JPS62256702A - Production of non-oxidized powder - Google Patents

Production of non-oxidized powder

Info

Publication number
JPS62256702A
JPS62256702A JP61101517A JP10151786A JPS62256702A JP S62256702 A JPS62256702 A JP S62256702A JP 61101517 A JP61101517 A JP 61101517A JP 10151786 A JP10151786 A JP 10151786A JP S62256702 A JPS62256702 A JP S62256702A
Authority
JP
Japan
Prior art keywords
carbon
core tube
powder
furnace core
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61101517A
Other languages
Japanese (ja)
Inventor
Yasunobu Yoneda
康信 米田
Harufumi Bandai
治文 万代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP61101517A priority Critical patent/JPS62256702A/en
Publication of JPS62256702A publication Critical patent/JPS62256702A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0682Preparation by direct nitridation of silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0722Preparation by direct nitridation of aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/076Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with titanium or zirconium or hafnium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To mass-produce the title uniform and paticulate powder in a short time by charging a mixture of metallic powder and carbon powder into a rotatable carbon furnace core tube, and high-frequency induction heating the mixture in a nonoxidizing atmosphere while heating the tube. CONSTITUTION:A high-frequency coil 3 is provided in a treating furnace 5 to surround a large-bore part 11, an opening and closing lid 52 of the furnace 5 is opened, the mixture A of the metallic powder of Si, Al, etc., and carbon powder and carbon balls 2 are charged in the carbon furnace core tube 1 which is made rotatable by driving rollers 4 and 4 from a material charge port 51, the lid 52 is closed, then the opening and closing valve 73 of a deaeration pipe 63 is opened, the furnace is deaerated by a vacuum pump 83, and the valve 73 is closed. The opening and closing valve 71 of an inlet pipe 61 is then opened to introduce an inert gas into the furnace core tube 1, and the opening and closing valve 72 of a discharge pipe 62 is controlled so as to keep the internal pressure of the furnace core tube 1 to about 1kg/cm<2>. A high-frequency electric current is passed through the coil 3 to heat the furnace core tube 1 to 1,200-1,700 deg.C, the rollers 4 are operated to rotate the furnace core tube 1, and the mixture is heat-treated for 3-10hr.

Description

【発明の詳細な説明】 童栗よ傅肌里圀団 本発明は、S i3N4.AIN、S iC等の非酸化
物粉末を製造する方法に関する。
[Detailed Description of the Invention] The present invention is based on the Si3N4. The present invention relates to a method for manufacturing non-oxide powder such as AIN, SiC, etc.

狐−乳Jと七二玉 従来より、非酸化物セラミック粉末を製造する方法とし
ては、a)A1等の微細な金属単体の粉末をN2.Ar
等の不活性ガス中で焼成する直接法、b)SiHa等の
ガスをN、、Ar等の不活性ガス等と共にグロー放電炉
に入れてグロー放電させるCVD法、或いは、C)多数
の通気孔を有するカーボン筒内に酸化物粉末とカーボン
粉末を入れてN、、Ar中で反応させる還元窒化法等が
知られている。
Fox Milk J and Seven Two Balls Conventionally, the method for producing non-oxide ceramic powder is as follows: a) Fine metal elemental powder such as A1 is heated with N2. Ar
b) CVD method in which a gas such as SiHa is placed in a glow discharge furnace with an inert gas such as N, Ar, etc., and glow discharge is performed, or C) a large number of ventilation holes. A reductive nitriding method is known in which oxide powder and carbon powder are placed in a carbon cylinder having a carbon cylinder and reacted in N, Ar.

明が解゛ しようとする間 点 しかしながら、上記a)の直接法は、処理中に金属粉末
同士が凝結して粒径が大きくなり、別途粉砕工程が必要
となって、粉砕時の純度低下が大きな問題である。
However, in the direct method (a) above, the metal powders coagulate together during treatment, increasing the particle size, requiring a separate pulverization process, and reducing the purity during pulverization. This is a big problem.

また、上記b)のCVD法や上記C)の還元窒化法は、
−回の処理量が制限され、量産性に欠けるといった問題
がある。特に上記C)の還元窒化法では、ガス拡散が不
均一となって酸化物粉末と一様に接触しないので、均一
な処理が難しいといった問題がある。
In addition, the CVD method of b) above and the reduction nitriding method of C) above,
- There is a problem that the amount of processing times is limited and mass productivity is lacking. Particularly, in the reductive nitriding method (C) above, there is a problem that uniform treatment is difficult because gas diffusion becomes non-uniform and the gas does not come into uniform contact with the oxide powder.

本発明は、上記事情に鑑みてなされたもので、その目的
とするところは、均一で細粒質の非酸化物粉末を大量生
産することができる製造方法を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a manufacturing method capable of mass-producing uniform, fine-grained non-oxide powder.

1 点を解決するための手 上記問題を解決するため、本発明に係る非酸化物粉末の
製造方法は、金属粉末とカーボン粉末の混合粉末をカー
ボンの玉石と共にカーボン炉芯管に入れ、該カーボン炉
芯管内に不活性ガスを流して非酸化雰囲気に保ちつつ該
カーボン炉芯管を回転させて高周波誘導加熱することを
要旨としている。
1. Steps to Solve the Problem In order to solve the above problem, the method for producing non-oxide powder according to the present invention includes putting a mixed powder of metal powder and carbon powder together with carbon boulders into a carbon furnace core tube, The gist of this method is to rotate the carbon furnace core tube and perform high-frequency induction heating while maintaining a non-oxidizing atmosphere by flowing an inert gas into the furnace core tube.

詐−一一一一里 上記の構成とすれば、高周波誘導加熱によってカーボン
炉芯管とカーボンの玉石が発熱するため、カーボン炉芯
管内部の金属粉末とカーボン粉末の混合粉末は、カーボ
ン炉芯管の熱によって周囲から加熱されるのみならず、
カーボン粉末およびカーボンの玉石の熱によって内部か
らも加熱されることになる。しかも、混合粉末はカーボ
ン炉芯管の回転によって玉石と共に攪拌されるので、均
−且つ充分に加熱されることになる。従って、多量の混
合粉末がカーボン炉芯管内に入っていても、均−且つ充
分な加熱によって金属粉末は所定の処理温度に昇温され
、一方、カーボン粉末は不活性ガスと共に還元処理雰囲
気をつくるので、金属粉末の還元反応はムラなく進行し
、非酸化物粉末の量産が可能−となる。特に、この反応
中は、上記のように金属粉末が攪拌されて還元処理雰囲
気との接触が均−且つ充分に行われるため、還元反応の
進行は速やかであり、またカーボン炉芯管内を転動する
カーボン粉末とカーボン玉石によって粉末同士の凝結も
阻止されるので、均一で細粒質の非酸化物粉末を効率よ
く量産することができる。
With the above configuration, the carbon furnace core tube and carbon boulders generate heat due to high frequency induction heating, so the mixed powder of metal powder and carbon powder inside the carbon furnace core tube is heated by the carbon furnace core. The heat from the tube not only heats up the surrounding area;
The heat from the carbon powder and carbon boulders will also heat it from within. Moreover, since the mixed powder is stirred together with the boulders by the rotation of the carbon furnace tube, it is evenly and sufficiently heated. Therefore, even if a large amount of mixed powder is contained in the carbon furnace tube, the metal powder will be heated to the predetermined processing temperature by uniform and sufficient heating, while the carbon powder will create a reduction processing atmosphere together with the inert gas. Therefore, the reduction reaction of the metal powder proceeds evenly, making it possible to mass-produce non-oxide powder. In particular, during this reaction, the metal powder is stirred as described above and comes into even and sufficient contact with the reduction treatment atmosphere, so the reduction reaction progresses rapidly. Since the carbon powder and carbon cobbles prevent the powder from coagulating with each other, uniform, fine-grained non-oxide powder can be efficiently mass-produced.

z−」L−貫 以下、図面に基づいて本発明の詳細な説明する。z-"L-kan Hereinafter, the present invention will be described in detail based on the drawings.

第1図は本発明製造装置の一実施例の概略図であって、
1はカーボン炉芯管、2はカーボンの玉石、3は高周波
コイル、Aは金属粉末及びカーボン粉末の混合粉末を示
している。なお、カーボン粉末は反応に必要な量よりも
過剰に入れてもよい。
FIG. 1 is a schematic diagram of an embodiment of the manufacturing apparatus of the present invention,
1 is a carbon furnace core tube, 2 is a carbon boulder, 3 is a high frequency coil, and A is a mixed powder of metal powder and carbon powder. Note that the carbon powder may be added in excess of the amount required for the reaction.

即ち、この実施例の製造装置によれば、カーボン炉芯管
1は大径部11とその両端の小径部12.12を備えた
異径円管に構成されており、この大径部11の両端が駆
動用ローラ4.4で支持されて処理炉5内に設置されて
いる。従って、このローラを駆動回転させると、カーボ
ン炉芯管1が回転するようになっている。
That is, according to the manufacturing apparatus of this embodiment, the carbon furnace core tube 1 is configured as a circular tube with different diameters, including a large diameter section 11 and small diameter sections 12 and 12 at both ends. Both ends are supported by driving rollers 4.4 and installed in the processing furnace 5. Therefore, when this roller is driven to rotate, the carbon furnace core tube 1 is rotated.

また、この処理炉5の内部には、カーボン炉芯管1の大
径部11を取り巻くように高周波コイル3が配設されて
おり、このコイル3に高周波電流を流すと、カーボン炉
芯管1と該炉芯管1内部のカーボンの玉石2が高周波誘
電加熱されるようになっている。尚、玉石2はこの実施
例では球状のものが使用されているが、角形やその他の
形状の玉石も使用できることは言うまでもない。
Further, inside the processing furnace 5, a high frequency coil 3 is arranged so as to surround the large diameter portion 11 of the carbon furnace core tube 1, and when a high frequency current is passed through this coil 3, the carbon furnace core tube 1 The carbon boulders 2 inside the furnace core tube 1 are heated by high-frequency dielectric heating. Although the boulders 2 are spherical in this embodiment, it goes without saying that rectangular or other shaped boulders can also be used.

更に、この処理炉5一端の材料投入口51の近傍には不
活性ガスの導入管61が接続され、処理炉5の他端には
不活性ガスの排出管62と脱気管63が接続されている
。そして、導入管61には開閉バルブ71と流量形81
が、排出管62には開閉バルブ72と圧力計82が、脱
気管63には開閉バルブ73と真空ポンプ83がそれぞ
れ取付られており、また、処理炉5にはオプティカルサ
ーモメータ84が取付られている。従って、導入管61
の開閉バルブ71と排出管62の開閉バルブ72を開け
ば、導入管61より流入する不活性ガスがカーボン炉芯
管1内を流れて排出管62より排出されるようになって
おり、不活性ガスの流量と圧力は、流量計81と圧力計
82を見ながら開閉バルブ71.72の開き具合を加減
することによって自由に調節できるようになっている。
Furthermore, an inert gas introduction pipe 61 is connected to one end of the processing furnace 5 near the material input port 51, and an inert gas discharge pipe 62 and a degassing pipe 63 are connected to the other end of the processing furnace 5. There is. The introduction pipe 61 includes an on-off valve 71 and a flow type 81.
However, an on-off valve 72 and a pressure gauge 82 are attached to the discharge pipe 62, an on-off valve 73 and a vacuum pump 83 are attached to the deaeration pipe 63, and an optical thermometer 84 is attached to the processing furnace 5. There is. Therefore, the introduction pipe 61
When the on-off valve 71 of The flow rate and pressure of the gas can be freely adjusted by adjusting the degree of opening of the on-off valves 71 and 72 while watching the flow meter 81 and the pressure gauge 82.

また、炉内の温度はオプティカルサーモメータ84によ
ってただちに判別できるようになっている。
Further, the temperature inside the furnace can be immediately determined by an optical thermometer 84.

本発明の製造方法は、上記のような製造装置を用いて次
のように行われる。
The manufacturing method of the present invention is carried out as follows using the manufacturing apparatus as described above.

まず、処理炉5の開閉蓋52を開け、金属粉末とカーボ
ン粉末の混合粉末Aをカーボンの玉石2と共に材料投入
口51からカーボン炉芯管lの大径部11へ投入し、開
閉蓋52を閉じる。金属粉末としては、kl、Ti、S
i等が使用される。
First, open the lid 52 of the processing furnace 5, charge the mixed powder A of metal powder and carbon powder together with the carbon boulders 2 from the material input port 51 into the large diameter portion 11 of the carbon furnace core tube l, and then close the lid 52. close. Metal powders include kl, Ti, S
i etc. are used.

次いで、導入管61と排出管62の各開閉バルブ71゜
72を閉じたまま、脱気管63の開閉バルブ73を開き
、真空ポンプ83でカーボン炉芯管1 (処理炉5)の
内部空気を脱気してから開閉バルブ73を閉じる。
Next, while keeping the on-off valves 71 and 72 of the inlet pipe 61 and the discharge pipe 62 closed, the on-off valve 73 of the degassing pipe 63 is opened, and the internal air of the carbon furnace core tube 1 (processing furnace 5) is degassed with the vacuum pump 83. After that, close the on-off valve 73.

そして、導入管61の開閉バルブ61を開いて不活性ガ
スをカーボン炉芯管1内(処理炉5内)に導入し、圧力
計82を見ながら圧力1kg/cjGになると排出管6
2の開閉バルブ72を開き、流量計81を見ながら不活
性ガスがカーボン炉芯管1内を所定量流れるように調節
する。不活性ガスとしてはN2゜Ar等が使用されるが
、これらは金属粉末の還元反応の種類に応じて適宜使い
分けされることは言うまでもない。
Then, open the on-off valve 61 of the inlet pipe 61 to introduce inert gas into the carbon furnace core tube 1 (inside the processing furnace 5), and while watching the pressure gauge 82, when the pressure reaches 1 kg/cjG, the discharge pipe 6
Open the on-off valve 72 of No. 2, and adjust so that a predetermined amount of inert gas flows through the carbon furnace core tube 1 while watching the flow meter 81. As the inert gas, N2°Ar or the like is used, but it goes without saying that these can be used appropriately depending on the type of reduction reaction of the metal powder.

次いで、駆動用ローラ4,4を作動させてカーボン炉芯
管1を回転させ、高周波コイル3に高周波電流を流して
カーボン炉芯管1とカーボンの玉石2を高周波誘電加熱
により発熱させ、カーボン炉芯管1の内部温度を所定の
反応温度まで昇温させて所定時間処理する。反応温度や
反応時間は、金属粉末の還元反応に応じて、1200〜
1700℃の温度範囲及び3〜10時間の時間範囲内で
適宜決定される。
Next, the driving rollers 4, 4 are operated to rotate the carbon furnace core tube 1, and a high frequency current is passed through the high frequency coil 3 to generate heat in the carbon furnace core tube 1 and the carbon cobblestones 2 by high frequency dielectric heating. The internal temperature of the core tube 1 is raised to a predetermined reaction temperature and the treatment is carried out for a predetermined time. The reaction temperature and reaction time vary from 1,200 to
It is appropriately determined within the temperature range of 1700°C and the time range of 3 to 10 hours.

上記のように処理すると、カーボン炉芯管1内部の金属
粉末とカーボン粉末の混合粉末Aは、カーボン炉芯管1
の熱によって周囲から加熱されるのみならず、カーボン
粉末およびカーボン玉石2の熱によって内部からも加熱
されることになり、しかも、該混合粉末Aはカーボン炉
芯管1の回転によって玉石2と共にPA tlされるの
で、均−且つ充分な加熱が行われるようになる。従って
、多量の混合粉末Aがカーボン炉芯管1内に入っていて
も、充分な加熱によって金属粉末は所定の反応温度に維
持されると共に、カーボン粉末は不活性ガスと共に還元
処理雰囲気をつくるので、低酸素濃度下において金属粉
末のとカーボンあるいはガスとの存在するカーボン粉末
は、金属粉末粒子間の融着を防止し、また、金属粉末間
に均一微細な非酸化物を得ることができる。
When processed as described above, the mixed powder A of metal powder and carbon powder inside the carbon furnace core tube 1 becomes
Not only is it heated from the surroundings by the heat of tl, so that uniform and sufficient heating can be performed. Therefore, even if a large amount of mixed powder A enters the carbon furnace core tube 1, the metal powder is maintained at a predetermined reaction temperature by sufficient heating, and the carbon powder creates a reduction treatment atmosphere together with the inert gas. Carbon powder in which metal powder and carbon or gas are present under low oxygen concentration can prevent fusion between metal powder particles and can obtain uniform fine non-oxide between metal powder particles.

すなわち、例えば Al+C+N、→、l’N+c S i +C+N2−31iN4+c Si十過剰のC+Ar−5sic−L−CTi+C+N
、→TiN+C Ti+過剰のC+Ar−TiC+C の如き反応が遂行され、Nz、Ar等の還元雰囲気中に
て金属粉末がカーボンまたは還元ガスと反応し、A i
t N、  S t 2N4.  S iC等の所望の
非酸化物粉末が量産されるのである。        
   4゜さらに、この反応中は、上記のように金属粉
末が攪拌されてカーボンまたはガスとの接触や加熱が均
−且つ充分に行われるため、処理される混合粉末へが多
量であっても還元反応の進行は速やかであり、従ってカ
ーボン炉芯管1の内容積を大きく設計して大量処理すれ
ば、前述の如き3〜10時間程時間比較的短い処理時間
で数kgから数十kgの非酸化物粉末を一度に得ること
も可能となる。
That is, for example, Al+C+N, →, l'N+c Si +C+N2-31iN4+c C+Ar-5sic-L-CTi+C+N
, →TiN+C Ti+excess C+Ar-TiC+C reactions are carried out, and the metal powder reacts with carbon or reducing gas in a reducing atmosphere such as Nz, Ar, etc., and A i
t N, S t 2N4. Desired non-oxide powders such as SiC are mass-produced.
4゜Furthermore, during this reaction, as mentioned above, the metal powder is stirred and brought into contact with the carbon or gas and heated evenly and sufficiently, so that even if the amount is reduced to the mixed powder being treated, it will not be reduced. The reaction progresses quickly, so if the inner volume of the carbon furnace core tube 1 is designed to be large and large quantities are processed, several kg to several tens of kg of waste can be produced in a relatively short processing time of about 3 to 10 hours as described above. It also becomes possible to obtain oxide powder at once.

光−m呆 以上の説明から明らかなように、本発明によれば、金属
粉末と、カーボンが非酸化雰囲気中において、極めて、
効率がよく混合、加熱されるので短時間の反応にて所望
の非酸化物が合成される。
As is clear from the above explanation, according to the present invention, when metal powder and carbon are in a non-oxidizing atmosphere,
Since mixing and heating are carried out efficiently, the desired non-oxide can be synthesized in a short reaction time.

さらに、カーボン炉芯管内を転動するカーボン粉末およ
びカーボン玉石によって粉末同士の凝結が阻止されるの
で、合成後の粉砕工程が省略可能となり、不純物の混入
も防げ、均一かつ細粒質な非酸化物の粉末を大量生産す
ることができるという顕著な効果がある。
Furthermore, since the carbon powder and carbon cobbles rolling in the carbon furnace core tube prevent the powder from coagulating with each other, the pulverization process after synthesis can be omitted, preventing the contamination of impurities, and producing a uniform, fine-grained, non-oxidized product. It has the remarkable effect of being able to mass-produce powders of substances.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明製造装置の一実施例の概略図である。 1・・・カーボン炉芯管、2・・・カーボンの玉石、3
・・・高周波コイル、4・・・金属粉末及びカーボン粉
末の混合粉末。
FIG. 1 is a schematic diagram of an embodiment of the manufacturing apparatus of the present invention. 1... Carbon furnace core tube, 2... Carbon boulder, 3
... High frequency coil, 4... Mixed powder of metal powder and carbon powder.

Claims (1)

【特許請求の範囲】[Claims] (1)金属粉末とカーボン粉末の混合粉末をカーボンの
玉石と共にカーボン炉芯管に入れ、該カーボン炉芯管内
に不活性ガスを流して非酸化雰囲気に保ちつつ該カーボ
ン炉芯管を回転させて高周波誘導加熱することを特徴と
する非酸化物粉末の製造方法。
(1) Put a mixed powder of metal powder and carbon powder into a carbon furnace core tube together with carbon boulders, and rotate the carbon furnace core tube while keeping a non-oxidizing atmosphere by flowing an inert gas into the carbon furnace core tube. A method for producing non-oxide powder, characterized by high-frequency induction heating.
JP61101517A 1986-04-30 1986-04-30 Production of non-oxidized powder Pending JPS62256702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61101517A JPS62256702A (en) 1986-04-30 1986-04-30 Production of non-oxidized powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61101517A JPS62256702A (en) 1986-04-30 1986-04-30 Production of non-oxidized powder

Publications (1)

Publication Number Publication Date
JPS62256702A true JPS62256702A (en) 1987-11-09

Family

ID=14302716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61101517A Pending JPS62256702A (en) 1986-04-30 1986-04-30 Production of non-oxidized powder

Country Status (1)

Country Link
JP (1) JPS62256702A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0470749A2 (en) * 1990-08-10 1992-02-12 Naraseiki Kabushiki Kaisha Electronic combustion furnace
FR2727108A1 (en) * 1994-11-18 1996-05-24 Cernix ALUMINUM NITRIDE GRANULES
JP2002274818A (en) * 2001-03-16 2002-09-25 Toyo Aluminium Kk Method of preparing nitrogen-containing inorganic compound
KR101132285B1 (en) * 2009-12-28 2012-04-05 재단법인대구경북과학기술원 Powder heat treatment equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0470749A2 (en) * 1990-08-10 1992-02-12 Naraseiki Kabushiki Kaisha Electronic combustion furnace
US5254822A (en) * 1990-08-10 1993-10-19 Naraseiki Kabushiki Kaisha Electronic combustion furnace
FR2727108A1 (en) * 1994-11-18 1996-05-24 Cernix ALUMINUM NITRIDE GRANULES
WO1996015982A1 (en) * 1994-11-18 1996-05-30 Cernix Aluminium nitride granules
JP2002274818A (en) * 2001-03-16 2002-09-25 Toyo Aluminium Kk Method of preparing nitrogen-containing inorganic compound
JP4578009B2 (en) * 2001-03-16 2010-11-10 東洋アルミニウム株式会社 Method for producing nitrogen-containing inorganic compound
KR101132285B1 (en) * 2009-12-28 2012-04-05 재단법인대구경북과학기술원 Powder heat treatment equipment

Similar Documents

Publication Publication Date Title
DD279113A5 (en) METHOD AND DEVICE FOR TEMPERATURE TREATMENT OF SEMICONDUCTOR MATERIALS
CN110396619A (en) A kind of copper-iron alloy wire rod and preparation method thereof
CN1676248A (en) Method for manufacturing soft-magnetic alloy powder
CN104538143A (en) Flat soft magnet powder and preparation method thereof
DE3705710C2 (en)
JPS62256702A (en) Production of non-oxidized powder
US4750914A (en) Method of manufacturing cast-iron bonded diamond wheel
US3948785A (en) Process of manufacturing ferrite materials with improved magnetic and mechanical properties
JPS62237937A (en) Method and apparatus for preparing non-oxide powder
US5011798A (en) Chromium additive and method for producing chromium alloy using the same
CN113528983A (en) Iron-based amorphous soft magnetic alloy and preparation method thereof
US5162099A (en) Process for producing a sintered compact from steel powder
JP3848264B2 (en) Surface treatment method for cast iron products and cast iron products
CN107424699A (en) Superelevation remanent magnetism neodymium iron boron magnetic body and preparation method thereof
JPH0688106A (en) Production of alloy for obtaining uniform metal oxide powder
CN114101619B (en) Centrifugal casting process of spheroidal graphite cast tube
JPH0673437A (en) Method for uniformizing carbide grain in spheroidizing annealing of high carbon chromium bearing steel wire rod
SU1734946A1 (en) Method to obtain iron-based magnetically soft materials
JPH01275412A (en) Production of aluminum nitride fine powder
CN115259854A (en) Semiconductor alpha-GeTe target material and preparation method thereof
JPH0394061A (en) Production of tungsten crucible
JPH06212207A (en) Production of sintered alloy
JPH01198437A (en) Manufacture of dispersion strengthened copper
JPH01242729A (en) Electron beam melting method for refractory high-melting-temperature metal material
EP1069197A1 (en) Method of compacting high alloy tool steel particles