction of the actuator.
[0048]
In this case, the conductive adhesive 7a is desirably one in which silver powder is dispersed in polyimide in consideration of heat resistance and resistance value. The conductive mesh member 7b is a mesh or mesh plate made of a conductive metal such as silver, nickel, copper, gold, or aluminum, or an alloy thereof, and the conductive adhesive 7a has cracks. It has the role of preventing it from occurring.
[0049]
Next, a method for manufacturing the multilayer piezoelectric element of the present invention will be described. First, the columnar laminate 1a is manufactured. The columnar laminated body 1a formed by alternately laminating the plurality of piezoelectric bodies 1 and the plurality of internal electrodes 2 includes a calcined powder of a piezoelectric ceramic such as PZT and a binder formed of an organic polymer such as an acrylic or butyral system. And a plasticizer such as DBP (dityl phthalate) and DOP (dibutyl phthalate) to form a slurry, and the slurry is mixed with the piezoelectric body 1 by a tape forming method such as a well-known doctor blade method or calender roll method. To produce a ceramic green sheet.
[0050]
Next, a conductive paste is prepared by adding and mixing a binder, a plasticizer, and the like to the silver-palladium powder, and this is printed on the upper surface of each green sheet to a thickness of 1 to 40 μm by screen printing or the like.
[0051]
Then, a green sheet on which a conductive paste is printed is laminated on the upper surface, a binder is removed from the laminated body at a predetermined temperature, and the laminate is fired at 900 to 1200 ° C.
[0052]
Thereafter, as shown in FIG. 3A, the concave grooves 11 are formed on the side surfaces of the columnar laminated body 1a by using a dicing apparatus or the like.
[0053]
Next, as shown in FIG. 3B, 50 to 80% by volume of silver powder having a particle size of 0.1 to 10 μm is provided on the side surface of the columnar laminate 1a between the concave grooves 11, and the balance is 0.1%. A silver glass conductive paste 21 prepared by adding a binder to a mixture of 20 to 50% by volume of glass powder having a softening point of 600 to 950 ° C. and containing silicon as a main component and coated with silicon is applied and dried.
[0054]
Further, as shown in FIG. 3C, the silver glass conductive paste 21 is heat-treated at 700 to 950 ° C. while applying a load so as to press the divided external electrodes 4 a made of a plate-shaped conductive member. As a result, the glass in the silver glass conductive paste 21 is melted, and the silver component present in the melted glass is collected at the end of the internal electrode 2, and as shown in FIG. The protruding conductive terminal 5 protruding from the side surface is formed, and the divided external electrode 4 a can be joined to the tip of the protruding conductive terminal 5.
[0055]
Further, at the time of heat treatment, the silver component in the silver glass conductive paste 21 diffuses to the end 2a of the internal electrode 2, and the thickness of the end 2a of the internal electrode 2 becomes smaller than the internal electrode 2 () at the center of the columnar laminate 1a. It is thicker than the thickness of the central portion 2b) of the internal electrode 2. Thereby, the bonding strength of the protruding conductive terminal 5 at the end 2a of the internal electrode 2 can be improved.
[0056]
That is, by dispersing the glass component in the paste, the glass softens during the above-described heat treatment, and in this state, silver which is difficult to diffuse into the piezoelectric body 1 diffuses and gathers at the end 2 a of the internal electrode 2. Therefore, the protruding conductive terminal 5 as shown in FIG. 3D can be formed. Then, the silver component in the internal electrode 2, the silver glass conductive paste 21 and the divided external electrode 4 a are diffused with each other, and between the internal electrode 2 and the protruded conductive terminal 5 and between the protruded conductive terminal 5 and the divided external electrode 5. Strong bonding is made between the electrodes 4a. In the vicinity of the base of the protruding conductive terminal 5, the glass in the silver glass conductive paste 21 gathers to form a raised portion 5 a, which holds the protruding conductive terminal 5.
[0057]
The protruding conductive terminal 5 is formed on a part of the side surface of the columnar laminate 1a, is formed in a rail shape, and has a length substantially equal to the width of the divided external electrode 4a. Note that the length of the protruding conductive terminal 5 may be shorter than the width of the divided external electrode 4a.
[0058]
The reason why the silver powder in the silver glass conductive paste 21 is 50 to 80% by volume and the remaining glass powder is 20 to 50% by volume is that the silver component constituting the protruding conductive terminal 5 is within this range. And the protruding height h of the formed protruding conductive terminal 5 can be increased, and the glass component that is the remaining solid content in the silver glass conductive paste 21 becomes an appropriate amount. The glass component that melts at the time of baking 21 is also an appropriate amount, the silver component easily gathers at the end of the internal electrode 2, and the protrusion height h of the protruding conductive terminal 5 can be increased.
[0059]
The load applied during the formation of the protruding conductive terminals 5 and the heat treatment for bonding the protruding conductive terminals 5 and the divided external electrodes 4a is preferably 2 to 500 kPa in pressure. By setting the thickness within this range, diffusion bonding can be sufficiently performed between the protruding conductive terminal 5 and the plate-shaped conductive member 4a, and the strength of the bonding portion can be increased, and the pressure becomes appropriate. The deformation of the conductive terminal 5 can be prevented.
[0060]
In addition, a silver glass conductive paste 21 is applied to portions of the divided external electrodes 4a corresponding to the spaces between the concave grooves 11 of the columnar laminate 1a, and dried, and a load is applied so as to press the divided external electrodes 4a against the columnar laminate 1a. The heat treatment may be performed in a state in which is added. Further, a silver glass conductive paste 21 is applied to the entire surface of the divided external electrode 4a and dried, and the divided external electrode 4a is pressed against the surface on which the internal electrode 2 of the columnar laminate 1a is exposed, with the conductive paste applied surface side, Even when the heat treatment is performed, the protruding conductive terminals 5 are formed, and the divided external electrodes 4a can be connected to the tips. In this case, the steps can be further reduced.
[0061]
Thereafter, as shown in FIG. 3 (e), a non-spherical silver powder such as a needle or flake is used as a conductive material outside the divided external electrode 4a in an amount of 15 to 80% by volume, and the remainder has a matrix as an elastic modulus. After applying a conductive adhesive paste obtained by mixing a solvent having a resin of 20 GPa or less and an elongation of 10% or more with a volume of 20 to 85% by volume and embedding a conductive mesh member 7b in the conductive adhesive 7a, The conductive adhesive 7 a is cured by heating at 150 to 300 ° C. to form the conductive auxiliary member 7.
[0062]
Thereafter, as shown in FIG. 3F, the insulator 3 is filled in the concave groove 11 and the lead wire 6 is connected thereto, thereby completing the multilayer piezoelectric element of the present invention.
[0063]
Then, a DC voltage of 0.1 to 3 kV / mm is applied to the pair of external electrodes 4 via the lead wires 6 to polarize the columnar laminate 1a, thereby completing a laminated piezoelectric actuator as a product. If the lead wire 6 is connected to an external voltage supply unit and a voltage is applied to the internal electrode 2 via the lead wire 6 and the external electrode 4, each piezoelectric body 1 is greatly displaced by the inverse piezoelectric effect, thereby, for example, It functions as an automotive fuel injection valve that injects fuel into the engine.
[0064]
In the above example, the example in which the external electrodes 4 are formed on the opposing side surfaces of the columnar laminate 1a has been described. However, in the present invention, for example, a pair of external electrodes 4 may be formed on the adjacent side surface.
[0065]
FIG. 4 shows an injection device of the present invention. In the drawing, reference numeral 31 denotes a storage container. An injection hole 33 is provided at one end of the storage container 31, and a needle valve 35 that can open and close the injection hole 33 is stored in the storage container 31.
[0066]
A fuel passage 37 is provided in the injection hole 33 so as to be able to communicate therewith. The fuel passage 37 is connected to an external fuel supply source, and the fuel is constantly supplied to the fuel passage 37 at a constant high pressure. Therefore, when the needle valve 35 opens the injection hole 33, the fuel supplied to the fuel passage 37 is ejected at a constant high pressure into a fuel chamber (not shown) of the internal combustion engine.
[0067]
The upper end of the needle valve 35 has a large diameter, and serves as a piston 41 that can slide with a cylinder 39 formed in the storage container 31. The above-mentioned piezoelectric actuator 43 is stored in the storage container 31.
[0068]
In such an injection device, when the piezoelectric actuator 43 expands by applying a voltage, the piston 41 is pressed, the needle valve 35 closes the injection hole 33, and the supply of fuel is stopped. Further, when the application of the voltage is stopped, the piezoelectric actuator 43 contracts, the disc spring 45 pushes back the piston 41, and the injection hole 33 communicates with the fuel passage 37 to perform the fuel injection.
[0069]
【Example】
First, a columnar laminate was prepared. The piezoelectric body was formed of PZT having a thickness of 150 μm, the internal electrode was formed of a silver-palladium alloy having a thickness of 3 μm, and the number of layers of the piezoelectric body and the internal electrode was 300. The total length of the columnar laminate was set to 50 mm including the inactive portion.
[0070]
Next, a concave groove having a depth of 150 μm and a width of 75 μm was formed on the side surface of the columnar laminate including the ends of the internal electrodes that were exposed on the external electrode formation surface of the columnar laminate. Then, on the side surfaces of the columnar laminate between the concave grooves, 60 volume% of silver powder having an average particle size of 5 μm, and 40 volume% of glass powder having an average particle size of 5 μm and a softening point mainly composed of silicon of 750 ° C. A silver glass conductive paste prepared by adding a binder to the resulting mixture was applied and dried.
[0071]
Further, a heat treatment is performed on the silver glass conductive paste at 900 ° C. while a plurality of 25 μm-thick plate-shaped conductive members made of silver are pressed at 30 kPa to form protruding conductive terminals protruding from the columnar laminate. At the same time, a plate-shaped conductive member (divided external electrode) was joined to the tip of the protruding conductive terminal. The plate-shaped conductive member has a wedge shape as shown in FIG. 2 (c-2), and its length is 5 mm, 10 mm, 18 mm, 10 mm, and 5 mm from the end of the columnar laminate. The portion connected in parallel was for two internal electrodes as shown in FIG. 2 (c-2).
[0072]
Thereafter, 50 vol% of flake-shaped silver powder having an average particle size of 5 μm as a conductive material and 50 vol% of a polyimide resin having an elastic modulus of 10 GPa and an elongation of 30% as a matrix are provided outside the plate-shaped conductive member. % And a solvent are mixed, a 50 μm-thick mesh member made of nickel is embedded in the conductive adhesive paste, and the conductive adhesive is cured by heating at 220 ° C. An auxiliary member was formed.
[0073]
After that, the concave groove is filled with silicone rubber as an insulator, a lead wire is connected to the conductive auxiliary member, and a 3 kV / mm DC electric field is applied to the external electrodes of the positive electrode and the negative electrode via the lead wires for 15 minutes to be polarized. The processing was performed to produce a laminated piezoelectric actuator as shown in FIG.
[0074]
Note that silver and palladium were dispersed in the protruding conductive terminals. At this time, the height of the protruding conductive terminal was 20 μm on average, and the void ratio of the conductive adhesive was 10%. The base of the protruding conductive terminal was covered with glass to form a raised portion.
[0075]
As a result of applying a DC voltage of 150 V to the obtained laminated piezoelectric actuator, a displacement of 40 μm was obtained in the laminating direction. Furthermore, an AC voltage of 0 to +150 V was applied to this actuator at room temperature at a frequency of 120 Hz, and a drive test was performed. As a result, when the actuator was driven up to 1 × 10 9 cycles, a displacement of 40 μm was obtained. I couldn't see it.
[0076]
On the other hand, as a comparative example, one end of the internal electrode is alternately covered with an insulator made of glass on the left and right, the above-mentioned silver glass conductive paste is applied thereon, and heat treatment is performed at 700 ° C. to produce actuator shown in FIG. 5 which is electrically connected to the internal electrode right respectively every other layer, was subjected to the same test as above, the spark occurs in the external electrode at 1 × 10 5 cycles driving test.
[0077]
【The invention's effect】
According to the multilayer piezoelectric element of the present invention, the protruding conductive terminals protruding from the side surfaces of the columnar laminate are provided at every other end of the internal electrode, and the columnar lamination is provided at the tip of the protruding conductive terminals. Split external electrodes made of a plate-like conductive member divided into a plurality in the stacking direction of the body are joined, and the split external electrodes are connected by a conductive auxiliary member. Oscillates and can sufficiently absorb the stress generated in the external electrodes. Further, since the external electrodes are divided in the laminating direction, the stress generated by expansion and contraction of the multilayer piezoelectric element can be dispersed, whereby the external electrodes can be dispersed. It is possible to prevent a problem such as a contact failure between the internal electrode and the internal electrode or a disconnection of the external electrode, and to provide a laminated piezoelectric element having high reliability.
[Brief description of the drawings]
1A and 1B show a laminated piezoelectric element of the present invention, wherein FIG. 1A is a perspective view, FIG. 1B is a longitudinal sectional view taken along line AA ′ of FIG. 1A, and FIG. FIG. 3D is a perspective view showing an enlarged part of FIG. 4D, and FIG. 4D is a sectional view showing an enlarged part of FIG.
FIG. 2 is a side view showing an arrangement of divided external electrodes on a side surface of a columnar laminate.
FIG. 3 is a process diagram for explaining a method of manufacturing a multilayer piezoelectric element of the present invention.
FIG. 4 is an explanatory view showing an injection device of the present invention.
FIG. 5 is a longitudinal sectional view of a conventional laminated piezoelectric actuator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Piezoelectric body 1a ... Columnar laminated body 2 ... Internal electrode 2a ... End part 2b of an internal electrode ... Central part of an internal electrode 4 ... External electrode 4a ... Divided external electrode 4a1, 4a2... Uneven portion 5... Protruding conductive terminal 7... Conductive auxiliary member 7a... Conductive adhesive 7b... Conductive mesh member 11... ... Storage container 33 ... Injection hole 35 ... Valve 43 ... Piezoelectric actuator

Claims (7)

圧電体と内部電極とを交互に積層してなる柱状積層体と、該柱状積層体の側面に設けられ、前記内部電極が一層おきに交互に接続された一対の外部電極とを具備してなる積層型圧電素子であって、前記内部電極の端部に一層おきに前記柱状積層体の側面から突出する突起状導電性端子を設け、該突起状導電性端子の先端部に板状導電部材からなる外部電極を接合してなるとともに、前記外部電極が、前記柱状積層体の積層方向に複数に分割されており、該分割外部電極が導電性補助部材によって連結されていることを特徴とする積層型圧電素子。A columnar laminate formed by alternately laminating piezoelectric bodies and internal electrodes; and a pair of external electrodes provided on side surfaces of the columnar laminate, wherein the internal electrodes are alternately connected every other layer. A laminated piezoelectric element, wherein a protruding conductive terminal protruding from the side surface of the columnar laminate is provided at every other end of the internal electrode, and a tip end of the protruding conductive terminal is provided from a plate-shaped conductive member. Wherein the external electrodes are divided into a plurality of parts in the laminating direction of the columnar laminate, and the divided external electrodes are connected by a conductive auxiliary member. Type piezoelectric element. 柱状積層体側面の突起状導電性端子間には、内部電極端が露出する凹溝が形成されていることを特徴とする請求項1記載の積層型圧電素子。2. The multilayer piezoelectric element according to claim 1, wherein a concave groove exposing an end of the internal electrode is formed between the protruding conductive terminals on the side surfaces of the columnar laminate. 一部の突起状導電性端子には、複数の分割外部電極が接合されていることを特徴とする請求項1又は2記載の積層型圧電素子。The multilayer piezoelectric element according to claim 1, wherein a plurality of divided external electrodes are joined to some of the protruding conductive terminals. 柱状積層体の積層方向端部に設けられた分割外部電極の積層方向の長さは、前記柱状積層体の積層方向中央部に設けられた分割外部電極の積層方向の長さよりも短いことを特徴とする請求項1乃至3のうちいずれかに記載の積層型圧電素子。The length in the stacking direction of the divided external electrodes provided at the end in the stacking direction of the columnar stacked body is shorter than the length in the stacking direction of the divided external electrodes provided at the center in the stacking direction of the columnar stacked body. The multilayer piezoelectric element according to any one of claims 1 to 3, wherein 柱状積層体の側面に複数の分割外部電極が直線状に配列されており、前記複数の分割外部電極の対向する部分に凹凸部が形成され、これらの凹凸部が噛合していることを特徴とする請求項1乃至4のうちいずれかに記載の積層型圧電素子。A plurality of divided external electrodes are arranged in a straight line on the side surface of the columnar laminate, and a concavo-convex portion is formed at a portion facing the plurality of divided external electrodes, and these concavo-convex portions are engaged. The multilayer piezoelectric element according to claim 1. 導電性補助部材が、導電性のメッシュ部材を埋設した導電性接着剤からなることを特徴とする請求項1乃至5のうちいずれかに記載の積層型圧電素子。The multilayer piezoelectric element according to any one of claims 1 to 5, wherein the conductive auxiliary member is made of a conductive adhesive in which a conductive mesh member is embedded. 噴射孔を有する収納容器と、該収納容器内に収容された請求項1乃至6のうちいずれかに記載の積層型圧電素子と、該積層型圧電素子の駆動により前記噴射孔から液体を噴出させるバルブとを具備してなることを特徴とする噴射装置。A storage container having an injection hole, the multilayer piezoelectric element according to any one of claims 1 to 6, which is stored in the storage container, and ejecting liquid from the injection hole by driving the multilayer piezoelectric element. An injection device comprising a valve.
JP2002245841A 2002-08-26 2002-08-26 Multilayer piezoelectric element and injection device Expired - Fee Related JP3990613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002245841A JP3990613B2 (en) 2002-08-26 2002-08-26 Multilayer piezoelectric element and injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002245841A JP3990613B2 (en) 2002-08-26 2002-08-26 Multilayer piezoelectric element and injection device

Publications (2)

Publication Number Publication Date
JP2004087731A true JP2004087731A (en) 2004-03-18
JP3990613B2 JP3990613B2 (en) 2007-10-17

Family

ID=32053915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002245841A Expired - Fee Related JP3990613B2 (en) 2002-08-26 2002-08-26 Multilayer piezoelectric element and injection device

Country Status (1)

Country Link
JP (1) JP3990613B2 (en)

Also Published As

Publication number Publication date
JP3990613B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
US7705525B2 (en) Multi-layer piezoelectric element and method for manufacturing the same
US6700306B2 (en) Laminated piezo-electric device
JP4933554B2 (en) Multilayer piezoelectric element, injection apparatus and fuel injection system using the same, and method for manufacturing multilayer piezoelectric element
JP4808915B2 (en) Multilayer piezoelectric element and injection device
WO2005029602A1 (en) Multilayer piezoelectric device
JP3730893B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
JP3667289B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
JP4290946B2 (en) Multilayer piezoelectric element and injection device
JP4480371B2 (en) Multilayer piezoelectric element and injection device
JP2003197991A (en) Laminated type piezoelectric element and jetting device
JP2001244514A (en) Laminated piezoelectric actuator and injector using the same
JP3598057B2 (en) Multilayer piezoelectric element and injection device
JP4498300B2 (en) Method for manufacturing multilayer piezoelectric element and multilayer piezoelectric element
JP2001313428A (en) Laminated type piezoelectric actuator and injection device
JP3909275B2 (en) Multilayer piezoelectric element and injection device
JP3990613B2 (en) Multilayer piezoelectric element and injection device
JP4841046B2 (en) Multilayer piezoelectric element and injection device
JP3872349B2 (en) Manufacturing method of multilayer piezoelectric element
JP3909274B2 (en) Multilayer piezoelectric element and injection device
JP3909276B2 (en) Multilayer piezoelectric element and injection device
JP4593911B2 (en) Multilayer piezoelectric element and injection device
JP2002111088A (en) Multilayer piezoelectric actuator
JP4290947B2 (en) Multilayer piezoelectric element and injection device
JP4498299B2 (en) Manufacturing method of multilayer piezoelectric element
JP2002289934A (en) Laminated piezoelectric element and jetting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees