JP2004085179A - Multi-air conditioner and operation control method of outdoor fan - Google Patents

Multi-air conditioner and operation control method of outdoor fan Download PDF

Info

Publication number
JP2004085179A
JP2004085179A JP2003114318A JP2003114318A JP2004085179A JP 2004085179 A JP2004085179 A JP 2004085179A JP 2003114318 A JP2003114318 A JP 2003114318A JP 2003114318 A JP2003114318 A JP 2003114318A JP 2004085179 A JP2004085179 A JP 2004085179A
Authority
JP
Japan
Prior art keywords
pipe
refrigerant
gas
rooms
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003114318A
Other languages
Japanese (ja)
Other versions
JP4391759B2 (en
Inventor
Jon Han Paku
パク ジョン ハン
Young Min Park
パク ヨン ミ
Chang Seon Lee
イ チャン ション
Sung Oh Choi
チェ ション オ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of JP2004085179A publication Critical patent/JP2004085179A/en
Application granted granted Critical
Publication of JP4391759B2 publication Critical patent/JP4391759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02791Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using shut-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0294Control issues related to the outdoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-air conditioner capable of simultaneously performing heating and cooling according to the characteristic of each room. <P>SOLUTION: This multi-air conditioner comprises an an outdoor unit having an outdoor heat exchanger and a gas-liquid separator connected to the discharge side of the outdoor heat exchanger to separate the coolant carried from the exchanger to a gas phase coolant and a liquid phase coolant; an indoor unit having an indoor heat exchanger and an electric expansion valve, which is provided in each of a plurality of rooms; a distributor for circulating the gas phase coolant carried from the outdoor unit to the indoor heat exchanger of the indoor unit which performs heating, and circulating the liquid phase coolant carried from the outdoor unit to the electric expansion valve of the indoor unit which performs heating; and a coolant pipe having a plurality of check valves and solenoid valves for connecting each component to control the route of the coolants. When heating and cooling are independently performed for every room, the coolant liquefied via the indoor unit which performs heating is recirculated to the electric expansion valve of the indoor unit which performs cooling and then circulated to the outdoor unit. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はマルチ空気調和機に関する。
【0002】
【従来の技術】
一般に、空気調和機は、住居空間、レストランまたは事務室などの室内空間を冷房または暖房するための装置である。
このような空気調和機では、近時、複数の室に区画された室内空間をより効率的に冷暖房するためのマルチ空気調和機の開発が行われている。そして、マルチ空気調和機は、一般に、一台の室外機に複数の室内機が連結され、各室に複数の室内機の各々を設置する形態をとり、冷房または暖房の何れかの運転モードで動作しながら室内を冷暖房する。
【0003】
【発明が解決しようとする課題】
然しながら、複数の室の一の室を暖房し、他の室を冷房することが必要な場合でも、冷房モードまたは暖房モードで一律に運転されるため、こうした要求に適切に対応することができない。
【0004】
例えば、ビルでは、各室の位置や時間に応じて温度差が発生することがあり、ビルの北側の室内では暖房が必要となり、南側の室内では冷房が必要となる場合、一つのモードで運転されている従来のマルチ空気調和機では、こうした要求に適切に対応できないという限界がある。
【0005】
また、ビルに電算室が備えられている場合には、夏だけでなく、冬にも電算設備の発熱負荷の問題を解決するために冷房が必要となり、このような要求に機器が適切に対応することができない。
【0006】
このため、機器動作中において同時に各室を個別的に空気調和できるマルチ空気調和機、つまり、暖房を要する室内に設置された室内機が暖房モードで運転すると同時に、冷房を要する他の室内に設置された室内機が冷房モードで運転可能な冷暖房同時型のマルチ空気調和機の開発が要求されている。
【0007】
そこで、本発明の目的は、各室の要求に合わせて暖房と冷房とを同時に行なうことのできるマルチ空気調和機を提供することである。
本発明の他の目的は、分配器の重さを低減して容易に設置できるようにすることにある。
【0008】
本発明の更に他の目的は、全室を冷房する運転と、多数室を冷房し且つ少数室を暖房する運転とで気液分離器に流入する冷媒の気液混合比を最適化して、空気調和効率を向上させられるマルチ空気調和機の室外ファン運転制御方法を提供することである。
【0009】
【課題を解決するための手段】
上記目的を達成するために本発明によるマルチ空気調和機は、室外熱交換機と、前記室外熱交換機の吐出側に連結されて前記室外熱交換機から流入した冷媒を各々気相冷媒と液相冷媒とに分離して各々吐き出す気液分離器が備えられた室外機と、室内熱交換機と電気膨張弁が各々備えられ複数の室内の各々に設けられる室内機と、前記室外機と前記室内機との間に連結され、室外機から流入した気相冷媒は暖房を行う室内機の室内熱交換機へ流動させ、室外機から流入した液相冷媒は暖房を行う室内機の電気膨張弁へ流動させ、室内機を経由した冷媒を更に室外機に流動させるものの各室毎に暖房と冷房を個別的に行う場合には、前記暖房を行う室内機を経由しつつ液化された冷媒を前記冷房を行う室内機の電気膨張弁へ再び流動させた後前記室外機に流動させる分配器と、前記各構成要素などを連結し、冷媒の流路を制御する複数の逆止弁とソレノイド弁が設けられた冷媒配管とを具備する。
【0010】
前記室外熱交換機を経て前記気液分離器に流入する冷媒の気液混合比が、各々運転条件に沿って適切に調節されるように前記室外ファンの回転数を制御する制御手段を具備することが望ましい。
【0011】
前記制御手段は、配管に設けられて前記室外熱交換機から吐き出された冷媒の温度を測定する温度センサー、前記温度センサーにより測定した冷媒温度と既に設定した冷媒温度を比較して配管内の冷媒混合比を検出し、検出された混合比が各運転条件において必要とする予め設定された混合比に等しくなるように前記室外ファンの回転数を制御するマイクロコンピュータを具備することが望ましい。
【0012】
前記室外機は、圧縮機、室外ファンおよび室外熱交換機、室外機電気膨張弁、気液分離器、アキュームレータ、および、前記各構成要素を連結し、複数の逆止弁とソレノイド弁が設けられた室外機配管を具備することが望ましい。
【0013】
前記室外機配管は、前記圧縮機と前記室外熱交換機を連結する吐出管と、前記室外熱交換機と前記気液分離器を連結する補助管と、前記補助管の一方から分岐した後更に合流する並列管と、前記気液分離器の上部と前記分配器とを連結する気相冷媒管と、前記気液分離器の下部と前記分配器とを連結する液相冷媒管と、前記分配器と前記圧縮機とを連結する吸入管と、前記吐出管と前記気相冷媒管を連結する第1バイパス管と、前記第1バイパス管と前記室外熱交換機との間の位置の吐出管と前記吸入管とを連結する第2バイパス管とを具備することが望ましい。
【0014】
前記吐出管において前記第1バイパス管と前記第2バイパス管との間に第1ソレノイド弁を設けることが望ましく、前記第1ソレノイド弁は全室を冷房する運転および多数室を冷房し且つ少数室を暖房する運転において開放し、全室を冷房する運転および多数室を暖房し且つ少数室を冷房する運転において閉鎖するように制御されることが望ましい。
【0015】
前記第1バイパス管に第2ソレノイド弁を設けることが望ましく、前記第2ソレノイド弁は、全室を冷房する運転および多数室を冷房し且つ少数室を暖房する運転において閉鎖し、全室を暖房する運転および多数室を暖房し少数室を冷房する運転において開放するように制御されることが望ましい。
【0016】
前記第2バイパス管に第3ソレノイド弁を設けることが望ましく、前記第3ソレノイド弁は、全室を冷房する運転および多数室を冷房し且つ少数室を暖房する運転において閉鎖し、全室を暖房する運転および多数室を暖房し且つ少数室を冷房する運転において開放するように制御されることが望ましい。
【0017】
前記並列管が分岐する位置と、合流する位置との間の補助管には、気液分離器から室外熱交換機への冷媒の流動を防止する第1逆止弁を設けることが望ましい。
【0018】
前記室外機の電気膨張弁は前記並列管に設けることが望ましく、前記室外機電気膨張弁は全室を冷房する運転および多数室を冷房し且つ少数室を暖房する運転において閉鎖し、全室を暖房する運転および多数室を暖房し且つ少数室を冷房する運転において機能するように制御されることが望ましい。
【0019】
前記気液分離器と前記第1バイパス管との間の位置の気相冷媒管には、前記第1バイパス管のから前記気液分離器への冷媒の流動を防止する第2逆止弁を設けることが望ましい。
【0020】
前記アキュームレータは前記吸入管に設けることが望ましく、前記分配器は、前記気相冷媒管または液相冷媒管を介して流入した気相または液相の冷媒を室内機へ案内し、室内機を経由した冷媒を更に前記室外機へ案内する分配器配管と、各運転条件によって各室の室内機へ選択的に気相または液相の冷媒を流入させ、室内機を経由した冷媒を室外機へ再案内するように前記分配器配管内の冷媒の流れを制御する弁部とを具備することが望ましい。
【0021】
前記分配器の配管は、前記気相冷媒管に連結される気相冷媒連結管と、前記気相冷媒管から分岐し、各室の室内機の室内熱交換機にそれぞれ連結される気相冷媒分岐管と、前記液相冷媒管に連結される液相冷媒連結管と、前記液相冷媒管から分岐し、各室の室内機の電気膨張弁にそれぞれ連結される液相冷媒分岐管と、前記各気相冷媒分岐管から分岐する連結分岐管と、前記各連結分岐管を一つに集合し前記吸入管に連結される集合管とを具備することが望ましい。
【0022】
前記弁部は、前記各気相冷媒分岐管、前記各液相冷媒分岐管、前記各連結分岐管にそれぞれ設けられて制御される複数のソレノイド弁を具備することが望ましい。
【0023】
前記分配器の弁部は、暖房を行う室内機側の冷媒連結管に設けられたソレノイド弁と、冷房を行う室内機側の気相冷媒分岐管に設けられたソレノイド弁でのみ閉鎖するように制御されることが望ましい。
【0024】
前記暖房を行う室内機の電気膨張弁は全開することが望ましく、前記冷房を行う室内機の電気膨張弁は冷媒が膨張するように制御することが望ましい。
【0025】
前記逆止弁とソレノイド弁は全室を冷房する運転と、全室を暖房する運転、多数室を冷房し且つ少数室を暖房する運転と、多数室を暖房し且つ少数室を冷房運転条件別にそれぞれ異なるように冷媒の流れを制御することが望ましい。
【0026】
前記全室を冷房する運転において、前記逆止弁およびソレノイド弁は前記圧縮機から吐き出された全量が室外熱交換機、気液分離器、分配器、電気膨張弁、室内熱交換機、分配器を順次に経由した後、圧縮機に流入するように制御されることが望ましい。
【0027】
前記全室を暖房する運転において、前記逆止弁およびソレノイド弁は前記圧縮機から吐き出された冷媒の全量が第1バイパス管、分配器、室内熱交換機、電気膨張弁、分配器、気液分離器、室外機電気膨張弁、室外熱交換機を順次に経由した後、第2バイパス管を通じて圧縮機に流入するように制御されることが望ましい。
【0028】
前記多数室を冷房し且つ少数室を暖房する運転において、前記逆止弁および前記ソレノイド弁は圧縮機から吐き出された冷媒が室外熱交換機と気液分離器に流入した後、液相冷媒は分配器、冷房室の電気膨張弁、冷房室の室内熱交換機、分配器を順次に経由した後に前記圧縮機に流入しるように制御し、気相冷媒は分配器、暖房室の室内熱交換機、暖房室の電気膨張弁を経由した後に前記分配器の内で前記液相冷媒と合流して冷房室の電気膨張弁、冷房室の室内熱交換機、前記分配器を経て前記圧縮機に流入するように制御されることが望ましい。
【0029】
前記多数室を冷房し且つ少数室を暖房する運転において、前記逆止弁および前記ソレノイド弁は圧縮機から吐き出された冷媒の全量が第1バイパス管を通じて分配器に流入し、暖房室の室内熱交換機、暖房室の電気膨張弁を経由して分配器に再流入した後、冷媒の一部は冷房すべき室の電気膨張弁と冷房室の室内熱交換機および分配器を経て圧縮機に流入し、冷媒の残りの部分は気液分離器、室外機電気膨張弁、室外熱交換機を経由した後、第2バイパス管を通じて圧縮機に流入するように制御されることが望ましい。
【0030】
また、本発明の他の実施形態において、マルチ空気調和機の室外ファンの運転制御方法は、室外熱交換機から吐出される気液混合冷媒の温度を測定する段階と、前記測定された冷媒温度と予め設定された冷媒温度とを比較して冷媒の気液混合比を検出する段階と、前記検出された気液混合比は、該当運転条件に必要な予め設定された混合比に一致するように室外ファンの回転数を変化させる段階とを含むことを特徴が望ましい。
【0031】
【発明の実施の形態】
以下、本発明の実施形態を添付の図面に基づいて詳細に説明する。
本発明の一形態による空気調和機は、図1に示すように、室外機A、分配器Bおよび複数の室内機C1、C2、C3を含み、全室を冷房する運転、全室を暖房する運転、多数室を冷房し且つ少数室を暖房する運転、多数室を暖房し且つ少数室を冷房する運転など各種運転条件に従って、各室内機C1、C2、C3が設置された各室の内部の空間を独立的にそれぞれ冷暖房するように構成されており、その一実施形態の詳細な構成を図1に基づいて説明する。
【0032】
説明の便宜のために、後述する符号22は22a、22b、22cを、24は24a、24b、24cを、25は25a、25b、25cを、31は31a、31b、31cを、61は61a、61b、61cを、62は62a、62b、62cを、CはC1、C2、C3を示す。そして、各室の個数が変化することにより、室内機Cの個数およびこれと連関した各構成要素の個数も共に変化することは当然であり、本明細書では説明の便宜のため三室を有する場合を一例として説明する。
【0033】
まず、室外機Aは圧縮機1、室外熱交換機2、室外ファン2a、気液分離器3、室外機電気膨張弁13a、アキュームレータ19、および、前記各構成要素を連結し複数の逆止弁やソレノイド弁などが設けられる冷媒配管を具備している。
【0034】
図1を参照すると、圧縮機1と室外交換機2は吐出管4により連結される。そして、室外ファン2aが、室外熱交換機2に向けて送風するように設けられている。圧縮機1の吸入側には吸入管8が連結され、吸入管8にはアキュームレータ19が設けられている。
【0035】
室外熱交換機2および気液分離器3は補助管5に連結される。並列管13が、補助管5の一地点から分岐し再び補助管5の他の地点で合流するように設けられ、バイパス経路を形成している。並列管13には、室外機電気膨張弁13aが設けられ、室外機電気膨張弁13aは全室を冷房する運転および多数室を冷房し且つ少数室を暖房する運転では閉鎖し、全室を暖房する運転および多数室を暖房し且つ少数室を冷房する運転では機能するように制御される。
【0036】
また、補助管5において並列管13が分岐した位置と合流する位置との置には第1逆止弁5aが設けられている。第1逆止弁5aは、室外熱交換機2から気液分離器3への冷媒の流動を許容し、気液分離器3から室外熱交換機2への冷媒の流動は防止する。
【0037】
気液分離器3の下方部分には液相冷媒管7が連結され、気液分離器3の上方部分には気相冷媒管6が連結される。液相冷媒管7および気相冷媒管6は、各々分配器B側の配管に連結される。
【0038】
第1バイパス管11が、気相冷媒管6の一地点および吐出管4の一地点の間に連結されている。第1バイパス管11には第2ソレノイド弁11aが設けられており、第2ソレノイド弁11aは全室を冷房する運転および多数室を冷房し且つ少数室を暖房する運転において閉鎖し、全室を暖房する運転および多数室を暖房し且つ少数室を冷房する運転において開放するように制御される。第2逆止弁6aが、気相冷媒管6において第1バイパス管11が連結される位置と、気液分離器3との間に設けられている。第2逆止弁6aは気液分離器3から分配器Bへ移動する冷媒の流動は許容し、第1バイパス管11から気液分離器3へ移動する冷媒の流動は防止するように作動する。
【0039】
また、第1バイパス管11と室外熱交換機2との間の吐出管4の一地点と、吸入管8の一地点とが、第2バイパス管12に連結される。その際、第2バイパス管12は、アキュームレータ19が圧縮機1と、第2バイパス管12との間に位置するように配置、連結される。第2バイパス管12には、第3ソレノイド弁12aが設けられ、第3ソレノイド弁12aは全室を冷房する運転および多数室を冷房し且つ少数室を暖房する運転において閉鎖し、全室を暖房する運転および多数室を暖房し且つ少数室を冷房する運転において開放するように制御される。第1バイパス管11が連結される一地点と第2バイパス管12が連結される一地点との間の吐出管4には第1ソレノイド弁4aが設けられている。
【0040】
図1を参照すると、分配器Bは、分配器配管20と弁部30とを含んでいる。分配器配管20は、気相冷媒管6または液相冷媒管7を介して流入した気相または液相の冷媒を各室内機Cへ向けて案内し、室内機Cを経由した後に吐出された冷媒を更に室外機Aに案内する。分配器配管20は、気相冷媒連結管21、気相冷媒分岐管22、液相冷媒連結管23、液相冷媒分岐管24、連結分岐管25、集合管26を含んでおり、その詳しい互いの連結関係は次の通りである。
【0041】
気相冷媒連結管21は一端が室外機Aの気相冷媒管6に連結され、液相冷媒連結管23は一端が室外機Aの液相冷媒管7に連結される。
図1を参照すると、気相冷媒分岐管22は、気相冷媒管21から分岐した複数の分岐管路を有し、各室の各室内機Cの室内熱交換機62にそれぞれ連結され、液相冷媒分岐管24は液相冷媒連結管23から分岐した複数の分岐管路を有し、各室の室内機Cの電気膨張弁61にそれぞれ連結されている。
【0042】
連結分岐管25は、図1に示すように、各気相冷媒分岐管22から分岐し、集合管26は各気相冷媒分岐管22から分岐された連結分岐管25を一つに集合して室外機Aの吸入管8に連結する。
【0043】
弁部30は、全室を冷房する運転、全室を暖房する運転、多数室を冷房し且つ少数室を暖房する運転、多数室を暖房し且つ少数室を冷房する運転など、各運転条件に従って各室の室内機Cに選択的に気相または液相の冷媒を流入させ、各室内機Cを経由した気相または液相の冷媒を室外機Aへ再び流入させるように分配器配管20内の冷媒の流れを制御する。
【0044】
弁部30は、図1に示すように、各気相冷媒分岐管22、各液相冷媒分岐管24、各連結分岐管25の各々に配設された複数のソレノイド弁31a、31b、31cを含んでいる。複数のソレノイド弁31は、暖房を行う室内機側の冷媒連結管に設けられたソレノイド弁、および、冷房を行う室内機側の気相冷媒分岐管に設けられたオン−オフ制御バルブのみが閉鎖されるように制御されるが、各運転条件に従う制御の詳細は後述する。
【0045】
次に、室内機Cは各室にそれぞれ設置され、各々、室内熱交換機62、電気膨張弁61、そして、室内ファン(図示せず)を含んでいる。
各室内熱交換機62は分配器Bの気相冷媒分岐管22に連結され、電気膨張弁61は分配器の各液相冷媒分岐管24に連結される。そして、各室内熱交換機62と各電気膨張弁61は冷媒管によって相互に連結される。
前記各室内ファンは各室内熱交換機62に送風するように設けられている。
【0046】
一方、本発明によるマルチ空気調和機には、室外ファン2aの回転数を制御する制御手段が更に含まれる。
前記制御手段は、温度センサー14とマイクロコンピュータ(図示せず)とを含み、室外熱交換機2を経て気液分離器3に流入する冷媒の気液混合比が、各運転条件に従って適切に調節されるように、室外ファン2aの回転数を可変制御する。
【0047】
温度センサー14は、図1に示すように、補助管5に設けられ、室外熱交換機2から吐出された後、補助管5内を流動する冷媒の温度を測定する。
マイクロコンピュータは、温度センサー14により測定された冷媒温度と、予め設定された冷媒温度とを比較して、補助管5内を流動する冷媒の気液混合比を検出し、検出された気液混合比が各運転条件で必要な予め設定された気液混合比に一致するように室外ファン2aの回転数を可変制御する。
【0048】
上記のように構成された本発明によるマルチ空気調和機は、圧縮機1から吐出された気相冷媒が、各運転条件に従って第1バイパス管11を介して分配器Bに直接流入するか、室外熱交換機2と気液分離器とを経由して気相と液相とに分離して分配器Bに流入した後、液相冷媒は冷房を行う室内機の電気膨張弁と室内熱交換機および分配器Bを経由した後圧縮機1に流入し、気相冷媒は暖房を行う室内機の室内熱交換機と電気膨張弁を経て分配器Bと気液分離器3および室外機電気膨張弁13aと室外熱交換機2とを経由した後、第2バイパス管12を介して圧縮機1に流入するように作動するが、その詳細な作動過程を各運転条件毎に説明する。
【0049】
説明の便宜のために、多数室を冷房し且つ少数室を暖房する運転では、2台の室内機C1、C2は冷房を行い、他の一台の室内機C3は暖房を行うものと仮定する。また、多数室を暖房し且つ少数室を冷房する運転では2台の室内機C1、C2は暖房を行い、他の一台の室内機C3は冷房を行うものと仮定する。
【0050】
図2は全室を冷房する運転における動作状態を示す動作図であって、全ての室内機が冷房機能を行う運転条件では、圧縮機1から吐出された冷媒の全量が室外熱交換機2、気液分離器3、分配器B、電気膨張弁61、室内熱交換機62、そして、分配器Bを順次に経由した後、圧縮機1に流入する循環経路が形成され、その詳細な内容は次の通りである。
【0051】
図2を参照すると、圧縮機1から吐出された気相冷媒は、吐出管4を介して室外熱交換機2に流入する。この時、気相冷媒を室外熱交換機2へ案内するために、第1ソレノイド弁4aは開放(ON)され、第1バイパス管11の第2ソレノイド弁11a、および、第2バイパス管12の第3ソレノイド弁12aは閉鎖(OFF)される。
【0052】
室外熱交換機2に流入した冷媒は、前記制御手段により制御される室外ファン2aにより送風された外気と熱交換しつつ過冷され、液体状態になり、補助管5を介して流動しながら第1逆止弁15aを通過した後、気液分離器30に流入する。この時、室外熱交換機2は凝縮器として機能し、並列管13に設けられた室外機電気膨張弁13aは全閉される。
【0053】
気液分離器3に流入した高圧の液相冷媒は、液相冷媒管7と液相冷媒管連結管23とを順次に経由した後、各液相冷媒分岐管24へ分流される。液相冷媒分岐管24に流入した液相冷媒は、液相冷媒分岐管24のソレノイド弁を通過した後、各室内機Cに流入する。
【0054】
室内機Cに流入した液相冷媒は、電気膨張弁61で膨張し、室内熱交換機62で気化しつつ室内の空気と熱交換を行い、該室内を冷房した後、気相冷媒分岐管22に流入する。この時、室内熱交換機62は蒸発器として作動する。
【0055】
気相冷媒分岐管22に流入した気相冷媒は、連結分岐管25を介して集合管26に流入する。この時、気相冷媒を連結分岐管25へ案内するために、気相冷媒分岐管22に設けられたソレノイド弁は閉鎖される。集合管26に流入した気相冷媒は、吸入管8とアキュームレータ19を経由して圧縮機1に流入する。
【0056】
図3は、全室を暖房する運転における動作状態を示す動作図であって、全ての室内を暖房する運転条件では、圧縮機1から吐出された冷媒の全量が第1バイパス管11、分配器B、室内熱交換機62、電気膨張弁61、分配器B、気液分離器3、室外機電気膨張弁13a、室外熱交換機2を順次に経由した後、第2バイパス管12を介して圧縮機1に流入する循環経路が形成され、その詳細な内容は次の通りである。
【0057】
図3を参照すると、圧縮機1から吐出された気相冷媒は、吐出管4を介して移動し、第1ソレノイド弁4aが閉鎖された状態であるので、第1バイパス管11を介して気相冷媒管6に移動する。
気相冷媒管6に流入した気相冷媒は、第2逆止弁6aによって気液分離器3への流動が制限されるので、分配器Bの気相冷媒連結管21へ移動する。
【0058】
気相冷媒連結管21に流入した気相冷媒は各気相冷媒管22に流入し、連結分岐管25に設けられたソレノイド弁が閉鎖された状態であるので、該気相冷媒は各室内機Cの室内熱交換機62に流入する。
【0059】
室内熱交換機62に流入した気相冷媒は、室内ファンにより送風される空気と熱交換しながら凝縮熱を放熱して室内を暖房し、この時、室内熱交換機62は凝縮器として作動する。
【0060】
室内熱交換機62で過冷され、凝縮された液相冷媒は、完全に開放された電気膨張弁61を経由した後、液相冷媒分岐管24と液相冷媒連結管23と液相冷媒管7とを介して室外機Aの気液分離器3に流入する。
【0061】
気液分離器3に流入した液相冷媒は、第1逆止弁5aの流路閉鎖によって並列管13に流入し、室外機電気膨張弁13aで膨張した後、室外熱交換機2で熱交換しながら気化する。この時、室外熱交換機2は蒸発器として作動する。
【0062】
室外熱交換機2で過冷され凝縮された液相冷媒は、吐出管4を介して流動した後、第1ソレノイド弁3aの閉鎖によって第2バイパス管12に案内され、第2バイパス管12と吸入管8およびアキュームレータ19を経由した後、圧縮機1に流入する。
【0063】
図4は、多数室を冷房し且つ少数室を暖房する運転における動作状態を示す動作図であって、多数室を冷房し且つ少数室を暖房する運転条件では、圧縮機1から吐出された冷媒の全量が、室外熱交換機2と気液分離器3とに流入した後、液相冷媒は分配器3、冷房室の電気膨張弁61a、61b、冷房室の室内熱交換機62a、62b、分配器Bを順次に経由した後、圧縮機1に流入する循環経路が形成され、気相冷媒は分配器B、暖房室の室内熱交換機62c、暖房室の電気膨張弁61cを経由した後分配器B内で前記液相冷媒と合流して冷房室の電気膨張弁61a、61b、冷房室の室内熱交換機62a、62b、分配器Bを経て圧縮機1に流入する経路を有しており、その詳しい内容は次の通りである。
【0064】
図4を参照すると、圧縮機1から吐出された気相冷媒は、吐出管4を介して室外熱交換機2に流入し、この時、気相冷媒の案内のために第1ソレノイド弁4aは開放し、第1バイパス管11の第2ソレノイド弁11aと第2バイパス管12の第3ソレノイド弁12aは閉鎖される。
【0065】
一方、室外熱交換機2に流入した気相冷媒は、室外ファン2aにより送風される外気と熱交換して、多数室を冷房し且つ少数室を暖房する運転に適合した気液混合比を有する。即ち、室外ファン2aの分当たり回転数(RPM)が高くて、多い流量の外気が室外熱交換機2に加えられると、冷媒の液相比率が高くなり、室外ファン2aの分当たり回転数(RPM)が低くて、少ない流量の外気が室外熱交換機2に加えられると、冷媒の気相比率が高くなるが、本発明では前記制御手段が室外ファン2aの回転数を制御することで、多数室を冷房し且つ少数室を暖房する運転に必要な最適の気液混合比を得ることが可能となる。
【0066】
このように最適の気液混合比を得るための本発明による空気調和機の室外ファンの運転制御方法は次の通りである。
まず、室外熱交換機2から吐出される気液混合冷媒の温度を補助管5に設けられた温度センサー14で測定する。
そして、温度センサー14で測定された冷媒温度と、予め設定された冷媒温度とを比較して冷媒の気液混合比を検出する。
【0067】
次に、前記検出された冷媒の気液混合比が該当運転条件、つまり、多数室を冷房し且つ少数室を暖房する運転条件に必要な予め設定された混合比に一致するように室外ファン2aの分当たり回転数(RPM)を変化させる。
【0068】
制御手段により上記のような方法で室外ファン2aの回転数を変化させると、本発明のマルチ空気調和機では、全ての運転条件で冷媒の気液混合比を最適化することができ、これによって冷暖房効率も向上する。
【0069】
上記のような方法で室外ファン2aを制御する時、制御手段のマイクロコンピュータに予め設定された冷媒混合比は、液相の冷媒を要する2台の冷房側室内機C1、C2と、気相の冷媒を要する1台の暖房用室内機C3とに合わせて決定され、また、1台の暖房用室内機C3を経て2台の冷房側室内機C1、C2に流入する液相冷媒の流量によって決定されるなど、様々な負荷条件に従う実験によって決定される実験値である。
【0070】
上記のような方法で行われる室外ファン2aの制御は、全室を冷房する運転条件および、多数室を暖房し且つ少数室を冷房する運転条件にも適用される。
一方、室外熱交換機2で最適の気液混合比からなる2相の冷媒は、補助管5を介して気液分離器3に流入する。このように、冷媒を案内するために並列管13の室外機電気膨張弁13aは全閉される。
【0071】
気液分離器40に流入した高圧の2相冷媒は、気液分離器3で液相および気相に分離され、分離された液相冷媒は液相冷媒管7に流入し、分離された気相冷媒は気相冷媒管6に流入する。
【0072】
液相冷媒管7に流入した液相冷媒は、液相冷媒連結管23、第1液相冷媒分岐管24aおよび第2液相冷媒分岐管24bにそれぞれ分岐された後、第1電気膨張弁61aおよび第2電気膨張弁61bを経つつ膨張し、第1室内交換機62aおよび第2室内熱交換機62bを経由しつつ熱交換を行い、室内を冷房する。
【0073】
第1室内熱交換機62aおよび第2室内熱交換機62bで冷房を行いつつ気化した気相冷媒は、第1気相冷媒分岐管22aおよび第2気相冷媒分岐管22bと、第1連結分岐管25aおよび第2連結分岐管25bとを介して集合管26に流入する。この時、気相冷媒を案内するために、第1気相冷媒分岐管22aおよび第2気相冷媒分岐管22bのソレノイド弁31a、31b、および、第3室内機C3の第3連結分岐管25cに設けられたソレノイド弁は閉鎖される。集合管26に流入した気相冷媒は吸入管8とアキュームレータ19とを経由して圧縮機1に流入する。
【0074】
一方、気液分離器40から分離され気相冷媒管6に流入した気相冷媒は、気相冷媒連結管21に流入し、冷房を行う室内機C1、C2の第1気相冷媒分岐管22aおよび第2気相冷媒分岐管22bに設けられたソレノイド弁31a、31bが閉鎖されているので、全量が暖房を行う室内機C3の第3気相冷媒分岐管22cに流入する。
【0075】
第3気相冷媒分岐管22cに流入した気相冷媒は、第3連結分岐管25cに設けられたソレノイド弁が閉鎖されているので、第3室内熱交換機62cに流入して凝縮しながら放熱して室内を暖房し、第3電気膨張弁61cを経て第3液相冷媒分岐管24cに流入した後、液相冷媒管7を流動する液相冷媒と合流する。このように合流した後には、冷房を行う室内機C1、C2に流入して冷房を行った後、圧縮機1に流入する。
【0076】
ここで、液相冷媒管7を介して液相冷媒連結管23に流入した液相冷媒が第3室内機C3には流入せず、第1室内機C1および第2室内機C2にのみ流入する理由は冷媒の圧力差のためである。即ち、第3液相冷媒分岐管24cから流出される冷媒の圧力が、液相冷媒連結管23から第1液相冷媒分岐管24aと第2液相冷媒分岐管24bへ流動する冷媒の圧力より大きいからである。
【0077】
図5は、多数室を暖房し且つ少数室を冷房する運転における動作状態を示す動作図であって、多数室を暖房し且つ少数室を冷房する運転条件では、圧縮機1から吐出された冷媒の全量が第1バイパス管11を介して分配器Bに流入し、暖房室の室内熱交換機62a、62b、暖房室の電気膨張弁61a、61bを経由して分配器Bに再流入した後、冷媒の一部は冷房室の電気膨張弁61cと、冷房室の室内熱交換機62cおよび分配器Bを経て圧縮機1に流入し、冷媒の残りの部分は気液分離器3、室外機電気膨張弁13a、室外熱交換機2を経由した後、第2バイパス管12を介して圧縮機1に流入する循環経路が形成され、その詳細な内容は次の通りである。
【0078】
図5を参照すると、圧縮機1から吐出された気相冷媒は、吐出管4を介して流動し、閉鎖された第1ソレノイド弁4aによって第1バイパス管11に案内された後、気相冷媒管6に流入する。
【0079】
気相冷媒管6に流入した気相冷媒は、第2逆止弁6aの流動制限によって分配器B即ち、気相冷媒連結管21に流入し、第1気相冷媒分岐管22aと第2気相冷媒分岐管22bを介して第1室内熱交換機62aと第2室内熱交換機62bに流入し凝縮した後、第1電気膨張弁61aと第2電気膨張弁61bを経由して、第1液相冷媒分岐管24aおよび第2液相冷媒分岐管24bに流入する。この時、第1電気膨張弁61aおよび第2電気膨張弁61bは全開される。
【0080】
第1液相冷媒分岐管24aおよび第2液相冷媒分岐管24bに流入した液相冷媒は、液相冷媒連結管23を介して流動し、その一部は液相冷媒管7に、他の一部は第3液相冷媒分岐管24cに分岐され流動する。
【0081】
この時、液相冷媒管7へ分流されて流動する一部の液相冷媒は、気液分離器3に流入した後、第1逆止弁5aの案内によって並列管13に設けられた室外機電気膨張弁13aを経た後、室外熱交換機2を経て第2バイパス管12と吸入管8を介して圧縮機1に流入する。
【0082】
そして、第3液相冷媒分岐管24cへ分流されて流動する残りの一部の液相冷媒は、第3電気膨張弁61cを経つつ膨張した後、第3室内熱交換機62cで熱交換しながら冷房を行う。冷房を行いつつ気化した気相冷媒は、第3気相冷媒分岐管22cと第3連結分岐管25cとを経由した後、第3気相冷媒分岐管22cと第3連結分岐管25cを経て集合管26で合流した後、吸入管8を介して圧縮機1に流入する。
【0083】
【発明の効果】
以上、説明したように、本発明によるマルチ空気調和機は以下の長所がある。第一に、各室の環境に応じて最適の対応が可能である。即ち、各室全体を暖房する全室冷房運転と、各室全室を冷房する全室冷房運転だけでなく、多数室を暖房し少数室を冷房する運転や、多数室を冷房し少数室を暖房する運転が可能となり、各室の環境に応じて各々対応することができる。
【0084】
第二に、本発明によれば、高価の三方弁および四方弁に代えて、安価の単純なオン−オフバルブを用いて配管を構成するので、製品単価が低減する。
【0085】
第三に、本発明によれば、気液分離器は分配器ではなく室外機に設けられるので、分配器の重さを減らすことができ、分配器の設置が非常に容易で、かつ設置後の安全性も確保される。と言うのは、一般的に室外機Aは室外の側壁面や屋上の底面に設置されるが、分配器Bは室内の天井に設けられるので、室外機Aに比べて分配器Bの設置が困難であるからであり、特に分配器Bの重さが重くなると、設置作業が困難であるだけではなく、分配器Bの支持のための補強が必要となり、最悪の場合、設置した後にその重さが耐えられなくて天井から落下する虞もあるからである。従って、本発明では気液分離器3を室外機A内に配設するように設計した。
【0086】
第四に、全室を冷房する運転と、多数室を冷房し且つ少数室を暖房する運転とで気液分離器に流入する冷媒の混合比を最適化することができ、空気調和の効率が向上する。
【0087】
以上、本発明の好適な一実施形態に対して説明したが、本発明が、この実施形態に限定されず、本発明の技術思想に基づいて種々の変形または変更が可能であることは当業者の当然とするところである。
【図面の簡単な説明】
【図1】本発明の一実施形態によるマルチ空気調和機を示す構成図である。
【図2】全室を冷房する運転の動作状態を示す動作図である。
【図3】全室を暖房する運転の動作状態を示す動作図である。
【図4】多数室を冷房し且つ少数室を暖房する運転の動作状態を示す動作図である。
【図5】多数室を暖房し且つ少数室を冷房する運転の動作状態を示す動作図である。
【符号の説明】
1…圧縮機
2…室外熱交換機
3…気液分離器
4…吐出管
5…補助管
6…気相冷媒管
7…液相冷媒管
20…分配器配管
30…弁部
A…室外機
B…分配器
C…室内機
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multi-type air conditioner.
[0002]
[Prior art]
Generally, an air conditioner is a device for cooling or heating an indoor space such as a residential space, a restaurant, or an office.
In such an air conditioner, recently, a multi-air conditioner for more efficiently cooling and heating an indoor space partitioned into a plurality of rooms has been developed. And a multi air conditioner generally takes a form in which a plurality of indoor units are connected to one outdoor unit, and each of the plurality of indoor units is installed in each room. Cool and heat the room while operating.
[0003]
[Problems to be solved by the invention]
However, even when it is necessary to heat one of the plurality of rooms and cool the other room, the operation is uniformly performed in the cooling mode or the heating mode, and thus it is not possible to appropriately respond to such a demand.
[0004]
For example, in a building, a temperature difference may occur depending on the position and time of each room, and when heating is required in the room on the north side of the building and cooling is required in the room on the south side, it operates in one mode However, there is a limitation that the conventional multi-air conditioner that is used cannot appropriately meet such demands.
[0005]
If a building has a computer room, it will be necessary to provide air conditioning not only in the summer but also in the winter to solve the problem of heat generated by the computer equipment. Can not do it.
[0006]
Therefore, a multi-air conditioner that can individually air-condition each room at the same time during device operation, that is, an indoor unit installed in a room requiring heating operates in the heating mode and is installed in another room requiring cooling at the same time. There is a demand for the development of a simultaneous cooling and heating type multi-air conditioner in which the installed indoor units can be operated in a cooling mode.
[0007]
Therefore, an object of the present invention is to provide a multi-air conditioner capable of simultaneously performing heating and cooling according to the requirements of each room.
It is another object of the present invention to reduce the weight of the distributor so that it can be easily installed.
[0008]
Still another object of the present invention is to optimize the gas-liquid mixing ratio of the refrigerant flowing into the gas-liquid separator in the operation of cooling all rooms and the operation of cooling many rooms and heating a few rooms. An object of the present invention is to provide a method for controlling the operation of an outdoor fan of a multi-air conditioner capable of improving the conditioning efficiency.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a multi-air conditioner according to the present invention includes an outdoor heat exchanger, a refrigerant connected to a discharge side of the outdoor heat exchanger and flowing from the outdoor heat exchanger, and a gas-phase refrigerant and a liquid-phase refrigerant, respectively. An outdoor unit provided with a gas-liquid separator that separates and discharges each, an indoor unit provided with an indoor heat exchanger and an electric expansion valve and provided in each of a plurality of rooms, and the outdoor unit and the indoor unit The gas-phase refrigerant flowing from the outdoor unit flows to the indoor heat exchanger of the indoor unit that performs heating, and the liquid-phase refrigerant that flows from the outdoor unit flows to the electric expansion valve of the indoor unit that performs heating. When the heating and cooling are individually performed for each room although the refrigerant that has passed through the unit is further flown to the outdoor unit, the indoor unit that performs the cooling by cooling the liquefied refrigerant through the indoor unit that performs the heating. Before flowing to the electric expansion valve again A distributor to flow into the outdoor unit, connected and each component comprises a refrigerant pipe in which a plurality of check valves and the solenoid valve is provided for controlling the flow path of the refrigerant.
[0010]
Control means for controlling the number of revolutions of the outdoor fan so that the gas-liquid mixing ratio of the refrigerant flowing into the gas-liquid separator via the outdoor heat exchanger is appropriately adjusted in accordance with each operating condition. Is desirable.
[0011]
A temperature sensor provided in the pipe for measuring the temperature of the refrigerant discharged from the outdoor heat exchanger; comparing the refrigerant temperature measured by the temperature sensor with the already set refrigerant temperature to mix the refrigerant in the pipe; It is desirable to have a microcomputer that detects the ratio and controls the number of revolutions of the outdoor fan so that the detected mixture ratio becomes equal to a preset mixture ratio required under each operating condition.
[0012]
The outdoor unit was connected to a compressor, an outdoor fan and an outdoor heat exchanger, an outdoor unit electric expansion valve, a gas-liquid separator, an accumulator, and each of the constituent elements, and was provided with a plurality of check valves and solenoid valves. It is desirable to have outdoor unit piping.
[0013]
The outdoor unit pipe is connected to a discharge pipe connecting the compressor and the outdoor heat exchanger, an auxiliary pipe connecting the outdoor heat exchanger and the gas-liquid separator, and further merges after branching from one of the auxiliary pipes. A parallel pipe, a gas-phase refrigerant pipe connecting the upper part of the gas-liquid separator and the distributor, a liquid-phase refrigerant pipe connecting the lower part of the gas-liquid separator and the distributor, and the distributor. A suction pipe connecting the compressor; a first bypass pipe connecting the discharge pipe and the gas-phase refrigerant pipe; a discharge pipe positioned between the first bypass pipe and the outdoor heat exchanger; It is desirable to have a second bypass pipe connecting the pipe.
[0014]
It is preferable that a first solenoid valve is provided between the first bypass pipe and the second bypass pipe in the discharge pipe, and the first solenoid valve is operated to cool all the chambers and to cool many chambers and to cool a few chambers. Is desirably controlled so as to be opened in a heating operation and to be closed in an operation of cooling all rooms and an operation of heating a large number of rooms and cooling a small number of rooms.
[0015]
It is desirable to provide a second solenoid valve in the first bypass pipe, and the second solenoid valve is closed in an operation of cooling all rooms and an operation of cooling a large number of rooms and heating a small number of rooms, and heats all the rooms. It is desirable to control to open in the operation of heating and the operation of heating the majority room and cooling the minority room.
[0016]
It is desirable to provide a third solenoid valve in the second bypass pipe, and the third solenoid valve is closed in an operation of cooling all rooms and an operation of cooling many rooms and heating a few rooms, and heats all rooms. It is desirable to control to open in the operation of heating and the operation of heating the majority room and cooling the minority room.
[0017]
It is preferable that a first check valve for preventing the flow of the refrigerant from the gas-liquid separator to the outdoor heat exchanger is provided in the auxiliary pipe between the position where the parallel pipe branches and the position where the parallel pipe joins.
[0018]
The electric expansion valve of the outdoor unit is desirably provided in the parallel pipe, and the outdoor unit electric expansion valve is closed in an operation of cooling all rooms and an operation of cooling many rooms and heating a small number of rooms, and all the rooms are closed. It is desirable to be controlled to function in a heating operation and an operation of heating a large number of rooms and cooling a small number of rooms.
[0019]
The gas-phase refrigerant pipe at a position between the gas-liquid separator and the first bypass pipe has a second check valve for preventing the flow of the refrigerant from the first bypass pipe to the gas-liquid separator. It is desirable to provide.
[0020]
The accumulator is desirably provided in the suction pipe, and the distributor guides a gas-phase or liquid-phase refrigerant flowing through the gas-phase refrigerant pipe or the liquid-phase refrigerant pipe to an indoor unit, and passes through the indoor unit. A distributor pipe for further guiding the cooled refrigerant to the outdoor unit, a refrigerant in a gaseous phase or a liquid phase is selectively flown into the indoor unit in each room according to each operating condition, and the refrigerant passing through the indoor unit is returned to the outdoor unit. It is desirable to have a valve part for controlling the flow of the refrigerant in the distributor pipe so as to guide the refrigerant.
[0021]
A pipe of the distributor is a gas-phase refrigerant connection pipe connected to the gas-phase refrigerant pipe, and a gas-phase refrigerant branch branched from the gas-phase refrigerant pipe and connected to an indoor heat exchanger of an indoor unit in each room. A pipe, a liquid-phase refrigerant connection pipe connected to the liquid-phase refrigerant pipe, a liquid-phase refrigerant branch pipe branched from the liquid-phase refrigerant pipe and connected to an electric expansion valve of an indoor unit in each room, It is preferable to include a connecting branch pipe branching from each gas-phase refrigerant branch pipe, and a collecting pipe that collects the connecting branch pipes and connects to the suction pipe.
[0022]
It is preferable that the valve unit includes a plurality of solenoid valves provided and controlled in each of the gas-phase refrigerant branch pipe, the liquid-phase refrigerant branch pipe, and the connection branch pipe.
[0023]
The valve portion of the distributor is closed only by a solenoid valve provided on a refrigerant connection pipe on the indoor unit side for heating and a solenoid valve provided on a gas-phase refrigerant branch pipe on the indoor unit side for cooling. It is desirable to be controlled.
[0024]
It is desirable that the electric expansion valve of the indoor unit performing the heating be fully opened, and the electric expansion valve of the indoor unit performing the cooling be controlled so that the refrigerant expands.
[0025]
The check valve and the solenoid valve are operated to cool all rooms, to heat all rooms, to cool many rooms and to heat a few rooms, and to heat many rooms and to cool a few rooms according to cooling operation conditions. It is desirable to control the flow of the refrigerant differently.
[0026]
In the operation of cooling all the rooms, the check valve and the solenoid valve are sequentially discharged from the compressor by an outdoor heat exchanger, a gas-liquid separator, a distributor, an electric expansion valve, an indoor heat exchanger, and a distributor. It is desirable that the flow be controlled to flow into the compressor after passing through the compressor.
[0027]
In the operation for heating all the rooms, the check valve and the solenoid valve are connected to the first bypass pipe, the distributor, the indoor heat exchanger, the electric expansion valve, the distributor, and the gas-liquid separator so that the total amount of the refrigerant discharged from the compressor is reduced. It is desirable to control so as to sequentially pass through the heat exchanger, the outdoor unit electric expansion valve, and the outdoor heat exchanger, and then flow into the compressor through the second bypass pipe.
[0028]
In the operation of cooling the large number of chambers and heating the small number of chambers, the check valve and the solenoid valve allow the liquid phase refrigerant to be distributed after the refrigerant discharged from the compressor flows into the outdoor heat exchanger and the gas-liquid separator. Control, the electric expansion valve of the cooling room, the indoor heat exchanger of the cooling room, and control to flow into the compressor after passing sequentially through the distributor, the gas-phase refrigerant is distributed, the indoor heat exchanger of the heating room, After passing through the electric expansion valve of the heating room, it merges with the liquid-phase refrigerant in the distributor and flows into the compressor through the electric expansion valve of the cooling room, the indoor heat exchanger of the cooling room, and the distributor. Is desirably controlled.
[0029]
In the operation of cooling the majority room and heating the minority room, the check valve and the solenoid valve cause the entire amount of the refrigerant discharged from the compressor to flow into the distributor through the first bypass pipe, and the indoor heat of the heating room to be increased. After re-flowing into the distributor through the exchanger and the electric expansion valve in the heating room, part of the refrigerant flows into the compressor through the electric expansion valve in the room to be cooled and the indoor heat exchanger and distributor in the cooling room. Preferably, the remaining part of the refrigerant is controlled to flow through the gas-liquid separator, the outdoor unit electric expansion valve, the outdoor heat exchanger, and then flow into the compressor through the second bypass pipe.
[0030]
In another embodiment of the present invention, the operation control method of the outdoor fan of the multi-air conditioner includes a step of measuring a temperature of a gas-liquid mixed refrigerant discharged from the outdoor heat exchanger, and the measured refrigerant temperature and Detecting a gas-liquid mixture ratio of the refrigerant by comparing the gas-liquid mixture ratio with a preset refrigerant temperature, so that the detected gas-liquid mixture ratio matches a preset mixture ratio required for the relevant operating condition. Changing the rotation speed of the outdoor fan.
[0031]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
As shown in FIG. 1, the air conditioner according to one embodiment of the present invention includes an outdoor unit A, a distributor B, and a plurality of indoor units C1, C2, and C3, performs an operation for cooling all the rooms, and heats all the rooms. According to various operating conditions, such as operation, operation of cooling a large number of rooms and heating a small number of rooms, and operation of heating a large number of rooms and cooling a small number of rooms, the inside of each room where each indoor unit C1, C2, C3 is installed is set. The space is independently cooled and heated, and a detailed configuration of the embodiment will be described with reference to FIG.
[0032]
For convenience of explanation, the reference numerals 22 to be described later denote 22a, 22b, 22c, 24 denotes 24a, 24b, 24c, 25 denotes 25a, 25b, 25c, 31 denotes 31a, 31b, 31c, 61 denotes 61a, 61b and 61c, 62 indicates 62a, 62b and 62c, and C indicates C1, C2 and C3. When the number of the rooms changes, the number of the indoor units C and the number of the components associated with the indoor units C naturally change together, and in this specification, the number of the indoor units C is three for convenience of explanation. Will be described as an example.
[0033]
First, the outdoor unit A is connected to the compressor 1, the outdoor heat exchanger 2, the outdoor fan 2a, the gas-liquid separator 3, the outdoor unit electric expansion valve 13a, the accumulator 19, and the above-described components, and is connected to a plurality of check valves. A refrigerant pipe provided with a solenoid valve and the like is provided.
[0034]
Referring to FIG. 1, a compressor 1 and an outdoor exchanger 2 are connected by a discharge pipe 4. The outdoor fan 2 a is provided to blow air toward the outdoor heat exchanger 2. A suction pipe 8 is connected to a suction side of the compressor 1, and an accumulator 19 is provided in the suction pipe 8.
[0035]
The outdoor heat exchanger 2 and the gas-liquid separator 3 are connected to an auxiliary pipe 5. The parallel pipe 13 is provided so as to branch from one point of the auxiliary pipe 5 and to join again at another point of the auxiliary pipe 5 to form a bypass path. The parallel pipe 13 is provided with an outdoor unit electric expansion valve 13a. The outdoor unit electric expansion valve 13a is closed in an operation of cooling all rooms and an operation of cooling many rooms and heating a small number of rooms, and heats all rooms. The operation is controlled so as to operate in the operation of heating the room and the operation of heating the majority room and cooling the minority room.
[0036]
Further, a first check valve 5a is provided at a position of the auxiliary pipe 5 where the parallel pipe 13 branches off and where it joins. The first check valve 5a allows the refrigerant to flow from the outdoor heat exchanger 2 to the gas-liquid separator 3, and prevents the refrigerant from flowing from the gas-liquid separator 3 to the outdoor heat exchanger 2.
[0037]
A liquid-phase refrigerant pipe 7 is connected to a lower part of the gas-liquid separator 3, and a gas-phase refrigerant pipe 6 is connected to an upper part of the gas-liquid separator 3. The liquid-phase refrigerant pipe 7 and the gas-phase refrigerant pipe 6 are each connected to a pipe on the distributor B side.
[0038]
The first bypass pipe 11 is connected between one point of the gas-phase refrigerant pipe 6 and one point of the discharge pipe 4. The first bypass pipe 11 is provided with a second solenoid valve 11a. The second solenoid valve 11a is closed in an operation of cooling all rooms and an operation of cooling many rooms and heating a small number of rooms. It is controlled to be opened in the operation of heating and the operation of heating the majority room and cooling the minority room. The second check valve 6 a is provided between a position where the first bypass pipe 11 is connected to the gas-phase refrigerant pipe 6 and the gas-liquid separator 3. The second check valve 6a operates to allow the flow of the refrigerant moving from the gas-liquid separator 3 to the distributor B, and to prevent the flow of the refrigerant moving from the first bypass pipe 11 to the gas-liquid separator 3. .
[0039]
Further, one point of the discharge pipe 4 between the first bypass pipe 11 and the outdoor heat exchanger 2 and one point of the suction pipe 8 are connected to the second bypass pipe 12. At this time, the second bypass pipe 12 is arranged and connected so that the accumulator 19 is located between the compressor 1 and the second bypass pipe 12. The second bypass pipe 12 is provided with a third solenoid valve 12a. The third solenoid valve 12a is closed in an operation of cooling all rooms and an operation of cooling many rooms and heating a few rooms, and heats all rooms. The operation is controlled so as to be opened in the operation in which the majority room is heated and the operation in which the minor room is cooled. The discharge pipe 4 between a point where the first bypass pipe 11 is connected and a point where the second bypass pipe 12 is connected is provided with a first solenoid valve 4a.
[0040]
Referring to FIG. 1, the distributor B includes a distributor pipe 20 and a valve unit 30. The distributor pipe 20 guides the gas-phase or liquid-phase refrigerant flowing through the gas-phase refrigerant pipe 6 or the liquid-phase refrigerant pipe 7 to each indoor unit C, and is discharged after passing through the indoor unit C. The refrigerant is further guided to the outdoor unit A. The distributor pipe 20 includes a gas-phase refrigerant connection pipe 21, a gas-phase refrigerant branch pipe 22, a liquid-phase refrigerant connection pipe 23, a liquid-phase refrigerant branch pipe 24, a connection branch pipe 25, and a collecting pipe 26. Is as follows.
[0041]
One end of the gas-phase refrigerant connection pipe 21 is connected to the gas-phase refrigerant pipe 6 of the outdoor unit A, and one end of the liquid-phase refrigerant connection pipe 23 is connected to the liquid-phase refrigerant pipe 7 of the outdoor unit A.
Referring to FIG. 1, the gas-phase refrigerant branch pipe 22 has a plurality of branch pipes branched from the gas-phase refrigerant pipe 21, and is connected to the indoor heat exchangers 62 of the indoor units C in each room, respectively. The refrigerant branch pipe 24 has a plurality of branch pipes branched from the liquid-phase refrigerant connection pipe 23, and is connected to the electric expansion valves 61 of the indoor units C in the respective rooms.
[0042]
As shown in FIG. 1, the connection branch pipe 25 branches from each gas phase refrigerant branch pipe 22, and the collecting pipe 26 collects the connection branch pipes 25 branched from each gas phase refrigerant branch pipe 22. It is connected to the suction pipe 8 of the outdoor unit A.
[0043]
The valve unit 30 is operated according to each operating condition, such as an operation for cooling all rooms, an operation for heating all rooms, an operation for cooling many rooms and heating a few rooms, and an operation for heating many rooms and cooling a few rooms. A gas-phase or liquid-phase refrigerant is selectively introduced into the indoor unit C of each room, and the gas-phase or liquid-phase refrigerant passing through each indoor unit C is introduced into the distributor pipe 20 so as to flow again into the outdoor unit A. Control the refrigerant flow.
[0044]
As shown in FIG. 1, the valve unit 30 includes a plurality of solenoid valves 31 a, 31 b, and 31 c provided in each of the gas-phase refrigerant branch pipes 22, the liquid-phase refrigerant branch pipes 24, and the connection branch pipes 25. Contains. The plurality of solenoid valves 31 are closed only by a solenoid valve provided on a refrigerant connection pipe on the indoor unit side for heating and an on-off control valve provided on a gas-phase refrigerant branch pipe on the indoor unit side for cooling. The control according to each operating condition will be described later in detail.
[0045]
Next, the indoor unit C is installed in each room, and includes an indoor heat exchanger 62, an electric expansion valve 61, and an indoor fan (not shown).
Each indoor heat exchanger 62 is connected to the gas-phase refrigerant branch pipe 22 of the distributor B, and the electric expansion valve 61 is connected to each liquid-phase refrigerant branch pipe 24 of the distributor. And each indoor heat exchanger 62 and each electric expansion valve 61 are mutually connected by the refrigerant pipe.
Each indoor fan is provided to blow air to each indoor heat exchanger 62.
[0046]
On the other hand, the multi-type air conditioner according to the present invention further includes control means for controlling the rotation speed of the outdoor fan 2a.
The control means includes a temperature sensor 14 and a microcomputer (not shown), and the gas-liquid mixing ratio of the refrigerant flowing into the gas-liquid separator 3 via the outdoor heat exchanger 2 is appropriately adjusted according to each operating condition. Thus, the rotation speed of the outdoor fan 2a is variably controlled.
[0047]
As shown in FIG. 1, the temperature sensor 14 is provided on the auxiliary pipe 5 and measures the temperature of the refrigerant flowing through the auxiliary pipe 5 after being discharged from the outdoor heat exchanger 2.
The microcomputer compares the refrigerant temperature measured by the temperature sensor 14 with a preset refrigerant temperature, detects the gas-liquid mixing ratio of the refrigerant flowing in the auxiliary pipe 5, and detects the detected gas-liquid mixing ratio. The rotation speed of the outdoor fan 2a is variably controlled so that the ratio matches a preset gas-liquid mixing ratio required under each operating condition.
[0048]
In the multi air conditioner according to the present invention configured as described above, the gas-phase refrigerant discharged from the compressor 1 flows directly into the distributor B via the first bypass pipe 11 according to each operating condition, or After being separated into a gas phase and a liquid phase via the heat exchanger 2 and the gas-liquid separator and flowing into the distributor B, the liquid-phase refrigerant is cooled by the electric expansion valve of the indoor unit performing cooling, the indoor heat exchanger, and the distribution unit. After passing through the compressor B, the refrigerant flows into the compressor 1, and the gas-phase refrigerant passes through the indoor heat exchanger of the indoor unit for heating and the electric expansion valve, and then the distributor B, the gas-liquid separator 3, and the outdoor unit electric expansion valve 13a and the outdoor unit. After passing through the heat exchanger 2, the compressor 1 operates so as to flow into the compressor 1 through the second bypass pipe 12. The detailed operation process will be described for each operating condition.
[0049]
For convenience of explanation, in an operation of cooling a large number of rooms and heating a small number of rooms, it is assumed that two indoor units C1 and C2 perform cooling and another indoor unit C3 performs heating. . Further, in the operation of heating a large number of rooms and cooling a small number of rooms, it is assumed that two indoor units C1 and C2 perform heating, and the other indoor unit C3 performs cooling.
[0050]
FIG. 2 is an operation diagram showing an operation state in an operation of cooling all the rooms. In an operation condition in which all the indoor units perform the cooling function, the entire amount of the refrigerant discharged from the compressor 1 is equal to the outdoor heat exchanger 2 and the air conditioner. After sequentially passing through the liquid separator 3, the distributor B, the electric expansion valve 61, the indoor heat exchanger 62, and the distributor B, a circulation path that flows into the compressor 1 is formed. It is on the street.
[0051]
Referring to FIG. 2, the gas-phase refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 2 via the discharge pipe 4. At this time, in order to guide the gas-phase refrigerant to the outdoor heat exchanger 2, the first solenoid valve 4 a is opened (ON), and the second solenoid valve 11 a of the first bypass pipe 11 and the second solenoid valve 4 The three solenoid valve 12a is closed (OFF).
[0052]
The refrigerant that has flowed into the outdoor heat exchanger 2 is supercooled while exchanging heat with the outside air blown by the outdoor fan 2a controlled by the control means, becomes a liquid state, and flows through the auxiliary pipe 5 to the first refrigerant. After passing through the check valve 15a, it flows into the gas-liquid separator 30. At this time, the outdoor heat exchanger 2 functions as a condenser, and the outdoor unit electric expansion valve 13a provided in the parallel pipe 13 is fully closed.
[0053]
The high-pressure liquid-phase refrigerant that has flowed into the gas-liquid separator 3 passes through the liquid-phase refrigerant pipe 7 and the liquid-phase refrigerant pipe connecting pipe 23 sequentially, and is then divided into the liquid-phase refrigerant branch pipes 24. The liquid refrigerant flowing into the liquid refrigerant branch pipe 24 flows into each indoor unit C after passing through the solenoid valve of the liquid refrigerant branch pipe 24.
[0054]
The liquid-phase refrigerant that has flowed into the indoor unit C is expanded by the electric expansion valve 61, exchanges heat with the indoor air while being vaporized by the indoor heat exchanger 62, and cools the indoor. Inflow. At this time, the indoor heat exchanger 62 operates as an evaporator.
[0055]
The gas-phase refrigerant flowing into the gas-phase refrigerant branch pipe 22 flows into the collecting pipe 26 via the connection branch pipe 25. At this time, in order to guide the gas-phase refrigerant to the connection branch pipe 25, the solenoid valve provided on the gas-phase refrigerant branch pipe 22 is closed. The gas-phase refrigerant flowing into the collecting pipe 26 flows into the compressor 1 via the suction pipe 8 and the accumulator 19.
[0056]
FIG. 3 is an operation diagram showing an operation state in an operation of heating all the rooms. In an operation condition of heating all the rooms, the entire amount of the refrigerant discharged from the compressor 1 is reduced by the first bypass pipe 11 and the distributor. B, the indoor heat exchanger 62, the electric expansion valve 61, the distributor B, the gas-liquid separator 3, the outdoor unit electric expansion valve 13a, the outdoor heat exchanger 2, and then the compressor via the second bypass pipe 12. 1 is formed, and the detailed contents thereof are as follows.
[0057]
Referring to FIG. 3, the gas-phase refrigerant discharged from the compressor 1 moves through the discharge pipe 4 and the first solenoid valve 4 a is closed, so that the gas-phase refrigerant flows through the first bypass pipe 11. It moves to the phase refrigerant pipe 6.
The flow of the gas-phase refrigerant flowing into the gas-phase refrigerant pipe 6 to the gas-liquid separator 3 is restricted by the second check valve 6a, and thus moves to the gas-phase refrigerant connection pipe 21 of the distributor B.
[0058]
The gas-phase refrigerant flowing into the gas-phase refrigerant connection pipe 21 flows into each gas-phase refrigerant pipe 22, and the solenoid valve provided on the connection branch pipe 25 is in a closed state. C flows into the indoor heat exchanger 62.
[0059]
The gas-phase refrigerant flowing into the indoor heat exchanger 62 radiates condensation heat while exchanging heat with the air blown by the indoor fan to heat the room, and at this time, the indoor heat exchanger 62 operates as a condenser.
[0060]
The liquid-phase refrigerant supercooled and condensed in the indoor heat exchanger 62 passes through the fully opened electric expansion valve 61, and then flows into the liquid-phase refrigerant branch pipe 24, the liquid-phase refrigerant connection pipe 23, and the liquid-phase refrigerant pipe 7. And flows into the gas-liquid separator 3 of the outdoor unit A through.
[0061]
The liquid-phase refrigerant that has flowed into the gas-liquid separator 3 flows into the parallel pipe 13 by closing the flow path of the first check valve 5a, expands with the outdoor unit electric expansion valve 13a, and exchanges heat with the outdoor heat exchanger 2. While evaporating. At this time, the outdoor heat exchanger 2 operates as an evaporator.
[0062]
The liquid-phase refrigerant supercooled and condensed in the outdoor heat exchanger 2 flows through the discharge pipe 4, is guided to the second bypass pipe 12 by closing the first solenoid valve 3 a, and is sucked into the second bypass pipe 12. After flowing through the pipe 8 and the accumulator 19, it flows into the compressor 1.
[0063]
FIG. 4 is an operation diagram showing an operation state in an operation of cooling a large number of rooms and heating a small number of rooms. In an operation condition of cooling a large number of rooms and heating a small number of rooms, the refrigerant discharged from the compressor 1 is shown. After the entire amount of the liquid refrigerant flows into the outdoor heat exchanger 2 and the gas-liquid separator 3, the liquid-phase refrigerant flows into the distributor 3, the electric expansion valves 61a and 61b in the cooling room, the indoor heat exchangers 62a and 62b in the cooling room, and the distributor. B, a circulation path is formed to flow into the compressor 1 sequentially, and the gas-phase refrigerant passes through the distributor B, the indoor heat exchanger 62c in the heating room, and the electric distributor B through the electric expansion valve 61c in the heating room. And a path for merging with the liquid phase refrigerant and flowing into the compressor 1 through the electric expansion valves 61a and 61b of the cooling room, the indoor heat exchangers 62a and 62b of the cooling room, and the distributor B. The contents are as follows.
[0064]
Referring to FIG. 4, the gas-phase refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 2 through the discharge pipe 4, and at this time, the first solenoid valve 4a is opened to guide the gas-phase refrigerant. Then, the second solenoid valve 11a of the first bypass pipe 11 and the third solenoid valve 12a of the second bypass pipe 12 are closed.
[0065]
On the other hand, the gas-phase refrigerant flowing into the outdoor heat exchanger 2 exchanges heat with the outside air blown by the outdoor fan 2a, and has a gas-liquid mixing ratio suitable for cooling many rooms and heating a small number of rooms. That is, when the rotation speed per minute (RPM) of the outdoor fan 2a is high and a large amount of outside air is added to the outdoor heat exchanger 2, the liquid phase ratio of the refrigerant increases, and the rotation speed per minute (RPM) of the outdoor fan 2a is increased. ) Is low and a small flow rate of outside air is added to the outdoor heat exchanger 2, the gas phase ratio of the refrigerant increases. In the present invention, however, the control means controls the number of rotations of the outdoor fan 2a so that the number of refrigerants in the multi-room It is possible to obtain an optimal gas-liquid mixing ratio necessary for the operation of cooling air and heating a small number of rooms.
[0066]
The operation control method of the outdoor fan of the air conditioner according to the present invention for obtaining the optimum gas-liquid mixing ratio as described above is as follows.
First, the temperature of the gas-liquid mixed refrigerant discharged from the outdoor heat exchanger 2 is measured by the temperature sensor 14 provided in the auxiliary pipe 5.
Then, the refrigerant temperature measured by the temperature sensor 14 is compared with a preset refrigerant temperature to detect a gas-liquid mixing ratio of the refrigerant.
[0067]
Next, the outdoor fan 2a is adjusted so that the detected gas-liquid mixing ratio of the refrigerant matches the corresponding operating condition, that is, the preset mixing ratio required for the operating condition of cooling a large number of rooms and heating a small number of rooms. Change the rotation speed per minute (RPM).
[0068]
When the rotation speed of the outdoor fan 2a is changed by the control means as described above, in the multi-air conditioner of the present invention, the gas-liquid mixing ratio of the refrigerant can be optimized under all operating conditions. Cooling and heating efficiency is also improved.
[0069]
When the outdoor fan 2a is controlled by the above-described method, the refrigerant mixing ratio preset in the microcomputer of the control means is such that two cooling-side indoor units C1 and C2 requiring liquid-phase refrigerant and gas-phase refrigerant It is determined according to one heating indoor unit C3 requiring a refrigerant, and is determined by the flow rate of the liquid-phase refrigerant flowing into two cooling-side indoor units C1 and C2 via one heating indoor unit C3. Is an experimental value determined by an experiment under various load conditions.
[0070]
The control of the outdoor fan 2a performed by the method as described above is also applied to an operating condition of cooling all rooms and an operating condition of heating many rooms and cooling a small number of rooms.
On the other hand, the two-phase refrigerant having the optimum gas-liquid mixing ratio in the outdoor heat exchanger 2 flows into the gas-liquid separator 3 via the auxiliary pipe 5. Thus, the outdoor unit electric expansion valve 13a of the parallel pipe 13 is fully closed to guide the refrigerant.
[0071]
The high-pressure two-phase refrigerant flowing into the gas-liquid separator 40 is separated into a liquid phase and a gas phase by the gas-liquid separator 3, and the separated liquid-phase refrigerant flows into the liquid-phase refrigerant pipe 7 and is The phase refrigerant flows into the gas phase refrigerant pipe 6.
[0072]
The liquid-phase refrigerant flowing into the liquid-phase refrigerant pipe 7 is branched into the liquid-phase refrigerant connection pipe 23, the first liquid-phase refrigerant branch pipe 24a, and the second liquid-phase refrigerant branch pipe 24b, and then the first electric expansion valve 61a. It expands while passing through the second electric expansion valve 61b, performs heat exchange through the first indoor exchanger 62a and the second indoor heat exchanger 62b, and cools the room.
[0073]
The gaseous phase refrigerant vaporized while performing cooling in the first indoor heat exchanger 62a and the second indoor heat exchanger 62b is divided into a first gaseous refrigerant branch pipe 22a, a second gaseous refrigerant branch pipe 22b, and a first connection branch pipe 25a. And into the collecting pipe 26 via the second connecting branch pipe 25b. At this time, in order to guide the gas-phase refrigerant, the solenoid valves 31a and 31b of the first gas-phase refrigerant branch pipe 22a and the second gas-phase refrigerant branch pipe 22b and the third connection branch pipe 25c of the third indoor unit C3 are used. Is closed. The gas-phase refrigerant flowing into the collecting pipe 26 flows into the compressor 1 via the suction pipe 8 and the accumulator 19.
[0074]
On the other hand, the vapor-phase refrigerant separated from the gas-liquid separator 40 and flowing into the vapor-phase refrigerant pipe 6 flows into the vapor-phase refrigerant connection pipe 21, and the first vapor-phase refrigerant branch pipe 22a of the indoor units C1 and C2 performing cooling. Since the solenoid valves 31a and 31b provided in the second gas-phase refrigerant branch pipe 22b are closed, the entire amount flows into the third gas-phase refrigerant branch pipe 22c of the indoor unit C3 that performs heating.
[0075]
The gas-phase refrigerant flowing into the third gas-phase refrigerant branch pipe 22c flows into the third indoor heat exchanger 62c to radiate heat while being condensed because the solenoid valve provided in the third connection branch pipe 25c is closed. After heating the room and flowing into the third liquid-phase refrigerant branch pipe 24c via the third electric expansion valve 61c, the room joins with the liquid-phase refrigerant flowing through the liquid-phase refrigerant pipe 7. After joining in this way, the air flows into the indoor units C1 and C2 that perform cooling, performs cooling, and then flows into the compressor 1.
[0076]
Here, the liquid-phase refrigerant flowing into the liquid-phase refrigerant connection pipe 23 via the liquid-phase refrigerant pipe 7 does not flow into the third indoor unit C3, but flows only into the first indoor unit C1 and the second indoor unit C2. The reason is due to the pressure difference of the refrigerant. That is, the pressure of the refrigerant flowing out of the third liquid-phase refrigerant branch pipe 24c is higher than the pressure of the refrigerant flowing from the liquid-phase refrigerant connection pipe 23 to the first liquid-phase refrigerant branch pipe 24a and the second liquid-phase refrigerant branch pipe 24b. Because it is big.
[0077]
FIG. 5 is an operation diagram showing an operation state in an operation of heating a large number of rooms and cooling a small number of rooms. In an operation condition of heating a large number of rooms and cooling a small number of rooms, the refrigerant discharged from the compressor 1 is shown. Flows into the distributor B via the first bypass pipe 11, and flows again into the distributor B via the indoor heat exchangers 62a and 62b of the heating room and the electric expansion valves 61a and 61b of the heating room. A part of the refrigerant flows into the compressor 1 through the electric expansion valve 61c in the cooling room, the indoor heat exchanger 62c in the cooling room and the distributor B, and the remaining part of the refrigerant flows into the gas-liquid separator 3 and the electric expansion in the outdoor unit. After passing through the valve 13a and the outdoor heat exchanger 2, a circulation path that flows into the compressor 1 through the second bypass pipe 12 is formed, and the details thereof are as follows.
[0078]
Referring to FIG. 5, the gas-phase refrigerant discharged from the compressor 1 flows through the discharge pipe 4 and is guided to the first bypass pipe 11 by the closed first solenoid valve 4a, and then the gas-phase refrigerant is discharged. It flows into the pipe 6.
[0079]
The gas-phase refrigerant flowing into the gas-phase refrigerant pipe 6 flows into the distributor B, that is, the gas-phase refrigerant connection pipe 21 due to the flow restriction of the second check valve 6a, and the first gas-phase refrigerant branch pipe 22a and the second gas After flowing into the first indoor heat exchanger 62a and the second indoor heat exchanger 62b via the phase refrigerant branch pipe 22b and condensing, the first liquid phase is passed through the first electric expansion valve 61a and the second electric expansion valve 61b. The refrigerant flows into the refrigerant branch pipe 24a and the second liquid-phase refrigerant branch pipe 24b. At this time, the first electric expansion valve 61a and the second electric expansion valve 61b are fully opened.
[0080]
The liquid-phase refrigerant flowing into the first liquid-phase refrigerant branch pipe 24a and the second liquid-phase refrigerant branch pipe 24b flows through the liquid-phase refrigerant connection pipe 23, and a part of the liquid-phase refrigerant flows to the liquid-phase refrigerant pipe 7 and to another liquid-phase refrigerant pipe 7. A part is branched to the third liquid-phase refrigerant branch pipe 24c and flows.
[0081]
At this time, a part of the liquid-phase refrigerant that is diverted and flows to the liquid-phase refrigerant pipe 7 flows into the gas-liquid separator 3 and then is guided by the first check valve 5 a to the outdoor unit provided in the parallel pipe 13. After passing through the electric expansion valve 13a, it flows into the compressor 1 through the outdoor heat exchanger 2, through the second bypass pipe 12 and the suction pipe 8.
[0082]
The remaining part of the liquid-phase refrigerant that is diverted and flows to the third liquid-phase refrigerant branch pipe 24c expands while passing through the third electric expansion valve 61c, and then exchanges heat with the third indoor heat exchanger 62c. Perform cooling. The vaporized refrigerant vaporized while performing cooling passes through the third vapor-phase refrigerant branch pipe 22c and the third connection branch pipe 25c, and then gathers through the third vapor-phase refrigerant branch pipe 22c and the third connection branch pipe 25c. After merging at the pipe 26, it flows into the compressor 1 via the suction pipe 8.
[0083]
【The invention's effect】
As described above, the multi air conditioner according to the present invention has the following advantages. First, it is possible to respond optimally to the environment in each room. That is, not only the all-room cooling operation for heating all the rooms and the all-room cooling operation for cooling all the rooms, but also the operation for heating a large number of rooms and cooling a small number of rooms, and the operation for cooling a large number of rooms and cooling a few rooms. Heating operation becomes possible, and it is possible to cope with each room according to the environment.
[0084]
Secondly, according to the present invention, since the piping is configured by using an inexpensive simple on-off valve instead of the expensive three-way valve and four-way valve, the product unit price is reduced.
[0085]
Thirdly, according to the present invention, since the gas-liquid separator is provided not in the distributor but in the outdoor unit, the weight of the distributor can be reduced, the distributor is very easy to install, and Safety is also ensured. This is because, in general, the outdoor unit A is installed on the side wall surface of the outdoor or the bottom surface of the roof, but since the distributor B is provided on the ceiling in the room, the installation of the distributor B is smaller than that of the outdoor unit A. In particular, when the weight of the distributor B is heavy, not only the installation work is difficult, but also reinforcement for supporting the distributor B is required. This is because there is a danger that it will not be able to withstand and fall from the ceiling. Therefore, in the present invention, the gas-liquid separator 3 is designed to be disposed inside the outdoor unit A.
[0086]
Fourth, the mixing ratio of the refrigerant flowing into the gas-liquid separator can be optimized in the operation of cooling all the rooms and the operation of cooling the large number of rooms and heating the small number of rooms, and the air conditioning efficiency can be improved. improves.
[0087]
Although the preferred embodiment of the present invention has been described above, the present invention is not limited to this embodiment, and it is understood by those skilled in the art that various modifications or changes can be made based on the technical idea of the present invention. It is a matter of course.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating a multi-type air conditioner according to an embodiment of the present invention.
FIG. 2 is an operation diagram showing an operation state of an operation of cooling all rooms.
FIG. 3 is an operation diagram showing an operation state of an operation of heating all rooms.
FIG. 4 is an operation diagram showing an operation state of an operation of cooling a large number of rooms and heating a small number of rooms.
FIG. 5 is an operation diagram showing an operation state of an operation of heating a large number of rooms and cooling a small number of rooms.
[Explanation of symbols]
1. Compressor
2. Outdoor heat exchanger
3. Gas-liquid separator
4: Discharge pipe
5 ... Auxiliary pipe
6. Gas-phase refrigerant pipe
7. Liquid phase refrigerant pipe
20 ... Distributor piping
30 ... Valve
A: Outdoor unit
B: Distributor
C: Indoor unit

Claims (28)

室外熱交換機と、前記室外熱交換機の吐出側に連結されて前記室外熱交換機から流入した冷媒を気相冷媒と液相冷媒とに分離して各々吐き出す気液分離器が備えられた室外機と、
室内熱交換機と電気膨張弁が各々備えられ複数の室内の各々に設けられる室内機と、
前記室外機と前記室内機との間に連結され、室外機から流入した気相冷媒は暖房を行う室内機の室内熱交換機へ流動させ、室外機から流入した液相冷媒は暖房を行う室内機の電気膨張弁へ流動させ、室内機を経由した冷媒を更に室外機に流動させるものの、各室毎に暖房と冷房を個別的に行う場合には、前記暖房を行う室内機を経由しつつ液化された冷媒を前記冷房を行う室内機の電気膨張弁へ再び流動させた後、前記室外機へ流動させる分配器と、
前記各構成要素を連結し、冷媒の流路を制御する複数の逆止弁とソレノイド弁が設けられた冷媒配管とを具備するマルチ空気調和機。
An outdoor heat exchanger, and an outdoor unit provided with a gas-liquid separator connected to the discharge side of the outdoor heat exchanger and separating the refrigerant flowing from the outdoor heat exchanger into a gas-phase refrigerant and a liquid-phase refrigerant and discharging the refrigerant. ,
An indoor unit provided with an indoor heat exchanger and an electric expansion valve, each being provided in each of a plurality of rooms;
The gas-phase refrigerant that is connected between the outdoor unit and the indoor unit and flows from the outdoor unit to the indoor heat exchanger of the indoor unit that performs heating, and the liquid-phase refrigerant that flows from the outdoor unit performs heating. Although the refrigerant that has flowed through the indoor unit and the refrigerant that has passed through the indoor unit further flows to the outdoor unit, when heating and cooling are individually performed for each room, the refrigerant is liquefied through the indoor unit that performs the heating. After flowing the refrigerant again to the electric expansion valve of the indoor unit performing the cooling, a distributor that flows to the outdoor unit,
A multi-air conditioner comprising: a plurality of check valves for connecting the respective components and controlling a flow path of a refrigerant; and a refrigerant pipe provided with a solenoid valve.
前記室外熱交換機を経て前記気液分離器に流入する冷媒の気液混合比が、各々運転条件に沿って適切に調節されるように、前記室外ファンの回転数を制御する制御手段を具備する請求項1に記載のマルチ空気調和機。Control means for controlling the number of revolutions of the outdoor fan so that the gas-liquid mixing ratio of the refrigerant flowing into the gas-liquid separator via the outdoor heat exchanger is appropriately adjusted according to each operating condition. The multi-type air conditioner according to claim 1. 前記制御手段は、配管に設けられて前記室外熱交換機から吐き出された冷媒の温度を測定する温度センサーと、
前記温度センサーにより測定した冷媒温度と既に設定した冷媒温度とを比較して配管内の冷媒混合比を検出し、検出された混合比が各運転条件において必要とする予め設定された混合比に等しくなるように、前記室外ファンの回転数を制御するマイクロコンピュータとを具備する請求項2に記載のマルチ空気調和機。
The control unit is provided in the pipe, a temperature sensor that measures the temperature of the refrigerant discharged from the outdoor heat exchanger,
Compare the refrigerant temperature measured by the temperature sensor with the already set refrigerant temperature to detect the refrigerant mixture ratio in the pipe, and the detected mixture ratio is equal to the preset mixture ratio required in each operating condition. The multi-air conditioner according to claim 2, further comprising: a microcomputer that controls a rotation speed of the outdoor fan.
前記室外機は、圧縮機、室外ファン、室外熱交換機、室外機電気膨張弁、気液分離器、アキュームレータ、および、前記各構成要素を連結し、複数の逆止弁とソレノイド弁が設けられた室外機配管を具備する請求項1に記載のマルチ空気調和機。The outdoor unit was connected to a compressor, an outdoor fan, an outdoor heat exchanger, an outdoor unit electric expansion valve, a gas-liquid separator, an accumulator, and each of the constituent elements, and was provided with a plurality of check valves and solenoid valves. The multi-type air conditioner according to claim 1, further comprising an outdoor unit pipe. 前記室外機配管は、
前記圧縮機と前記室外熱交換機とを連結する吐出管と、
前記室外熱交換機と前記気液分離器とを連結する補助管と、
前記補助管の一方から分岐した後、更に補助管に合流する並列管と、
前記気液分離器の上部と前記分配器とを連結する気相冷媒管と、
前記気液分離器の下部と前記分配器とを連結する液相冷媒管と、
前記分配器と前記圧縮機とを連結する吸入管と、
前記吐出管と前記気相冷媒管とを連結する第1バイパス管と、
前記第1バイパス管と前記室外熱交換機との間の位置の吐出管と前記吸入管を連結する第2バイパス管とを具備する請求項4に記載のマルチ空気調和機。
The outdoor unit piping is
A discharge pipe connecting the compressor and the outdoor heat exchanger,
An auxiliary pipe connecting the outdoor heat exchanger and the gas-liquid separator,
After branching from one of the auxiliary pipes, a parallel pipe that further joins the auxiliary pipe,
A gas-phase refrigerant pipe connecting the upper part of the gas-liquid separator and the distributor;
A liquid-phase refrigerant pipe connecting the lower part of the gas-liquid separator and the distributor;
A suction pipe connecting the distributor and the compressor,
A first bypass pipe connecting the discharge pipe and the gas-phase refrigerant pipe,
The multi air conditioner according to claim 4, further comprising a second bypass pipe connecting the discharge pipe and the suction pipe at a position between the first bypass pipe and the outdoor heat exchanger.
前記第1バイパス管と前記第2バイパス管との間に前記吐出管に第1ソレノイド弁が設けられている請求項5に記載のマルチ空気調和機。The multi air conditioner according to claim 5, wherein a first solenoid valve is provided in the discharge pipe between the first bypass pipe and the second bypass pipe. 前記第1ソレノイド弁は、全室を冷房する運転および多数室を冷房し且つ少数室を暖房する運転において開放し、全室を冷房する運転および多数室を暖房し且つ少数室を冷房する運転において閉鎖するように制御されることを特徴とする請求項6に記載のマルチ空気調和機。The first solenoid valve is opened in an operation of cooling all rooms and an operation of cooling many rooms and heating a small number of rooms, and in an operation of cooling all rooms and in an operation of heating a large number of rooms and cooling a small number of rooms. The multi air conditioner according to claim 6, wherein the air conditioner is controlled to be closed. 前記第1バイパス管に第2ソレノイド弁が設けられている請求項5に記載のマルチ空気調和機。The multi air conditioner according to claim 5, wherein a second solenoid valve is provided in the first bypass pipe. 前記第2ソレノイド弁は、全室を冷房する運転および多数室を冷房し且つ少数室を暖房する運転において閉鎖し、全室を暖房する運転および多数室を暖房し少数室を冷房する運転において開放するように制御されることを特徴とする請求項8に記載のマルチ空気調和機。The second solenoid valve is closed in an operation of cooling all rooms and an operation of cooling many rooms and heating a small number of rooms, and is opened in an operation of heating all rooms and in an operation of heating many rooms and cooling a few rooms. The multi-type air conditioner according to claim 8, wherein the air conditioner is controlled to perform the control. 前記第2バイパス管に第3ソレノイド弁が設けられている請求項5に記載のマルチ空気調和機。The multi air conditioner according to claim 5, wherein a third solenoid valve is provided in the second bypass pipe. 前記第3ソレノイド弁は全室を冷房する運転および多数室を冷房し且つ少数室を暖房する運転において閉鎖し、全室を暖房する運転および多数室を暖房し且つ少数室を冷房する運転において開放するように制御されることを特徴とする請求項10に記載のマルチ空気調和機。The third solenoid valve is closed in an operation of cooling all rooms and an operation of cooling a large number of rooms and heating a small number of rooms, and is opened in an operation of heating all rooms and in an operation of heating a large number of rooms and cooling a small number of rooms. The multi-type air conditioner according to claim 10, wherein the air conditioner is controlled to perform the control. 前記並列管が分岐する位置と、合流する位置との間の補助管に、気液分離器から室外熱交換機への冷媒の流動を防止する第1逆止弁が設けられている請求項5に記載のマルチ空気調和機。The first check valve for preventing the flow of the refrigerant from the gas-liquid separator to the outdoor heat exchanger is provided in the auxiliary pipe between the position where the parallel pipe branches and the position where the parallel pipes join. The multi air conditioner as described. 前記室外機の電気膨張弁は、前記並列管に設けられることを特徴とする請求項5に記載のマルチ空気調和機。The multi-air conditioner according to claim 5, wherein the electric expansion valve of the outdoor unit is provided in the parallel pipe. 前記室外機電気膨張弁は、全室を冷房する運転および多数室を冷房し且つ少数室を暖房する運転において閉鎖し、全室を暖房する運転および多数室を暖房し且つ少数室を冷房する運転において機能するように制御されることを特徴とする請求項13に記載のマルチ空気調和機。The outdoor unit electric expansion valve is closed in an operation of cooling all rooms and an operation of cooling many rooms and heating a small number of rooms, an operation of heating all rooms and an operation of heating a large number of rooms and cooling a small number of rooms. The multi-type air conditioner according to claim 13, wherein the air conditioner is controlled to function. 前記気液分離器と前記第1バイパス管との間の位置の気相冷媒管には、前記第1バイパス管のから前記気液分離器への冷媒の流動を防止する第2逆止弁が設けられている請求項5に記載のマルチ空気調和機。A second check valve for preventing the refrigerant from flowing from the first bypass pipe to the gas-liquid separator is provided in the gas-phase refrigerant pipe at a position between the gas-liquid separator and the first bypass pipe. The multi air conditioner according to claim 5, which is provided. 前記アキュームレータは、前記吸入管に設けられることを特徴とする請求項5に記載のマルチ空気調和機。The multi air conditioner according to claim 5, wherein the accumulator is provided in the suction pipe. 前記分配器は、
前記気相冷媒管または液相冷媒管を介して流入した気相または液相冷媒を室内機へ案内し、室内機を経由した冷媒を更に前記室外機へ案内する分配器配管と、
各運転条件によって各室の室内機へ選択的に気相または液相の冷媒を流入させ、室内機を経由した冷媒を室外機へ再案内するように、前記分配器配管内の冷媒の流れを制御する弁部とを具備する請求項5に記載のマルチ空気調和機。
The distributor comprises:
A distributor pipe that guides a gaseous or liquid-phase refrigerant flowing through the gas-phase refrigerant pipe or the liquid-phase refrigerant pipe to the indoor unit, and further guides the refrigerant via the indoor unit to the outdoor unit,
The refrigerant flow in the distributor pipe is controlled so that the gas-phase or liquid-phase refrigerant is selectively introduced into the indoor unit of each room according to each operating condition, and the refrigerant that has passed through the indoor unit is re-guided to the outdoor unit. The multi-type air conditioner according to claim 5, further comprising a valve unit for controlling.
前記分配器の配管は、
前記気相冷媒管に連結される気相冷媒連結管と、
前記気相冷媒管から分岐し、各室の室内機の室内熱交換機にそれぞれ連結される気相冷媒分岐管と、
前記液相冷媒管に連結される液相冷媒連結管と、
前記液相冷媒管から分岐し、各室の室内機の電気膨張弁にそれぞれ連結される液相冷媒分岐管、
前記各気相冷媒分岐管から分岐する連結分岐管と、
前記各連結分岐管を一つに集合し前記吸入管に連結される集合管とを具備する請求項17記載のマルチ空気調和機。
Piping of the distributor,
A gas-phase refrigerant connection pipe connected to the gas-phase refrigerant pipe,
A gas-phase refrigerant branch pipe branched from the gas-phase refrigerant pipe and connected to an indoor heat exchanger of an indoor unit of each room,
A liquid-phase refrigerant connection pipe connected to the liquid-phase refrigerant pipe,
A liquid-phase refrigerant branch pipe branched from the liquid-phase refrigerant pipe and connected to an electric expansion valve of an indoor unit in each room,
A connection branch pipe branched from each of the gas-phase refrigerant branch pipes,
The multi air conditioner according to claim 17, further comprising: a collecting pipe connected to the suction pipe, wherein the connecting branch pipes are gathered together.
前記弁部は、前記各気相冷媒分岐管、前記各液相冷媒分岐管、前記各連結分岐管の各々に設けられて制御される複数のソレノイド弁を具備する請求項18記載のマルチ空気調和機。19. The multi air conditioning system according to claim 18, wherein the valve section includes a plurality of solenoid valves provided and controlled in each of the gas-phase refrigerant branch pipe, the liquid-phase refrigerant branch pipe, and the connection branch pipe. Machine. 前記分配器の弁部は、暖房を行う室内機側の冷媒連結管に設けられたソレノイド弁、および、冷房を行う室内機側の気相冷媒分岐管に設けられたソレノイド弁のみを閉鎖するように制御される請求項19記載のマルチ空気調和機。The valve section of the distributor closes only a solenoid valve provided on a refrigerant connection pipe on the indoor unit side for heating, and a solenoid valve provided on a gas-phase refrigerant branch pipe on the indoor unit side for cooling. The multi-type air conditioner according to claim 19, wherein the air conditioner is controlled to: 前記暖房を行う室内機の電気膨張弁が全開となる請求項1に記載のマルチ空気調和機。The multi-air conditioner according to claim 1, wherein the electric expansion valve of the indoor unit that performs the heating is fully opened. 前記冷房を行う室内機の電気膨張弁は、冷媒が膨張するように制御される請求項1に記載のマルチ空気調和機。The multi-air conditioner according to claim 1, wherein the electric expansion valve of the indoor unit that performs the cooling is controlled so that the refrigerant expands. 前記逆止弁とソレノイド弁は、全室を冷房する運転および全室を暖房する運転、多数室を冷房し且つ少数室を暖房する運転および多数室を暖房し且つ少数室を冷房する運転条件毎に、冷媒の流れが異なるように制御される請求項5に記載のマルチ空気調和機。The check valve and the solenoid valve are operated for cooling all rooms and for heating all rooms, for cooling many rooms and for heating a small number of rooms, and for operating conditions for heating many rooms and cooling a few rooms. The multi air conditioner according to claim 5, wherein the flow of the refrigerant is controlled so as to be different. 前記全室を冷房する運転において、前記逆止弁およびソレノイド弁は、前記圧縮機から吐き出された冷媒の全量が、室外熱交換機、気液分離器、分配器、電気膨張弁、室内熱交換機、分配器を順次に経由した後に圧縮機に流入するように制御される請求項23に記載のマルチ空気調和機。In the operation of cooling all the rooms, the check valve and the solenoid valve are arranged so that the entire amount of the refrigerant discharged from the compressor is an outdoor heat exchanger, a gas-liquid separator, a distributor, an electric expansion valve, an indoor heat exchanger, 24. The multi-air conditioner according to claim 23, wherein the multi-air conditioner is controlled to flow into the compressor after sequentially passing through the distributor. 前記全室を暖房する運転において、前記逆止弁およびソレノイド弁は、前記圧縮機から吐き出された冷媒の全量が、第1バイパス管、分配器、室内熱交換機、電気膨張弁、分配器、気液分離器、室外機電気膨張弁、室外熱交換機を順次に経由した後に第2バイパス管を通じて圧縮機に流入するように制御される請求項23に記載のマルチ空気調和機。In the operation of heating the entire room, the check valve and the solenoid valve are configured so that the total amount of the refrigerant discharged from the compressor is reduced by the first bypass pipe, the distributor, the indoor heat exchanger, the electric expansion valve, the distributor, 24. The multi-air conditioner according to claim 23, wherein the multi-air conditioner is controlled to flow through the liquid separator, the outdoor unit electric expansion valve, and the outdoor heat exchanger sequentially, and then flow into the compressor through the second bypass pipe. 前記多数室を冷房し且つ少数室を暖房する運転において、前記逆止弁および前記ソレノイド弁は、圧縮機から吐き出された冷媒が室外熱交換機と気液分離器に流入した後、液相冷媒は分配器、冷房室の電気膨張弁、冷房室の室内熱交換機、分配器を順次に経由した後に前記圧縮機に流入し、気相冷媒は分配器、暖房室の室内熱交換機、暖房室の電気膨張弁を経由した後に前記分配器の内で前記液相冷媒と合流し、冷房室の電気膨張弁、冷房室の室内熱交換機、前記分配器を経て前記圧縮機に流入するように制御されることを特徴とする請求項23に記載のマルチ空気調和機。In the operation of cooling the large number of chambers and heating the small number of chambers, the check valve and the solenoid valve allow the refrigerant discharged from the compressor to flow into the outdoor heat exchanger and the gas-liquid separator. After sequentially passing through the distributor, the electric expansion valve in the cooling room, the indoor heat exchanger in the cooling room, and the distributor, the refrigerant flows into the compressor, and the gas-phase refrigerant flows into the distributor, the indoor heat exchanger in the heating room, and the electricity in the heating room. After passing through an expansion valve, it is controlled to merge with the liquid-phase refrigerant in the distributor and flow into the compressor via an electric expansion valve in a cooling room, an indoor heat exchanger in a cooling room, and the distributor. The multi-type air conditioner according to claim 23, wherein: 前記多数室を冷房し且つ少数室を暖房する運転において、前記逆止弁および前記ソレノイド弁は、圧縮機から吐き出された冷媒の全量が第1バイパス管を通じて分配器に流入し、暖房室の室内熱交換機、暖房室の電気膨張弁を経由して分配器に再流入した後、冷媒の一部が冷房室の電気膨張弁と冷房室の室内熱交換機および分配器を経て圧縮機に流入し、冷媒の残りの部分が気液分離器、室外機電気膨張弁、室外熱交換機を経由した後、第2バイパス管を通じて圧縮機に流入するように制御されることを特徴とする請求項23に記載のマルチ空気調和機。In the operation of cooling the majority room and heating the minority room, the check valve and the solenoid valve cause the entire amount of the refrigerant discharged from the compressor to flow into the distributor through the first bypass pipe, and the room of the heating room After re-flowing into the distributor via the heat exchanger, the electric expansion valve in the heating room, part of the refrigerant flows into the compressor via the electric expansion valve in the cooling room and the indoor heat exchanger and distributor in the cooling room, 24. The refrigerant according to claim 23, wherein the remaining portion of the refrigerant is controlled to flow through the gas-liquid separator, the outdoor unit electric expansion valve, the outdoor heat exchanger, and then flow into the compressor through the second bypass pipe. Multi air conditioner. 室外熱交換機から吐出される気液混合冷媒の温度を測定する段階と、
前記測定された冷媒温度と予め設定された冷媒温度とを比較して冷媒の気液混合比を検出する段階と、
前記検出された気液混合比は、該当運転条件に必要な予め設定された混合比に一致するように室外ファンの回転数を変化させる段階とを含むマルチ空気調和機の室外ファンの運転制御方法。
Measuring the temperature of the gas-liquid mixed refrigerant discharged from the outdoor heat exchanger;
Detecting the gas-liquid mixing ratio of the refrigerant by comparing the measured refrigerant temperature with a preset refrigerant temperature,
Changing the number of revolutions of the outdoor fan so that the detected gas-liquid mixture ratio matches a preset mixture ratio required for the corresponding operating condition. .
JP2003114318A 2002-08-22 2003-04-18 Multi air conditioner and operation control method for outdoor fan Expired - Fee Related JP4391759B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0049750A KR100447202B1 (en) 2002-08-22 2002-08-22 Multi-type air conditioner for cooling/heating the same time and method for controlling the same

Publications (2)

Publication Number Publication Date
JP2004085179A true JP2004085179A (en) 2004-03-18
JP4391759B2 JP4391759B2 (en) 2009-12-24

Family

ID=31185834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003114318A Expired - Fee Related JP4391759B2 (en) 2002-08-22 2003-04-18 Multi air conditioner and operation control method for outdoor fan

Country Status (5)

Country Link
EP (1) EP1391664B1 (en)
JP (1) JP4391759B2 (en)
KR (1) KR100447202B1 (en)
CN (1) CN1224817C (en)
DE (1) DE60325811D1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008016233A1 (en) * 2006-07-29 2008-02-07 Lg Electronics Inc. Simulataneous heating/cooling multi air conditioner
WO2009028043A1 (en) * 2007-08-28 2009-03-05 Mitsubishi Electric Corporation Air conditioner
KR101089499B1 (en) * 2004-07-02 2011-12-02 엘지전자 주식회사 Multi-airconditioner
CN103913009A (en) * 2012-12-31 2014-07-09 赵佳佳 Refrigerating and heating air conditioner
CN111637657A (en) * 2020-05-30 2020-09-08 广东志高暖通设备股份有限公司 Control method for reducing volume of gas-liquid separator of multi-connected refrigeration system
CN112815491A (en) * 2021-01-15 2021-05-18 广东积微科技有限公司 Refrigerant distribution system and method for air conditioner, computer equipment and storage medium

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7987679B2 (en) * 2005-02-24 2011-08-02 Mitsubishi Denki Kabushiki Kaisha Air conditioning apparatus
KR101048495B1 (en) * 2006-12-26 2011-07-12 엘지전자 주식회사 Air Conditioning Synchronous Multi Air Conditioner
WO2009018150A1 (en) 2007-07-27 2009-02-05 Johnson Controls Technology Company Multichannel heat exchanger
KR200454331Y1 (en) * 2008-11-11 2011-06-28 김문성 The cool air sei·zure for preventing sliding door and panel structure
WO2011014719A1 (en) 2009-07-31 2011-02-03 Johnson Controls Technology Company Refrigerant control system and method
CN102549356B (en) 2009-08-17 2014-12-24 江森自控科技公司 Heat-pump chiller with improved heat recovery features
CN102052733A (en) * 2009-10-30 2011-05-11 玛丽·克利昂卡努特 Method for effectively operating cooling system
CN102359738B (en) * 2011-05-27 2013-05-08 青岛大学 Heat pipe and refrigerating system combined energy transportation method
KR101288745B1 (en) * 2011-10-27 2013-07-23 엘지전자 주식회사 Air conditioner
JP6003635B2 (en) * 2012-12-28 2016-10-05 ダイキン工業株式会社 AIR CONDITIONER AND AIR CONDITIONER CONSTRUCTION METHOD
CN104833126A (en) * 2015-03-31 2015-08-12 广东美的暖通设备有限公司 Variable refrigerant volume system
JP6805759B2 (en) * 2016-11-29 2020-12-23 富士電機株式会社 Refrigerant circuit device
CN106979593A (en) * 2017-04-24 2017-07-25 广东美的制冷设备有限公司 Control method, device and the air conditioner of outdoor fan of air conditioner rotating speed
KR102373851B1 (en) * 2017-08-31 2022-03-14 삼성전자주식회사 Air conditioner
AU2018342809B2 (en) * 2017-09-29 2020-07-09 Daikin Industries, Ltd. Air-conditioning system
CN114857662B (en) * 2022-05-05 2023-08-29 青岛海信日立空调系统有限公司 Multi-split air conditioning system and control method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60261A (en) * 1983-06-17 1985-01-05 株式会社日立製作所 Refrigeration cycle
JPS6334459A (en) * 1986-07-29 1988-02-15 株式会社東芝 Air conditioner
US4878357A (en) * 1987-12-21 1989-11-07 Sanyo Electric Co., Ltd. Air-conditioning apparatus
JPH02208462A (en) * 1989-02-09 1990-08-20 Sanyo Electric Co Ltd Cooling and heating device
GB2230873B (en) * 1989-02-27 1993-10-06 Toshiba Kk Multi-system air conditioning machine
AU636726B2 (en) * 1990-03-19 1993-05-06 Mitsubishi Denki Kabushiki Kaisha Air conditioning system
US5237833A (en) * 1991-01-10 1993-08-24 Mitsubishi Denki Kabushiki Kaisha Air-conditioning system
JPH0763429A (en) * 1993-08-26 1995-03-10 Matsushita Refrig Co Ltd Mult-room type air conditioner
KR100437803B1 (en) * 2002-06-12 2004-06-30 엘지전자 주식회사 Multi-type air conditioner for cooling/heating the same time and method for controlling the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089499B1 (en) * 2004-07-02 2011-12-02 엘지전자 주식회사 Multi-airconditioner
WO2008016233A1 (en) * 2006-07-29 2008-02-07 Lg Electronics Inc. Simulataneous heating/cooling multi air conditioner
WO2009028043A1 (en) * 2007-08-28 2009-03-05 Mitsubishi Electric Corporation Air conditioner
JP5106536B2 (en) * 2007-08-28 2012-12-26 三菱電機株式会社 Air conditioner
CN103913009A (en) * 2012-12-31 2014-07-09 赵佳佳 Refrigerating and heating air conditioner
CN111637657A (en) * 2020-05-30 2020-09-08 广东志高暖通设备股份有限公司 Control method for reducing volume of gas-liquid separator of multi-connected refrigeration system
CN112815491A (en) * 2021-01-15 2021-05-18 广东积微科技有限公司 Refrigerant distribution system and method for air conditioner, computer equipment and storage medium

Also Published As

Publication number Publication date
CN1224817C (en) 2005-10-26
EP1391664A2 (en) 2004-02-25
EP1391664B1 (en) 2009-01-14
KR100447202B1 (en) 2004-09-04
KR20040017601A (en) 2004-02-27
EP1391664A3 (en) 2004-03-10
DE60325811D1 (en) 2009-03-05
CN1477344A (en) 2004-02-25
JP4391759B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP4391759B2 (en) Multi air conditioner and operation control method for outdoor fan
US6772600B2 (en) Multi-unit air conditioner and method for controlling the same
JP4383801B2 (en) Multi-air conditioner and operation method thereof
US6755038B2 (en) Multi-unit air conditioner and method for controlling the same
EP1391660B1 (en) Multi-unit air conditioner and method for controlling operation of outdoor unit fan thereof
EP0496505B1 (en) Air-conditioning system
EP2472200B1 (en) Air conditioning device
US8794020B2 (en) Air-conditioning apparatus
JP2004020188A (en) Multi-air conditioner
JP2004085191A (en) Cooling/heating simultaneous type multi air conditioner
EP2495515B1 (en) Air conditioning device
JPH08291951A (en) Air conditioner
WO2008114952A1 (en) Multi-unit air conditioning system and controlling method for the same
JP2522363B2 (en) Air conditioner
JPH0712424A (en) Air conditioner
JPH03117835A (en) Air conditioner
JPH04366374A (en) Air conditioning apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080512

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees