JP2004087581A - Insulator and plasma processing apparatus equipped with it - Google Patents

Insulator and plasma processing apparatus equipped with it Download PDF

Info

Publication number
JP2004087581A
JP2004087581A JP2002243422A JP2002243422A JP2004087581A JP 2004087581 A JP2004087581 A JP 2004087581A JP 2002243422 A JP2002243422 A JP 2002243422A JP 2002243422 A JP2002243422 A JP 2002243422A JP 2004087581 A JP2004087581 A JP 2004087581A
Authority
JP
Japan
Prior art keywords
insulator
electrode
members
inner member
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002243422A
Other languages
Japanese (ja)
Inventor
Eishiro Sasagawa
笹川 英四郎
Moichi Ueno
上野 茂一
Eiichiro Otsubo
大坪 栄一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002243422A priority Critical patent/JP2004087581A/en
Publication of JP2004087581A publication Critical patent/JP2004087581A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulator that surely secures an insulating state by preventing the grounding fault of an electrode which generates a plasma and, at the same time, has a small size and secure the strength that can cope with the manufacturing of a large-area substrate, and to provide a plasma processing apparatus provided with the insulator. <P>SOLUTION: Insulators 40 and 50 used for supporting electrodes composed of conductors, feeding electricity to the electrodes, supplying a film forming gas to an electrode used as a gas supply electrode, or the like, are constituted to have inside members 41 and 51 directly connected to the conductors (13a) of electrodes etc., and composed of an insulating material, outside members 42 and 52 which are arranged separately from the inside members 41 and 51 so as to cover the outer peripheral sections of the members 41 and 51, and holding members 43 and 53 which are arranged between the inside members 41 and 51 and outside members 42 and 52 to hold the positional relations between the members 41 and 52 and 42 and 52. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、導電体と該導電体に接続される要素との絶縁状態を得る絶縁碍子及びこれを具備するシリコン太陽電池等の半導体を製造する際に用いられるプラズマCVD装置やドライエッチング装置等のプラズマ処理装置に関する。
【0002】
【従来の技術】
従来より、シリコン太陽電池等の半導体を製造する際に、その製膜を施す装置としてプラズマを用いたプラズマCVD装置が知られており、また、製膜が施された基板面をプラズマでエッチングするドライエッチング装置が一般に知られている。これらプラズマを用いたプラズマ処理装置の一構成例として、図8のプラズマCVD装置10について説明する。
【0003】
図に示されるプラズマCVD装置10(プラズマ処理装置)に備わる製膜室12(処理室)は、真空チャンバ11の略中央に、両側面にラダー電極13(電極)が設けられた製膜ユニット14を有しており、この製膜ユニット14の両側面側に、ヒータカバー15を介して基板加熱ヒータ16が設けられている。そして、ラダー電極13に面してヒータカバー15上には基板Kが配置され、基板に対する製膜処理がなされることとなる。
【0004】
また、図9に示すように、ラダー電極13は一対の給電棒13aと、これら給電棒13aを電気的につなぐ複数の平行な縦グリッド13bとを有して構成されている。
給電棒13aには、それぞれ複数箇所に高周波用ケーブル18(RFケーブルとも言う。)が接続される給電部13c設けられており、これら給電部13cから給電棒13aに高周波電力が給電されるようになっている。
【0005】
そして、この製膜室12では、真空チャンバ11内が減圧された真空状態にてSiHからなる原料ガスを含む処理原料ガスである製膜用ガスが送りこまれ、ラダー電極13に高周波電力が供給されると、ラダー電極13と防着板17との間にプラズマが発生し、基板加熱ヒータ16によって加熱された基板Kに製膜が施されるようになっている。
【0006】
さて、このように構成されたプラズマCVD装置10などのプラズマ処理装置において、プラズマを発生させるためのラダー電極13は、高周波電力を供給する高周波用ケーブル18に接続され、且つ絶縁された状態に支持されて製膜室12内に備えられている。したがって、ラダー電極13を絶縁状態で支持するための絶縁碍子が一般に用いられている。このような絶縁碍子をセラミックス製の支持部材として備えた構成については既に開示されている(例えば、特許文献1参照。)。
【0007】
しかしながら、ラダー電極13を支持する絶縁碍子に、製膜処理を繰り返すことで厚い膜が堆積したり、製膜処理における導電率の高い膜、特にアモルファスシリコンの膜におけるP(リン)をドーピングしたn型膜などが付着し堆積したりすると、短期間のうちに該絶縁碍子の絶縁抵抗が低下してラダー電極13が地絡する可能性が高い。そして、地絡の影響によってはラダー電極13からのプラズマの発生に異常を来しかねず、製膜処理が不安定となって膜厚分布が不均一となる問題が生じる。
【0008】
このような問題を解決すべく、上記絶縁碍子を二重管構造として膜切りを行う絶縁碍子が既に示されている(例えば、特許文献2参照。)。
また、ラダー電極13を支持する部分に限らず、ラダー電極13に高周波電力を供給する高周波用ケーブル18とラダー電極13との接続部である給電部13cに環状の溝部を形成し、付着物の膜切りを行う構成が示されている(同、特許文献2参照。)。
さらに、製膜用ガスを供給しつつプラズマ発生の電極として機能するガスパイプ電極(ガス供給電極)においても、該ガスパイプ電極と製膜用ガスの供給ラインとの接続部における付着物の膜切りを行う二重管構造の接続管の構造が示されている(例えば、特許文献3参照。)。
【0009】
【特許文献1】
特願2001−043773号公報(第34−37段落、第9−11図)
【特許文献2】
特開2000−208297号公報(第16−18段落、第4図、及び、第12−15段落、第2図)
【特許文献3】
特開2001−120985号公報(第23−25段落、第6図)
【0010】
【発明が解決しようとする課題】
しかしながら、近年では一辺が1mを超えるような大面積基板の製造に対応して大型のラダー電極が備えられることが少なくなく、このようなラダー電極を支持するにあたり、この支持強度を確保したセラミックス等の絶縁体からなる絶縁碍子の製作が困難となっている。すなわち、従来の一体構造とされた二重管構造の絶縁碍子では、この複雑な構造であるために製作が困難であり、製作コストの上昇を招いていた。また、重量増となったラダー電極を支持するための強度を得るための形状及び大きさが複雑な形状によって余計に拡大してしまい、基板に対する装置の大型化が招かれていた。
【0011】
本発明は上記事情に鑑みて成されたものであり、プラズマを発生させる電極等を含む導電体の地絡を断って確実な絶縁状態を確保して安定した動作を得るとともに、小型でありつつ大面積基板の製造に対応しうる強度を確保した絶縁碍子及びこれを具備するプラズマ処理装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は、上記課題を解決するため、以下の手段を採用する。
請求項1に記載の発明は、絶縁により導電体の地絡を防止しつつ接続される絶縁碍子において、前記導電体と直に接続される絶縁体からなる内側部材と、該内側部材の外周部を覆うように離間配置された外側部材と、該内側部材と該外側部材との間に配置されるとともにこれら両部材と接することによって位置関係を保持する保持部材とが備えられてなることを特徴としている。
【0013】
このような構成により、本発明に係る絶縁碍子が導電体と接続された状態でこの表面に導電率の高い物質が付着し堆積しても、内側部材の外周部が外側部材に覆われることで、上記の付着物が絶縁碍子の表面全てに付着することはない。すなわち、付着物の膜が外側部材と内側部材との隙間部分で部分的に途切れた膜切りがなされることにより、絶縁碍子の両側における電位差が保たれた絶縁状態が確保される。そして、上記のような膜切り構造を有する絶縁碍子は、簡略された形状を有する各部材の組み合わせによって構成されることになるため、強度の確保や製作が容易である。
【0014】
内側部材と外側部材とが先に説明した付着物によって接すると、絶縁抵抗は低下することになるが、保持部材によって内側部材と外側部材との隙間が常に均一に維持されるので、これら両部材が付着物によって接することはない。また、保持部材の厚みによって両部材間の隙間寸法が規定されることになるので、これら両部材の離間距離をごく僅かな寸法に導くことも容易である。そして、隙間寸法が小さくなることによれば、付着物の侵入経路がより狭められることになり、付着物の侵入が抑制されて膜切り効果がさらに高められることになる。
【0015】
なお、導電体と内側部材との接続とは、多少の隙間を有して嵌め込むような簡略的な接続方法などを含んで言うものである。また、外側部材及び保持部材の材質については、必ずしも絶縁体である必要はないが、設置される環境に応じて材料を選定する必要がある。また、保持部材にまで付着物が達しないように該保持部材を外側部材の軸方向における全長の中央部付近に位置させることが望ましい。このことは、内側部材に対して外側部材がバランス良く固定されることにもなる。
【0016】
請求項2に記載の発明は、請求項1記載の絶縁碍子において、前記保持部材が接する前記外側部材及び前記内側部材のいずれかの壁面には、該保持部材を当て支えとめる拘束部が設けられてなることを特徴としている。
【0017】
このような構成によれば、保持部材が拘束部に引っ掛かった状態で配置されることになり、保持部材の位置が、絶縁碍子の設置方向、入熱による変形、振動等に影響されることなく定位置にとどまる。これによって、内側部材と外側部材との位置関係が常に一定に保たれ、内側部材と外側部材とがずれて不意に接するなどの問題がなくなる。
なお、拘束部は、例えば、保持部材が嵌め込まれる凹所であってもよいし、保持部材を支える凸部であってもよく、このような拘束部が形成される壁面は、保持部材が接する外側部材の内周部、あるいは、内側部材の外周部、あるいはその両方のいずれであってもよい。
【0018】
請求項3に記載の発明は、請求項1又は請求項2に記載の絶縁碍子において、前記保持部材が、前記内側部材の外周部を取り囲む螺旋構造体であることを特徴としている。
【0019】
このような構成により、内側部材の外周部に螺旋状に巻かれた、例えばスプリングのような螺旋構造体を介して内側部材と外側部材とが固定され、固定された場合での互いのがたつきが抑制される。また、請求項2に記載の拘束部に螺旋構造体が配置されることによれば、外側部材と内側部材との位置決めがより正確に規定されて互いの部材が固定されることとなる。
【0020】
請求項4に記載の発明は、請求項1又は請求項2に記載の絶縁碍子において、前記保持部材が、板バネであることを特徴としている。
【0021】
このような構成により、板バネの弾性力によって外側部材が内側部材の定位置に固定されることとなり、互いのがたつきがより確実に除去されて強固に固定された絶縁碍子が構成される。また、内側部材と外側部材とに入熱による変形に差が生じる場合であっても、この変形差を板バネが吸収することが可能となる。
また、請求項2に記載の拘束部に板バネを配置することによれば、外側部材と内側部材との位置決めがより正確に規定されて互いの部材が固定されることとなる。
【0022】
請求項5に記載の発明は、請求項1から請求項4のいずれか1項に記載の絶縁碍子において、前記内側部材の内部には流体を導通させる流路が備えられてなることを特徴としている。
【0023】
流体を導電体に供給するため、該導電体と接続される流体供給元の絶縁されるべき要素は、内側部材と外側部材とが保持部材により離間配置された膜切り構造を有する絶縁碍子によって、導電体とあらゆる環境下で絶縁されることになる。
【0024】
請求項6に記載の発明は、請求項1から請求項4のいずれか1項に記載の絶縁碍子において、前記内側部材が、芯線を有する高周波用ケーブルの先端に冠着されるとともに軸方向に芯線用の貫通孔を備えてなることを特徴としている。
【0025】
このような構成により、芯線を主として導電体に接続される高周波用ケーブルに冠着された内側部材は、保持部材による隙間を有してこの外周部に外側部材が備えられることになり、本発明の絶縁碍子を含んで導電体と高周波ケーブルとに導電率の高い付着物が堆積しても、導電体と高周波用ケーブルの表面との絶縁状態が確実に確保される。このことは、高周波用ケーブルの表面に備わる絶縁体に不具合があるために地絡しかねない状態であっても、この絶縁碍子によって地絡が回避されることを言うものである。
【0026】
請求項7に記載の発明は、高周波用ケーブルに接続された電極を処理室内に備えるプラズマ処理装置において、前記電極が、請求項1から請求項4のいずれか1項記載の絶縁碍子に支持されてなることを特徴としている。
【0027】
このようなプラズマ処理装置によれば、支持用の絶縁碍子に導電率の高い付着物が堆積しても、電極を支持するための母体と該電極との絶縁が確実になされ、電極におけるプラズマの発生が均一化される。また、付着膜の影響を少なくし導電距離を大きくするために、電極を支持する絶縁碍子を大型化する必要がなく、即ち小型化することも可能とされているので、比較的大型な電極であっても高い剛性を確保しつつ省スペースで支持がなされることとなる。
なお、プラズマ処理装置は、基板等に製膜を施すプラズマCVD装置や、基板や膜等にエッチングを施すドライエッチング装置などのプラズマ発生用の電極を有する装置を指して言うものである。
【0028】
請求項8に記載の発明は、高周波用ケーブルに接続されて処理室内にプラズマを発生させるとともに、該処理室内に設置された基板に対する製膜用ガスを供給するガス供給電極を有するプラズマ処理装置において、前記ガス供給電極と前記製膜用ガスの供給ラインとは、請求項5に記載の絶縁碍子を介して接続されてなることを特徴としている。
【0029】
このようなプラズマ処理装置により、高周波用ケーブルから供給された高周波電力により帯電したガス供給電極は、自らがプラズマを発生しつつ製膜用ガスの送出を行って基板に対する製膜処理を行うことになるが、この際、絶縁碍子の膜切り構造によって製膜用ガスの供給ラインとガス供給電極との絶縁状態が確実に保たれて製膜処理がなされることとなる。したがって、ガス供給電極における地絡が回避されてプラズマの発生が均一化される。
【0030】
請求項9に記載の発明は、高周波用ケーブルに接続された電極を有するプラズマ処理装置において、前記高周波用ケーブルと前記電極とは、請求項6に記載の絶縁碍子を介して接続されてなることを特徴としている。
【0031】
このようなプラズマ処理装置により、電極に高周波電力を供給する高周波用ケーブルの絶縁部分(一般に外周部を指す。)と電極側との絶縁が、導電率の高い付着物の堆積に拘わらず確実になされ、電極の地絡がより確実に回避される。これにより、電極におけるプラズマの発生が均一化される。
【0032】
【発明の実施の形態】
次に、本発明の各実施形態について、図面を参照して説明する。
[第1の実施形態]
図1は製膜ユニット14の構造及び構成を説明する分解斜視図である。
製膜ユニット14は、土台となるベース上に載置された製膜ユニット支持台31を有しており、この製膜ユニット支持台31上に各構成部品が支持された構造とされている。
【0033】
製膜ユニット支持台31には、その中央に、支持突条31aが長手方向へわたって形成されており、この支持突条31aの上部に温度制御ヒータ/クーラー(図示せず)が支持されている。そして、この温度制御ヒータ/クーラーは、上面板32、側面板33及び端面板34によって囲われている。
温度制御ヒータ/クーラーの両側面には、端面板34,防着板17、ラダー電極13及び基板保持板21が順に配設されており、このうちラダー電極13の支持構造について以下に説明する。
【0034】
導電体であるラダー電極13は、ガス吹出し一体型のガス供給電極をなすものであり、上下に配置された一対のパイプ形状の給電棒13aの間に、パイプ形状の複数の縦グリット13bが隙間をあけて設けられた構造とされている。
そして、ラダー電極13の上端部は、図2(a)に示すように、排気カバー35に設けられた電極上端支持碍子40(絶縁碍子)によって支持されている。
【0035】
この電極上端支持碍子40は、排気カバー35に形成された孔部にその上方から挿入されたセラミックス製の内側部材41と、この内側部材41の外周部を覆うように離間配置された筒状の外側部材42と、これらの間に位置する螺旋構造体(保持部材)(図3の符号43,53を参照。)を有して構成されている。
そして、この内側部材41の先端部(紙面において下端側)には、湾曲状に形成された凹所44が形成されており、この凹所44にラダー電極13の上方側の給電棒13aが直に接して保持されるようになっている。
【0036】
なお、内側部材41の後端部(紙面において上端側)近傍には、排気カバー35の孔部よりも大きな外径のリング部材(図示せず)が取り付けられており、内側碍子41を含む電極上端支持碍子40が排気カバー35から脱落することが防止されている。
【0037】
また、図1に示した製膜ユニット支持台31には、図2(b)に示すように、この上面における両側部近傍に配置された電極下端支持碍子50(絶縁碍子)が設けられており、先に説明したラダー電極13の支持に加えて、該ラダー電極13の下側における支持がなされている。
【0038】
この電極下端支持碍子50は、製膜ユニット支持台31にネジ61によって固定されるベース板部材55に嵌め合わされており、この電極下端支持碍子50の構成として、上記ベース板部材55に嵌合されて保持されるセラミックス製の内側部材51と、この内側部材51の外周部を覆うように離間配置された筒状の外側部材52と、これらの間に位置する後述する螺旋構造体(図示せず)が備えられている。
そして、内側部材51の先端部(紙面において上端側)には、湾曲状に形成された凹部54が形成されており、この凹部54にラダー電極13の下方側の給電棒13aが直に接して保持されるようになっている。
【0039】
なお、ベース板部材55を製膜ユニット支持台31に固定するネジ61が挿通する孔部55aは、この電極下端支持碍子50が支持するラダー電極13の長手方向に対して直交する方向に沿う長孔とされている。
【0040】
さて、上述した本発明の絶縁碍子をなす電極上端支持碍子40、及び電極下端支持碍子50の構成及び構造について、図3を用いて詳しく説明する。
図3(a)に示すように、電極上端支持碍子40は、導電体であるラダー電極13の給電棒13aに直に嵌め合わされて接続されるセラミックス等の絶縁体からなる内側部材41と、該内側部材41の外周部を覆うように離間配置された外側部材42と、該内側部材41と該外側部材42との間に配置されるとともにこれら両部材41,42と接することによって両部材41,42の位置関係を保持するスプリング形状の螺旋構造体43(保持部材)とを備えて構成されている。
【0041】
なお、図3(b)に示す電極下端支持碍子50の構成及び構造についても図3(a)の電極上端支持碍子40を逆さにしたものと同様な構造であり、内側部材51、外側部材52、及び螺旋構造体53(保持部材)とを有して構成されている。
【0042】
このような各支持碍子40,50を備えてラダー電極13を支持する構成によれば、プラズマによる製膜処理においてこれら各支持碍子40,50の表面に導電率の高いアモルファスシリコン等の膜が付着し堆積しても、内側部材41,51の外周部が外側部材42,52に覆われているので上記の付着膜が各支持碍子40,50の表面全てに付着することが回避される。
すなわち、付着膜が外側部材42,52と内側部材41,51との隙間部分で部分的に途切れた膜切りがなされることにより、母体である排気カバー35とラダー電極13、及び母体である製膜ユニット支持台31とラダー電極13との絶縁がなされ、これら支持碍子40,50の両側における300〜500Vの電位差が保たれたる。
【0043】
そして、上記のような膜切り構造を有する各支持碍子40,50は、円柱形状とされた単一形状の内側部材41,51に筒状とされた単一形状の外側部材42,52が螺旋構造体を介して組み合わされた簡略な構造であるため、内側部材41,51に限定して支持に必要な強度を容易に得ることができ、また、製作においても個々の製作コストが抑えられた状態で簡略に組み立てがなされることとなる。
【0044】
また、螺旋構造体43,53によって内側部材41,51と外側部材42,52との隙間Sが常に均一に維持されるので、これら両部材40,50が付着膜によって接することは回避されるとともに、螺旋構造体43,53の厚みによって両部材間の隙間Sが規定されることになるので、これら両部材40,50の離間距離をごく僅かな寸法に導くことも容易に可能である。そして、隙間Sが小さくなることによれば、付着物の侵入経路がより狭められることになり、付着物の侵入が抑制されて膜切り効果がさらに高められることになる。
【0045】
なお、外側部材42,52及び螺旋構造体43,53の材質については、必ずしもセラミックス等の絶縁体である必要はなく、プラズマに影響を与えない非磁性材料のSUS304やインコネル材等を用いることとしてもよい。
また、螺旋構造体43,53にまで製膜処理における付着物が達しないように該螺旋構造体43,53を外側部材42,52の軸方向(紙面上下方向)における全長の中央部付近に位置させることとしている。このことは、内側部材41,51に対して外側部材42,52がバランス良く固定されることにもなる。
【0046】
以上説明した本実施形態に係るラダー電極13を支持する各支持碍子40,50及びこれを有するプラズマCVD装置によれば、二重管構造とされた両部材(41,42、及び51,52)の隙間Sを螺旋構造体43,53の寸法に応じて狭め、且つ奥行きを大きくとることが可能となり、膜となって付着する物質の侵入を防いで従来より効果的な膜切り効果を得ることができる。したがって、製膜処理にて一般的に必要とされる絶縁抵抗の1MΩ以上を確保することができ、製膜処理の安定化がなされて膜厚分布の均一化を得ることができる。そして、この結果高品質な基板を得ることができる。
【0047】
また、大型基板に対応する大型のラダー電極13を支持するための強度を簡略化した小さな形状にて導くことが可能となり、上記要求を満足しつつコストを抑えた各支持碍子40,50と、これら支持碍子40,50を有する低コストで小型なプラズマCVD装置を実現することができる。
【0048】
なお、本実施形態の変形例として以下に説明する構成であってもよい。
図4(a),(b)に示される第1の変形例である各支持碍子40,50は、先の説明した各支持碍子40,50の構造に比較して螺旋構造体43,53が取り付けられる内側部材41,51の外周部に環状の凹所D1が形成され、さらに外側部材42,52の内周部に環状の凹所D2が形成されていることが異なるものである。これら各凹所D1,D2は本発明に係る拘束部をいうものであり、螺旋構造体43,53を支え止める役目を担っている。
【0049】
これら凹所D1,D2の深さは、内側部材41,51の直径に比較してごく浅く形成されており、また、紙面において上下方向にあたる幅寸法は、螺旋構造体43,53の高さ寸法を考慮してほぼ同等となるように形成されている。
【0050】
このように、螺旋構造体43,53の外側と内側とが各凹所D1,D2のそれぞれに引っ掛かった状態で支え止められることにより、螺旋構造体43,53の位置が、起動または停止時における熱変形、入熱による変形や熱膨張、内側部材41,51と外側部材42,52に加わる振動、さらには各支持碍子40,50の設置方向等に影響されることなく定位置に保持される。
【0051】
これによって、内側部材41,51と外側部材42,52との位置関係が常に一定に保たれ、各支持碍子40,50の形状の安定が保たれ、両部材(41と42、及び51と52)どうしが接触するような問題を確実に回避することができる。また、各凹所D1,D2の形成によって螺旋構造体43,53の薄くするための必要厚さに限界があっても、この厚さ分を凹所D1,D2の深さで相殺することができ、内側部材41,51と外側部材42,52との隙間Sをより縮小することができる。したがって、付着膜の膜切り効果をさらに高めて絶縁状態を維持することが可能となる。
【0052】
なお、拘束部として凹所D1,D2が設けられた場合を上記にて説明したが、これに限定解釈されるものではなく、螺旋構造体43,53の隙間部分に引っかかるような各部材41,42,51,52の壁面に形成される凸部、あるいは、螺旋構造体43,53を高さ方向で挟み込むような凸部であっても同様な作用及び効果を得ることができる。
また、内側部材41,51、及び外側部材42,52のそれぞれに凹所を形成した場合を説明したが、どちらか一方に形成することとしても、螺旋構造体43,53を定位置に保持することが可能である。
【0053】
また、第2の変形例として、図5(a),(b)に示すような各支持碍子40,50の構成であってもよい。図5に示される符号43’及び53’は、先に説明した螺旋構造体43,53に変更して設けられた板バネ(保持部材)であり、これら板バネ43’、53’によって内側部材41、51に対して外側部材42,52が固定されている。
【0054】
このような板バネが43’、53’が用いられることによれば、この弾性力によって外側部材42,52が内側部材41,51の定位置に固定されることとなり、互いのがたつきがより確実に除去されて強固に固定された高剛性な支持碍子40,50を実現することができる。
そして、内側部材41、51と外側部材42,52とに入熱による変形に差が生じる、すなわち熱膨張に差がある場合であっても、この変形差を板バネ43’、53’が吸収することが可能であり、破損することはない。
【0055】
もちろん、上述した凹所D1,D2などの拘束部を各部材41,42,51,52に適宜設けて板バネ43’、53’を支え止める構成によれば、外側部材42,52と内側部材41,51との位置決めがより正確に規定されて互いが固定されることとなる。
【0056】
[第2の実施形態]
次に、本発明に係る第2の実施形態について図6を参照しながら説明する。なお、本実施形態に示されるラダー電極13は、従来技術及び第1の実施形態にて説明したプラズマCVD装置10に備わるガス吹出し一体型のガス供給電極をなすものであって、これに関連する構造及び構成については同一符号を付してその説明を一部省略するものとし、異なる点について詳しく説明するものとする。
【0057】
図6(a)に示すように、防着板17の内側に配置されたラダー電極13には原料ガスを含む製膜用ガス(流体)を製膜室内に供給する複数の孔部13dが設けられており、製膜用ガスを送出しつつ高周波電力に帯電する都合上、導電体のパイプが組み合わされてラダー電極13が形成されている。
このラダー電極13は、二重管構造とされた接続碍子60(絶縁碍子)を介して製膜用ガスを供給するガス供給パイプ100と接続されており、言うまでもなく、接続碍子60の内部、より詳しくは、これを構成する一要素である内側部材61の内部に製膜用ガスを導通させるための流路Fが備えられている。
【0058】
接続碍子60について詳しく説明すると、この接続碍子60は、一端でガス供給パイプ100と直に接続されなお且つ他端でラダー電極13と直に接続される内側部材61と、該内側部材61の外周部を覆うように離間配置された筒状の外側部材62と、これらの間に位置する螺旋構造体63(保持部材)を有して構成されている。
【0059】
このような接続碍子60が設けられることによって、製膜用ガスをラダー電極13に供給するため、ラダー電極13と接続されつつ絶縁されるべきガス供給パイプ100は、内側部材61と外側部材62とが螺旋構造体63により離間配置された膜切り構造によって、数百ボルトの電圧が印加されるラダー電極13に対して製膜処理等のあらゆる環境下で絶縁されることになる。
【0060】
そして、簡略な形状の各部材61,62によって接続碍子60が形成されることで、従来より小型に形成でき、ラダー電極13周囲のスペースを節約することができ、設計の自由度及び製膜ユニットを有するプラズマCVD装置の小型化を実現することができる。
【0061】
なお、本実施形態においても、螺旋構造体63に代えて板バネに変更してもよいし、螺旋構造体63や板バネを支え止める凹所などの拘束部を設けることも可能である。
【0062】
[第3の実施形態]
次に、本発明に係る第3の実施の形態について図7を用いて説明する。
他の実施形態にて説明したラダー電極13には、高周波用ケーブル18が接続されることを既に説明したが、本実施形態においては、この高周波用ケーブル18とラダー電極13との接続箇所である給電部(接続部)に二重管構造の接続碍子70(絶縁碍子)が介在するように備えらたものである。
【0063】
より詳細に説明すると、図7に示すように二重管構造とされた接続碍子70は、芯線を有する高周波用ケーブルの先端に冠着されるとともに軸方向に前記芯線用の貫通孔71aを有する内側部材71と、該内側部材71の外周部を覆うように離間配置された外側部材72と、これら両部材71,72に接して互いの部材71、72の位置決めをなす螺旋構造体73(保持部材)とにより構成されている。
【0064】
なお、本図に示される高周波ケーブルは、符号18aの芯線、18bの芯線18aの外側で電力を供給する金属メッシュの導線、18cの碍子、18dの絶縁体からなるフレキシブルチューブにより構成されており、ラダー電極13とは先端金具80を介して接続されている。
【0065】
このような接続碍子70を用いた構成により、芯線等が接続されるラダー電極13に接する側と、高周波用ケーブル18の表面とは、螺旋構造体73による膜切り構造によって絶縁がなされ、高周波用ケーブル18の外周部に備わる絶縁体であるフレキシブルチューブ18dに導電率の高い膜が付着し堆積しても、ラダー電極13に帯電した高周波電力が地絡することが回避される。
【0066】
もちろん、高周波用ケーブル18の外周部にフレキシブルチューブ18dが備わることで地絡することが回避されているが、この近隣でフレキシブルチューブ18dが他の要素と接するような場合であると、地絡する可能性が高い。しかしながら、このような接続碍子70が設けられることにより、確実に地絡が回避されて信頼性の向上が図られることとなる。
【0067】
なお、本実施形態においても、螺旋構造体73に代えて板バネに変更してもよいし、螺旋構造体73や板バネを支え止める凹所などの拘束部を内側部材71や外側部材72にそれぞれ設けることも可能である。
【0068】
【発明の効果】
以上説明した本発明の絶縁碍子及びこれを具備する真空製膜装置においては以下の効果を奏する。
請求項1記載の発明に係る絶縁碍子は、導電体と直に接続される絶縁体とされた内側部材と、該内側部材の外周部を覆うように離間配置された外側部材と、該内側部材と該外側部材との間に配置されるとともに、これら両部材と接することによって位置関係を保持する保持部材とを備えて構成されているので、保持部材により内側部材と外側部材との隙間をごく僅かにすることを可能として付着物の侵入を抑えて膜切り効果をより高めることができる。これによって、絶縁碍子による絶縁状態を確実に得て導電体の的確な動作を導くことが可能となる。
また、絶縁碍子を構成するそれぞれの要素を個別に簡略に形成し、保持部材の取り付けによってこれらを容易に組み合わせる構成であるので、高い膜切り効果を得て絶縁をなす絶縁碍子を、高剛性、低コストで実現することができる。
また、膜切り部分を軸方向に無駄なく省スペースに形成でき、軸方向に短い小型な絶縁碍子を得ることができる。
【0069】
請求項2記載の発明に係る絶縁碍子よれば、保持部材が接する外側部材及び内側部材のいずれかの壁面には、該保持部材を当て支えとめる拘束部が設けられているので、設置の方向性、熱変形、振動等の外的な影響を受ける場合であっても外側部材及び内側部材の位置関係を定位置に固定することがより確実となる。したがって、付着物に対する膜切り効果の信頼性を向上させることができる。また、固定状態が良好となるので、絶縁碍子が設置される設置環境の制限がなくなり、設置の自由度が高められて汎用性の向上を図ることができる。
【0070】
請求項3記載の発明に係る絶縁碍子によれば、先の発明における保持部材として、内側部材の外周部を取り囲む螺旋構造体が絶縁碍子に備えられるので、簡易な構成によって内側部材と外側部材とを定位置に固定して互いのがたつきを抑制することができる。そして、構成の簡易化によりコストを抑えて絶縁碍子を得ることができる。
【0071】
請求項4記載の発明に係る絶縁碍子によれば、先の発明における保持部材が板バネであるので、板バネが有する弾性力によって外側部材と内側部材とを定位置に強固に固定することができ、複合体とされた絶縁碍子の剛性を高く得ることができる。また、外側部材と内側部材との熱膨張に差がある場合であってもこの差を板バネで吸収することができ、形状変化や破損等を回避した信頼性の高い絶縁碍子を実現することができる。
また、外側部材と内側部材とを上述した強固に固定しつつ、この間に保持部材を挿入することが容易であり、製作時の容易化を図ることができる。すなわち、弾性力に勝る力で板バネを縮めることによれば、両碍子間の隙間が狭くても板バネを取り付けることが可能であり、取り付け後において作用する弾性力によって互いの組み合わせ状態を強固に得ることができる。したがって、付着物に対する膜切り構造を適正且つ簡易に形成しつつ、高剛性な絶縁碍子を実現することができる。
【0072】
請求項5記載の発明に係る絶縁碍子によれば、内側部材の内部には流体を導通させる流路が備えられているので、絶縁されるべき流体供給元の要素と、流体が供給される導電体とを確実に絶縁した状態で流体の供給を行うことができる。これによって、導電体、及びこれに接続される絶縁されるべき要素の動作を正常な状態に導くことが可能となる。
また、接続距離を短くして接続に必要とされるスペースを縮小することができ、絶縁碍子が備えられる装置における設計の自由度や、装置の小型化を実現することができる。
【0073】
請求項6記載の発明に係る絶縁碍子よれば、内側部材が、芯線を有する高周波用ケーブルの先端に冠着されるとともに軸方向に前記芯線用の貫通孔を備えているので、この内側部材の外周部を覆うように離間配置された外側部材が配置されて膜切り構造がなされ、導電体側と高周波用ケーブル側との接続部に導電率の高い付着物が付着しても、両側の電位差が確実に確保されて導電体等の適切な動作を得ることができる。このことは導電体と高周波用ケーブルの絶縁部との電位差が適正に確保されることを意味する。
【0074】
請求項7記載の発明に係るプラズマ処理装置によれば、これに用いられる電極が請求項1から4のいずれか1項に記載の絶縁碍子によって支持されるので、製膜処理等による付着物の膜切りを確実に得て電極における地絡を防止し、プラズマ発生の均一化を図ることができる。これにより、プラズマ処理装置の性能向上を図って高品質な基板を提供することができる。また、この絶縁碍子を用いることにより大型の電極を省スペースで支持することができるので、大面積基板を製造するプラズマ処理装置の小型化を実現することができる。
【0075】
請求項8記載の発明に係るプラズマ処理装置によれば、ガス供給電極と製膜用ガスの供給ラインとが、請求項5に記載の絶縁碍子によって接続されているので、この接続部分に導電率の高い製膜処理における膜が付着し堆積しても、内部に流路を有する絶縁碍子の膜切り効果によってガス供給電極側の地絡を回避して流体を供給することができる。
【0076】
請求項9記載の発明に係るプラズマ処理装置によれば、高周波用ケーブルと電極とが、請求項6に記載の絶縁碍子によって接続されているので、この接続部分に導電率の高い付着物が堆積しても、確実な膜切り効果によって電極側の地絡を回避することができ、電極におけるプラズマの発生を正常な状態で得て安定したプラズマによる処理を行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施形態におけるプラズマ処理装置であるプラズマCVD装置の製膜ユニットの構成を説明する分解斜視図である。
【図2】本発明の第1の実施形態におけるプラズマ処理装置であるプラズマCVD装置のラダー電極の支持部分を説明する斜視図であって、(a)はラダー電極の上側、(b)はラダー電極の下側である。
【図3】本発明の第1の実施形態における支持碍子の構成及び構造を説明する部分断面斜視図である。
【図4】本発明の第1の実施形態における支持碍子の変形例の構成及び構造を説明する部分断面斜視図である。
【図5】本発明の第1の実施形態における支持碍子の第2の変形例の構成及び構造を説明する部分断面斜視図である。
【図6】本発明の第2の実施形態におけるプラズマ処理装置であるプラズマCVD装置のラダー電極の構成及び構造を説明する図であって、(a)はラダー電極の斜視図、(b)はその断面図である。
【図7】本発明の第3の実施形態におけるプラズマ処理装置であるプラズマCVD装置のラダー電極へ高周波電力を供給する構造を説明する断面図である。
【図8】プラズマ処理装置であるプラズマCVD装置の従来例を説明する概略斜視図である。
【図9】プラズマ処理装置であるプラズマCVD装置のラダー電極の構成を説明する概略斜視図である。
【符号の説明】
10 プラズマCVD装置(プラズマ処理装置)
11 真空チャンバ
12 製膜室(処理室)
13 ラダー電極(電極,導電体)
13a 給電棒
14 製膜ユニット
15 ヒータカバー
16 基板加熱ヒータ
17 防着板
18 高周波用ケーブル
31 製膜ユニット支持台
40 電極上端支持碍子(絶縁碍子)
41 内側部材
42 外側部材
43 螺旋構造体(保持部材)
43’ 板バネ(保持部材)
50 電極下端支持碍子(絶縁碍子)
51 内側部材
52 外側部材
53 螺旋構造体(保持部材)
53’ 板バネ(保持部材)
60 接続碍子(絶縁碍子)
61 内側部材
62 外側部材
63 螺旋構造体(保持部材)
70 接続碍子(絶縁碍子)
71 内側部材
71a 貫通穴
72 外側部材
73 螺旋構造体(保持部材)
D1,D2 凹所(拘束部)
S 内側部材と外側部材との隙間
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an insulator for obtaining an insulating state between a conductor and an element connected to the conductor, and a plasma CVD apparatus and a dry etching apparatus used for manufacturing a semiconductor such as a silicon solar cell provided with the insulator. The present invention relates to a plasma processing apparatus.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, when manufacturing semiconductors such as silicon solar cells, a plasma CVD apparatus using plasma is known as an apparatus for forming a film, and a substrate surface on which a film is formed is etched with plasma. Dry etching apparatuses are generally known. A plasma CVD apparatus 10 shown in FIG. 8 will be described as a configuration example of a plasma processing apparatus using these plasmas.
[0003]
A film forming chamber 12 (processing chamber) provided in a plasma CVD apparatus 10 (plasma processing apparatus) shown in FIG. 1 includes a film forming unit 14 having a ladder electrode 13 (electrode) provided on both sides at substantially the center of a vacuum chamber 11. A substrate heater 16 is provided on both sides of the film forming unit 14 with a heater cover 15 interposed therebetween. Then, the substrate K is disposed on the heater cover 15 so as to face the ladder electrode 13, and a film forming process is performed on the substrate.
[0004]
As shown in FIG. 9, the ladder electrode 13 includes a pair of power supply rods 13a and a plurality of parallel vertical grids 13b that electrically connect the power supply rods 13a.
Each of the power supply rods 13a is provided with a power supply portion 13c to which a high-frequency cable 18 (also referred to as an RF cable) is connected at a plurality of locations, so that high-frequency power is supplied from the power supply portions 13c to the power supply rod 13a. Has become.
[0005]
Then, in the film forming chamber 12, the SiH 4 When a film-forming gas, which is a processing raw material gas containing a raw material gas composed of, is supplied and high-frequency power is supplied to the ladder electrode 13, plasma is generated between the ladder electrode 13 and the deposition-preventing plate 17, and the substrate is heated. A film is formed on the substrate K heated by the heater 16.
[0006]
Now, in the plasma processing apparatus such as the plasma CVD apparatus 10 configured as described above, the ladder electrode 13 for generating plasma is connected to the high-frequency cable 18 for supplying high-frequency power and supported in an insulated state. It is provided in the film forming chamber 12. Therefore, an insulator for supporting the ladder electrode 13 in an insulated state is generally used. A configuration in which such an insulator is provided as a ceramic support member has already been disclosed (for example, see Patent Document 1).
[0007]
However, a thick film is deposited on the insulator supporting the ladder electrode 13 by repeating the film forming process, or a P (phosphorus) -doped n film having a high conductivity in the film forming process, particularly an amorphous silicon film. If a mold film or the like adheres and deposits, there is a high possibility that the insulation resistance of the insulator is reduced in a short period of time and the ladder electrode 13 is grounded. Then, depending on the influence of the ground fault, the generation of the plasma from the ladder electrode 13 may be abnormal, and the film forming process becomes unstable, causing a problem that the film thickness distribution becomes non-uniform.
[0008]
In order to solve such a problem, there has been already disclosed an insulator in which the insulator is formed into a double-pipe structure to perform film cutting (for example, see Patent Document 2).
In addition, not only the portion supporting the ladder electrode 13 but also an annular groove portion is formed in the power supply portion 13c, which is a connection portion between the high-frequency cable 18 for supplying high-frequency power to the ladder electrode 13 and the ladder electrode 13, so as to prevent the attachment A configuration for performing film cutting is shown (see Patent Document 2).
Further, in a gas pipe electrode (gas supply electrode) which functions as an electrode for plasma generation while supplying a film-forming gas, the film of an attached substance is cut at a connection portion between the gas pipe electrode and a film-forming gas supply line. A structure of a connecting pipe having a double pipe structure is shown (for example, see Patent Document 3).
[0009]
[Patent Document 1]
Japanese Patent Application No. 2001-043773 (paragraphs 34 to 37, FIGS. 9 to 11)
[Patent Document 2]
JP-A-2000-208297 (Paragraphs 16-18, FIG. 4, and Paragraphs 12-15, FIG. 2)
[Patent Document 3]
JP-A-2001-120985 (Paragraphs 23-25, FIG. 6)
[0010]
[Problems to be solved by the invention]
However, in recent years, large-sized ladder electrodes are often provided in correspondence with the manufacture of large-area substrates having a side exceeding 1 m. It is difficult to manufacture an insulator made of the above insulator. That is, the conventional double-pipe insulator having an integral structure is difficult to manufacture due to this complicated structure, and causes an increase in manufacturing cost. In addition, the shape and size for obtaining the strength for supporting the ladder electrode, which has increased in weight, are unnecessarily enlarged due to the complicated shape, and the apparatus for the substrate is increased in size.
[0011]
The present invention has been made in view of the above circumstances, and secures a stable insulation state by cutting a ground fault of a conductor including an electrode for generating plasma, etc., and obtains stable operation. It is an object of the present invention to provide an insulator having a strength sufficient for manufacturing a large-area substrate and a plasma processing apparatus including the insulator.
[0012]
[Means for Solving the Problems]
The present invention employs the following means in order to solve the above problems.
The invention according to claim 1 is an insulator which is connected while preventing a ground fault of a conductor by insulation, wherein an inner member made of an insulator directly connected to the conductor, and an outer peripheral portion of the inner member And a holding member that is disposed between the inner member and the outer member and that holds a positional relationship by contacting the two members. And
[0013]
With such a configuration, even when a substance having high conductivity adheres and deposits on the surface of the insulator according to the present invention in a state where the insulator is connected to the conductor, the outer peripheral portion of the inner member is covered by the outer member. However, the above-mentioned deposits do not adhere to the entire surface of the insulator. That is, since the film of the deposit is partially cut off at the gap between the outer member and the inner member, an insulating state in which the potential difference is maintained on both sides of the insulator is ensured. Further, the insulator having the above-described film cutting structure is constituted by a combination of members having a simplified shape, so that it is easy to secure the strength and to manufacture the insulator.
[0014]
When the inner member and the outer member come into contact with each other by the above-described attachment, the insulation resistance is reduced. However, the gap between the inner member and the outer member is always kept uniform by the holding member. Are not touched by the deposit. Further, since the gap size between the two members is determined by the thickness of the holding member, it is easy to guide the distance between these two members to a very small size. And, as the gap size becomes smaller, the path for adhering substances to enter is further narrowed, and the invasion of adhering substances is suppressed, and the film cutting effect is further enhanced.
[0015]
Note that the connection between the conductor and the inner member includes a simple connection method such as fitting with some gap. Further, the materials of the outer member and the holding member do not necessarily need to be insulators, but need to be selected according to the installation environment. In addition, it is desirable that the holding member is positioned near the center of the entire length of the outer member in the axial direction so that the attached matter does not reach the holding member. This means that the outer member is fixed to the inner member in a well-balanced manner.
[0016]
According to a second aspect of the present invention, in the insulator according to the first aspect, a restraint portion for holding and supporting the holding member is provided on a wall surface of one of the outer member and the inner member with which the holding member contacts. It is characterized by becoming.
[0017]
According to such a configuration, the holding member is disposed in a state of being hooked on the restraining portion, and the position of the holding member is not affected by the installation direction of the insulator, deformation due to heat input, vibration, and the like. Stay in place. Thereby, the positional relationship between the inner member and the outer member is always kept constant, and the problem that the inner member and the outer member are shifted and suddenly contact with each other is eliminated.
Note that the restraining portion may be, for example, a concave portion into which the holding member is fitted, or may be a convex portion supporting the holding member. The wall surface on which such a restraining portion is formed is in contact with the holding member. It may be either the inner peripheral portion of the outer member, the outer peripheral portion of the inner member, or both.
[0018]
According to a third aspect of the present invention, in the insulator according to the first or second aspect, the holding member is a spiral structure surrounding an outer peripheral portion of the inner member.
[0019]
With such a configuration, the inner member and the outer member are fixed via a helical structure such as a spring, which is spirally wound around the outer peripheral portion of the inner member. Sticking is suppressed. According to the second aspect of the present invention, the positioning of the outer member and the inner member is more accurately defined, and the members are fixed to each other.
[0020]
According to a fourth aspect of the present invention, in the insulator according to the first or second aspect, the holding member is a leaf spring.
[0021]
With such a configuration, the outer member is fixed to the fixed position of the inner member by the elastic force of the leaf spring, and the backlash is more reliably removed from each other, thereby forming a firmly fixed insulator. . Further, even when a difference occurs in the deformation between the inner member and the outer member due to heat input, the difference in deformation can be absorbed by the leaf spring.
Further, according to the second aspect of the present invention, the positioning of the outer member and the inner member is more accurately defined, and the members are fixed to each other.
[0022]
According to a fifth aspect of the present invention, there is provided the insulator according to any one of the first to fourth aspects, wherein a flow path for conducting a fluid is provided inside the inner member. I have.
[0023]
In order to supply fluid to the conductor, the element to be insulated of the fluid supply source connected to the conductor is an insulator having a film cutting structure in which the inner member and the outer member are separated by the holding member, It will be insulated from the conductor under all circumstances.
[0024]
According to a sixth aspect of the present invention, in the insulator according to any one of the first to fourth aspects, the inner member is mounted on a tip of a high-frequency cable having a core wire and extends in the axial direction. It is characterized by having a through hole for a core wire.
[0025]
With such a configuration, the inner member mounted on the high-frequency cable whose core wire is mainly connected to the conductor is provided with the outer member at the outer peripheral portion thereof with a gap provided by the holding member. Even if deposits having high conductivity are deposited on the conductor and the high-frequency cable including the insulator described above, the insulation state between the conductor and the surface of the high-frequency cable is reliably ensured. This means that a ground fault is avoided by the insulator even in a state where a ground fault may occur due to a defect in an insulator provided on the surface of the high-frequency cable.
[0026]
According to a seventh aspect of the present invention, in a plasma processing apparatus including an electrode connected to a high-frequency cable in a processing chamber, the electrode is supported by the insulator according to any one of the first to fourth aspects. It is characterized by becoming.
[0027]
According to such a plasma processing apparatus, even if deposits having high conductivity are deposited on the supporting insulator, insulation between the base for supporting the electrode and the electrode is ensured, and the plasma at the electrode is discharged. The occurrence is made uniform. Also, in order to reduce the influence of the adhered film and increase the conductive distance, it is not necessary to increase the size of the insulator supporting the electrode, that is, it is possible to reduce the size of the insulator. Even if there is, it will be supported in a space-saving manner while securing high rigidity.
Note that a plasma processing apparatus refers to an apparatus having electrodes for generating plasma, such as a plasma CVD apparatus for forming a film on a substrate or the like or a dry etching apparatus for etching a substrate or a film.
[0028]
The invention according to claim 8 is a plasma processing apparatus having a gas supply electrode connected to a high-frequency cable to generate plasma in a processing chamber and to supply a film formation gas to a substrate installed in the processing chamber. The gas supply electrode and the supply line of the film forming gas are connected via an insulator according to the fifth aspect.
[0029]
With such a plasma processing apparatus, the gas supply electrode charged by the high-frequency power supplied from the high-frequency cable can perform film-forming processing on the substrate by sending out a film-forming gas while generating plasma itself. However, at this time, the film-forming process is performed while the insulating state between the film-forming gas supply line and the gas supply electrode is reliably maintained by the film-cutting structure of the insulator. Therefore, a ground fault in the gas supply electrode is avoided, and the generation of plasma is made uniform.
[0030]
According to a ninth aspect of the present invention, in the plasma processing apparatus having an electrode connected to a high-frequency cable, the high-frequency cable and the electrode are connected to each other via the insulator according to the sixth aspect. It is characterized by.
[0031]
With such a plasma processing apparatus, the insulation between the insulating portion (generally indicating the outer peripheral portion) of the high-frequency cable for supplying high-frequency power to the electrode and the electrode side is ensured irrespective of the deposition of the highly conductive deposit. Thus, the ground fault of the electrode is more reliably avoided. As a result, generation of plasma at the electrodes is made uniform.
[0032]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
FIG. 1 is an exploded perspective view illustrating the structure and configuration of the film forming unit 14.
The film-forming unit 14 has a film-forming unit support 31 mounted on a base serving as a base, and has a structure in which each component is supported on the film-forming unit support 31.
[0033]
A support protrusion 31a is formed in the center of the film forming unit support base 31 so as to extend in the longitudinal direction. A temperature control heater / cooler (not shown) is supported on the support protrusion 31a. I have. The temperature control heater / cooler is surrounded by a top plate 32, a side plate 33, and an end plate 34.
On both side surfaces of the temperature control heater / cooler, an end face plate 34, a deposition-preventing plate 17, a ladder electrode 13, and a substrate holding plate 21 are arranged in this order, and the support structure of the ladder electrode 13 will be described below.
[0034]
The ladder electrode 13, which is a conductor, forms a gas supply electrode integrated with gas blowing, and a plurality of pipe-shaped vertical grit 13b is provided between a pair of pipe-shaped power supply rods 13a arranged vertically. The structure is provided with an opening.
The upper end of the ladder electrode 13 is supported by an electrode upper end support insulator 40 (insulator) provided on the exhaust cover 35 as shown in FIG.
[0035]
The electrode upper end support insulator 40 is formed of a ceramic inner member 41 inserted into a hole formed in the exhaust cover 35 from above, and a cylindrical member spaced apart so as to cover the outer peripheral portion of the inner member 41. It has an outer member 42 and a helical structure (holding member) (see reference numerals 43 and 53 in FIG. 3) located therebetween.
A concave portion 44 formed in a curved shape is formed at a front end portion (lower end side in the drawing) of the inner member 41, and the power supply rod 13 a above the ladder electrode 13 is directly connected to the concave portion 44. It is designed to be held in contact with.
[0036]
A ring member (not shown) having an outer diameter larger than the hole of the exhaust cover 35 is attached near the rear end (the upper end side in the drawing) of the inner member 41. The upper end support insulator 40 is prevented from falling off from the exhaust cover 35.
[0037]
In addition, as shown in FIG. 2 (b), the electrode lower end support insulator 50 (insulator) is provided on the upper surface of the film forming unit support base 31 shown in FIG. In addition to the support of the ladder electrode 13 described above, the support on the lower side of the ladder electrode 13 is provided.
[0038]
The electrode lower end support insulator 50 is fitted to a base plate member 55 fixed to the film forming unit support base 31 by screws 61. As a configuration of the electrode lower end support insulator 50, the electrode lower end support insulator 50 is fitted to the base plate member 55. A ceramic inner member 51 held and held, a cylindrical outer member 52 spaced apart so as to cover the outer peripheral portion of the inner member 51, and a helical structure (not shown) positioned between them ) Is provided.
A concave portion 54 having a curved shape is formed at a tip end portion (upper side in the drawing) of the inner member 51, and the power supply rod 13 a below the ladder electrode 13 is in direct contact with the concave portion 54. Is to be retained.
[0039]
The hole 55a into which the screw 61 for fixing the base plate member 55 to the film forming unit support base 31 is inserted has a length along a direction perpendicular to the longitudinal direction of the ladder electrode 13 supported by the electrode lower end support insulator 50. It is a hole.
[0040]
Now, the configuration and structure of the electrode upper end support insulator 40 and the electrode lower end support insulator 50 constituting the insulator of the present invention will be described in detail with reference to FIG.
As shown in FIG. 3A, an electrode upper end support insulator 40 includes an inner member 41 made of an insulator such as ceramics, which is directly fitted to and connected to the power supply rod 13a of the ladder electrode 13 which is a conductor. An outer member 42 that is spaced apart so as to cover the outer peripheral portion of the inner member 41, is disposed between the inner member 41 and the outer member 42, and is brought into contact with the two members 41, 42 so that both members 41, 42 And a spiral-shaped helical structure 43 (holding member) that holds the positional relationship 42.
[0041]
The configuration and the structure of the electrode lower end support insulator 50 shown in FIG. 3B are the same as those obtained by inverting the electrode upper end support insulator 40 of FIG. , And a spiral structure 53 (holding member).
[0042]
According to the configuration in which the supporting insulators 40 and 50 are provided to support the ladder electrode 13, a film of amorphous silicon or the like having high conductivity adheres to the surface of each of the supporting insulators 40 and 50 in the film forming process using plasma. Even if they are deposited, the outer peripheral portions of the inner members 41 and 51 are covered by the outer members 42 and 52, so that the above-mentioned adhered film is prevented from adhering to all the surfaces of the supporting insulators 40 and 50.
That is, the adhesive film is partially cut off at the gaps between the outer members 42 and 52 and the inner members 41 and 51, so that the exhaust cover 35 and the ladder electrode 13 as the base and the substrate as the base are manufactured. The membrane unit support 31 and the ladder electrode 13 are insulated, and a potential difference of 300 to 500 V on both sides of the support insulators 40 and 50 is maintained.
[0043]
Each of the support insulators 40 and 50 having the above-described film cutting structure is composed of a single cylindrical inner member 41 and a single cylindrical outer member 42 and a spiral single cylindrical outer member 51. Because of the simple structure combined via the structure, the strength required for support can be easily obtained by limiting the inner members 41 and 51, and individual manufacturing costs have been reduced in manufacturing. Assembly is simply performed in this state.
[0044]
Further, since the gaps S between the inner members 41, 51 and the outer members 42, 52 are always kept uniform by the spiral structures 43, 53, it is possible to avoid that these two members 40, 50 are in contact with each other by the adhesive film. Since the gap S between the two members is determined by the thickness of the spiral structures 43, 53, the distance between the two members 40, 50 can be easily reduced to a very small dimension. When the gap S is reduced, the path for adhering substances to enter is further narrowed, and the invasion of adhering substances is suppressed, and the film cutting effect is further enhanced.
[0045]
The materials of the outer members 42 and 52 and the helical structures 43 and 53 do not necessarily need to be insulators such as ceramics, and may be made of a nonmagnetic material such as SUS304 or Inconel which does not affect plasma. Is also good.
The spiral structures 43, 53 are positioned near the center of the entire length of the outer members 42, 52 in the axial direction (vertical direction on the paper) so that the deposits in the film forming process do not reach the spiral structures 43, 53. I'm going to let you. This means that the outer members 42 and 52 are fixed to the inner members 41 and 51 with good balance.
[0046]
According to the above-described supporting insulators 40 and 50 for supporting the ladder electrode 13 and the plasma CVD apparatus having the same according to the present embodiment, both members (41, 42, and 51, 52) having a double tube structure are used. Can be narrowed according to the dimensions of the spiral structures 43 and 53, and the depth can be increased, thereby preventing the intrusion of substances adhering as a film and obtaining a more effective film cutting effect than before. Can be. Therefore, the insulation resistance of 1 MΩ or more generally required in the film forming process can be secured, and the film forming process can be stabilized, and the film thickness distribution can be made uniform. As a result, a high-quality substrate can be obtained.
[0047]
Further, it is possible to guide the supporting ladder electrode 13 in a small shape in which the strength for supporting the large ladder electrode 13 corresponding to the large substrate is simplified, so that the supporting insulators 40 and 50 satisfying the above requirements and reducing the cost, A low-cost and small-sized plasma CVD apparatus having these support insulators 40 and 50 can be realized.
[0048]
Note that a configuration described below may be a modification of the present embodiment.
Each of the support insulators 40 and 50 according to the first modified example shown in FIGS. 4A and 4B has a helical structure 43 and 53 compared to the structure of each of the support insulators 40 and 50 described above. The difference is that an annular recess D1 is formed on the outer periphery of the inner members 41, 51 to be attached, and an annular recess D2 is formed on the inner periphery of the outer members 42, 52. Each of these recesses D1 and D2 is a restraining portion according to the present invention, and has a role of supporting and stopping the spiral structures 43 and 53.
[0049]
The depths of these recesses D1 and D2 are formed to be extremely shallower than the diameters of the inner members 41 and 51, and the width dimension corresponding to the vertical direction on the paper is the height dimension of the spiral structures 43 and 53. In consideration of the above, they are formed to be substantially equal.
[0050]
As described above, the outer and inner sides of the spiral structures 43 and 53 are supported and stopped in a state where they are hooked on the respective recesses D1 and D2, so that the positions of the spiral structures 43 and 53 are set at the time of starting or stopping. It is maintained in a fixed position without being affected by thermal deformation, deformation or thermal expansion due to heat input, vibration applied to the inner members 41, 51 and the outer members 42, 52, and the installation direction of the support insulators 40, 50. .
[0051]
Thereby, the positional relationship between the inner members 41 and 51 and the outer members 42 and 52 is always kept constant, the shape of each support insulator 40 and 50 is kept stable, and both members (41 and 42 and 51 and 52). ) It is possible to reliably avoid a problem in which two members come into contact with each other. Further, even if there is a limit to the thickness required for making the spiral structures 43 and 53 thin by the formation of the recesses D1 and D2, this thickness can be offset by the depth of the recesses D1 and D2. As a result, the gap S between the inner members 41 and 51 and the outer members 42 and 52 can be further reduced. Therefore, it is possible to further enhance the film cutting effect of the adhered film and maintain the insulating state.
[0052]
In addition, although the case where the recesses D1 and D2 are provided as the restraining portions has been described above, the present invention is not limited to this, and each member 41, which may be caught in the gap between the spiral structures 43 and 53, may be used. The same operation and effect can be obtained even if the projections are formed on the wall surfaces of the projections 42, 51, and 52, or the projections sandwich the spiral structures 43 and 53 in the height direction.
Also, the case where the recesses are formed in each of the inner members 41 and 51 and the outer members 42 and 52 has been described. However, the spiral members 43 and 53 are held at fixed positions even if they are formed in either one. It is possible.
[0053]
Further, as a second modified example, a configuration of each of the support insulators 40 and 50 as shown in FIGS. 5A and 5B may be employed. Reference numerals 43 ′ and 53 ′ shown in FIG. 5 are leaf springs (holding members) provided by changing the spiral structures 43 and 53 described above, and the inner members are formed by these leaf springs 43 ′ and 53 ′. Outer members 42, 52 are fixed to 41, 51.
[0054]
According to the use of such leaf springs 43 'and 53', the outer members 42 and 52 are fixed to the fixed positions of the inner members 41 and 51 by this elastic force, so that the rattle of each other is reduced. The highly rigid support insulators 40 and 50 which are more reliably removed and firmly fixed can be realized.
Then, even if there is a difference in deformation due to heat input between the inner members 41, 51 and the outer members 42, 52, that is, even if there is a difference in thermal expansion, the difference in deformation is absorbed by the leaf springs 43 ', 53'. Can be done and not be damaged.
[0055]
Of course, according to the above-described configuration in which the constraining portions such as the recesses D1 and D2 are appropriately provided on the members 41, 42, 51 and 52 to support and retain the plate springs 43 'and 53', the outer members 42 and 52 and the inner member The positioning with respect to 41 and 51 is more accurately defined, and they are fixed to each other.
[0056]
[Second embodiment]
Next, a second embodiment according to the present invention will be described with reference to FIG. The ladder electrode 13 shown in the present embodiment is a gas supply electrode integrated with a gas blowout provided in the plasma CVD apparatus 10 described in the related art and the first embodiment, and is related thereto. The same reference numerals are given to the structure and the configuration, and the description thereof will be partially omitted, and different points will be described in detail.
[0057]
As shown in FIG. 6A, a plurality of holes 13d for supplying a film forming gas (fluid) including a raw material gas into the film forming chamber are provided on the ladder electrode 13 disposed inside the deposition-inhibiting plate 17. The ladder electrode 13 is formed by combining conductive pipes in order to charge the film forming gas with high frequency power while sending out the film forming gas.
The ladder electrode 13 is connected to a gas supply pipe 100 for supplying a film-forming gas through a connecting insulator 60 (insulator) having a double tube structure. More specifically, a flow path F for conducting the film-forming gas is provided inside the inner member 61 which is one of the constituent elements.
[0058]
The connection insulator 60 will be described in detail. The connection insulator 60 has an inner member 61 connected directly to the gas supply pipe 100 at one end and directly connected to the ladder electrode 13 at the other end, and an outer periphery of the inner member 61. It comprises a cylindrical outer member 62 spaced apart so as to cover the portion, and a spiral structure 63 (holding member) located therebetween.
[0059]
By providing such a connecting insulator 60, the gas supply pipe 100 to be insulated while being connected to the ladder electrode 13 is provided with the inner member 61 and the outer member 62 in order to supply the film-forming gas to the ladder electrode 13. Is isolated from the ladder electrode 13 to which a voltage of several hundred volts is applied under any environment such as a film forming process.
[0060]
Further, since the connection insulator 60 is formed by the members 61 and 62 having a simple shape, the connection insulator 60 can be formed smaller than before, the space around the ladder electrode 13 can be saved, and the design flexibility and the film forming unit can be reduced. The size of the plasma CVD apparatus having the above can be reduced.
[0061]
In the present embodiment, a plate spring may be used instead of the spiral structure 63, or a constraining portion such as a recess for supporting and stopping the spiral structure 63 or the plate spring may be provided.
[0062]
[Third Embodiment]
Next, a third embodiment according to the present invention will be described with reference to FIG.
Although it has been described that the high-frequency cable 18 is connected to the ladder electrode 13 described in the other embodiment, in the present embodiment, the high-frequency cable 18 is connected to the ladder electrode 13. This is provided so that a connection insulator 70 (insulator) having a double-pipe structure is interposed in the power supply portion (connection portion).
[0063]
More specifically, as shown in FIG. 7, a connection insulator 70 having a double-pipe structure is mounted on the tip of a high-frequency cable having a core and has a through-hole 71a for the core in the axial direction. An inner member 71, an outer member 72 spaced apart so as to cover the outer peripheral portion of the inner member 71, and a helical structure 73 (holding) in contact with the two members 71, 72 and positioning the members 71, 72 with each other. Member).
[0064]
The high-frequency cable shown in the figure is constituted by a core wire 18a, a conductor wire of a metal mesh for supplying electric power outside the core wire 18a 18b, an insulator 18c, and a flexible tube made of an insulator 18d. The ladder electrode 13 is connected via a tip fitting 80.
[0065]
With such a configuration using the connection insulator 70, the side in contact with the ladder electrode 13 to which the core wire or the like is connected and the surface of the high-frequency cable 18 are insulated by a film cutting structure by the spiral structure 73. Even if a film having a high conductivity is attached and deposited on the flexible tube 18d which is an insulator provided on the outer peripheral portion of the cable 18, the grounding of the high-frequency power charged on the ladder electrode 13 is avoided.
[0066]
Of course, a ground fault is avoided by providing the flexible tube 18d on the outer peripheral portion of the high-frequency cable 18, but a ground fault occurs when the flexible tube 18d comes into contact with other elements in the vicinity. Probability is high. However, by providing such a connection insulator 70, a ground fault is reliably avoided and reliability is improved.
[0067]
In the present embodiment, the spiral structure 73 may be replaced with a leaf spring, or a constraint such as a concave portion for supporting and retaining the spiral structure 73 or the leaf spring may be provided on the inner member 71 or the outer member 72. Each can also be provided.
[0068]
【The invention's effect】
The above-described insulator of the present invention and the vacuum film forming apparatus provided with the same have the following effects.
The insulator according to the first aspect of the present invention includes an inner member which is an insulator directly connected to the conductor, an outer member which is spaced apart so as to cover an outer peripheral portion of the inner member, and the inner member. And a holding member that is disposed between the outer member and the outer member, and that holds the positional relationship by contacting the two members. By making it possible to make it small, it is possible to suppress the invasion of extraneous matter and to further enhance the film cutting effect. As a result, it is possible to reliably obtain the insulation state of the insulator and guide the proper operation of the conductor.
In addition, since each element constituting the insulator is individually formed simply and easily combined by attaching a holding member, the insulator which obtains a high film cutting effect and insulates the insulator with high rigidity, It can be realized at low cost.
In addition, the film cutting portion can be formed in the axial direction with no waste in a small space, and a small insulator short in the axial direction can be obtained.
[0069]
According to the insulator according to the second aspect of the present invention, since the restraining portion for holding and supporting the holding member is provided on one of the wall surfaces of the outer member and the inner member with which the holding member is in contact, the installation directionality is improved. Even when external influences such as thermal deformation and vibration are applied, it is more reliable to fix the positional relationship between the outer member and the inner member at a fixed position. Therefore, the reliability of the film cutting effect on the attached matter can be improved. In addition, since the fixing state is good, there is no restriction on the installation environment in which the insulator is installed, so that the degree of freedom of installation is increased and the versatility can be improved.
[0070]
According to the insulator according to the third aspect of the present invention, since the insulator has the spiral structure surrounding the outer peripheral portion of the inner member as the holding member in the above invention, the inner member and the outer member can be formed with a simple configuration. Can be fixed in place to prevent rattling of each other. And the insulator can be obtained at a low cost by simplifying the configuration.
[0071]
According to the insulator according to the fourth aspect of the present invention, since the holding member in the above invention is a leaf spring, the outer member and the inner member can be firmly fixed in place by the elastic force of the leaf spring. As a result, the rigidity of the composite insulator can be increased. Further, even if there is a difference in thermal expansion between the outer member and the inner member, the difference can be absorbed by the leaf spring, and a highly reliable insulator that avoids a shape change or breakage can be realized. Can be.
Further, while the outer member and the inner member are firmly fixed as described above, it is easy to insert the holding member between them, thereby facilitating production. In other words, according to the fact that the leaf spring is contracted with a force exceeding the elastic force, it is possible to attach the leaf spring even if the gap between both insulators is narrow, and the combined state is strengthened by the elastic force acting after the attachment. Can be obtained. Therefore, a highly rigid insulator can be realized while appropriately and simply forming a film cutting structure for adhering matter.
[0072]
According to the insulator according to the fifth aspect of the present invention, since the flow path for conducting the fluid is provided inside the inner member, the element of the fluid supply source to be insulated and the conductive material to which the fluid is supplied are provided. The fluid can be supplied in a state where the fluid is reliably insulated from the body. This makes it possible to guide the operation of the conductor and the element to be insulated connected thereto to a normal state.
Further, the space required for connection can be reduced by shortening the connection distance, and the degree of freedom in design of the device provided with the insulator and the miniaturization of the device can be realized.
[0073]
According to the insulator according to the sixth aspect of the present invention, the inner member is attached to the tip of the high-frequency cable having the core and has the through-hole for the core in the axial direction. An outer member spaced apart so as to cover the outer peripheral portion is disposed to form a film cutting structure, and even if a highly conductive deposit adheres to the connection between the conductor side and the high-frequency cable side, the potential difference on both sides is reduced. It is ensured that proper operation of the conductor or the like can be obtained. This means that the potential difference between the conductor and the insulating portion of the high-frequency cable is properly secured.
[0074]
According to the plasma processing apparatus according to the seventh aspect of the present invention, since the electrode used for the apparatus is supported by the insulator according to any one of the first to fourth aspects, it is possible to prevent deposits caused by a film forming process or the like. It is possible to reliably cut the film, prevent a ground fault at the electrode, and achieve uniform plasma generation. Thus, the performance of the plasma processing apparatus can be improved and a high-quality substrate can be provided. In addition, by using this insulator, a large-sized electrode can be supported in a small space, so that a downsized plasma processing apparatus for manufacturing a large-area substrate can be realized.
[0075]
According to the plasma processing apparatus of the present invention, since the gas supply electrode and the supply line of the film-forming gas are connected by the insulator according to the fifth aspect, the connection portion has conductivity. Even when a film is deposited and deposited in a high film forming process, a fluid can be supplied while avoiding a ground fault on the gas supply electrode side by a film cutting effect of an insulator having a flow path therein.
[0076]
According to the plasma processing apparatus according to the ninth aspect of the present invention, since the high-frequency cable and the electrode are connected by the insulator according to the sixth aspect, deposits having high conductivity are deposited on the connection portion. Even so, a ground fault on the electrode side can be avoided by a reliable film-cutting effect, and plasma can be generated in the electrode in a normal state, and a stable plasma treatment can be performed.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view illustrating a configuration of a film forming unit of a plasma CVD apparatus which is a plasma processing apparatus according to an embodiment of the present invention.
FIGS. 2A and 2B are perspective views illustrating a supporting portion of a ladder electrode of a plasma CVD apparatus which is a plasma processing apparatus according to the first embodiment of the present invention, wherein FIG. Below the electrodes.
FIG. 3 is a partial cross-sectional perspective view illustrating a configuration and a structure of a support insulator according to the first embodiment of the present invention.
FIG. 4 is a partial cross-sectional perspective view illustrating a configuration and a structure of a modification of the support insulator according to the first embodiment of the present invention.
FIG. 5 is a partial cross-sectional perspective view illustrating a configuration and a structure of a second modification of the support insulator according to the first embodiment of the present invention.
6A and 6B are diagrams illustrating a configuration and a structure of a ladder electrode of a plasma CVD apparatus which is a plasma processing apparatus according to a second embodiment of the present invention, wherein FIG. 6A is a perspective view of the ladder electrode, and FIG. It is sectional drawing.
FIG. 7 is a cross-sectional view illustrating a structure for supplying high-frequency power to a ladder electrode of a plasma CVD apparatus as a plasma processing apparatus according to a third embodiment of the present invention.
FIG. 8 is a schematic perspective view illustrating a conventional example of a plasma CVD apparatus as a plasma processing apparatus.
FIG. 9 is a schematic perspective view illustrating a configuration of a ladder electrode of a plasma CVD apparatus which is a plasma processing apparatus.
[Explanation of symbols]
10 Plasma CVD equipment (plasma processing equipment)
11 Vacuum chamber
12 Film forming room (processing room)
13 Ladder electrode (electrode, conductor)
13a Power supply rod
14 Film forming unit
15 Heater cover
16 Substrate heater
17 Deposition plate
18 High frequency cable
31 Film forming unit support
40 Upper electrode support insulator (insulator)
41 Inside member
42 Outer member
43 spiral structure (holding member)
43 'leaf spring (holding member)
50 Insulator for supporting lower electrode (insulator)
51 Inside member
52 Outer member
53 Helical structure (holding member)
53 'leaf spring (holding member)
60 Connecting insulator (insulator)
61 Inside member
62 Outer member
63 spiral structure (holding member)
70 Connecting insulator (insulator)
71 Inside member
71a Through hole
72 Outer member
73 spiral structure (holding member)
D1, D2 recess (restraint part)
S Clearance between inner and outer members

Claims (9)

絶縁により導電体の地絡を防止しつつ接続される絶縁碍子において、
前記導電体と直に接続される絶縁体からなる内側部材と、
該内側部材の外周部を覆うように離間配置された外側部材と、
該内側部材と該外側部材との間に配置されるとともにこれら両部材と接することによって位置関係を保持する保持部材とが備えられてなることを特徴とする絶縁碍子。
In insulators that are connected while preventing the ground fault of the conductor by insulation,
An inner member made of an insulator directly connected to the conductor,
An outer member spaced apart so as to cover an outer peripheral portion of the inner member,
An insulator, comprising: a holding member disposed between the inner member and the outer member and holding a positional relationship by contacting the two members.
前記保持部材が接する前記外側部材及び前記内側部材のいずれかの壁面には、該保持部材を当て支えとめる拘束部が設けられてなることを特徴とする請求項1記載の絶縁碍子。2. The insulator according to claim 1, wherein a restraining portion for holding and supporting the holding member is provided on a wall surface of one of the outer member and the inner member with which the holding member contacts. 3. 前記保持部材は、前記内側部材の外周部を取り囲む螺旋構造体であることを特徴とする請求項1又は請求項2に記載の絶縁碍子。The insulator according to claim 1 or 2, wherein the holding member is a spiral structure surrounding an outer peripheral portion of the inner member. 前記保持部材は、板バネであることを特徴とする請求項1又は請求項2に記載の絶縁碍子。The insulator according to claim 1, wherein the holding member is a leaf spring. 前記内側部材は、この内部に流体を導通させる流路を備えてなることを特徴とする請求項1から請求項4のいずれか1項に記載の絶縁碍子。The insulator according to any one of claims 1 to 4, wherein the inner member is provided with a flow path for conducting a fluid therein. 前記内側部材は、芯線を有する高周波用ケーブルの先端に冠着されるとともに軸方向に前記芯線用の貫通孔を備えてなることを特徴とする請求項1から請求項4のいずれか1項に記載の絶縁碍子。The said inner member is mounted on the front-end | tip of the cable for high frequency which has a core, and is provided with the through-hole for the said core in the axial direction, The Claim 1 characterized by the above-mentioned. The insulator as described. 高周波用ケーブルに接続された電極を処理室内に備えるプラズマ処理装置において、
前記電極は、請求項1から請求項4のいずれか1項記載の絶縁碍子に支持されてなることを特徴とするプラズマ処理装置。
In a plasma processing apparatus including an electrode connected to a high-frequency cable in a processing chamber,
The plasma processing apparatus, wherein the electrode is supported by the insulator according to any one of claims 1 to 4.
高周波用ケーブルに接続されて処理室内にプラズマを発生させるとともに、該処理室内に設置された基板に対する製膜用ガスを供給するガス供給電極を有するプラズマ処理装置において、
前記ガス供給電極と前記製膜用ガスの供給ラインとは、請求項5に記載の絶縁碍子を介して接続されてなることを特徴とするプラズマ処理装置。
In a plasma processing apparatus having a gas supply electrode connected to a high-frequency cable to generate plasma in a processing chamber and supplying a film-forming gas to a substrate installed in the processing chamber,
A plasma processing apparatus, wherein the gas supply electrode and the film formation gas supply line are connected via the insulator according to claim 5.
高周波用ケーブルに接続された電極を有するプラズマ処理装置において、
前記高周波用ケーブルと前記電極とは、請求項6に記載の絶縁碍子を介して接続されてなることを特徴とするプラズマ処理装置。
In a plasma processing apparatus having an electrode connected to a high-frequency cable,
A plasma processing apparatus, wherein the high-frequency cable and the electrode are connected via the insulator according to claim 6.
JP2002243422A 2002-08-23 2002-08-23 Insulator and plasma processing apparatus equipped with it Pending JP2004087581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002243422A JP2004087581A (en) 2002-08-23 2002-08-23 Insulator and plasma processing apparatus equipped with it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002243422A JP2004087581A (en) 2002-08-23 2002-08-23 Insulator and plasma processing apparatus equipped with it

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005318128A Division JP4216279B2 (en) 2005-11-01 2005-11-01 Insulator and plasma processing apparatus having the same

Publications (1)

Publication Number Publication Date
JP2004087581A true JP2004087581A (en) 2004-03-18

Family

ID=32052188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002243422A Pending JP2004087581A (en) 2002-08-23 2002-08-23 Insulator and plasma processing apparatus equipped with it

Country Status (1)

Country Link
JP (1) JP2004087581A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124028A (en) * 2006-11-14 2008-05-29 Lg Electronics Inc Plasma generating device and method, and manufacturing method of plasma display device using it
JP2009290213A (en) * 2008-05-28 2009-12-10 Komico Co Ltd Apparatus for supporting substrate and apparatus for processing substrate including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124028A (en) * 2006-11-14 2008-05-29 Lg Electronics Inc Plasma generating device and method, and manufacturing method of plasma display device using it
JP2009290213A (en) * 2008-05-28 2009-12-10 Komico Co Ltd Apparatus for supporting substrate and apparatus for processing substrate including the same

Similar Documents

Publication Publication Date Title
KR101299496B1 (en) Ceramics heater and method for manufacturing the ceramics heater
TWI414038B (en) Stage unit for supporting a substrate and apparatus for processing a substrate including the same
TW575934B (en) A heating apparatus
JP5896595B2 (en) Two-layer RF structure wafer holder
US6242719B1 (en) Multiple-layered ceramic heater
JP5662341B2 (en) Plasma confinement structure in plasma processing system, plasma processing system and manufacturing method thereof
KR101299495B1 (en) Ceramics heater, heater power feeding component and method for manufacturing ceramics heater
KR20200119226A (en) High temperature electrode connections
KR102087640B1 (en) Ceramic heater
US20180053674A1 (en) Electrostatic chuck assembly and substrate processing apparatus including the same
KR100244955B1 (en) Electrode unit for cleaning thermal cvd system
JP4216279B2 (en) Insulator and plasma processing apparatus having the same
JP2004087581A (en) Insulator and plasma processing apparatus equipped with it
TWI405868B (en) Ground structure, and heater and chemical vapor deposition apparatus including the same
CN102577629A (en) Plasma generation device
JP3718093B2 (en) Semiconductor manufacturing equipment
KR20180034840A (en) Assembly for supporting a substrate
JP6911101B2 (en) Grounding clamp unit and board support assembly including it
JP2004011021A (en) Insulating member and plasma cvd system using the insulating member
JP2004356509A (en) Plasma treating apparatus
JP4511958B2 (en) Vacuum plasma processing apparatus with electrode connector
JP3372384B2 (en) Plasma CVD equipment
CN219886177U (en) Graphite boat assembly and vapor deposition apparatus
US11990322B2 (en) Ceramic susceptor
JP5324859B2 (en) Vacuum processing apparatus and film forming method using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040831

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Effective date: 20051101

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

A02 Decision of refusal

Effective date: 20061212

Free format text: JAPANESE INTERMEDIATE CODE: A02