JP2004085134A - Hot isotropic pressurization device and hot isotropic pressurization method - Google Patents

Hot isotropic pressurization device and hot isotropic pressurization method Download PDF

Info

Publication number
JP2004085134A
JP2004085134A JP2002248969A JP2002248969A JP2004085134A JP 2004085134 A JP2004085134 A JP 2004085134A JP 2002248969 A JP2002248969 A JP 2002248969A JP 2002248969 A JP2002248969 A JP 2002248969A JP 2004085134 A JP2004085134 A JP 2004085134A
Authority
JP
Japan
Prior art keywords
gas
pressure
mixed gas
mixed
sampling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002248969A
Other languages
Japanese (ja)
Other versions
JP4127779B2 (en
Inventor
Noriyuki Nakai
仲井 伯享
Takeshi Kanda
神田 剛
Tomomitsu Nakai
中井 友充
Kazuya Suzuki
鈴木 一也
Yoshio Ofune
小舟 惠生
Takao Fujikawa
藤川 隆男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002248969A priority Critical patent/JP4127779B2/en
Publication of JP2004085134A publication Critical patent/JP2004085134A/en
Application granted granted Critical
Publication of JP4127779B2 publication Critical patent/JP4127779B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • B30B11/002Isostatic press chambers; Press stands therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot isotropic pressurization device capable of uniformly mixing led-in treatment gas in a treatment chamber in the case of using mixed gas as the treatment gas and sampling the uniformly mixed gas to make an accurate composition analysis. <P>SOLUTION: In this hot isotropic pressurization device, two or more kinds of gas are separately supplied into a high pressure container 4 and mixed, and while regulating the partial pressure of each component of the mixed gas based on the result of sampling and analyzing the obtained mixed gas, a treated object 10 disposed in the high pressure container 4 is pressurized in an isotropic manner under high temperature by the mixed gas of high temperature and high pressure. A flow straightening cylinder 9 is disposed between the high pressure container 4 and the treated object 10. Opening parts 23, 38 of supply pipelines 22, 37 of each gas are arranged below in the high pressure container 4, on the inner peripheral surface side, and an agitating fan 14 is arranged below in the high pressure container 4, on the center side. An opening part 46 of a sampling pipeline 43 of the mixed gas is disposed near the agitating fan 14. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、熱間等方圧加圧装置および熱間等方圧加圧方法に関し、詳細には、高温高圧のガス雰囲気下で、特性のガス成分の分圧を制御しつつ、粉末成形体の焼結や、特定の材料からなる製品の表面をガスとの反応を利用して化合物に変質させるような表面処理を行う熱間等方圧加圧技術に関するものである。
【0002】
【従来の技術および発明が解決しようとする課題】
高温高圧のガス雰囲気下で、粉末成形体の焼結を行う技術としては、アルゴンなどの実質的に不活性なガスを用いてガス圧力により、成形体を圧縮しつつ焼結を行うことにより、気孔をほとんど含まない焼結体を製造する所謂熱間等方圧加圧法(HIP法)が知られている。
【0003】
また、HIP法では、一部の酸化物あるいは窒化物セラミックス材料を成形体または仮焼結した焼結体の場合には、直接処理材料が雰囲気ガスに暴露されるようなHIP処理では、完全な不活性なアルゴンガス雰囲気下でHIP処理を行うと、うまくHIP処理が行えないことが知られている。すなわち、酸化物セラミックスでは酸素欠損を生じて所期の特性が得られないことがある。代表的な材料としてMn−Zn−フェライトが知られている。仮焼結されたMn−Zn−フェライトのHIP処理は1200℃、100MPa程度の条件でHIP処理が行われるが、純アルゴンを用いて1200℃まで加熱すると(Mn,Zn)O/Feの組成で知られる、スピネル構造の複酸化物が酸素欠損により一部分解を起こして、FeO(ウスタイト)を表面に生じてヘアクラックが発生する。また、酸素分圧が高すぎると、Fe(γ−ヘマタイト)が生じる。
【0004】
このような問題を改善するため、本出願人は先に実公平5−14159号公報にHIP装置を提案した。しかし、この提案のHIP装置であっても次の如き問題が新たに知見された。すなわち、ガス供給用配管より導入されたガスは、逆コップ状のケースの上部開口部から排出されるため処理室内部で十分に均一になる前に高圧容器外へ排出されてしまう。また、処理室内のガス分析のためのサンプリング配管の開口部は、十分に均一混合されたガスをサンプリングするためできるだけガス供給配管の開口部より離す必要があり処理室の上側に配管して開口する必要がある。ところがそのように配管を上側まで配管することは高温高圧に曝されるため困難で現実には難しい。また更に、ガス供給用配管において2種類以上のガスボンベに対して加圧供給用のガス圧縮機が1台しかなく、そのため、ガスボンベを切り替えてガス成分調整あるいは異種ガスの供給を行う場合に、先に供給していたガスが圧縮機内部や配管中に残っており精度の高い制御ができなかった。
【0005】
また、上記提案以外のHIP法を用いた処理方法としては、仮焼結した処理品を同種の粉末もしくは不活性な粉末の中に埋設して、処理品周囲の雰囲気をこれらの粉末もしくは処理品自体から発生する酸素により制御する所謂「詰め粉法」が用いられてきた。この「詰め粉法」は、自然現象を利用する点で確実な方法であるが、詰め粉により処理品周囲のガスの対流が抑制される結果、熱伝達が極めて悪くなり、大きなHIP装置で大きな焼結体を処理すると処理品が温度分布による熱応力で割れるという問題が生じていた。また、「詰め粉法」の場合、詰め粉が、HIP処理のガス回収や放出工程で処理室内部に飛散して炉構造物と反応したりして損傷を生じるというような操業上の問題もたびたび経験されてきた。
【0006】
また一方、窒化ケイ素に代表される窒化物セラミックスの場合には、純アルゴンでのHIP処理では、十分な緻密化が実現できないばかりか、表面が分解反応により荒れてしまうことが知られており、これを回避するために純窒素ガスが使用されてきた。純窒素の使用により、窒化ケイ素の分解反応は抑制されて気孔の無い緻密な焼結体は得られるものの、窒化ケイ素セラミックスの高温強度特性に大きな影響を与える粒界相が変質して所期の高温強度特性が得られなくなることが経験されている。これを回避するには、アルゴンと窒素の混合ガスを使用して、1700℃程度の温度域でのHIP処理の保持工程で窒素分圧を2MPa程度とすることが効果的であるとされている。
【0007】
そして、このような条件を実現するための方法としては、処理用の圧力媒体ガスとして、2MPaの窒素分圧が得られる量の窒素をアルゴンに混合したガスを用いることや、あるいは、まず窒素のみをHIP装置に供給して、窒素2MPaで1700℃の条件とし、その後アルゴンガスを加圧注入して全体の圧力を100MPaとするような方法が考えられるものの、いずれの場合も1回の処理で、使用したガスを放出して捨てる場合には問題はないが、繰り返し使用するには窒素の量が使用により変化するため、毎バッチ処理ごとの窒素分圧を同じにするにはガスの繰り返し使用はできず、このため、HIP処理コストが高価となり実用化されていないのが実状である。
【0008】
本発明は、如上の従来技術の持つ問題点を解消すべくなされたものであって、その目的は、処理ガスとして混合ガスを用いる場合において、導入された処理ガスが処理室内で均一混合が図られるとともに、その均一混合されたガスをサンプリングして精度良く成分分析し得る熱間等方圧加圧装置および熱間等方圧加圧方法を提供するものである。
【0009】
【課題を解決するための手段】
上記の目的を達成するための本発明は次の構成を備えたものである。すなわち、請求項1に係る発明は、高圧容器内に二種以上のガスを別々に供給して該高圧容器内で各ガスを混合し、得られた混合ガスをサンプリングして分析した結果に基づいて前記混合ガスの各成分の分圧を調整しながら前記高圧容器内に配置された処理品を高温高圧の混合ガスによって高温下で等方的に加圧する熱間等方圧加圧装置において、前記高圧容器と前記処理品との間に筒状の整流筒を、前記処理品を囲繞する状態で配置し、各ガスの供給用配管の開口部を前記高圧容器内の下方であって内周面よりに配置するとともに攪拌用ファンを前記高圧容器内の下方であって中心よりに配置し、混合ガスのサンプリング配管の開口部を前記攪拌用ファンの近傍に配置したことを特徴とする熱間等方圧加圧装置とするものである。
【0010】
上記の熱間等方圧加圧装置では、高圧容器内に導入されたガスは、攪拌用ファンによって、整流筒の外周を通って上昇させた後、整流筒の内部を下降させながら処理品内に供給して循環させることができるので、ガスを十分に混合させながら処理品と反応させることができる上に、その十分に混合、反応させながらサンプルガスを高圧容器外へ導出できる。そのため、高圧容器内に導入されたガスは、先願のようにすぐに処理室外に排出されることはなく、また処理室内部のガス循環は均一かつ完全に行われ、処理室内の上部までサンプリング配管を設けることなくガス分析のサンプリングができる。また更に、このように均一混合およびガス分析が効率よく行えることから、実時間(リアルタイム)で処理ガスの対象ガス成分の分圧を制御、管理することができるとともに、処理ガスの繰返し使用することも十分に可能となる。
【0011】
請求項2に係る発明は、前記各ガスの供給用配管が、独立してその供給量を制御可能であることを特徴とする請求項1記載の熱間等方圧加圧装置とするものである。
【0012】
このように構成することにより、先願のように圧縮機1台でバルブ切り替えで操作するよりも、処理ガスのガス成分の変更または/および制御する操作が効率よく行えるとともに、上記の作用効果をより効果的に享受することができる。
【0013】
請求項3に係る発明は、高圧容器内に二種以上のガスを別々に供給して該高圧容器内で各ガスを混合し、得られた混合ガスをサンプリングして分析した結果に基づいて前記混合ガスの各成分の分圧を調整しながら前記高圧容器内に配置された処理品を高温高圧の混合ガスによって高温下で等方的に加圧する熱間等方圧加圧方法において、前記高圧容器と前記処理品との間に前記処理品を囲繞する状態で配置された筒状の整流筒の外周面に沿って、前記高圧容器内の下方であって内周面よりに配置された供給用配管の開口部から供給される混合用の各ガスを上昇させ、前記高圧容器の下方であって中心よりに配置された攪拌用ファンによって混合ガスを前記整流筒の内側から前記処理品を経て下降させ、前記攪拌用ファンの近傍に配置された混合ガスのサンプリング配管から混合ガスの成分をサンプリングして混合ガスの成分を調整することを特徴とする熱間等方圧加圧方法とするものである。
【0014】
また、請求項4に係る発明は、二種以上のガスのうち少なくとも一種がアルゴンガスであり、少なくとも他の一種がアルゴンガスと酸素ガスの混合ガスであり、サンプリングした混合ガスを基にして高圧容器内の酸素濃度を調整することを特徴とする請求項3記載の熱間等方圧加圧方法とするものである。
【0015】
また、請求項5に係る発明は、処理品を処理した後の混合ガスを、アルゴンガスの供給用配管に戻して再使用することを特徴とする請求項4記載の熱間等方圧加圧方法とするものである。
【0016】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明に係る熱間等方圧加圧装置(HIP装置)の断面正面図である。
【0017】
図1において、高圧円筒体1、上蓋2、下蓋3からなる高圧容器4の内側に、底付き円筒形の断熱構造体5が倒立して配置され、その内部に処理室6が形成されている。処理室6にはガスが整流されて流動するように貫通孔7が形成された処理品棚8を備える整流筒9が配置され、処理品10が配置されている。整流筒9は、ガス流通のための貫通孔11が形成された処理品台12の上に載置されている。処理品台12の下部には、加熱用のヒータ13や処理ガスの攪拌用のファン14、さらには攪拌用ファン14を駆動するモータ15が配置されている。なお、16は下方断熱部材であって、駆動モータ15および下蓋3への熱を遮断する役目と、断熱構造体5と共に処理室6を形成する。
【0018】
高圧容器4の外部には、ガス集合装置17、18、19と3つ設けられ、また分圧制御装置20とガス分析装置21がそれぞれ設けられている。ガス集合装置17は回収ガスを収容し再使用を計るための装置であって、供給側のガス供給管路22は、高圧容器4の下蓋3を挿通して開口部23が攪拌用ファン14の側方の断熱構造体5の内周面よりに臨むように設けられ、回収側のガス回収管路24は上蓋2のガス放出路25に接続して設けられている。また、ガス供給管路22には、圧力計26と、圧縮機27および塞止弁28を備える加圧制御装置29が接続され、加圧制御装置29は分圧制御装置20により制御可能になっている。ガス回収管路24には、手動塞止弁30を備える放出管31と、圧力計32および塞止弁33を備える圧力制御装置34が接続され、圧力制御装置34は分圧制御装置20により制御可能になっている。
【0019】
ガス集合装置18と19は、いずれも新規ガスを収容し高圧容器4の処理室6内に処理ガスとして供給するための装置である。ガス集合装置18は、ガス供給管路35が手動塞止弁36を介在させてガス供給管路22の加圧制御装置29の上流側に接続されている。ガス集合装置19は、ガス供給管路37が高圧容器4の下蓋3を挿通して開口部38が攪拌用ファン14の側方の断熱構造体5の内周面よりに臨むように設けられている。ガス供給管路37には、圧力計39と、圧縮機40および塞止弁41を備える加圧制御装置42が接続され、加圧制御装置42は分圧制御装置20により制御可能になっている。
【0020】
ガス分析装置21は、処理ガスの成分を分析するための装置であって、分圧制御装置20により制御可能であって、高圧容器4の下蓋3に挿通して設けられているサンプリング配管43に接続して設けられている。サンプリング配管43には塞止弁44と圧力調整器45が設けられるとともに、サンプリング配管43の開口部46が攪拌用ファン14の近傍に臨むように設けられている。
【0021】
次に、上記構成のHIP装置による処理方法を、処理ガスとしてアルゴン(Ar)と酸素の混合ガスを使用する場合を例に説明する。この場合、ガス集合装置18には主圧力媒体ガスとなる純Arガスが、ガス集合装置19には分圧を制御しようとする酸素ガスを含むAr−20%Oガスがそれぞれ充填されている。また、ガス集合装置17には前回までの処理に使用されていたArと酸素の混合ガスが回収、充填されている。また、分圧制御装置20には酸素分圧を制御し得るプログラムが組み込まれ、ガス分析装置21としてはジルコニア酸素センサを用いたガス分析装置が用いられている。
【0022】
処理ガスは、ガス集合装置17と19から、それぞれ独立した加圧制御装置29を備えるガス供給管路22、および加圧制御装置42を備えるガス供給管路37を介して高圧容器4に供給される。この供給により、それぞれのガスは加圧制御装置29、42に制御されて所定割合が開口部23,38より処理室内部に注入される。注入されたガスは、攪拌用ファン14によって整流筒9の外周側に沿って処理室内の上方に向かって攪拌、送気されるとともに、整流筒9の内部を下降し、循環、混合される。その循環流の大きな流れを矢印Aで示す。そして、この循環、混合の過程で処理ガス(被処理品10に対応するArと酸素の所定割合の混合ガス)はヒータ13により加熱されて処理品10を加熱し、所定条件の高温・高圧でHIP処理がなされる。また、この上記HIP処理において、処理ガスは、処理室6内の攪拌用ファン14の近傍に設けられたサンプリング配管43の開口部46より塞止弁44および圧力調整器45を介して所定の周期でサンプリングされ、ガス分析装置21に供給される。
【0023】
なお、本例では、ガス集合装置17からのArを主成分とする回収ガスを用いた例としたが、回収ガスが無い場合または不足する場合、あるいは回収ガスの酸素ガスの混合量が処理ガスより過大とになった場合には手動塞止弁36を開としガス集合装置18からの純Arガスを用いてもよい。また、本例では、ガス集合装置18を、ガス集合装置17のガス供給管路22の加圧制御装置29の上流側に接続した例を示したが、ガス集合装置19と同様の独立のガス供給管路構成としてもよい。この場合には手動塞止弁36が不要となる。
【0024】
ここで、上記HIP処理において、処理の際に制御される物理量について説明する。制御される物理量は、処理室6の内部の、温度、全体圧力および対象ガス成分の分圧、および時間である。
【0025】
温度については、工業的に一般に用いられている熱電対(図示せず)による測温と温度プログラム調節計(図示せず)でのPID制御法により調節される。また、全体圧力についても、時間に対してプログラム制御を行うことが可能で、この場合、圧力計32の指示値とプログラム設定値から、プログラム値より処理ガスの圧力が低い場合には、ガス集合装置17(またはガス集合装置18)の加圧制御装置29を駆動してガス供給管路22よりArガスを供給して制御を行い、高い場合には、塞止弁33を開として処理ガスの一部を放出して調節を行う。対象ガス成分の酸素分圧については、時間または温度に対してのプログラムを組んで、ガス分析装置21からの出力値と全体圧力から算出された実際の酸素分圧が、プログラム設定値より低い場合には、ガス集合装置19の加圧制御装置42を駆動してAr−20%Oガスを供給して酸素分圧を制御する。プログラム設定値より高い場合には、ガス集合装置18の加圧制御装置29を駆動してガス供給管路22よりArガスを供給して、酸素を希釈する。この結果として、全体の圧力がプログラム設定値より高くなった場合には、ガス放出路25の塞止弁33を開として高圧容器4内の圧力を下げる。
【0026】
上記のようにして、本発明のHIP装置によれば、処理ガスとしてArガスと酸素ガスの混合ガスを用いる場合において、高圧容器4内に導入した処理ガスを処理室6内で循環、混合して均一混合でき、また、その処理ガスをサンプリングして精度良く成分分析できる。これにより、酸化物セラミックスなどの材料を、酸素欠損を生じさせることなく所期の特性を得て焼結させることができる。また、Ni基、Co基あるいは耐熱性ステンレス鋼等の耐熱金属も高温状態では、酸素と反応して酸素を消耗させて、酸素分圧が低い側に変動することが多いが、本発明により、変動させることなく所期の特性を得て焼結させることができる。また、酸素が消耗することから、結果として、処理後の回収ガス中の酸素は減少しがちとなることが多いが、本発明により、回収ガスの再使用がしやすくなった。
【0027】
なお、本発明は、上述した例の他に、アルゴンを主成分として、これに窒素と水素の混合ガスを加えて、アンモニア(NH)分圧を制御するような利用方法、例えば、GaNなどの窒化物半導体の合成などへの利用も可能である。この場合、当然であるがガス集合装置には主成分ガスのアルゴンの外に窒素、水素のガス集合装置が必要で、また処理物との反応では窒素のみが消耗するケースが多いが、その補充制御が容易に図れ、また回収ガスの再使用が行える。
【0028】
【発明の効果】
以上説明したように、本発明に係る熱間等方圧加圧装置および熱間等方圧加圧方法によれば、従来、実時間(リアルタイム)でのガス分圧の制御が困難であった高圧ガス雰囲気下での処理が、リアルタイムでかつ精度良く行うことが可能となり、また、実時間で処理ガス雰囲気の対象ガス成分の分圧を管理できることから、ガスの繰返し使用に係る問題点も解消される。また、このような効果により、酸化物セラミックスや窒化物セラミックスの組成の制御が容易となり、高温高圧ガス雰囲気下での焼結や、表面処理の利用分野の拡大が可能となり、電子材料セラミックスを主体とする新素材の工業的生産の発達に資するところ極めて大きいものと期待される。
【図面の簡単な説明】
【図1】本発明に係る熱間等方圧加圧装置の断面正面図である。
【符号の説明】
1:高圧円筒体     2:上蓋       3:下蓋
4:高圧容器      5:断熱構造体    6:処理室
7:貫通孔       8:処理品棚     9:整流筒
10:処理品      11:貫通孔     12:処理品台
13:加熱用ヒータ   14:攪拌用ファン  15:モータ
16:下方断熱部材   17〜19:ガス集合装置
20:分圧制御装置   21:ガス分析装置  22:ガス供給管路
23:開口部      24:ガス回収管路  25:ガス放出路
26:圧力計      27:圧縮機     28:塞止弁
29:加圧制御装置   30:手動塞止弁   31:放出管
32:圧力計      33:塞止弁     34:圧力制御装置
35:ガス供給管路   36:手動塞止弁   37:ガス供給管路
38:開口部      39:圧力計     40:圧縮機
41:塞止弁      42:加圧制御装置  43:サンプリング配管
44:塞止弁      45:圧力調整器   46:開口部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hot isostatic pressing apparatus and a hot isostatic pressing method, and more particularly, to a powder compact while controlling a partial pressure of a gas component having a characteristic under a high-temperature high-pressure gas atmosphere. The present invention relates to a hot isostatic pressing technique for performing surface treatment such as sintering or transforming the surface of a product made of a specific material into a compound by using a reaction with a gas.
[0002]
2. Description of the Related Art
As a technique for sintering a powder compact under a high-temperature and high-pressure gas atmosphere, by sintering the compact while compressing the compact using a gas pressure using a substantially inert gas such as argon, A so-called hot isostatic pressing method (HIP method) for producing a sintered body containing almost no pores is known.
[0003]
Further, in the HIP method, in the case of a molded body or a pre-sintered sintered body obtained by partially sintering an oxide or nitride ceramic material, the HIP processing in which the processing material is directly exposed to an atmospheric gas is not completely performed. It is known that HIP processing cannot be performed properly when HIP processing is performed in an inert argon gas atmosphere. That is, in the oxide ceramics, oxygen deficiency may occur, and desired characteristics may not be obtained. Mn-Zn-ferrite is known as a typical material. The HIP treatment of the temporarily sintered Mn—Zn—ferrite is performed at 1200 ° C. and about 100 MPa, but when heated to 1200 ° C. using pure argon, (Mn, Zn) O / Fe 2 O 3 The composite oxide having a spinel structure, which is known by the composition described above, partially decomposes due to oxygen deficiency, generates FeO (wustite) on the surface, and causes hair cracks. On the other hand, if the oxygen partial pressure is too high, Fe 2 O 3 (γ-hematite) is generated.
[0004]
In order to improve such a problem, the present applicant has previously proposed a HIP device in Japanese Utility Model Publication No. 5-14159. However, the following problems have been newly found even with the proposed HIP device. That is, the gas introduced from the gas supply pipe is discharged from the upper opening of the inverted cup-shaped case, so that the gas is discharged to the outside of the high-pressure container before it becomes sufficiently uniform inside the processing chamber. Also, the opening of the sampling pipe for gas analysis in the processing chamber needs to be separated from the opening of the gas supply pipe as much as possible in order to sample a sufficiently homogeneously mixed gas, and the pipe is opened above the processing chamber. There is a need. However, such piping to the upper side is difficult and practically difficult due to exposure to high temperature and high pressure. Furthermore, there is only one gas compressor for pressurizing and supplying two or more types of gas cylinders in the gas supply pipe. Therefore, when switching gas cylinders to adjust gas components or supply different kinds of gases, the gas The gas supplied to the compressor remained in the compressor and in the piping, and high-precision control could not be performed.
[0005]
In addition, as a processing method using the HIP method other than the above-mentioned proposal, a pre-sintered processed product is embedded in the same type of powder or an inert powder, and the atmosphere around the processed product is reduced by the powder or the processed product. The so-called “packing method” in which oxygen is controlled by itself is used. This “filling method” is a reliable method in that it utilizes a natural phenomenon. However, as a result of suppressing the convection of gas around the processed product by the packing, heat transfer becomes extremely poor, and a large HIP device is used. When the sintered body is processed, there is a problem that the processed product is cracked by the thermal stress due to the temperature distribution. In addition, in the case of the “packing method”, there is also an operational problem that the packing powder is scattered inside the processing chamber in the gas recovery or discharge step of the HIP processing and reacts with the furnace structure to cause damage. It has often been experienced.
[0006]
On the other hand, in the case of nitride ceramics typified by silicon nitride, it is known that not only sufficient densification cannot be realized by HIP treatment with pure argon, but also that the surface is roughened by a decomposition reaction, Pure nitrogen gas has been used to avoid this. By using pure nitrogen, the decomposition reaction of silicon nitride is suppressed and a dense sintered body without pores can be obtained, but the grain boundary phase, which greatly affects the high-temperature strength characteristics of silicon nitride ceramics, is altered and It has been experienced that high temperature strength properties cannot be obtained. To avoid this, it is effective to use a mixed gas of argon and nitrogen to reduce the nitrogen partial pressure to about 2 MPa in the holding step of the HIP treatment in a temperature range of about 1700 ° C. .
[0007]
As a method for realizing such a condition, a gas obtained by mixing nitrogen with an amount of nitrogen capable of obtaining a nitrogen partial pressure of 2 MPa as a pressure medium gas for processing, or first, only nitrogen is used. Is supplied to the HIP apparatus, the temperature is set to 1700 ° C. with 2 MPa of nitrogen, and then argon gas is pressurized and injected to bring the total pressure to 100 MPa. There is no problem when the used gas is released and discarded, but since the amount of nitrogen changes depending on the use for repeated use, repeated use of gas is required to keep the nitrogen partial pressure for each batch process the same. Therefore, the HIP processing cost is high, and it has not been put to practical use.
[0008]
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems of the related art, and an object of the present invention is to use a mixed gas as a processing gas so that the introduced processing gas can be uniformly mixed in the processing chamber. It is intended to provide a hot isostatic pressurizing apparatus and a hot isostatic pressurizing method capable of sampling the uniformly mixed gas and accurately analyzing the components.
[0009]
[Means for Solving the Problems]
The present invention for achieving the above object has the following configuration. That is, the invention according to claim 1 is based on a result obtained by separately supplying two or more kinds of gases into a high-pressure container, mixing the respective gases in the high-pressure container, sampling the obtained mixed gas, and analyzing the mixed gas. A hot isostatic pressurizing apparatus for isostatically pressurizing a processed product disposed in the high-pressure vessel at a high temperature with a high-temperature and high-pressure mixed gas while adjusting the partial pressure of each component of the mixed gas. A cylindrical rectifying tube is arranged between the high-pressure vessel and the processing product in a state surrounding the processing product, and an opening of each gas supply pipe is located below the inner periphery of the high-pressure container in the high-pressure container. And a stirring fan is arranged below the high-pressure vessel and closer to the center, and an opening of a mixed gas sampling pipe is arranged near the stirring fan. This is an isotropic pressure pressing device.
[0010]
In the above hot isostatic pressurizing apparatus, the gas introduced into the high-pressure vessel is raised by the agitating fan through the outer circumference of the rectifying cylinder, and then lowered inside the rectifying cylinder while being lowered inside the rectifying cylinder. The gas can be supplied to and circulated, so that the gas can be reacted with the processed product while being sufficiently mixed, and the sample gas can be led out of the high-pressure vessel while being sufficiently mixed and reacted. Therefore, the gas introduced into the high-pressure vessel is not immediately discharged out of the processing chamber as in the prior application, and the gas circulation inside the processing chamber is performed uniformly and completely, and the gas is sampled to the upper part of the processing chamber. Sampling for gas analysis can be performed without providing piping. Furthermore, since the uniform mixing and gas analysis can be performed efficiently, the partial pressure of the target gas component of the processing gas can be controlled and managed in real time (real time), and the processing gas can be used repeatedly. Is also possible.
[0011]
The invention according to claim 2 is the hot isostatic pressurizing apparatus according to claim 1, wherein the supply pipes for the respective gases can independently control the supply amounts. is there.
[0012]
With this configuration, the operation of changing or / and controlling the gas component of the processing gas can be performed more efficiently than the operation performed by switching the valve with one compressor as in the prior application, and the above-described operation and effect can be achieved. It can be enjoyed more effectively.
[0013]
The invention according to claim 3 is that, based on the result obtained by separately supplying two or more types of gases into the high-pressure vessel, mixing the respective gases in the high-pressure vessel, and sampling and analyzing the obtained mixed gas, A hot isostatic pressing method in which a processing product disposed in the high-pressure vessel is isotropically pressed at a high temperature with a high-temperature and high-pressure mixed gas while adjusting a partial pressure of each component of the mixed gas, A supply disposed below the inner peripheral surface of the high-pressure container along the outer peripheral surface of a cylindrical rectifying cylinder disposed between the container and the treated product so as to surround the treated product. The respective gas for mixing supplied from the opening of the pipe for use is raised, and the mixed gas is passed from the inside of the rectifying cylinder through the processing product by a stirring fan arranged below and at the center of the high-pressure vessel. Lower the mixer placed near the stirring fan. It is an hot isostatic pressure system method characterized by adjusting the components of the mixed gas by sampling the components of the mixed gas from the sampling pipe of the gas.
[0014]
According to a fourth aspect of the present invention, at least one of the two or more gases is an argon gas, and at least another is a mixed gas of an argon gas and an oxygen gas. The hot isostatic pressing method according to claim 3, wherein the oxygen concentration in the container is adjusted.
[0015]
The invention according to claim 5 is characterized in that the mixed gas after treating the treated product is returned to the argon gas supply pipe and reused, according to claim 4. Method.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional front view of a hot isostatic pressing apparatus (HIP apparatus) according to the present invention.
[0017]
In FIG. 1, a cylindrical heat-insulating structure 5 with a bottom is placed upside down inside a high-pressure vessel 4 composed of a high-pressure cylinder 1, an upper lid 2, and a lower lid 3, and a processing chamber 6 is formed therein. I have. A rectifying cylinder 9 having a processed product shelf 8 in which a through hole 7 is formed so as to rectify and flow gas is disposed in the processing chamber 6, and a processed product 10 is disposed therein. The flow regulating cylinder 9 is placed on a processing product table 12 in which a through hole 11 for gas flow is formed. A heater 13 for heating, a fan 14 for stirring the processing gas, and a motor 15 for driving the stirring fan 14 are arranged below the processing product table 12. Reference numeral 16 denotes a lower heat insulating member, which serves to block heat to the drive motor 15 and the lower lid 3 and forms a processing chamber 6 together with the heat insulating structure 5.
[0018]
Outside the high-pressure vessel 4, three gas collecting devices 17, 18, and 19 are provided, and a partial pressure control device 20 and a gas analyzer 21 are provided, respectively. The gas collecting device 17 is a device for storing the collected gas and measuring its reuse. The gas supply pipe 22 on the supply side is inserted through the lower lid 3 of the high-pressure container 4 and the opening 23 is provided with the stirring fan 14. The gas recovery pipe 24 on the recovery side is connected to the gas discharge path 25 of the upper lid 2. Further, a pressure gauge 26 and a pressurization control device 29 including a compressor 27 and a closing valve 28 are connected to the gas supply line 22, and the pressurization control device 29 can be controlled by the partial pressure control device 20. ing. A discharge pipe 31 provided with a manual closing valve 30 and a pressure control device 34 provided with a pressure gauge 32 and a closing valve 33 are connected to the gas recovery line 24, and the pressure control device 34 is controlled by the partial pressure control device 20. It is possible.
[0019]
Each of the gas collecting devices 18 and 19 is a device for containing a new gas and supplying it as a processing gas into the processing chamber 6 of the high-pressure container 4. In the gas collecting device 18, the gas supply line 35 is connected to the gas supply line 22 on the upstream side of the pressurization control device 29 via the manual closing valve 36. The gas collecting device 19 is provided such that the gas supply pipe 37 passes through the lower lid 3 of the high-pressure vessel 4 and the opening 38 faces the inner peripheral surface of the heat insulating structure 5 on the side of the stirring fan 14. ing. The gas supply line 37 is connected to a pressure gauge 39, and a pressurization control device 42 including a compressor 40 and a closing valve 41. The pressurization control device 42 can be controlled by the partial pressure control device 20. .
[0020]
The gas analyzer 21 is a device for analyzing the components of the processing gas, is controllable by the partial pressure control device 20, and is provided with a sampling pipe 43 inserted through the lower lid 3 of the high-pressure container 4. It is connected to and provided. A blocking valve 44 and a pressure regulator 45 are provided in the sampling pipe 43, and an opening 46 of the sampling pipe 43 is provided so as to face the vicinity of the stirring fan 14.
[0021]
Next, a processing method using the HIP apparatus having the above-described configuration will be described by taking as an example a case where a mixed gas of argon (Ar) and oxygen is used as a processing gas. In this case, the gas collecting device 18 is filled with pure Ar gas serving as a main pressure medium gas, and the gas collecting device 19 is filled with Ar-20% O 2 gas containing oxygen gas whose partial pressure is to be controlled. . In addition, the gas collecting device 17 collects and fills a mixed gas of Ar and oxygen used in the previous process. Further, a program capable of controlling the oxygen partial pressure is incorporated in the partial pressure control device 20, and a gas analyzer using a zirconia oxygen sensor is used as the gas analyzer 21.
[0022]
The processing gas is supplied from the gas collecting devices 17 and 19 to the high-pressure vessel 4 via the gas supply line 22 having the independent pressurization control device 29 and the gas supply line 37 having the pressurization control device 42. You. By this supply, the respective gases are controlled by the pressurization controllers 29 and 42 and a predetermined ratio is injected into the processing chamber from the openings 23 and 38. The injected gas is stirred and sent to the upper part of the processing chamber along the outer peripheral side of the flow regulating tube 9 by the stirring fan 14, and descends inside the flow regulating tube 9 to be circulated and mixed. The large flow of the circulating flow is indicated by arrow A. In the course of the circulation and mixing, the processing gas (a mixed gas of Ar and oxygen corresponding to the article to be treated 10 at a predetermined ratio) is heated by the heater 13 to heat the article 10 to be processed, and at a high temperature and a high pressure under a predetermined condition. HIP processing is performed. In the above HIP process, the processing gas is supplied through a closing valve 44 and a pressure regulator 45 through an opening 46 of a sampling pipe 43 provided near the stirring fan 14 in the processing chamber 6 for a predetermined period. And supplied to the gas analyzer 21.
[0023]
In this example, an example is described in which the recovered gas mainly containing Ar from the gas collecting device 17 is used. However, when the recovered gas is absent or insufficient, or when the mixed amount of the oxygen gas of the recovered gas is the processing gas. If it becomes too large, the manual closing valve 36 may be opened and pure Ar gas from the gas collecting device 18 may be used. In this example, the gas collecting device 18 is connected to the gas supply line 22 of the gas collecting device 17 on the upstream side of the pressurizing control device 29. A supply pipe configuration may be adopted. In this case, the manual closing valve 36 becomes unnecessary.
[0024]
Here, the physical quantity controlled in the HIP processing will be described. The controlled physical quantities are the temperature, the total pressure, the partial pressure of the target gas component, and the time inside the processing chamber 6.
[0025]
The temperature is adjusted by measuring the temperature with a thermocouple (not shown) generally used in the industry and a PID control method with a temperature program controller (not shown). Program control can also be performed with respect to time for the overall pressure. In this case, if the pressure of the processing gas is lower than the program value, the gas collection is performed based on the indicated value of the pressure gauge 32 and the program set value. The pressurization control device 29 of the device 17 (or the gas collecting device 18) is driven to supply and control the Ar gas from the gas supply line 22. If the pressure is high, the closing valve 33 is opened to open the processing gas. Release part to make adjustments. Regarding the oxygen partial pressure of the target gas component, a program for time or temperature is set, and the actual oxygen partial pressure calculated from the output value from the gas analyzer 21 and the total pressure is lower than the program set value. , The pressurization control device 42 of the gas collecting device 19 is driven to supply an Ar-20% O 2 gas to control the oxygen partial pressure. When it is higher than the program set value, the pressurizing control device 29 of the gas collecting device 18 is driven to supply Ar gas from the gas supply pipe line 22 to dilute oxygen. As a result, when the entire pressure becomes higher than the program set value, the closing valve 33 of the gas discharge passage 25 is opened to lower the pressure in the high-pressure container 4.
[0026]
As described above, according to the HIP apparatus of the present invention, when a mixed gas of Ar gas and oxygen gas is used as the processing gas, the processing gas introduced into the high-pressure vessel 4 is circulated and mixed in the processing chamber 6. And the processing gas can be sampled and the components can be accurately analyzed. As a result, it is possible to sinter a material such as an oxide ceramic with desired characteristics without causing oxygen deficiency. In addition, Ni-based, Co-based or heat-resistant metals such as heat-resistant stainless steel also react with oxygen in a high temperature state to consume oxygen, and the oxygen partial pressure often fluctuates to a lower side. The desired characteristics can be obtained without sintering and sintering can be performed. In addition, since the oxygen is consumed, the oxygen in the recovered gas after the treatment tends to decrease as a result. However, the present invention facilitates the reuse of the recovered gas.
[0027]
In addition, in addition to the examples described above, the present invention uses a method of controlling the partial pressure of ammonia (NH 3 ) by adding a mixed gas of nitrogen and hydrogen to argon as a main component, such as GaN. Can also be used for the synthesis of nitride semiconductors. In this case, as a matter of course, the gas collecting device requires a gas collecting device for nitrogen and hydrogen in addition to argon as the main component gas, and in many cases, only nitrogen is consumed in the reaction with the processed material. Control can be easily achieved, and the collected gas can be reused.
[0028]
【The invention's effect】
As described above, according to the hot isostatic pressing apparatus and the hot isostatic pressing method according to the present invention, it has been conventionally difficult to control the gas partial pressure in real time. Processing in a high-pressure gas atmosphere can be performed in real time and with high accuracy, and the partial pressure of the target gas component in the processing gas atmosphere can be managed in real time, eliminating problems associated with repeated use of gas. Is done. These effects also facilitate the control of the composition of oxide ceramics and nitride ceramics, sintering in a high-temperature, high-pressure gas atmosphere, and expanding the field of application of surface treatment. It is expected that it will contribute to the development of industrial production of new materials.
[Brief description of the drawings]
FIG. 1 is a sectional front view of a hot isostatic pressing apparatus according to the present invention.
[Explanation of symbols]
1: High pressure cylinder 2: Upper lid 3: Lower lid 4: High pressure vessel 5: Heat insulation structure 6: Processing chamber 7: Through hole 8: Processing product shelf 9: Rectifying cylinder 10: Processing product 11: Through hole 12: Processing product Table 13: Heating heater 14: Stirring fan 15: Motor 16: Lower heat insulating member 17-19: Gas collecting device 20: Partial pressure control device 21: Gas analyzer 22: Gas supply line 23: Opening 24: Gas Recovery line 25: Gas release line 26: Pressure gauge 27: Compressor 28: Shutoff valve 29: Pressurization controller 30: Manual shutoff valve 31: Release pipe 32: Pressure gauge 33: Shutoff valve 34: Pressure control Device 35: gas supply line 36: manual shutoff valve 37: gas supply line 38: opening 39: pressure gauge 40: compressor 41: shutoff valve 42: pressurization control device 43: sampling Tube 44: stop valve 45: pressure regulator 46: opening

Claims (5)

高圧容器内に二種以上のガスを別々に供給して該高圧容器内で各ガスを混合し、得られた混合ガスをサンプリングして分析した結果に基づいて前記混合ガスの各成分の分圧を調整しながら前記高圧容器内に配置された処理品を高温高圧の混合ガスによって高温下で等方的に加圧する熱間等方圧加圧装置において、
前記高圧容器と前記処理品との間に筒状の整流筒を、前記処理品を囲繞する状態で配置し、各ガスの供給用配管の開口部を前記高圧容器内の下方であって内周面よりに配置するとともに攪拌用ファンを前記高圧容器内の下方であって中心よりに配置し、混合ガスのサンプリング配管の開口部を前記攪拌用ファンの近傍に配置したことを特徴とする熱間等方圧加圧装置。
Two or more kinds of gases are separately supplied into a high-pressure vessel, each gas is mixed in the high-pressure vessel, and a partial pressure of each component of the mixed gas is determined based on a result of sampling and analyzing the obtained mixed gas. In a hot isostatic pressurizing device that isotropically pressurizes the processed product disposed in the high-pressure container at a high temperature with a mixed gas of high temperature and high pressure while adjusting
A cylindrical rectifying tube is arranged between the high-pressure vessel and the processing product in a state surrounding the processing product, and an opening of each gas supply pipe is located below the inner periphery of the high-pressure container in the high-pressure container. And a stirring fan is arranged below the high-pressure vessel and closer to the center, and an opening of a mixed gas sampling pipe is arranged near the stirring fan. Isotropic pressure press.
前記各ガスの供給用配管が、独立してその供給量を制御可能であることを特徴とする請求項1記載の熱間等方圧加圧装置。The hot isostatic pressurizing apparatus according to claim 1, wherein the supply pipes for the respective gases can independently control the supply amounts. 高圧容器内に二種以上のガスを別々に供給して該高圧容器内で各ガスを混合し、得られた混合ガスをサンプリングして分析した結果に基づいて前記混合ガスの各成分の分圧を調整しながら前記高圧容器内に配置された処理品を高温高圧の混合ガスによって高温下で等方的に加圧する熱間等方圧加圧方法において、
前記高圧容器と前記処理品との間に前記処理品を囲繞する状態で配置された筒状の整流筒の外周面に沿って、前記高圧容器内の下方であって内周面よりに配置された供給用配管の開口部から供給される混合用の各ガスを上昇させ、前記高圧容器の下方であって中心よりに配置された攪拌用ファンによって混合ガスを前記整流筒の内側から前記処理品を経て下降させ、前記攪拌用ファンの近傍に配置された混合ガスのサンプリング配管から混合ガスの成分をサンプリングして混合ガスの成分を調整することを特徴とする熱間等方圧加圧方法。
Two or more kinds of gases are separately supplied into a high-pressure vessel, each gas is mixed in the high-pressure vessel, and a partial pressure of each component of the mixed gas is determined based on a result of sampling and analyzing the obtained mixed gas. In the hot isostatic pressing method of isotropically pressurizing the processing product disposed in the high-pressure container at a high temperature with a high-temperature and high-pressure mixed gas while adjusting
Along the outer peripheral surface of the cylindrical rectifying cylinder disposed between the high-pressure vessel and the processing product in a state surrounding the processing product, the lower-side high pressure container is disposed below the inner peripheral surface of the high-pressure container. The mixing gas supplied from the opening of the supply pipe is raised, and the mixed gas is processed from the inside of the rectifying cylinder by the stirring fan disposed below the high-pressure vessel and at the center from the inside of the rectifying cylinder. A hot gas isostatic pressurizing method, wherein the mixture is adjusted by sampling the mixed gas component from a mixed gas sampling pipe arranged near the stirring fan.
二種以上のガスのうち少なくとも一種がアルゴンガスであり、少なくとも他の一種がアルゴンガスと酸素ガスの混合ガスであり、サンプリングした混合ガスを基にして高圧容器内の酸素濃度を調整することを特徴とする請求項3記載の熱間等方圧加圧方法。At least one of the two or more gases is an argon gas, and at least the other is a mixed gas of an argon gas and an oxygen gas. The hot isostatic pressing method according to claim 3, characterized in that: 処理品を処理した後の混合ガスを、アルゴンガスの供給用配管に戻して再使用することを特徴とする請求項4記載の熱間等方圧加圧方法。5. The hot isostatic pressing method according to claim 4, wherein the mixed gas after processing the processed product is returned to an argon gas supply pipe and reused.
JP2002248969A 2002-08-28 2002-08-28 Hot isostatic pressurizing device and hot isostatic pressurizing method Expired - Lifetime JP4127779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002248969A JP4127779B2 (en) 2002-08-28 2002-08-28 Hot isostatic pressurizing device and hot isostatic pressurizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002248969A JP4127779B2 (en) 2002-08-28 2002-08-28 Hot isostatic pressurizing device and hot isostatic pressurizing method

Publications (2)

Publication Number Publication Date
JP2004085134A true JP2004085134A (en) 2004-03-18
JP4127779B2 JP4127779B2 (en) 2008-07-30

Family

ID=32056202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002248969A Expired - Lifetime JP4127779B2 (en) 2002-08-28 2002-08-28 Hot isostatic pressurizing device and hot isostatic pressurizing method

Country Status (1)

Country Link
JP (1) JP4127779B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100753692B1 (en) * 2004-12-09 2007-08-30 동경 엘렉트론 주식회사 Gas supply unit, substrate processing apparatus and supply gas setting method
KR100871952B1 (en) 2006-05-22 2008-12-08 가부시키가이샤 고베 세이코쇼 Isostatic press
US8906193B2 (en) 2004-12-09 2014-12-09 Tokyo Electron Limited Gas supply unit, substrate processing apparatus and supply gas setting method
CN111670113A (en) * 2018-02-05 2020-09-15 昆特斯技术公司 Method for processing articles and method for high-pressure treatment of articles
KR102240648B1 (en) * 2020-12-30 2021-04-15 주식회사 정민실업 Hot isostatic pressing system
JP7476209B2 (en) 2019-01-25 2024-04-30 キンタス・テクノロジーズ・エービー Method in a press

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100753692B1 (en) * 2004-12-09 2007-08-30 동경 엘렉트론 주식회사 Gas supply unit, substrate processing apparatus and supply gas setting method
US8906193B2 (en) 2004-12-09 2014-12-09 Tokyo Electron Limited Gas supply unit, substrate processing apparatus and supply gas setting method
US9441791B2 (en) 2004-12-09 2016-09-13 Tokyo Electron Limited Gas supply unit, substrate processing apparatus and supply gas setting method
KR100871952B1 (en) 2006-05-22 2008-12-08 가부시키가이샤 고베 세이코쇼 Isostatic press
CN111670113A (en) * 2018-02-05 2020-09-15 昆特斯技术公司 Method for processing articles and method for high-pressure treatment of articles
CN111670113B (en) * 2018-02-05 2022-04-26 昆特斯技术公司 Method for processing articles and method for high-pressure treatment of articles
JP7476209B2 (en) 2019-01-25 2024-04-30 キンタス・テクノロジーズ・エービー Method in a press
KR102240648B1 (en) * 2020-12-30 2021-04-15 주식회사 정민실업 Hot isostatic pressing system

Also Published As

Publication number Publication date
JP4127779B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
US20080073002A1 (en) Carburization treatment method and carburization treatment apparatus
US4753787A (en) Method and structure for forming a reaction product
JP4127779B2 (en) Hot isostatic pressurizing device and hot isostatic pressurizing method
EP1172868A3 (en) Method of preparing oxide superconducting wire and pressure heat treatment apparatus employed for the method
GB2516991A (en) Metal component forming
ATE214356T1 (en) METHOD FOR PRODUCING AN INDIUM TIN OXIDE MOLDED BODY
JP4729180B2 (en) Method for producing aluminum nitride
JP2003212521A (en) Method of manufacturing aluminum nitride, aluminum nitride, nitriding furnace and tray for reaction
JPH01212279A (en) Production of silicon nitride product
CN107640744A (en) A kind of unsaturated hydride powder of high-mouldability and preparation method thereof
CN101257990A (en) Method for hot isostatic pressing
Largeteau et al. Trends in high pressure developments for new perspectives
CN113834897B (en) Method and device for testing bulk oxygen migration dynamics in chemical chain technology
US20020179187A1 (en) Carburization treatment method and carburization treatment apparatus
CN106866152B (en) A kind of YB4The preparation method of block
CN101905137B (en) Inner and outer air pressure balanced reaction device of quartz tube
JP2004231463A (en) Firing furnace and method for producing non-oxide ceramic sintered compact
RU2234396C2 (en) Transition metal powder obtaining method
JP3436006B2 (en) Reducing atmosphere furnace with hydrogen gas circulation
JP7514420B2 (en) Industrial Furnace
JPH0129515Y2 (en)
JPS62256702A (en) Production of non-oxidized powder
JPH04161792A (en) Production of mixture gas for hot isotropic prossurizer
RU82589U1 (en) DEVICE FOR RADIATION-CHEMICAL STRUCTURAL MODIFICATION OF PTFE-4
JPH0434893Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4127779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

EXPY Cancellation because of completion of term