JP2004085204A - Buckling inspection device and method - Google Patents

Buckling inspection device and method Download PDF

Info

Publication number
JP2004085204A
JP2004085204A JP2002242248A JP2002242248A JP2004085204A JP 2004085204 A JP2004085204 A JP 2004085204A JP 2002242248 A JP2002242248 A JP 2002242248A JP 2002242248 A JP2002242248 A JP 2002242248A JP 2004085204 A JP2004085204 A JP 2004085204A
Authority
JP
Japan
Prior art keywords
cylindrical object
light
imaging devices
color imaging
light sources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002242248A
Other languages
Japanese (ja)
Inventor
Hitoo Takada
高田 仁夫
Hiroyasu Kiri
桐 浩康
Jun Yamana
山名 潤
Kazuhiro Sakae
寒河江 一博
Shigehiro Yoshida
吉田 茂広
Akiro Hirasawa
平澤 彰朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAPPORO HOLDINGS Ltd
Marubeni Corp
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Original Assignee
SAPPORO HOLDINGS Ltd
Marubeni Corp
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAPPORO HOLDINGS Ltd, Marubeni Corp, Kurabo Industries Ltd, Kurashiki Spinning Co Ltd filed Critical SAPPORO HOLDINGS Ltd
Priority to JP2002242248A priority Critical patent/JP2004085204A/en
Publication of JP2004085204A publication Critical patent/JP2004085204A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To optically inspect the deformation of a cylindrical object from the reflected light from the object even if the inspected object has a pattern. <P>SOLUTION: This buckling inspection device comprises a plurality of light sources of different colors for generating linear illuminating light, and a plurality of image pickup devices for picking up the image of reflected light, reflected by the object, of the light emitted from the plurality of light sources. A pair of the plurality of light sources and the plurality of image pickup devices are arranged on one side with respect to the conveying direction of the cylindrical object, in a position where a plurality of specular reflected light from the same cylindrical object by the illuminating light from each light source are simultaneously photographed by the plurality of image pickup devices. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、検査対象物の変形の光学的検出に関するものである。
【0002】
【従来の技術】
従来から円筒状の検査対象物に光を照射してその変形(たとえば座屈)を検出する様々な手法が知られている。たとえばレーザー光線などを対象物に照射し、対象物からの反射光が正常であるか異常であるかにより、対象物が変形しているか否かを判断する。たとえば、図1に示すように、非常に指向性が強い光(スリット状レーザー光)を対象物に照射し、対象物からの反射光をカメラで撮像する。画像処理方式としては、種々の方式が採用されている。撮影した画像において、たとえば正常ならば直線的な画像が観察されるべき場合に、折れ線、曲線などが観察されると、対象物が変形していると判断できる。
【0003】
【発明が解決しようとする課題】
この光学的検査システムにおいて、カメラで撮像されるのは、検査対象物から反射された拡散反射光である。拡散反射光は、物体の色成分を多く含む光であるため、対象物に柄や模様がない場合は良好な結果が得られる。しかし、対象物に色柄がある場合、色柄の影響を強く受け、検査が困難になる。たとえば、直線的な画像が観察されるべき場合に、正常であるにもかかわらず、間欠的な線が観察されたりする。
【0004】
この発明の目的は、検査対象物に柄や模様がある場合にも、物体の反射光から円筒状対象物の変形を光学的に検査できるようにすることである。
【0005】
【課題を解決するための手段】
本発明に係る座屈検査装置は、ライン状の照明光を円筒状物体に照射する複数の異なる色の光源と、円筒状物体からの反射光を撮像する複数台のカラー撮像装置とからなる。前記の複数の光源と前記の複数台のカラー撮像装置の1組は、円筒状物体の搬送方向に対して一方の側に配置され、かつ、各光源と各カラー撮像装置は、1つの光源による同じ円筒状物体からの複数の鏡面反射光がそれぞれ前記の複数台のカラー撮像装置により撮影される位置に設置される。
【0006】
前記の座屈検査装置において、たとえば、前記の1組の複数の光源と複数台のカラー撮像装置が、円筒状物体の搬送方向の両側にそれぞれ配置できる。また、円筒状物体の搬送方向にそって、前記の複数の光源と複数台の撮像装置を1組として、複数組が配置できる。
【0007】
前記の座屈検査装置において、好ましくは、さらに、撮像装置から受け取った画像データを処理して円筒状物体の変形の検出を可能にする画像処理装置を備える。
【0008】
本発明に係る座屈検査方法では、ライン状の照明光を円筒状物体に照射する複数の異なる色の光源と、第1の所定位置にある円筒状物体からの反射光を撮像する複数台のカラー撮像装置との1組を、円筒状物体の搬送方向に対して一方の側に、かつ、各光源と各カラー撮像装置を、1つの光源による同じ円筒状物体からの複数の鏡面反射光がそれぞれ前記の複数台のカラー撮像装置により撮影される位置に設置する。次に、搬送されてくる円筒状物体が前記の第1の所定位置に達したときに、その円筒状物体からの鏡面反射光を前記の複数台の撮像装置により撮影する。
【0009】
前記の座屈検査方法において、さらに、前記の第1の所定位置の下流側の第2の所定位置にある円筒状物体について、ライン状の照明光を円筒状物体に照射する複数の異なる色の光源と、円筒状物体からの反射光を撮像する複数台のカラー撮像装置との他の1組を、円筒状物体の搬送方向に対して一方の側に、各光源により照射されたその円筒状物体からの複数の鏡面反射光がそれぞれ前記の複数台のカラー撮像装置により撮影される位置に設置する。そして、前記の第1の所定位置からさらに搬送されていく前記の円筒状物体を回転し、回転された円筒状物体が前記の第2の所定位置に達したときに、その円筒状物体からの鏡面反射光を前記の複数台の撮像装置により撮影する。
【0010】
【発明の実施の形態】
以下、添付の図面を参照して発明の実施の形態を説明する。
この発明の座屈検査装置では、円筒状の検査対象物に光を照射し、その鏡面反射光をカメラで撮像して、対象物の変形を検査する。図2は、発明の1つの実施の形態の座屈検査装置を図式的に示す。このシステムでは、赤(R)、緑(G)、青(B)の各2個のカラー光源10r、10g、10bから異なる色のライン状の拡散照明光を、円筒状の検査対象物12に照射する。光源10としては、ライン状の蛍光灯、LED、光ファイバなどを用いる。検査対象物12はコンベアベルト14の上を搬送されてくる。図2に示す光学系はコンベアベルト14の搬送方向の一方の側に設置される。カラー光源10により対象物12を拡散照明光で照射すると、照明光は対象物12から多方向に反射される。反射光は、鏡面反射光と拡散反射光からなる。光源10、カメラ18および検査対象物12との幾何学的位置関係で定まる光路を進む鏡面反射光のみが反射ミラー16で反射されてカメラ18に入射する。2台のカメラ18からの画像データは画像処理装置20に読み込まれる。画像処理装置20は、コンピュータであり、公知の画像分析手法で入力画像をもとに検査を行う。ここでは、画像処理装置20については詳細な説明は省略する。カメラ18で撮像した画像は、対象物12からの鏡面反射光による画像であり、鏡面反射光は光源10の光そのものであるので、対象物12自体の色(物体の表面に形成した色柄など)の影響を受けにくい。したがって、対象物12が色柄印刷物であっても原理的に有効に変形を検出できる。
【0011】
対象物24の表面形状の広い範囲を検査するため、多数(この例では6個)のカラー光源10で対象物12を照射し、検査対象物12からの鏡面反射光を搬送方向の上流側と下流側に設置した反射ミラー16で反射し、2台のカラーカメラ18で撮像する。複数の光源10と2台のカラーカメラ18は、光源10、カメラ18および検査対象物12との幾何学的位置関係で定まる光路を進む鏡面反射光が各カメラ18に同時に入射する位置に設置される。カラー光源10は、同じ照明光の光源が隣接しないように配置する。各光源10からの拡散照明光による2つの鏡面反射光が対象物12の表面上の異なる位置から反射して2台のカメラ18に入射する。この例では、2台のカメラ18と物体12のなす角度は120°とし、幾何学的計算により6個の光源10の位置を決定している。しかし、カメラのなす角度や光源の数はこれには限定されない。また、カメラの台数(したがって反射ミラーの数)も2台には限られない。
【0012】
図3では、1台のカラーカメラ18の映像を模式的に示す。この映像では、異なる色の光源10からライン状の鏡面反射光(輝線)が、照明光の色に対応して赤、緑、青の順番に並んでいる。この輝線がライン状でなければ変形が生じたと判断できる。
【0013】
図4に示すように、実際には、図2に示した1組の光学系が、検査対象物12を挟んで、コンベアベルトの両側にそれぞれ設置される。これにより、検査対象物12の外形の広い範囲を検査できる。対象物12は、コンベアベルト14の上を両側のガイド15の間で搬送されていくが、ガイド15は、照明光と鏡面反射光を妨げる位置には設置されない。対象物24が、コンベア上を移動していくと、光源10、対象物12およびカラーカメラ18の幾何学的位置関係によりカラーカメラに鏡面反射光が入射する第1の撮像位置に達する。ここで、4台のカメラ18は、第1の撮像位置で、鏡面反射光を撮像する。画像処理装置20は、4台のカメラ18からの画像データをそれぞれ読み込む。
【0014】
対象物がコンベアベルト14の上をさらに搬送されると、回転機構22により回転される。この例では、回転機構22は、検査対象物12が接触する接触板である。これに接触することにより約90°回転される。さらに、対象物24が、コンベア上を移動していくと、光源10、対象物12およびカラーカメラ18の幾何学的位置関係によりカラーカメラに鏡面反射光が入射する第2の撮像位置に達する。第2の撮像位置の両側にも、図2で示した1組の光学系が設置されていて、同様に鏡面反射光が撮像される。こうして、検査対象物を回転して複数回撮像することにより、検査対象物12の外形状の全周を撮影でき、その外形を検査できる。
【0015】
【発明の効果】
鏡面反射光を撮像するので、円筒状の物体自体の色成分の影響を受けずに検査ができる。また、色の異なる複数のカラー光源を用いるので、鏡面反射光とともに撮影される拡散反射光の影響を小さくできる。
さらに、撮像装置に画像処理装置を接続することにより、画像データを処理して物体の変形を検出できる。
【図面の簡単な説明】
【図1】拡散反射光を用いた座屈検査装置の図
【図2】鏡面反射光を用いた座屈検査装置の図
【図3】カメラの映像を模式的に示す図
【図4】鏡面反射光を用いた別の座屈検査装置の図
【符号の説明】
10r、10g、10b ライン状の赤、緑、青のカラー光源、  12 検査対象物、  14 コンベアベルト、  16 反射ミラー、  18 カラーカメラ、  20 画像処理装置。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to optical detection of deformation of an inspection object.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, various methods for irradiating a cylindrical inspection object with light to detect its deformation (for example, buckling) have been known. For example, the object is irradiated with a laser beam or the like, and whether the object is deformed is determined based on whether the reflected light from the object is normal or abnormal. For example, as shown in FIG. 1, light having a very strong directivity (slit-shaped laser light) is applied to an object, and reflected light from the object is imaged by a camera. Various methods have been adopted as image processing methods. In a captured image, for example, if a normal image should be observed if it is normal, and if a broken line, a curve, or the like is observed, it can be determined that the object is deformed.
[0003]
[Problems to be solved by the invention]
In this optical inspection system, what is imaged by the camera is the diffuse reflection light reflected from the inspection object. The diffuse reflection light is light containing a large amount of color components of the object, and therefore, a good result can be obtained when the target object has no pattern or pattern. However, if the target object has a color pattern, the inspection is strongly affected by the color pattern, making inspection difficult. For example, when a linear image is to be observed, an intermittent line may be observed despite being normal.
[0004]
SUMMARY OF THE INVENTION It is an object of the present invention to optically inspect the deformation of a cylindrical object from reflected light of the object even when the object to be inspected has a pattern or pattern.
[0005]
[Means for Solving the Problems]
A buckling inspection device according to the present invention includes a plurality of light sources of different colors for irradiating a cylindrical object with linear illumination light, and a plurality of color imaging devices for imaging reflected light from the cylindrical object. One set of the plurality of light sources and the plurality of color imaging devices is disposed on one side with respect to the transport direction of the cylindrical object, and each light source and each color imaging device are provided by one light source. A plurality of specularly reflected lights from the same cylindrical object are installed at positions where the plurality of color image pickup devices respectively photograph the same.
[0006]
In the buckling inspection device, for example, the set of the plurality of light sources and the plurality of color imaging devices can be respectively disposed on both sides in the transport direction of the cylindrical object. A plurality of light sources and a plurality of imaging devices can be arranged as one set along the transport direction of the cylindrical object.
[0007]
The buckling inspection device preferably further includes an image processing device that processes the image data received from the imaging device and enables detection of deformation of the cylindrical object.
[0008]
In the buckling inspection method according to the present invention, a plurality of light sources of different colors for irradiating the cylindrical object with linear illumination light, and a plurality of cameras for imaging reflected light from the cylindrical object at the first predetermined position are provided. One set of the color imaging device is placed on one side with respect to the transport direction of the cylindrical object, and each light source and each color imaging device are connected to a plurality of specularly reflected lights from the same cylindrical object by one light source. Each is installed at a position where the image is captured by the plurality of color imaging devices. Next, when the conveyed cylindrical object reaches the first predetermined position, the plurality of imaging devices photograph the specularly reflected light from the cylindrical object.
[0009]
In the buckling inspection method, further, for a cylindrical object at a second predetermined position on the downstream side of the first predetermined position, a plurality of different colors for irradiating the cylindrical object with linear illumination light. Another set of a light source and a plurality of color imaging devices for imaging the reflected light from the cylindrical object, the cylindrical shape irradiated by each light source on one side with respect to the transport direction of the cylindrical object. A plurality of specularly reflected lights from the object are installed at positions where the plurality of color image pickup devices respectively photograph the plurality of specularly reflected lights. Then, the cylindrical object further conveyed from the first predetermined position is rotated, and when the rotated cylindrical object reaches the second predetermined position, the cylindrical object is moved from the cylindrical object. The specular reflected light is photographed by the plurality of imaging devices.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
In the buckling inspection apparatus according to the present invention, light is irradiated to a cylindrical inspection object, and the mirror-reflected light is imaged by a camera to inspect the deformation of the object. FIG. 2 schematically shows a buckling inspection apparatus according to one embodiment of the present invention. In this system, two different color light sources 10r, 10g, and 10b, each of red (R), green (G), and blue (B), apply linear diffused illumination light of a different color to the cylindrical inspection object 12. Irradiate. As the light source 10, a linear fluorescent lamp, an LED, an optical fiber, or the like is used. The inspection object 12 is conveyed on the conveyor belt 14. The optical system shown in FIG. 2 is installed on one side of the conveyor belt 14 in the transport direction. When the object 12 is irradiated with diffuse illumination light by the color light source 10, the illumination light is reflected from the object 12 in multiple directions. The reflected light includes specular reflected light and diffuse reflected light. Only specularly reflected light traveling along an optical path determined by the geometrical positional relationship between the light source 10, the camera 18, and the inspection object 12 is reflected by the reflection mirror 16 and enters the camera 18. Image data from the two cameras 18 is read into the image processing device 20. The image processing device 20 is a computer, and performs inspection based on an input image by a known image analysis technique. Here, a detailed description of the image processing device 20 is omitted. The image picked up by the camera 18 is an image formed by specular reflection light from the object 12, and the specular reflection light is the light of the light source 10 itself, so the color of the object 12 itself (color pattern formed on the surface of the object, etc.) ). Therefore, even if the object 12 is a printed color pattern, deformation can be detected in principle and effectively.
[0011]
In order to inspect a wide range of the surface shape of the object 24, the object 12 is irradiated with a large number (six in this example) of color light sources 10, and the specular reflected light from the inspection object 12 is transmitted to the upstream side in the transport direction. The light is reflected by a reflection mirror 16 installed on the downstream side, and is imaged by two color cameras 18. The plurality of light sources 10 and the two color cameras 18 are installed at positions where specular reflected light traveling along an optical path determined by the geometrical positional relationship between the light sources 10, the camera 18 and the inspection object 12 simultaneously enters each camera 18. You. The color light sources 10 are arranged so that light sources of the same illumination light do not adjoin each other. Two specularly reflected lights by the diffuse illumination light from each light source 10 are reflected from different positions on the surface of the object 12 and are incident on two cameras 18. In this example, the angle between the two cameras 18 and the object 12 is 120 °, and the positions of the six light sources 10 are determined by geometric calculation. However, the angle formed by the camera and the number of light sources are not limited thereto. Further, the number of cameras (therefore, the number of reflection mirrors) is not limited to two.
[0012]
FIG. 3 schematically shows an image of one color camera 18. In this image, linear specularly reflected light (bright lines) from light sources 10 of different colors are arranged in the order of red, green, and blue corresponding to the color of the illumination light. If this bright line is not linear, it can be determined that deformation has occurred.
[0013]
As shown in FIG. 4, actually, one set of optical systems shown in FIG. 2 is installed on both sides of the conveyor belt with the inspection object 12 interposed therebetween. Thereby, a wide range of the outer shape of the inspection object 12 can be inspected. The object 12 is conveyed between the guides 15 on both sides of the conveyor belt 14, but the guide 15 is not installed at a position where the illumination light and the specular reflected light are blocked. When the object 24 moves on the conveyor, the object 24 reaches a first imaging position where specularly reflected light is incident on the color camera due to the geometric positional relationship between the light source 10, the object 12, and the color camera 18. Here, the four cameras 18 capture the specular reflected light at the first capturing position. The image processing device 20 reads image data from the four cameras 18 respectively.
[0014]
When the object is further conveyed on the conveyor belt 14, the object is rotated by the rotation mechanism 22. In this example, the rotation mechanism 22 is a contact plate with which the inspection object 12 contacts. By touching this, it is rotated about 90 °. Further, as the object 24 moves on the conveyor, the object 24 reaches the second imaging position where the specularly reflected light is incident on the color camera due to the geometric positional relationship between the light source 10, the object 12, and the color camera 18. A set of optical systems shown in FIG. 2 is also installed on both sides of the second imaging position, and similarly, specular reflected light is imaged. In this way, by rotating the inspection target and imaging a plurality of times, the entire circumference of the outer shape of the inspection target 12 can be photographed, and the outer shape can be inspected.
[0015]
【The invention's effect】
Since the specular reflected light is imaged, the inspection can be performed without being affected by the color components of the cylindrical object itself. In addition, since a plurality of color light sources having different colors are used, the influence of diffuse reflected light captured together with specular reflected light can be reduced.
Furthermore, by connecting the image processing device to the imaging device, it is possible to process the image data and detect the deformation of the object.
[Brief description of the drawings]
FIG. 1 is a diagram of a buckling inspection device using diffuse reflection light. FIG. 2 is a diagram of a buckling inspection device using specular reflection light. FIG. 3 is a diagram schematically showing an image of a camera. Diagram of another buckling inspection device using reflected light [Explanation of symbols]
10r, 10g, 10b Linear red, green, and blue color light sources, 12 inspection objects, 14 conveyor belts, 16 reflection mirrors, 18 color cameras, 20 image processing devices.

Claims (5)

ライン状の照明光を円筒状物体に照射する複数の異なる色の光源と、
円筒状物体からの反射光を撮像する複数台のカラー撮像装置とからなり、
前記の複数の光源と前記の複数台のカラー撮像装置の1組は、円筒状物体の搬送方向に対して一方の側に配置され、かつ、各光源と各カラー撮像装置は、1つの光源による同じ円筒状物体からの複数の鏡面反射光がそれぞれ前記の複数台のカラー撮像装置により撮影される位置に設置される
座屈検査装置。
A plurality of light sources of different colors for illuminating a cylindrical object with linear illumination light,
Consists of a plurality of color imaging devices that image reflected light from a cylindrical object,
One set of the plurality of light sources and the plurality of color imaging devices is disposed on one side with respect to the transport direction of the cylindrical object, and each light source and each color imaging device are provided by one light source. A buckling inspection device installed at a position where a plurality of specularly reflected lights from the same cylindrical object are respectively imaged by the plurality of color imaging devices.
前記の1組の複数の光源と複数台のカラー撮像装置が、円筒状物体の搬送方向にそって両側にそれぞれ配置されていることを特徴とする請求項1に記載された座屈検査装置。The buckling inspection device according to claim 1, wherein the one set of a plurality of light sources and the plurality of color imaging devices are arranged on both sides along a conveying direction of the cylindrical object. さらに、前記のカラー撮像装置から受け取った画像データを処理して前記の円筒状物体の変形の検出を可能にする画像処理装置を備えることを特徴とする請求項1または2に記載された座屈検査装置。3. The buckling device according to claim 1, further comprising an image processing device configured to process image data received from the color imaging device and detect a deformation of the cylindrical object. Inspection equipment. ライン状の照明光を円筒状物体に照射する複数の異なる色の光源と、第1の所定位置にある円筒状物体からの反射光を撮像する複数台のカラー撮像装置との1組を、円筒状物体の搬送方向に対して一方の側に、かつ、各光源と各カラー撮像装置を、1つの光源による同じ円筒状物体からの複数の鏡面反射光がそれぞれ前記の複数台のカラー撮像装置により撮影される位置に設置し、搬送されてくる円筒状物体が前記の第1の所定位置に達したときに、その円筒状物体からの鏡面反射光を前記の複数台の撮像装置により撮影する
座屈検査方法。
A set of a plurality of light sources of different colors for irradiating a cylindrical object with line-shaped illumination light and a plurality of color imaging devices for imaging reflected light from the cylindrical object at a first predetermined position, On one side with respect to the conveying direction of the object, and each light source and each color imaging device, a plurality of specularly reflected lights from the same cylindrical object by one light source are respectively provided by the plurality of color imaging devices. A seat that is installed at a position where an image is captured and captures mirror-reflected light from the cylindrical object by the plurality of imaging devices when the conveyed cylindrical object reaches the first predetermined position. Crook inspection method.
さらに、前記の第1の所定位置の下流側の第2の所定位置にある円筒状物体について、ライン状の照明光を円筒状物体に照射する複数の異なる色の光源と、円筒状物体からの反射光を撮像する複数台のカラー撮像装置との他の1組を、円筒状物体の搬送方向に対して一方の側に、各光源により照射されたその円筒状物体からの複数の鏡面反射光がそれぞれ前記の複数台のカラー撮像装置により撮影される位置に設置し、
前記の第1の所定位置からさらに搬送されていく前記の円筒状物体を回転し、回転された円筒状物体が前記の第2の所定位置に達したときに、その円筒状物体からの鏡面反射光を前記の複数台の撮像装置により撮影する
請求項4に記載された座屈検査方法。
Further, for a cylindrical object at a second predetermined position downstream of the first predetermined position, a plurality of light sources of different colors for irradiating the cylindrical object with linear illumination light, Another pair of a plurality of color imaging devices for imaging the reflected light is provided on one side with respect to the transport direction of the cylindrical object, and a plurality of specularly reflected lights from the cylindrical object illuminated by the respective light sources on one side. Is installed at a position where each of the plurality of color imaging devices is photographed,
Rotating the cylindrical object further conveyed from the first predetermined position, and when the rotated cylindrical object reaches the second predetermined position, the specular reflection from the cylindrical object The buckling inspection method according to claim 4, wherein the light is photographed by the plurality of imaging devices.
JP2002242248A 2002-08-22 2002-08-22 Buckling inspection device and method Pending JP2004085204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242248A JP2004085204A (en) 2002-08-22 2002-08-22 Buckling inspection device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242248A JP2004085204A (en) 2002-08-22 2002-08-22 Buckling inspection device and method

Publications (1)

Publication Number Publication Date
JP2004085204A true JP2004085204A (en) 2004-03-18

Family

ID=32051389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242248A Pending JP2004085204A (en) 2002-08-22 2002-08-22 Buckling inspection device and method

Country Status (1)

Country Link
JP (1) JP2004085204A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007056090A1 (en) 2005-11-02 2007-05-18 Siemens Energy & Automation, Inc. Illuminator-especially for cylindrical curved surfaces
US7792419B2 (en) 2005-11-02 2010-09-07 Microscan Systems, Inc. Illuminator-especially for cylindrical curved surfaces
JP2010256275A (en) * 2009-04-28 2010-11-11 Visco Technologies Corp Shape inspection apparatus and shape inspection program
WO2013008789A1 (en) * 2011-07-14 2013-01-17 住友化学株式会社 Method for inspecting honeycomb structure, method for manufacturing honeycombed-structured body, and device for inspecting honeycomb structure
JP2015081838A (en) * 2013-10-23 2015-04-27 東洋製罐株式会社 Inspection apparatus for can with dent or buckling
CN109931892A (en) * 2019-03-30 2019-06-25 廊坊华安汽车装备有限公司 A kind of canister buckle structure detection method and system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007056090A1 (en) 2005-11-02 2007-05-18 Siemens Energy & Automation, Inc. Illuminator-especially for cylindrical curved surfaces
US7792419B2 (en) 2005-11-02 2010-09-07 Microscan Systems, Inc. Illuminator-especially for cylindrical curved surfaces
JP2010256275A (en) * 2009-04-28 2010-11-11 Visco Technologies Corp Shape inspection apparatus and shape inspection program
WO2013008789A1 (en) * 2011-07-14 2013-01-17 住友化学株式会社 Method for inspecting honeycomb structure, method for manufacturing honeycombed-structured body, and device for inspecting honeycomb structure
JP2015081838A (en) * 2013-10-23 2015-04-27 東洋製罐株式会社 Inspection apparatus for can with dent or buckling
CN109931892A (en) * 2019-03-30 2019-06-25 廊坊华安汽车装备有限公司 A kind of canister buckle structure detection method and system
CN109931892B (en) * 2019-03-30 2021-03-05 廊坊华安汽车装备有限公司 Carbon tank buckle structure detection method

Similar Documents

Publication Publication Date Title
JP3709426B2 (en) Surface defect detection method and surface defect detection apparatus
US6437312B1 (en) Illumination for inspecting surfaces of articles
TWI642930B (en) Lighting unit, defects inspection device and lighting method
CN112469992A (en) Surface defect inspection apparatus and inspection method using image sensor
JP5542367B2 (en) Visual inspection device and optical device for visual inspection
JP2019117104A (en) Inspection system
JP2008026060A (en) Flaw inspection device of insulating film covered belt-like body
JP2004085204A (en) Buckling inspection device and method
JP2006105816A (en) Article inspecting device and article inspection method
CN112198162A (en) Appearance inspection device
KR20080091048A (en) Multiple surface inspection system and method
JP2014098676A (en) Apparatus for imaging both end surfaces and method of imaging both end surfaces
JPH0882602A (en) Method and apparatus for inspecting fault of plate glass
JP7448808B2 (en) Surface inspection device and surface inspection method
JP5540186B2 (en) Container label inspection equipment
JP2000161937A (en) Surface inspection device for cylindrical object
JPH03122556A (en) Method and apparatus of checking translucent sheet-like material
KR101280569B1 (en) Apparatus for inspecting substrate
JP2017150992A (en) Inspection device and inspection method
JP4564225B2 (en) Optical inspection apparatus and method
JP2001074666A (en) Foreign matter inspecting apparatus
RU2810913C1 (en) Device for surface control, surface control method, method for manufacturing steel material, method for sorting steel material, production equipment for manufacturing steel material
JPS6166952A (en) Inspecting method of outward surface of article
JPH10185828A (en) Method and device for inspecting defect of transparent flat body surface
JP2002014058A (en) Method and apparatus for checking

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A711 Notification of change in applicant

Effective date: 20071116

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Effective date: 20071116

Free format text: JAPANESE INTERMEDIATE CODE: A821

A131 Notification of reasons for refusal

Effective date: 20080826

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20081224

Free format text: JAPANESE INTERMEDIATE CODE: A02