JP2004087672A - Resin-sealed type semiconductor device and its manufacturing method - Google Patents

Resin-sealed type semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2004087672A
JP2004087672A JP2002245163A JP2002245163A JP2004087672A JP 2004087672 A JP2004087672 A JP 2004087672A JP 2002245163 A JP2002245163 A JP 2002245163A JP 2002245163 A JP2002245163 A JP 2002245163A JP 2004087672 A JP2004087672 A JP 2004087672A
Authority
JP
Japan
Prior art keywords
bonding
resin
wire
semiconductor device
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002245163A
Other languages
Japanese (ja)
Inventor
Shinji Imada
今田 真嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002245163A priority Critical patent/JP2004087672A/en
Publication of JP2004087672A publication Critical patent/JP2004087672A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48455Details of wedge bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48471Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area being a ball bond, i.e. wedge-to-ball, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48477Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding)
    • H01L2224/48478Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball
    • H01L2224/48479Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/85051Forming additional members, e.g. for "wedge-on-ball", "ball-on-wedge", "ball-on-ball" connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

<P>PROBLEM TO BE SOLVED: To easily prevent a bonding wire section provided in the vicinity of a second bonding section from coming into contact with semiconductor chips in a resin-sealed type semiconductor device in which a plurality of semiconductor chips connected to each other through a bonding wire is sealed with a resin. <P>SOLUTION: In the resin-sealed type semiconductor device S1, the semiconductor chips 10 and 20 connected to each other through the bonding wire 30 are sealed with a resin 40 together with the bonding wire 30 by setting up the chips 10 and 20 and bonding wire 30 in the cavity of a molding device and injecting the resin 40 into the cavity from a gate. The bonding wire 30 is formed by wire bonding comprising ball bonding which is performed as first bonding and wedge bonding which is performed as second bonding. In the semiconductor device S1, the second boning section 32 of the bonding wire 30 connecting the chips 10 and 20 to each other is positioned farther than the first bonding section 31 of the wire 30 from the resin injecting section 41 of the gate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ボンディングワイヤにて結線された複数個の半導体チップを樹脂にて封止してなるマルチチップパッケージとしての樹脂封止型半導体装置およびその製造方法に関する。
【0002】
【従来の技術】
近年、半導体装置において、小型化、部品点数の削減、高機能化といったニーズがある。これに対しては、各機能を有するICチップを一つのチップに集積化することが最も効果的である。
【0003】
しかし、チップの組合せによってはマイナス面も大きい。例えば、CPUチップとメモリチップとの組合せでは、チップ製造プロセスに時間がかかることや、1チップ化のための開発コストが大きいことから、半導体装置のコストがアップするというデメリットがある。
【0004】
このようなケースでは、複数個の半導体チップを樹脂にてモールドして一つのパッケージに収納するとともに、パッケージ内にて各半導体チップをボンディングワイヤにて結線するマルチチップパッケージとしての樹脂封止型半導体装置が採用される。
【0005】
このマルチチップパッケージは、1チップ毎に製造すれば良いのでチップ製造プロセスがシンプルであることや、既存のICチップを活用できることなど、チップの製造、開発コストが抑えられるという点でメリットが大きい。すなわち、マルチチップパッケージは、半導体装置における小型化、部品点数削減を低コストで実現できるため、大変有望視されている。
【0006】
この種のマルチチップパッケージの一般的な製造方法を図5(a)、(b)、(c)を参照して述べる。図5において、(a)は下型に半導体装置を設置した状態での概略上面図、(b)は(a)中のB−B概略断面図、(c)は(b)に対応した断面にて樹脂40を注入していく状態を示す概略断面図である。
【0007】
図5(a)、(b)における半導体装置は、樹脂封止前のものであり、二つの半導体チップ10、20をそれぞれ、リードフレーム50のチップ搭載部51に搭載し、各チップ10、20間およびチップ10、20とリードフレーム50のリード部55とをボンディングワイヤ30、35により結線し一体化したものである。
【0008】
この図5に示す例においては、金型(型装置)100は、上型110と下型120とを合致させたものであり、それによって形成されたキャビティ130内には、上記半導体装置が配置される。そして、金型100に形成された樹脂溜まりとしてのポット101から延びたランナー102の先端に、キャビティ130に樹脂40を注入するためのゲート103が形成されている。
【0009】
そして、図5(c)に示すように、ポット101内の溶融状態の樹脂40がプランジャー104によりポット101から押し出され、ランナー102を流れることにより、ゲート103からキャビティ130へ樹脂40が注入され充填される。こうして、キャビティ130を樹脂40にて充填した後、樹脂40を硬化させることで、半導体装置が樹脂40で封止された樹脂封止型半導体装置ができあがる。
【0010】
【発明が解決しようとする課題】
しかしながら、本発明者の検討によれば、上記樹脂封止型半導体装置においては、次のような問題が生じることを見出した。
【0011】
各半導体チップ10、20間を結線するボンディングワイヤ30を形成するためのワイヤボンディング方法としては、第1ボンディングとしてボールボンディング法、第2ボンディングとしてウェッジボンディング法を行う方法が一般的である。
【0012】
このワイヤボンディング方法を図6に示しておく。まず、図6(a)に示す様に、ボンディング装置におけるキャピラリ200の内部に挿入されたワイヤ30において、キャピラリ200の先端から導出された部分の先端に、放電加工によりボール部(イニシャルボール)30aを形成する。
【0013】
次に、このボール部30aを第1ボンディング面である第1の半導体チップ10のパッド11に押し当てて、熱及び超音波振動を加えながら接合し、第1ボンディングを行う(図6(b))。その後、図6(c)の破線矢印に示すように、ワイヤ30を、キャピラリ200の先端から繰り出して上記パッド11との接合部(第1ボンディング部)31から第2ボンディング面である第2の半導体チップ20のパッド21まで引き回す。
【0014】
次に、第2の半導体チップ20のパッド21まで引き回されたワイヤ30を、キャピラリ200の先端面にて当該パッド21に押しつけて、熱及び超音波振動を加えながら接合し、第2ボンディングを行う(図6(d))。
【0015】
そして、図6(e)の矢印に示す順に、キャピラリ200を上方へ移動させ、第2ボンディング部32からワイヤ30を切り離す。このとき、キャピラリ200の先端からは、ワイヤ30が突出してテール部30bとして残り、このテール部30bに再び上記同様に放電加工を行い、上記ボール部30aを形成する。こうして、ワイヤボンディングの1サイクルが完了し、次のサイクルを行う。
【0016】
このようなワイヤボンディングを行った結果形成されたワイヤ30は、上記図5(b)、(c)に示すように、第1の半導体チップ10側の第1ボンディング部31近傍では、ワイヤ30はほぼ直角に近い角度で立ち上がっているが、第2の半導体チップ20側の第2ボンディング部で32近傍は、ワイヤ30は寝た形となっておりチップ20に近づいたものとなっている。
【0017】
このようなボンディングワイヤ30の形状では、次のような問題が生じる。図7は、図5における第2ボンディング部32近傍のワイヤ30の形状を拡大して示す図である。
【0018】
図7に示す例では、第2の半導体チップ20のパッド21の上には、第2ボンディング部の接合寿命の確保とパッド21の下部のダメージ(例えば、酸化膜クラック等)を回避するため、予め第2ボンディング面であるパッド21の表面に金等からなる金属バンプ32aを形成し、この金属バンプ32a上に第2ボンディングを行っている。
【0019】
このように、チップ10、20間を結線するボンディングワイヤ30が、第2ボンディング部32近傍にて立ち上がっておらず、その立ち上がり角度θが小さい(例えば十数°)ため、ワイヤ30とチップ20とのギャップG2が小さいものとなる。
【0020】
ここで、従来では、上記図5(c)に示すように樹脂40が流れる。そのため、図7中の矢印Y2に示すように、樹脂40が流れ、このような形状のボンディングワイヤ30に対しては、流れてくる樹脂40によって図7中の矢印F2に示すように、第2ボンディング部32近傍のワイヤ部分をチップ20方向へ押さえる力が加わり、ワイヤ30がチップ20のエッジ20aに接することが起こりうる。
【0021】
チップ20の表面は絶縁性の保護膜22で被覆されているが、チップ20のエッジ20aはダイシングカットされた部位であり、この部分にワイヤ30が接触すると、ワイヤ20とチップ30との間で電気的な短絡が発生する可能性が高い。
【0022】
なお、このようなチップ10、20間を結線するボンディングワイヤ30において、第1ボンディング部近傍のワイヤ部分は、上述したように、直角に近い角度で立ち上がっており、チップとも十分に離れているため、上記第2ボンディング側のような問題は生じない。
【0023】
このように、本発明者は、従来のマルチチップパッケージとしての樹脂封止型半導体装置において、チップ間を結線するボンディングワイヤでは、第2ボンディング部近傍におけるワイヤ部分がチップに接触し、電気的な短絡が発生しやすくなるという新たな問題を見出した。
【0024】
この問題に対しては、ワイヤボンディングにおける第2ボンディングの際に、ボンディングツールの動きを制御して第2ボンディング部近傍におけるワイヤの立ち上がり角度を大きくする方法も考えられるが、その立ち上がり角度にばらつきが大きく、チップとの接触防止という点では不十分である。
【0025】
また、第2ボンディング側の半導体チップの厚さを薄くして、第2ボンディング面の位置を低くすることで、第2ボンディング側のワイヤの立ち上がり角度を大きくすることも考えられるが、チップを薄くするための工程が必要となり、コストアップする。
【0026】
本発明は、上記したような本発明者が新たに見出した問題に鑑みてなされたものであり、ボンディングワイヤにて結線された複数個の半導体チップを樹脂にて封止してなる樹脂封止型半導体装置において、第2ボンディング部近傍のボンディングワイヤ部分が半導体チップに接触するのを容易に防止できるようにすることを目的とする。
【0027】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明では、第1ボンディングとしてボールボンディング法、第2ボンディングとしてウェッジボンディング法を行うワイヤボンディングによって形成されたボンディングワイヤ(30)によって結線された複数個の半導体チップ(10、20)を、型装置のキャビティ(130)内に設置してゲート(103)から樹脂(40)を注入することにより、複数個の半導体チップおよびボンディングワイヤを樹脂にて封止してなる樹脂封止型半導体装置において、半導体チップを結線するボンディングワイヤの第2ボンディング部(32)が第1ボンディング部(31)よりも樹脂におけるゲート注入部(41)から遠い位置となっていることを特徴とする。
【0028】
本発明のように、半導体チップを結線するボンディングワイヤの第2ボンディング部を第1ボンディング部よりも樹脂におけるゲート注入部から遠い位置とすることで、型装置内における樹脂の充填の際には、樹脂の流れによって第2ボンディング部近傍のボンディングワイヤ部分をチップとは反対方向へ押し上げるようにすることができる。
【0029】
そのため、本発明によれば、第2ボンディング部近傍のボンディングワイヤ部分が半導体チップに接触するのを容易に防止することができる。
【0030】
請求項2に記載の発明では、キャビティ(130)とこのキャビティ内に樹脂(40)を注入するゲート(103)とを有する型装置(100)を用い、複数個の半導体チップ(10、20)が、第1ボンディングとしてボールボンディング法、第2ボンディングとしてウェッジボンディング法を行うワイヤボンディングによって形成されたボンディングワイヤ(30)によって結線されてなる半導体装置(S1’)を、キャビティ内に設置し、ゲートからキャビティ内に樹脂を注入することにより、樹脂にて半導体装置を封止するようにした樹脂封止型半導体装置の製造方法において、半導体チップを結線するボンディングワイヤの第2ボンディング部(32)が第1ボンディング部(31)よりもゲートから遠い位置となるように、半導体装置をキャビティ内に設置することを特徴とする。
【0031】
本発明のように、半導体チップを結線するボンディングワイヤの第2ボンディング部を第1ボンディング部よりもゲートから遠い位置となるように、半導体装置をキャビティ内に設置することで、上記請求項1の発明と同様に、型装置内における樹脂の充填の際には、樹脂の流れによって第2ボンディング部近傍のボンディングワイヤ部分をチップとは反対方向へ押し上げるようにすることができる。
【0032】
そのため、本発明によれば、第2ボンディング部近傍のボンディングワイヤ部分が半導体チップに接触するのを容易に防止することができる。
【0033】
請求項3に記載の発明では、キャビティ(130)とこのキャビティ内に樹脂(40)を注入するゲート(103)とを有する型装置(100)を用い、複数個の半導体チップ(10、20)がその一面側においてボンディングワイヤ(30)によって結線されてなる半導体装置(S1’)を、キャビティ内に設置し、ゲートからキャビティ内に樹脂を注入することにより、樹脂にて半導体装置を封止するようにした樹脂封止型半導体装置の製造方法において、型装置として、キャビティ内に半導体装置を設置した状態において半導体チップの一面とは反対の他面側に面する部位に、ゲートが設けられているものを用いることを特徴とする。
【0034】
それによれば、キャビティ内に半導体チップを設置した状態において半導体チップにおけるワイヤボンディング面である一面とは反対の他面側に面する部位に、ゲートを設けることにより、型装置内における樹脂の充填の際には、樹脂は当該半導体チップの他面側から一面側へ順に充填されていくことになる、
このような樹脂の流れとなるため、第2ボンディング部近傍のボンディングワイヤ部分は、チップとは反対方向へ押し上げられる。そのため、本発明によれば、第2ボンディング部近傍のボンディングワイヤ部分が半導体チップに接触するのを容易に防止することができる。
【0035】
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0036】
【発明の実施の形態】
以下、本発明を図に示す実施形態について説明する。なお、以下の各実施形態相互において互いに同一の部分には、図中、同一符号を付してある。
【0037】
(第1実施形態)
図1は本発明の第1実施形態に係る樹脂封止型半導体装置S1の概略断面構成を示す図である。
【0038】
このものは、大きくは、複数個(図示例では2個)の半導体チップ10、20と、これら半導体チップ10、20を結線するボンディングワイヤ30と、これら半導体チップ10、20およびボンディングワイヤ30包み込むように封止する樹脂40からなる。
【0039】
半導体チップ10、20は、例えば機能の異なるICチップからなり、本例では同じ厚さ(例えば0.4mm)の矩形板状のシリコンチップからなる。これら半導体チップ10、20はそれぞれ、リードフレーム50のチップ搭載部であるダイベッド51上に搭載され、導電性接着剤等のダイボンド材(図示せず)を介して固定されている。
【0040】
そして、各半導体チップ10、20を結線するボンディングワイヤとしてのチップ間ワイヤ30は、図1の右側の半導体チップ10を第1ボンディング側、左側の半導体チップ20側を第2ボンディング側として、第1ボンディングをボールボンディング法、第2ボンディングをウェッジボンディング法にて行うワイヤボンディングによって形成されている。
【0041】
ここで、図1中の右側に位置し第1ボンディングされるチップ10を第1の半導体チップ10とし、左側に位置し第2ボンディングされるチップ20を第2の半導体チップ20とする。なお、半導体チップは2個ではなく、3個以上でも良い。
【0042】
つまり、チップ間ワイヤ30は、上記図6に示すワイヤボンディング方法にて形成されている。そして、図1には、チップ間ワイヤ30と第1の半導体チップ10との接続部31すなわち第1ボンディング部31、および、チップ間ワイヤ30と第2の半導体チップ20との接続部32すなわち第2ボンディング部32が示されている。
【0043】
ここで、図2は、図1における第2ボンディング部32近傍のチップ間ワイヤ30の形状を拡大して示す図である。
【0044】
図2に示す例では、第2の半導体チップ20のパッド21の上には、予め第2ボンディング面であるパッド21の表面に金等からなる金属バンプ32aを形成し、この金属バンプ32a上に第2ボンディングを行っている。また、第2の半導体チップ20の表面には、シリコン窒化膜等からなる保護膜22が形成されている。
【0045】
この金属バンプ32aは、第2ボンディング部32の接合寿命の確保とパッド21の下部のダメージ(例えば、酸化膜クラック等)を回避するために形成されたものであり、ボールボンド法で作ることができ、その厚さtは例えば10〜30μm程度にすることができる。なお、この金属バンプ32aは無くても良い。
【0046】
また、図1に示すように、第1および第2の半導体チップ10、20は、リードフレーム50のリード部55ともボンディングワイヤ35によって結線されている。また、上記したチップ間ワイヤ30およびボンディングワイヤ35は、金やアルミニウム等のワイヤを用いて形成されている。
【0047】
次に、半導体チップ10、20および各ワイヤ30、35を包み込むように封止する樹脂40は、エポキシ樹脂等の通常のモールド用樹脂材料からなる。この樹脂40は、リードフレーム50のダイベッド51およびリード部55の一部も封止している。
【0048】
ここで、リードフレーム50のリード部55のうち樹脂40にて封止された部位がインナーリード、樹脂40から突出する部位がアウターリードであり、アウターリードにて外部基板との接続がなされる。このようなリードフレーム50は銅等の公知のリードフレーム材料を用いて形成され、本例では板厚0.2mm程度のものにできる。
【0049】
そして、樹脂40は、各ボンディングワイヤ30、35によって結線された複数個の半導体チップ10、20およびリードフレーム50を、型装置のキャビティ内に設置してゲートから溶融状態の樹脂を注入、充填して硬化させることで形成されるものである。
【0050】
このような樹脂40においては、上記ゲートの注入部分に対応した部位は、上記型装置から取り出す際に折られて分断される部分であり、当該部分はゲート注入部41として、外観上、目視にて識別のつくものである。
【0051】
本実施形態では、この樹脂40におけるゲート注入部41は、図1において樹脂40の右側端部に位置している。すなわち、チップ間ワイヤ30の第2ボンディング部32の方が第1ボンディング部31よりもゲート注入部41から遠い位置となっている。
【0052】
このことは、樹脂成形の型装置において、樹脂を注入、充填する際に、図1中の右側から左側に樹脂40が流れて充填されることを意味する。つまり、チップ間ワイヤ30についてみれば、図1中の右側に位置する第1ボンディング部31側から図1中の左側に位置する第2ボンディング部32側に樹脂40が流れて充填されることを意味する。
【0053】
このような樹脂40の流れについて、次に述べる本実施形態の半導体装置S1の製造方法の中で、より具体的に述べる。図3は、本実施形態に係る樹脂封止型半導体装置S1の製造方法における樹脂封止工程を説明する説明図である。
【0054】
図3において、(a)は型装置としての金型100の下型120に樹脂封止前の半導体装置S1’を設置した状態を示す平面図、(b)は金型100の上型110と下型120を閉じた状態を(a)中のA−A概略断面にて示す図、(c)は(b)において樹脂40をキャビティ130の途中まで充填した状態を示す図である。
【0055】
[金型の構成]
まず、図3を参照して、金型100の構成について述べる。この金型100は、上下の型110、120を切削加工等により形成し、上下の型110、120を合致可能とすることで、内部にキャビティ130を形成したものである。
【0056】
この金型100は、一般のトランスファモールドと同様、ポット101から注入されて軟化した樹脂40が加圧されて、ランナー102、ゲート103を通ってキャビティ130に注入されるものである。
【0057】
ここで、図3に示す金型100においては、ゲート103は、矩形状のキャビティ130の右端コーナー部に位置し、かつ半導体チップ10、20におけるワイヤボンド面とは反対側の面に対向する下型120に設けられている。このゲート103は、例えば開口幅Wが0.5mm、開口深さLが0.2mm程度のものにできる。
【0058】
[樹脂封止型半導体装置の製造方法]
次に、本実施形態の樹脂封止型半導体装置S1の製造方法について述べる。まず、リードフレーム50のダイベッド51に各半導体チップ10、20を搭載し、上記した方法でワイヤボンディングを行うことにより、各チップ10、20の間および各チップ10、20とリードフレーム50のリード部55とを結線する。これにより、樹脂封止前の半導体装置S1’を形成する。
【0059】
次に、図3(a)に示すように、下型120のキャビティ130に上記半導体装置S1’を設置する。このとき、チップ間ワイヤ30の第2ボンディング部32が第1ボンディング部31よりもゲート103から遠い位置となるように、半導体装置S1’をキャビティ130内に設置する。
【0060】
なお、この半導体装置S1’のダイベッド51には吊りリード53が連結されており、リードフレーム50における吊りリード53およびリード部55は、図示しないリードフレームの枠部等により一体に連結されている。次に、図3(b)に示すように、下型120と上型110とを合致させて閉じる。
【0061】
そして、図3(c)に示すように、樹脂封止工程を行う。金型100の外周にヒータ等を設けることにより、金型100を樹脂40の溶融温度以上に加熱する。用いられる樹脂40としては、例えば、クレゾール−ノボラック骨格を有するエポキシ系樹脂やビフェニル骨格を有するエポキシ系樹脂等が挙げられる。
【0062】
次に、図3(c)に示すように、プランジャー104を用いてポット101から溶融状態にある樹脂40を加圧することで、当該樹脂40をランナー102から、ゲート103を介してキャビティ130に注入、充填する。
【0063】
さらに、加圧を続け、キャビティ130全体を溶融状態の樹脂40にて充填した後、樹脂50の硬化を行う。その後、半導体装置を金型100から取り出し、上記したリードフレームの枠部の分断やアウターリードのフォーミング等を行うことで、上記図1に示す樹脂封止型半導体装置S1が製造される。
【0064】
ところで、本実施形態では、上述したように、図1において、チップ間ワイヤ30の第2ボンディング部32の方が第1ボンディング部31よりもゲート注入部41から遠い位置となっている。
【0065】
このことは、上記製造方法において、チップ間ワイヤ30の第2ボンディング部32が第1ボンディング部31よりもゲート103から遠い位置となるように、半導体装置S1’をキャビティ130内に設置することと同じことである。
【0066】
そのため、上記製造方法において、上記図3(c)に示す樹脂を注入、充填する工程のときに、図3(c)中のキャビティ130内の各矢印に示すように、チップ間ワイヤ30における第1ボンディング部31側から第2ボンディング部32側に樹脂40が流れて充填される。
【0067】
そして、詳しくは上記図2に示すように、樹脂40の流れY1によって第2ボンディング部32近傍のチップ間ワイヤ30の部分には、第2の半導体チップ20とは反対方向へ押し上げる力F1が働く。
【0068】
そのため、チップ間ワイヤ30が、第2ボンディング部32近傍にて立ち上がっておらず、その立ち上がり角度θが小さく(例えば十数°)、ワイヤ30とチップ20とのギャップG1が小さいものであっても、流れてくる樹脂40によって、ワイヤ20がチップ20のエッジ20aに接することが防止される。
【0069】
このように、本実施形態によれば、型装置100に半導体装置S1’を設置する際に、チップ間ワイヤ30の向きを考慮して設置するだけの簡単な方法で、第2ボンディング部近傍のボンディングワイヤ部分が半導体チップに接触するのを容易に防止することができる。そして、チップ間ワイヤ30とチップ20との短絡等を防止できる。
【0070】
また、図3(c)に示すように、第1および第2の半導体チップ10、20間ではダイベッド51も分断されており、両チップ10、20間に隙間が存在する。そのため、樹脂40の注入時には、図3(c)に示す矢印のように、樹脂40は当該隙間を通って第2の半導体チップ20の一面から他面、あるいは他面から一面へと流れる。
【0071】
このような隙間を介した樹脂40の流れにより、第2ボンディング部32近傍のチップ間ワイヤ30の部分を押し上げる作用がいっそう効果的に働く。具体的には、図3(c)中の各矢印のうち第2の半導体チップ20の他面から上記隙間を通って一面に流れる樹脂40の流れが、その作用を促進する。
【0072】
(第2実施形態)
図4は本発明の第2実施形態に係る樹脂封止型半導体装置の製造方法における樹脂封止工程を説明する概略断面図である。上記第1実施形態と相違するところについて主として述べる。
【0073】
本実施形態では、金型100として、キャビティ130内に半導体装置S1’を設置した状態において半導体チップ10、20の一面すなわちワイヤボンディング面とは反対の他面側に面する下型120の面に、ゲート103が設けられているものを用いる。
【0074】
また、キャビティ130内に設置する半導体装置S1’において、上記第1実施形態とは逆に、第2の半導体チップ20(図4中の左側)が第1ボンディング側、第1の半導体チップ10(図4中の右側)が第2ボンディング側となっており、チップ間ワイヤ30の第1、第2ボンディング部31、32の位置が、第1実施形態とは逆になっている。
【0075】
このようなゲート103の位置であれば、図4に示すように、金型100内における樹脂40の充填の際には、樹脂40は半導体チップ10、20の他面側から一面側へ順に充填されていくことになる。このような樹脂40の流れとなるため、図4中の白矢印に示すように、チップ間ワイヤ30全体が半導体チップ10、20とは反対方向(チップから離れる方向)へ押し上げられる。
【0076】
そのため、本実施形態では、第1ボンディング部31近傍のチップ間ワイヤ30の部分、および第2ボンディング部32近傍のチップ間ワイヤ30の部分は、第2の半導体チップ20とは反対方向へ押し上げられる。そのため、本実施形態の製造方法によっても、第2ボンディング部近傍のボンディングワイヤ部分が半導体チップに接触するのを容易に防止することができる。
【0077】
ここで、本実施形態では、キャビティ130内に設置される半導体装置S1’において、上記第1実施形態と同様、第1の半導体チップ10側が第1ボンディング側、第2の半導体チップ20側が第2ボンディング側であっても良いことはもちろんである。
【0078】
また、本実施形態では、図4に示す例に限らず、金型100として、キャビティ130内に半導体装置S1’を設置した状態において半導体チップ10、20の他面側から一面側へ樹脂40の流れが向かうような位置にゲート103が設けられたものを用いれば良い。
【0079】
例えば、図4に示す半導体装置S1’、上型110、下型120の位置関係においては、ゲートはキャビティ103のコーナー部でなくとも、下型120における半導体チップ10、20の他面と対向する面の中央部にあっても良い。また、ゲートの数も複数でも良い。
【0080】
さらには、図4とは上下逆の位置となるように半導体装置S1’を設置した場合は、半導体チップ10、20の他面と対向する面は、上型110に位置するが、このとき、上型110にゲートを設ければ、本実施形態の製造方法を実現できる。
【0081】
また、本実施形態は、半導体チップ10、20におけるワイヤボンディング面とは反対側の面から、チップ間ワイヤ30全体を、そのループ突出方向へ押し上げるように樹脂40が流れるため、チップ間ワイヤ30は、第1および第2ボンディングがともにウェッジボンディング法にて行われたものであっても適用可能である。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る樹脂封止型半導体装置の概略断面図である。
【図2】図1における第2ボンディング部近傍のチップ間ワイヤの形状を拡大して示す図である。
【図3】図1に示す樹脂封止型半導体装置の製造工程を示す図である。
【図4】本発明の第2実施形態に係る樹脂封止型半導体装置の製造方法における樹脂封止工程を説明する概略断面図である。
【図5】従来の一般的な樹脂封止型半導体装置の製造方法を示す図である。
【図6】半導体チップ間のワイヤボンディング方法を示す図である。
【図7】図5における第2ボンディング部近傍のワイヤ形状を拡大して示す図である。
【符号の説明】
10…第1の半導体チップ、20…第2の半導体チップ、
30…チップ間ワイヤ、31…第1ボンディング部、
32…第2ボンディング部、40…樹脂、41…ゲート注入部、
100…金型、103…ゲート、130…キャビティ、
S1’…樹脂封止前の半導体装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin-encapsulated semiconductor device as a multi-chip package formed by encapsulating a plurality of semiconductor chips connected by bonding wires with a resin, and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, there is a need for downsizing, reduction in the number of parts, and higher functionality in a semiconductor device. For this, it is most effective to integrate the IC chips having the respective functions into one chip.
[0003]
However, depending on the combination of chips, the downside is significant. For example, the combination of a CPU chip and a memory chip has a demerit that the cost of the semiconductor device is increased because the chip manufacturing process takes time and the development cost for making one chip is large.
[0004]
In such a case, a resin-encapsulated semiconductor as a multi-chip package in which a plurality of semiconductor chips are molded with resin and stored in one package, and each semiconductor chip is connected with bonding wires in the package. A device is employed.
[0005]
This multi-chip package has a great advantage in that the manufacturing and development costs of the chip can be reduced because the chip manufacturing process is simple and the existing IC chip can be used because it is sufficient to manufacture each chip. That is, the multi-chip package is very promising because it can realize downsizing and reduction in the number of components in a semiconductor device at low cost.
[0006]
A general manufacturing method of this type of multichip package will be described with reference to FIGS. 5 (a), 5 (b), and 5 (c). In FIG. 5, (a) is a schematic top view with a semiconductor device installed in the lower mold, (b) is a schematic cross-sectional view along BB in (a), and (c) is a cross-section corresponding to (b). It is a schematic sectional drawing which shows the state which inject | pours the resin 40 by.
[0007]
The semiconductor devices in FIGS. 5A and 5B are those before resin sealing, and the two semiconductor chips 10 and 20 are mounted on the chip mounting portion 51 of the lead frame 50, respectively. The chip 10 and 20 and the lead part 55 of the lead frame 50 are connected by bonding wires 30 and 35 and integrated.
[0008]
In the example shown in FIG. 5, a mold (mold apparatus) 100 is obtained by matching an upper mold 110 and a lower mold 120, and the semiconductor device is disposed in a cavity 130 formed thereby. Is done. A gate 103 for injecting the resin 40 into the cavity 130 is formed at the tip of the runner 102 extending from the pot 101 as a resin reservoir formed in the mold 100.
[0009]
As shown in FIG. 5C, the molten resin 40 in the pot 101 is pushed out of the pot 101 by the plunger 104 and flows through the runner 102, whereby the resin 40 is injected from the gate 103 into the cavity 130. Filled. In this way, after the cavity 130 is filled with the resin 40, the resin 40 is cured, whereby a resin-encapsulated semiconductor device in which the semiconductor device is sealed with the resin 40 is completed.
[0010]
[Problems to be solved by the invention]
However, according to the study by the present inventors, it has been found that the following problems occur in the resin-encapsulated semiconductor device.
[0011]
As a wire bonding method for forming the bonding wire 30 that connects the semiconductor chips 10 and 20, a method of performing a ball bonding method as the first bonding and a wedge bonding method as the second bonding is common.
[0012]
This wire bonding method is shown in FIG. First, as shown in FIG. 6A, in the wire 30 inserted into the capillary 200 in the bonding apparatus, a ball portion (initial ball) 30a is formed on the tip of the portion led out from the tip of the capillary 200 by electric discharge machining. Form.
[0013]
Next, the ball portion 30a is pressed against the pad 11 of the first semiconductor chip 10 which is the first bonding surface, and bonded while applying heat and ultrasonic vibration to perform the first bonding (FIG. 6B). ). After that, as shown by the broken line arrow in FIG. 6C, the wire 30 is fed out from the tip of the capillary 200 and the second bonding surface, which is the second bonding surface, from the bonding portion (first bonding portion) 31 to the pad 11. The semiconductor chip 20 is routed to the pad 21.
[0014]
Next, the wire 30 routed to the pad 21 of the second semiconductor chip 20 is pressed against the pad 21 at the tip surface of the capillary 200 and bonded while applying heat and ultrasonic vibration, and second bonding is performed. This is performed (FIG. 6 (d)).
[0015]
Then, the capillary 200 is moved upward in the order indicated by the arrows in FIG. 6E to disconnect the wire 30 from the second bonding portion 32. At this time, the wire 30 protrudes from the tip of the capillary 200 and remains as a tail portion 30b, and the tail portion 30b is subjected to electric discharge machining again in the same manner as described above to form the ball portion 30a. Thus, one cycle of wire bonding is completed and the next cycle is performed.
[0016]
As shown in FIGS. 5B and 5C, the wire 30 formed as a result of the wire bonding is formed in the vicinity of the first bonding portion 31 on the first semiconductor chip 10 side. The wire 30 rises at an angle close to a right angle, but in the vicinity of 32 in the second bonding portion on the second semiconductor chip 20 side, the wire 30 is in a lying shape and approaches the chip 20.
[0017]
Such a shape of the bonding wire 30 causes the following problems. FIG. 7 is an enlarged view showing the shape of the wire 30 in the vicinity of the second bonding portion 32 in FIG.
[0018]
In the example shown in FIG. 7, on the pad 21 of the second semiconductor chip 20, in order to ensure the bonding life of the second bonding portion and avoid damage (for example, oxide film cracks) below the pad 21, Metal bumps 32a made of gold or the like are formed in advance on the surface of the pad 21, which is the second bonding surface, and second bonding is performed on the metal bumps 32a.
[0019]
Thus, since the bonding wire 30 connecting the chips 10 and 20 does not rise in the vicinity of the second bonding portion 32 and the rising angle θ is small (for example, several tens of degrees), the wire 30 and the chip 20 The gap G2 is small.
[0020]
Here, conventionally, the resin 40 flows as shown in FIG. Therefore, the resin 40 flows as shown by an arrow Y2 in FIG. 7, and the second bonding wire 30 having such a shape causes the second resin 40 to flow as shown by an arrow F2 in FIG. 7. A force that presses the wire portion in the vicinity of the bonding portion 32 toward the chip 20 may be applied, and the wire 30 may come into contact with the edge 20 a of the chip 20.
[0021]
The surface of the chip 20 is covered with an insulating protective film 22, but the edge 20 a of the chip 20 is a part that has been cut by dicing, and when the wire 30 comes into contact with this part, between the wire 20 and the chip 30. There is a high possibility of electrical shorts.
[0022]
In the bonding wire 30 connecting the chips 10 and 20, the wire portion in the vicinity of the first bonding portion rises at an angle close to a right angle as described above, and is sufficiently separated from the chip. The problem on the second bonding side does not occur.
[0023]
As described above, in the resin-encapsulated semiconductor device as a conventional multi-chip package, the inventor of the present invention has a bonding wire that connects chips, the wire portion in the vicinity of the second bonding portion contacts the chip, and the electrical A new problem has been found that short circuits are likely to occur.
[0024]
To solve this problem, it is conceivable to increase the rising angle of the wire in the vicinity of the second bonding portion by controlling the movement of the bonding tool during the second bonding in wire bonding, but the rising angle varies. Large and insufficient in terms of preventing contact with the chip.
[0025]
It is also conceivable to increase the rising angle of the wire on the second bonding side by reducing the thickness of the semiconductor chip on the second bonding side and lowering the position of the second bonding surface. Process is required, which increases costs.
[0026]
The present invention has been made in view of the problems newly found by the inventor as described above, and is formed by sealing a plurality of semiconductor chips connected by bonding wires with a resin. An object of the present invention is to easily prevent a bonding wire portion in the vicinity of a second bonding portion from coming into contact with a semiconductor chip.
[0027]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a plurality of wires connected by bonding wires (30) formed by wire bonding in which a ball bonding method is used as the first bonding and a wedge bonding method is used as the second bonding. The semiconductor chips (10, 20) are placed in the cavity (130) of the mold apparatus and a resin (40) is injected from the gate (103), thereby sealing a plurality of semiconductor chips and bonding wires with the resin. In the resin-encapsulated semiconductor device formed by stopping, the second bonding part (32) of the bonding wire for connecting the semiconductor chip is located farther from the gate injection part (41) in the resin than the first bonding part (31). It is characterized by.
[0028]
As in the present invention, by setting the second bonding portion of the bonding wire for connecting the semiconductor chip to a position farther from the gate injection portion in the resin than the first bonding portion, when filling the resin in the mold apparatus, The bonding wire portion in the vicinity of the second bonding portion can be pushed up in the direction opposite to the chip by the flow of the resin.
[0029]
Therefore, according to the present invention, it is possible to easily prevent the bonding wire portion near the second bonding portion from coming into contact with the semiconductor chip.
[0030]
In the invention according to claim 2, a mold apparatus (100) having a cavity (130) and a gate (103) for injecting resin (40) into the cavity is used, and a plurality of semiconductor chips (10, 20) are used. However, a semiconductor device (S1 ′) connected by a bonding wire (30) formed by wire bonding that performs ball bonding as the first bonding and wedge bonding as the second bonding is installed in the cavity, and the gate In the method of manufacturing a resin-encapsulated semiconductor device in which a resin is sealed into the cavity by sealing the semiconductor device with the resin, the second bonding portion (32) of the bonding wire for connecting the semiconductor chip is provided. The semiconductor is located farther from the gate than the first bonding part (31). The device is installed in a cavity.
[0031]
As in the present invention, the semiconductor device is installed in the cavity so that the second bonding portion of the bonding wire for connecting the semiconductor chip is located farther from the gate than the first bonding portion. Similar to the invention, when the resin is filled in the mold apparatus, the bonding wire portion in the vicinity of the second bonding portion can be pushed up in the direction opposite to the chip by the flow of the resin.
[0032]
Therefore, according to the present invention, it is possible to easily prevent the bonding wire portion near the second bonding portion from coming into contact with the semiconductor chip.
[0033]
In a third aspect of the present invention, a mold apparatus (100) having a cavity (130) and a gate (103) for injecting resin (40) into the cavity is used, and a plurality of semiconductor chips (10, 20) are used. The semiconductor device (S1 ′) formed by bonding with the bonding wire (30) on one side is placed in the cavity, and the semiconductor device is sealed with the resin by injecting resin into the cavity from the gate. In the method of manufacturing a resin-sealed semiconductor device, a gate is provided at a portion facing the other surface side opposite to one surface of the semiconductor chip in a state where the semiconductor device is installed in the cavity as the mold device. It is characterized by using what is.
[0034]
According to this, in a state where the semiconductor chip is installed in the cavity, the resin is filled in the mold apparatus by providing a gate at a portion facing the other surface side opposite to the one surface which is the wire bonding surface in the semiconductor chip. At that time, the resin is sequentially filled from the other surface side of the semiconductor chip to the one surface side,
Because of this resin flow, the bonding wire portion in the vicinity of the second bonding portion is pushed up in the direction opposite to the chip. Therefore, according to the present invention, it is possible to easily prevent the bonding wire portion near the second bonding portion from coming into contact with the semiconductor chip.
[0035]
In addition, the code | symbol in the bracket | parenthesis of each said means is an example which shows a corresponding relationship with the specific means as described in embodiment mentioned later.
[0036]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments shown in the drawings will be described below. In the following embodiments, the same parts are denoted by the same reference numerals in the drawings.
[0037]
(First embodiment)
FIG. 1 is a diagram showing a schematic cross-sectional configuration of a resin-encapsulated semiconductor device S1 according to the first embodiment of the present invention.
[0038]
In general, this includes a plurality of (two in the illustrated example) semiconductor chips 10, 20, bonding wires 30 connecting these semiconductor chips 10, 20, and these semiconductor chips 10, 20 and bonding wires 30. It consists of resin 40 which seals.
[0039]
The semiconductor chips 10 and 20 are, for example, IC chips having different functions. In this example, the semiconductor chips 10 and 20 are rectangular silicon chips having the same thickness (for example, 0.4 mm). Each of these semiconductor chips 10 and 20 is mounted on a die bed 51, which is a chip mounting portion of the lead frame 50, and is fixed via a die bond material (not shown) such as a conductive adhesive.
[0040]
An inter-chip wire 30 as a bonding wire for connecting the semiconductor chips 10 and 20 is a first bonding side in which the right semiconductor chip 10 in FIG. 1 is the first bonding side and the left semiconductor chip 20 side is the second bonding side. It is formed by wire bonding in which bonding is performed by a ball bonding method and second bonding is performed by a wedge bonding method.
[0041]
Here, the first bonded chip 10 positioned on the right side in FIG. 1 is referred to as a first semiconductor chip 10, and the second bonded chip 20 positioned on the left side is referred to as a second semiconductor chip 20. Note that the number of semiconductor chips is not two, but may be three or more.
[0042]
That is, the inter-chip wire 30 is formed by the wire bonding method shown in FIG. 1 shows a connection part 31 between the inter-chip wire 30 and the first semiconductor chip 10, that is, the first bonding part 31, and a connection part 32 between the inter-chip wire 30 and the second semiconductor chip 20, ie, the first Two bonding parts 32 are shown.
[0043]
Here, FIG. 2 is an enlarged view showing the shape of the inter-chip wire 30 in the vicinity of the second bonding portion 32 in FIG.
[0044]
In the example shown in FIG. 2, a metal bump 32a made of gold or the like is formed in advance on the surface of the pad 21 as the second bonding surface on the pad 21 of the second semiconductor chip 20, and the metal bump 32a is formed on the metal bump 32a. Second bonding is performed. A protective film 22 made of a silicon nitride film or the like is formed on the surface of the second semiconductor chip 20.
[0045]
The metal bump 32a is formed in order to ensure the bonding life of the second bonding portion 32 and to avoid damage (for example, an oxide film crack) under the pad 21, and can be made by a ball bond method. The thickness t can be set to about 10 to 30 μm, for example. The metal bump 32a may not be provided.
[0046]
As shown in FIG. 1, the first and second semiconductor chips 10 and 20 are also connected to the lead portions 55 of the lead frame 50 by bonding wires 35. The inter-chip wires 30 and the bonding wires 35 are formed using wires such as gold and aluminum.
[0047]
Next, the resin 40 encapsulating the semiconductor chips 10 and 20 and the wires 30 and 35 is made of a normal molding resin material such as an epoxy resin. The resin 40 also seals a part of the die bed 51 and the lead portion 55 of the lead frame 50.
[0048]
Here, in the lead portion 55 of the lead frame 50, the portion sealed with the resin 40 is the inner lead, and the portion protruding from the resin 40 is the outer lead, and the outer lead is connected to the external substrate. Such a lead frame 50 is formed using a known lead frame material such as copper, and in this example, the lead frame 50 can have a thickness of about 0.2 mm.
[0049]
The resin 40 is filled with a plurality of semiconductor chips 10 and 20 and lead frames 50 connected by bonding wires 30 and 35 in a cavity of the mold apparatus, and molten resin is injected and filled from the gate. It is formed by curing.
[0050]
In such a resin 40, the portion corresponding to the injection portion of the gate is a portion that is folded and divided when taken out from the mold apparatus, and the portion is visually confirmed as a gate injection portion 41 in appearance. Can be identified.
[0051]
In the present embodiment, the gate injection portion 41 in the resin 40 is located at the right end of the resin 40 in FIG. That is, the second bonding part 32 of the inter-chip wire 30 is located farther from the gate injection part 41 than the first bonding part 31.
[0052]
This means that the resin 40 flows and fills from the right side to the left side in FIG. 1 when the resin is injected and filled in the mold apparatus for resin molding. That is, regarding the inter-chip wire 30, the resin 40 flows from the first bonding part 31 side located on the right side in FIG. 1 to the second bonding part 32 side located on the left side in FIG. means.
[0053]
The flow of the resin 40 will be described more specifically in the method for manufacturing the semiconductor device S1 of the present embodiment described below. FIG. 3 is an explanatory view illustrating a resin sealing step in the method for manufacturing the resin-encapsulated semiconductor device S1 according to the present embodiment.
[0054]
3A is a plan view showing a state in which the semiconductor device S1 ′ before resin sealing is installed on the lower mold 120 of the mold 100 as a mold apparatus, and FIG. 3B is an upper mold 110 of the mold 100. The figure which shows the state which closed the lower mold | type 120 in the AA schematic cross section in (a), (c) is a figure which shows the state which filled the resin 40 to the middle of the cavity 130 in (b).
[0055]
[Mold configuration]
First, the configuration of the mold 100 will be described with reference to FIG. In this mold 100, upper and lower molds 110 and 120 are formed by cutting or the like, and the upper and lower molds 110 and 120 can be matched to form a cavity 130 therein.
[0056]
In the mold 100, like the general transfer mold, the resin 40 injected from the pot 101 and softened is pressurized and injected into the cavity 130 through the runner 102 and the gate 103.
[0057]
Here, in the mold 100 shown in FIG. 3, the gate 103 is positioned at the right end corner portion of the rectangular cavity 130 and faces the surface opposite to the wire bonding surface of the semiconductor chips 10 and 20. The mold 120 is provided. For example, the gate 103 can have an opening width W of 0.5 mm and an opening depth L of about 0.2 mm.
[0058]
[Method of manufacturing resin-encapsulated semiconductor device]
Next, a method for manufacturing the resin-encapsulated semiconductor device S1 of this embodiment will be described. First, the semiconductor chips 10 and 20 are mounted on the die bed 51 of the lead frame 50, and wire bonding is performed by the above-described method, so that the lead portions of the chips 10 and 20 and the lead frame 50 are connected to each other. 55 is connected. Thereby, the semiconductor device S1 ′ before resin sealing is formed.
[0059]
Next, as shown in FIG. 3A, the semiconductor device S <b> 1 ′ is installed in the cavity 130 of the lower mold 120. At this time, the semiconductor device S <b> 1 ′ is installed in the cavity 130 so that the second bonding portion 32 of the inter-chip wire 30 is farther from the gate 103 than the first bonding portion 31.
[0060]
A suspension lead 53 is connected to the die bed 51 of the semiconductor device S1 ′, and the suspension lead 53 and the lead portion 55 in the lead frame 50 are integrally connected by a frame portion of a lead frame (not shown). Next, as shown in FIG. 3B, the lower mold 120 and the upper mold 110 are matched and closed.
[0061]
Then, as shown in FIG. 3C, a resin sealing step is performed. By providing a heater or the like on the outer periphery of the mold 100, the mold 100 is heated to a temperature higher than the melting temperature of the resin 40. Examples of the resin 40 to be used include an epoxy resin having a cresol-novolak skeleton and an epoxy resin having a biphenyl skeleton.
[0062]
Next, as shown in FIG. 3C, the resin 40 in a molten state is pressurized from the pot 101 using the plunger 104, so that the resin 40 is moved from the runner 102 to the cavity 130 via the gate 103. Fill and fill.
[0063]
Further, pressurization is continued and the entire cavity 130 is filled with the molten resin 40, and then the resin 50 is cured. Thereafter, the semiconductor device is taken out from the mold 100, and the resin-encapsulated semiconductor device S1 shown in FIG. 1 is manufactured by dividing the frame portion of the lead frame and forming the outer lead.
[0064]
By the way, in this embodiment, as described above, in FIG. 1, the second bonding portion 32 of the inter-chip wire 30 is located farther from the gate injection portion 41 than the first bonding portion 31.
[0065]
This means that in the above manufacturing method, the semiconductor device S1 ′ is installed in the cavity 130 so that the second bonding part 32 of the inter-chip wire 30 is farther from the gate 103 than the first bonding part 31. Same thing.
[0066]
Therefore, in the manufacturing method described above, in the step of injecting and filling the resin shown in FIG. 3C, as shown by the arrows in the cavity 130 in FIG. Resin 40 flows and fills from the first bonding portion 31 side to the second bonding portion 32 side.
[0067]
In detail, as shown in FIG. 2, a force F1 that pushes in the direction opposite to the second semiconductor chip 20 acts on the portion of the inter-chip wire 30 in the vicinity of the second bonding portion 32 by the flow Y1 of the resin 40. .
[0068]
Therefore, even if the inter-chip wire 30 does not rise in the vicinity of the second bonding portion 32, the rising angle θ is small (for example, tens of degrees), and the gap G1 between the wire 30 and the chip 20 is small. The flowing resin 40 prevents the wire 20 from coming into contact with the edge 20 a of the chip 20.
[0069]
As described above, according to the present embodiment, when the semiconductor device S1 ′ is installed in the mold apparatus 100, it is possible to simply install the semiconductor device S1 ′ in consideration of the direction of the inter-chip wire 30 in the vicinity of the second bonding portion. It is possible to easily prevent the bonding wire portion from contacting the semiconductor chip. And the short circuit etc. with the wire 30 between chips | tips and the chip | tip 20 can be prevented.
[0070]
Further, as shown in FIG. 3C, the die bed 51 is also divided between the first and second semiconductor chips 10 and 20, and a gap exists between both the chips 10 and 20. Therefore, when the resin 40 is injected, the resin 40 flows from one surface of the second semiconductor chip 20 to the other surface, or from the other surface to the one surface through the gap, as indicated by an arrow shown in FIG.
[0071]
The action of pushing up the portion of the inter-chip wire 30 in the vicinity of the second bonding portion 32 by the flow of the resin 40 through such a gap works more effectively. Specifically, among the arrows in FIG. 3C, the flow of the resin 40 that flows from the other surface of the second semiconductor chip 20 to the entire surface through the gap promotes its action.
[0072]
(Second Embodiment)
FIG. 4 is a schematic cross-sectional view for explaining a resin sealing step in the method for manufacturing a resin sealed semiconductor device according to the second embodiment of the present invention. The differences from the first embodiment will be mainly described.
[0073]
In the present embodiment, the mold 100 is formed on the surface of the lower mold 120 that faces one surface of the semiconductor chips 10 and 20, that is, the other surface opposite to the wire bonding surface, in a state where the semiconductor device S 1 ′ is installed in the cavity 130. A device provided with a gate 103 is used.
[0074]
Further, in the semiconductor device S1 ′ installed in the cavity 130, the second semiconductor chip 20 (left side in FIG. 4) is on the first bonding side and the first semiconductor chip 10 (on the left side in FIG. 4), contrary to the first embodiment. The right side in FIG. 4 is the second bonding side, and the positions of the first and second bonding portions 31 and 32 of the inter-chip wire 30 are opposite to those in the first embodiment.
[0075]
In such a position of the gate 103, as shown in FIG. 4, when the resin 40 is filled in the mold 100, the resin 40 is filled in order from the other surface side of the semiconductor chips 10 and 20 to the one surface side. It will be done. Due to such a flow of the resin 40, the entire inter-chip wire 30 is pushed up in a direction opposite to the semiconductor chips 10 and 20 (a direction away from the chip) as indicated by a white arrow in FIG.
[0076]
Therefore, in this embodiment, the portion of the inter-chip wire 30 near the first bonding portion 31 and the portion of the inter-chip wire 30 near the second bonding portion 32 are pushed up in the direction opposite to the second semiconductor chip 20. . Therefore, the manufacturing method of this embodiment can also easily prevent the bonding wire portion near the second bonding portion from coming into contact with the semiconductor chip.
[0077]
Here, in the present embodiment, in the semiconductor device S1 ′ installed in the cavity 130, the first semiconductor chip 10 side is the first bonding side, and the second semiconductor chip 20 side is the second, as in the first embodiment. Of course, it may be on the bonding side.
[0078]
Further, in the present embodiment, the resin 40 is not limited to the example illustrated in FIG. 4, but the resin 40 is transferred from the other surface side of the semiconductor chips 10 and 20 to the one surface side as the mold 100 in a state where the semiconductor device S1 ′ is installed in the cavity 130. A gate provided with a gate 103 at a position where the flow is directed may be used.
[0079]
For example, in the positional relationship of the semiconductor device S1 ′, the upper mold 110, and the lower mold 120 shown in FIG. It may be in the center of the surface. Also, the number of gates may be plural.
[0080]
Furthermore, when the semiconductor device S1 ′ is installed so as to be upside down with respect to FIG. 4, the surface facing the other surface of the semiconductor chips 10 and 20 is located in the upper mold 110. If the upper mold 110 is provided with a gate, the manufacturing method of this embodiment can be realized.
[0081]
In the present embodiment, since the resin 40 flows so as to push up the entire inter-chip wire 30 in the loop protruding direction from the surface opposite to the wire bonding surface in the semiconductor chips 10 and 20, the inter-chip wire 30 is The first and second bonding can be applied even when both are performed by the wedge bonding method.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a resin-encapsulated semiconductor device according to a first embodiment of the present invention.
2 is an enlarged view showing the shape of an inter-chip wire in the vicinity of a second bonding portion in FIG.
3 is a diagram showing a manufacturing process of the resin-encapsulated semiconductor device shown in FIG. 1;
FIG. 4 is a schematic cross-sectional view illustrating a resin sealing step in a method for manufacturing a resin sealed semiconductor device according to a second embodiment of the present invention.
FIG. 5 is a diagram showing a conventional method for manufacturing a general resin-encapsulated semiconductor device.
FIG. 6 is a diagram showing a wire bonding method between semiconductor chips.
7 is an enlarged view showing a wire shape in the vicinity of a second bonding portion in FIG.
[Explanation of symbols]
10 ... 1st semiconductor chip, 20 ... 2nd semiconductor chip,
30 ... Wire between chips, 31 ... First bonding part,
32 ... 2nd bonding part, 40 ... Resin, 41 ... Gate injection | pouring part,
100 ... Mold, 103 ... Gate, 130 ... Cavity,
S1 ′: Semiconductor device before resin sealing.

Claims (3)

第1ボンディングとしてボールボンディング法、第2ボンディングとしてウェッジボンディング法を行うワイヤボンディングによって形成されたボンディングワイヤ(30)によって結線された複数個の半導体チップ(10、20)を、型装置のキャビティ(130)内に設置してゲート(103)から樹脂(40)を注入することにより、前記複数個の半導体チップおよび前記ボンディングワイヤを前記樹脂にて封止してなる樹脂封止型半導体装置において、前記半導体チップを結線する前記ボンディングワイヤの第2ボンディング部(32)が第1ボンディング部(31)よりも前記樹脂におけるゲート注入部(41)から遠い位置となっていることを特徴とする樹脂封止型半導体装置。A plurality of semiconductor chips (10, 20) connected by bonding wires (30) formed by wire bonding in which ball bonding is used as the first bonding and wedge bonding is used as the second bonding, are formed into cavities (130 In the resin-encapsulated semiconductor device in which the plurality of semiconductor chips and the bonding wires are sealed with the resin by injecting the resin (40) from the gate (103) after being installed in Resin sealing characterized in that the second bonding part (32) of the bonding wire for connecting the semiconductor chip is located farther from the gate injection part (41) in the resin than the first bonding part (31). Type semiconductor device. キャビティ(130)とこのキャビティ内に樹脂(40)を注入するゲート(103)とを有する型装置(100)を用い、
複数個の半導体チップ(10、20)が、第1ボンディングとしてボールボンディング法、第2ボンディングとしてウェッジボンディング法を行うワイヤボンディングによって形成されたボンディングワイヤ(30)によって結線されてなる半導体装置(S1’)を、前記キャビティ内に設置し、
前記ゲートから前記キャビティ内に前記樹脂を注入することにより、前記樹脂にて前記半導体装置を封止するようにした樹脂封止型半導体装置の製造方法において、
前記半導体チップを結線する前記ボンディングワイヤの第2ボンディング部(32)が第1ボンディング部(31)よりも前記ゲートから遠い位置となるように、前記半導体装置を前記キャビティ内に設置することを特徴とする樹脂封止型半導体装置の製造方法。
Using a mold apparatus (100) having a cavity (130) and a gate (103) for injecting resin (40) into the cavity,
A semiconductor device (S1 ′) in which a plurality of semiconductor chips (10, 20) are connected by bonding wires (30) formed by wire bonding in which ball bonding is used as first bonding and wedge bonding is used as second bonding. ) In the cavity,
In the method of manufacturing a resin-encapsulated semiconductor device in which the semiconductor device is sealed with the resin by injecting the resin into the cavity from the gate.
The semiconductor device is installed in the cavity so that the second bonding part (32) of the bonding wire for connecting the semiconductor chip is located farther from the gate than the first bonding part (31). A method for manufacturing a resin-encapsulated semiconductor device.
キャビティ(130)とこのキャビティ内に樹脂(40)を注入するゲート(103)とを有する型装置(100)を用い、
複数個の半導体チップ(10、20)がその一面側においてボンディングワイヤ(30)によって結線されてなる半導体装置(S1’)を、前記キャビティ内に設置し、
前記ゲートから前記キャビティ内に前記樹脂を注入することにより、前記樹脂にて前記半導体装置を封止するようにした樹脂封止型半導体装置の製造方法において、
前記型装置として、前記キャビティ内に前記半導体装置を設置した状態において前記半導体チップの前記一面とは反対の他面側に面する部位に、前記ゲートが設けられているものを用いることを特徴とする樹脂封止型半導体装置の製造方法。
Using a mold apparatus (100) having a cavity (130) and a gate (103) for injecting resin (40) into the cavity,
A semiconductor device (S1 ′) in which a plurality of semiconductor chips (10, 20) are connected by bonding wires (30) on one side thereof is installed in the cavity,
In the method of manufacturing a resin-encapsulated semiconductor device in which the semiconductor device is sealed with the resin by injecting the resin into the cavity from the gate.
The mold device is characterized in that the gate is provided in a portion facing the other surface opposite to the one surface of the semiconductor chip in a state where the semiconductor device is installed in the cavity. A method for manufacturing a resin-encapsulated semiconductor device.
JP2002245163A 2002-08-26 2002-08-26 Resin-sealed type semiconductor device and its manufacturing method Pending JP2004087672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002245163A JP2004087672A (en) 2002-08-26 2002-08-26 Resin-sealed type semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002245163A JP2004087672A (en) 2002-08-26 2002-08-26 Resin-sealed type semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004087672A true JP2004087672A (en) 2004-03-18

Family

ID=32053440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002245163A Pending JP2004087672A (en) 2002-08-26 2002-08-26 Resin-sealed type semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004087672A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120914A (en) * 2011-12-09 2013-06-17 Semiconductor Components Industries Llc Manufacturing method of circuit device
JP2013232544A (en) * 2012-04-27 2013-11-14 Lapis Semiconductor Co Ltd Resin sealing method and manufacturing method of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120914A (en) * 2011-12-09 2013-06-17 Semiconductor Components Industries Llc Manufacturing method of circuit device
JP2013232544A (en) * 2012-04-27 2013-11-14 Lapis Semiconductor Co Ltd Resin sealing method and manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
US7781262B2 (en) Method for producing semiconductor device and semiconductor device
KR100850147B1 (en) Semiconductor device and mold for resin-molding semiconductor device
US7410834B2 (en) Method of manufacturing a semiconductor device
JP2556294B2 (en) Resin-sealed semiconductor device
JP2000323623A (en) Semiconductor device
KR101928681B1 (en) Power semiconductor device and method for manufacturing same
US20090115038A1 (en) Semiconductor Packages and Methods of Fabricating the Same
US20020027266A1 (en) Semiconductor device and a method of manufacturing the same
CN108604578A (en) Power semiconductor device and its manufacturing method
JP4463146B2 (en) Manufacturing method of semiconductor device
JP2002329815A (en) Semiconductor device, its manufacturing method and its production device
KR100591718B1 (en) Resin-sealed semiconductor device
US8013437B1 (en) Package with heat transfer
JP4732138B2 (en) Semiconductor device and manufacturing method thereof
JP2004087672A (en) Resin-sealed type semiconductor device and its manufacturing method
JP2004087673A (en) Resin-sealed type semiconductor device
US20090051017A1 (en) Lead Frame with Non-Conductive Connective Bar
CN112838014A (en) Method for manufacturing lead frame after resin molding, method for manufacturing resin molded article, and lead frame
JP2555931B2 (en) Method for manufacturing semiconductor device
JPH06209071A (en) Resin sealed type semiconductor device and its manufacture
US20080038872A1 (en) Method of manufacturing semiconductor device
JPH07273246A (en) Semiconductor device and its manufacture
JP2008166395A (en) Manufacturing method of semiconductor device
JP4002235B2 (en) Resin-sealed semiconductor device
JP4294462B2 (en) Manufacturing method of resin-encapsulated semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061031