JPH0673437A - Method for uniformizing carbide grain in spheroidizing annealing of high carbon chromium bearing steel wire rod - Google Patents

Method for uniformizing carbide grain in spheroidizing annealing of high carbon chromium bearing steel wire rod

Info

Publication number
JPH0673437A
JPH0673437A JP12560492A JP12560492A JPH0673437A JP H0673437 A JPH0673437 A JP H0673437A JP 12560492 A JP12560492 A JP 12560492A JP 12560492 A JP12560492 A JP 12560492A JP H0673437 A JPH0673437 A JP H0673437A
Authority
JP
Japan
Prior art keywords
wire rod
bearing steel
spheroidizing annealing
heating
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12560492A
Other languages
Japanese (ja)
Inventor
Keiichi Mizuguchi
敬一 水口
Katsunori Ishihama
克則 石浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP12560492A priority Critical patent/JPH0673437A/en
Publication of JPH0673437A publication Critical patent/JPH0673437A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten working time for a bearing steel, to reduce the unevenness of the working time, to reduce the difference between the temp. history at the inner part and that at the outer part of a wire rod coil by preventing the coarsening and the unevenness of carbide in the spheroidizing annealing of a high carbon chromium bearing steel wire rod. CONSTITUTION:In the spheroidizing annealing by heating the wire rod coil of the high carbon chromium bearing steel to a prescribed temp. higher than transformation temp. (AC1) and slowly cooling after soaking, a heat treatment furnace prepared so as to be possible to use for heating by convection and provided with a stirring fan 18 is used and the heating operation is executed while flowing from the inner part to the outer part of the wire rod coil 20 by forced convection of the atmosphere in the furnace. Further, the carbide in made fine and uniformly distributed so that the heating velocity in the temp. range of the transformation temp. (AC1)+ or -50 deg.C becomes >=70 deg.C/hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、高炭素クロム軸受鋼線材の球状
化焼鈍において、パーライト組織中のセメンタイト等の
炭化物を微細な球状に整えて、均一な組織と為す、炭化
物の整粒化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for sizing a carbide in which a carbide such as cementite in a pearlite structure is formed into a fine spherical shape in a spheroidizing annealing of a high carbon chromium bearing steel wire to form a uniform structure.

【0002】[0002]

【背景技術】ベアリング素材等に利用される軸受鋼とし
ては、JIS−G−4805に規定されているSUJ
1、SUJ2等の高炭素クロム軸受鋼がよく知られてい
る。また、従来より、そのような高炭素含有鋼では、焼
入れに先立って、球状化焼鈍と呼ばれる熱処理が行なわ
れており、炭化物を球状に整えることによって、靱性の
向上、歪みの抑制を図り、均一な組織と硬さを得るよう
になっている。そして、球状化された炭化物の大きさ及
び均一性は、軸受鋼からベアリングボール等を加工する
際の研摩性や切削性に大きく影響することから、球状化
焼鈍における炭化物の整粒化に関しては、従来より厳し
い品質が要求されている。
BACKGROUND ART As a bearing steel used as a bearing material or the like, SUJ specified in JIS-G-4805 is used.
High carbon chromium bearing steels such as 1 and SUJ2 are well known. Further, conventionally, in such a high carbon content steel, prior to quenching, a heat treatment called spheroidizing annealing is performed, and by adjusting the carbide into a spherical shape, the toughness is improved, strain is suppressed, and uniform It is designed to obtain various tissues and hardness. And, the size and uniformity of the spheroidized carbide have a great influence on the abrasivity and machinability when processing a bearing ball or the like from bearing steel, so regarding the sizing of the carbide in the spheroidizing annealing, Quality that is stricter than before is required.

【0003】ところで、かかる球状化焼鈍には、従来か
ら、徐冷法、恒温保持法、繰返法、冷間加工熱処理法等
の各種の方法が知られているが、その中で、徐冷法は、
図1に示す如き温度カーブによって熱処理が行なわれる
ものである。即ち、先ず、a点より20℃〜60℃/時
間の加熱速度で昇温し、軸受鋼の変態点(Ac1)よりも
高い所定の温度、例えば800℃前後のb点にまで加熱
した後、数時間程度保持して、均熱する。そして、その
後、b′点より20℃〜60℃/時間の冷却速度で降温
して、変態点(Ac1)付近のc点からは、特にゆっくり
と徐冷し、d点に至るようにするのである。
By the way, for such spheroidizing annealing, various methods such as a slow cooling method, a constant temperature holding method, a repeating method and a cold working heat treatment method have been conventionally known. Among them, the slow cooling method is
The heat treatment is performed according to the temperature curve as shown in FIG. That is, first, the temperature is raised from the point a at a heating rate of 20 ° C. to 60 ° C./hour, and after heating to a predetermined temperature higher than the transformation point (A c1 ) of the bearing steel, for example, to a point b around 800 ° C. Hold for a few hours and soak. Then, after that, the temperature is lowered from the point b ′ at a cooling rate of 20 ° C. to 60 ° C./hour so that the point c near the transformation point (A c1 ) is slowly cooled particularly slowly to reach the point d. Of.

【0004】そして、このa点〜d点までの温度カーブ
に対応して、軸受鋼のパーライト組織中の炭化物は、図
2の(a)〜(d)のように変化するのである。即ち、
a点に対応する図2(a)には、代表的な炭化物である
セメンタイトが示されているが、このセメンタイトは、
加熱操作後のb点では、図2(b)の状態に分断され
る。次いで、均熱操作中に炭化物の一部がオーステナイ
トへ固溶する一方、適量が残留して、b′点では図2
(b′)の状態になる。そして、冷却操作中にオーステ
ナイトがフェライトに変態する過程において、残留した
炭化物が核となって凝集が進み、c点では、図2(c)
の状態になり、変態点付近を特にゆっくりと徐冷するこ
とによって、d点では、図2(d)のように炭化物が球
状に成長せしめられるのである。
Corresponding to the temperature curve from point a to point d, the carbide in the pearlite structure of the bearing steel changes as shown in FIGS. 2 (a) to 2 (d). That is,
FIG. 2A corresponding to the point a shows cementite which is a typical carbide.
At the point b after the heating operation, the state is divided into the state of FIG. Next, during the soaking operation, a part of the carbide is solid-dissolved in the austenite, while an appropriate amount remains, and at the b'point, the result shown in FIG.
The state becomes (b '). Then, during the process of transformation of austenite into ferrite during the cooling operation, the remaining carbides serve as nuclei to promote agglomeration, and at point c, as shown in FIG.
Then, by slowly cooling the vicinity of the transformation point particularly slowly, at the point d, the carbide grows into a spherical shape as shown in FIG. 2 (d).

【0005】しかしながら、このような従来の熱処理方
法では、一部に粗大な球状炭化物が形成されてしまい、
球状化焼鈍後に焼入れを行なった段階において、炭化物
の平均粒径が大きくなると共に、炭化物の粒径がσ:
0.28μm〜0.35μm程度と大きくばらついてし
まう問題があった。そして、それ故に、軸受鋼の研摩
性、切削性が悪くなって、加工時間が長くなると共に、
加工時間がばらついてしまう問題を内在していたのであ
る。そのため、従来から、軸受鋼の炭化物の微細化及び
均一化を図るべく、加熱操作・均熱操作・冷却操作を通
じた球状化焼鈍の最適な温度カーブが種々検討されてい
るが、未だ満足できる結果は得られていない。
However, in such a conventional heat treatment method, coarse spherical carbides are partially formed,
At the stage of quenching after spheroidizing annealing, the average grain size of the carbide increases and the grain size of the carbide becomes σ:
There has been a problem that there is a large variation of about 0.28 μm to 0.35 μm. And, therefore, the abrasiveness and machinability of the bearing steel deteriorate, and the processing time becomes longer,
There was an inherent problem that the processing time varied. Therefore, various temperature curves for spheroidizing annealing through heating operation, soaking operation, and cooling operation have been conventionally studied in order to refine and uniformize carbides of bearing steel, but still satisfactory results. Has not been obtained.

【0006】また、通常、軸受鋼は線材コイルの状態で
球状化焼鈍が実施されることから、線材コイルのマス効
果により、線材コイルの各部で加熱条件が異なってしま
うことが避けられない。そして、加熱条件が満たされて
いる線材コイルの外部、より詳しくは線材コイルの外周
部及び軸方向両端部は、図1の温度カーブに良好に追随
することができる一方、加熱条件の悪い線材コイルの内
部、より詳しくは線材コイルの内周部及び軸方向中央部
は、熱伝導が悪くなって、温度履歴が図1において破線
で示すようになってしまうのである。その結果、線材コ
イルの内部では、炭化物の粗大化が発生し易くなり、そ
の部分が品質要求を満たすことができなくなる恐れがあ
った。
Further, since the bearing steel is usually subjected to spheroidizing annealing in the state of the wire rod coil, it is unavoidable that the heating conditions are different in each part of the wire rod coil due to the mass effect of the wire rod coil. The outside of the wire rod coil satisfying the heating condition, more specifically, the outer peripheral portion and the axial end portions of the wire rod coil can follow the temperature curve of FIG. 1 well, while the wire rod coil with the poor heating condition is present. In the inside, more specifically, in the inner peripheral portion and the central portion in the axial direction of the wire coil, the heat conduction becomes poor, and the temperature history becomes as shown by the broken line in FIG. As a result, coarsening of carbides easily occurs inside the wire coil, and that portion may not be able to meet the quality requirements.

【0007】[0007]

【解決課題】本発明は、上述の如き事情を背景として為
されたものであって、その解決課題とするところは、高
炭素クロム軸受鋼線材の球状化焼鈍における熱処理条件
を再検討して、炭化物の微細化と均一化を図り、炭化物
が良好に整粒化され得るようにすることにある。また、
線材コイルの各部の温度履歴の差が小さくなるようにし
て、線材コイル全体について、炭化物が良好に整粒化さ
れるようにすることにある。
The present invention has been made against the background of the above circumstances, and the problem to be solved is to reexamine the heat treatment conditions in spheroidizing annealing of a high carbon chromium bearing steel wire, It is intended to make the carbide fine and uniform so that the carbide can be satisfactorily sized. Also,
The purpose is to reduce the difference in temperature history between the parts of the wire rod coil so that the carbide can be satisfactorily sized in the entire wire rod coil.

【0008】[0008]

【解決手段】そして、上記の課題を解決するために、本
発明者らが種々検討したところ、球状化焼鈍の加熱操作
において、加熱速度が低い場合、特に、変態点(Ac1
付近で徐加熱又は均熱を実施した場合には、炭化物の分
断起点が少なくなって、炭化物数が減少すると共に、粒
界に接する炭化物が凝集することによって、一部が粗大
化してしまい、しかも粗大化した炭化物は変態点
(Ac1)を越えても固溶し難くなるため、粒径ばらつき
が大きくなることを見い出したのである。
[Means for Solving the Problems] In order to solve the above problems, the inventors of the present invention have made various investigations, and in the heating operation of spheroidizing annealing, when the heating rate is low, especially the transformation point (A c1 )
When gradual heating or soaking is carried out in the vicinity, the starting point of separation of the carbide is reduced, the number of carbides is reduced, and the carbides in contact with the grain boundaries are agglomerated, so that a part thereof is coarsened, and It has been found that the coarsened carbide becomes difficult to form a solid solution even if it exceeds the transformation point (A c1 ), so that the variation in grain size becomes large.

【0009】すなわち、本発明は、このような知見に基
づいて更なる検討を重ねた結果、完成されたものであ
り、その要旨とするところは、高炭素クロム軸受鋼の線
材コイルを熱処理炉内に配置し、変態点(Ac1)よりも
高い所定の温度まで加熱し、次いで所定時間保持して、
均熱した後、徐冷することにより、パーライト組織中の
炭化物の球状化を図る球状化焼鈍において、前記熱処理
炉として対流加熱可能なものを用い、そして前記加熱操
作を、炉内雰囲気を強制的に対流させて、線材コイルの
内部から外部へ或いはその逆に流通させながら行なうよ
うにすると共に、変態点(Ac1)±50℃の温度域での
加熱速度が70℃/時間以上となるようにして、炭化物
を微細化し且つ均一に分布させることを特徴とする高炭
素クロム軸受鋼線材の球状化焼鈍における炭化物の整粒
化方法にある。
That is, the present invention has been completed as a result of further studies based on such findings. The gist of the present invention is to wire a coil of high carbon chromium bearing steel in a heat treatment furnace. , Heated to a predetermined temperature higher than the transformation point (A c1 ), and then held for a predetermined time,
After soaking, it is gradually cooled to spheroidize the carbides in the pearlite structure.In the spheroidizing annealing, a convection-heatable furnace is used as the heat treatment furnace, and the heating operation is performed by forcing the atmosphere in the furnace. To the outside and vice versa, and the heating rate in the temperature range of the transformation point (A c1 ) ± 50 ° C is 70 ° C / hour or more. In addition, the present invention provides a method for sizing carbides in spheroidizing annealing of a high carbon chromium bearing steel wire rod, characterized in that the carbides are refined and uniformly distributed.

【0010】[0010]

【作用・効果】要するに、本発明手法では、球状化焼鈍
における加熱操作を、変態点(Ac1)±50℃の温度域
での加熱速度が70℃/時間以上となるように、急速加
熱によって行なうのである。そして、かかる急速加熱操
作を実施することにより、相変態エネルギーが大きくな
って炭化物の分断起点が多くなるため、炭化物が微粒に
なり、また均熱操作時に微細な炭化物は固溶してしま
い、凝集し難くなるため、粗大な炭化物が生じ難くな
り、以て均熱操作・徐冷操作を経て球状化焼鈍が終了し
た時点では、ばらつきが小さい微細な炭化物が多数存在
するようになることが明らかとなったのである。そし
て、かかる球状化焼鈍の後に焼入れを行ない、最終的な
製品とした段階でも、炭化物の粒径のばらつきがσ≦
0.27μm程度に効果的に抑制されて、均一な組織が
得られることとなったのである。従って、研摩性、切削
性に優れた軸受鋼が得られ、加工時間が有利に短縮され
得ると共に、加工時間のばらつきが低減され得ることと
なったのである。
[Operation / Effect] In short, according to the method of the present invention, the heating operation in the spheroidizing annealing is performed by rapid heating so that the heating rate in the temperature range of the transformation point (A c1 ) ± 50 ° C is 70 ° C / hour or more. Do it. Then, by carrying out such a rapid heating operation, the phase transformation energy becomes large and the number of separation initiation points of the carbides increases, so that the carbides become fine particles, and during the soaking operation, the fine carbides form a solid solution and agglomerate. Since it becomes difficult to produce coarse carbides, it is clear that when the spheroidizing annealing is completed through the soaking operation / slow cooling operation, there are many fine carbides with small variations. It has become. Then, even after the spheroidizing annealing, quenching is performed to obtain a final product, the variation in the grain size of the carbide is σ ≦
It was effectively suppressed to about 0.27 μm, and a uniform structure was obtained. Therefore, a bearing steel having excellent abrasiveness and machinability can be obtained, the processing time can be advantageously shortened, and the variation in the processing time can be reduced.

【0011】加えて、本発明手法では、炉内雰囲気を強
制的に対流させながら加熱することにより、加熱条件が
悪く、熱伝導が悪くなりがちな線材コイルの内部(内周
部及び軸方向中央部)に効果的に伝熱されるようにした
のである。従って、線材コイルの内部と外部の温度履歴
の差が効果的に縮められるため、線材コイル全体につい
て炭化物が効果的に整粒化されることとなり、線材コイ
ル全体が品質要求を満たすようになるのである。
In addition, according to the method of the present invention, heating is performed while forcibly convection the atmosphere in the furnace, so that the heating conditions tend to be poor and the heat conduction tends to be poor inside the wire coil (inner peripheral portion and axial center). The heat is effectively transferred to the department. Therefore, the difference in temperature history between the inside and outside of the wire rod coil is effectively reduced, so that the carbide particles are effectively sized for the entire wire rod coil, and the entire wire rod coil satisfies the quality requirements. is there.

【0012】[0012]

【実施例】以下に、本発明の代表的な実施例を示し、本
発明を更に具体的に明らかにすることとするが、本発明
が、そのような実施例の記載によって、何等の制約をも
受けるものでないことは、言うまでもないところであ
る。また、本発明には、以下の実施例の他にも、本発明
の趣旨を逸脱しない限りにおいて、当業者の知識に基づ
いて種々なる変更、修正、改良等を加え得るものである
ことが、理解されるべきである。
EXAMPLES Hereinafter, representative examples of the present invention will be shown to clarify the present invention in more detail. However, the present invention is not limited by the description of such examples. Needless to say, it is not something to receive. Further, in addition to the following examples, the present invention may be variously modified, modified, improved, etc. based on the knowledge of those skilled in the art without departing from the spirit of the present invention. Should be understood.

【0013】先ず、SUJ2鋼線材(直径5.5mm)の
コイル(1段1t)を用意し、2段積み上げた状態で熱
処理炉内に収容した。なお、熱処理炉としては、対流加
熱が可能な構造を有しているものであれば何れも使用す
ることができるが、ここでは、図3に示される如き構造
のものを用いた。この熱処理炉は、炉体10内に線材コ
イル20の収容室12が設けられており、該収容室12
の上壁には吹出口14が形成される一方、下壁には吹入
口16が形成されている。また、吹出口14に近接して
攪拌扇18が取り付けられており、該攪拌扇18によっ
て、収容室12内のエアーが吹出口14から流出せしめ
られ、炉体10と収容室12との間を通って、吹入口1
6から再び流入せしめられるようになっている。そし
て、前記線材コイル20は、該コイルの内側に収容室1
2の吹入口16が位置するようにして配置し、更に該コ
イルの上端部に閉塞板22を取り付けた。それによっ
て、吹入口16から流入したエアーは線材コイル20の
線材と線材の隙間を通過して、内周部から外周部へ強制
的に対流せしめられるのである。なお、炉内雰囲気は炉
体10に取り付けられたラジアントチューブ24にて加
熱される。
First, a coil of SUJ2 steel wire rod (diameter 5.5 mm) (1t for 1 step) was prepared and housed in a heat treatment furnace in a stacked state of 2 steps. As the heat treatment furnace, any furnace having a structure capable of convection heating can be used, but here, a furnace having a structure as shown in FIG. 3 was used. In this heat treatment furnace, a housing chamber 12 for the wire rod coil 20 is provided in a furnace body 10.
An air outlet 14 is formed on the upper wall, while an air inlet 16 is formed on the lower wall. Further, a stirring fan 18 is attached in the vicinity of the air outlet 14, and the air in the accommodation chamber 12 is caused to flow out from the air outlet 14 by the agitation fan 18 so that the space between the furnace body 10 and the accommodation chamber 12 is changed. Through the air inlet 1
It is designed to be allowed to flow in again from 6. Then, the wire coil 20 is accommodated in the accommodation chamber 1 inside the coil.
It was arranged so that the two inlets 16 were located, and a closing plate 22 was attached to the upper end of the coil. As a result, the air flowing in from the air inlet 16 passes through the gap between the wire rods of the wire rod coil 20 and is forcibly convected from the inner peripheral portion to the outer peripheral portion. The furnace atmosphere is heated by the radiant tube 24 attached to the furnace body 10.

【0014】そして、この状態で球状化焼鈍を開始し、
80℃/時間の加熱速度にて加熱操作を行ない、790
℃まで昇温した後、4時間保持して均熱操作を行なっ
た。次いで、660℃まで20℃/時間で徐冷し、熱処
理を終了した。また、比較のために、同じSUJ2鋼の
線材コイルを対流加熱構造を持たない熱処理炉に収容し
て、60℃/時間の加熱速度にて790℃まで昇温し、
それ以降は上記と同様な処理を実施した。
Then, spheroidizing annealing is started in this state,
Perform heating operation at a heating rate of 80 ° C / hour for 790
After the temperature was raised to 0 ° C., the temperature was maintained for 4 hours to carry out soaking. Then, it was gradually cooled to 660 ° C. at 20 ° C./hour, and the heat treatment was completed. Further, for comparison, the same SUJ2 steel wire coil is housed in a heat treatment furnace having no convection heating structure and heated to 790 ° C. at a heating rate of 60 ° C./hour,
After that, the same processing as above was performed.

【0015】しかる後、それら実施例と比較例の線材コ
イルのそれぞれについて、A部(上段コイル上部)、B
部(上段コイルと下段コイルの境界部)、C部(下段コ
イルの下部)の各部において、走査型電子顕微鏡(SE
M)5000倍写真トレースの10視野(2400μm
2 )を画像解析装置(ニレコ株式会社製、商品名:LU
ZEX500)で解析することによって、炭化物の粒径
を調べた。そして、その結果を、線材コイルの各部の変
態点(Ac1)±50℃での加熱速度(実測値)と共に、
下記表1に示した。
Thereafter, with respect to each of the wire rod coils of those Examples and Comparative Examples, A portion (upper coil upper portion) and B portion
The scanning electron microscope (SE) is used in each of the parts (the boundary between the upper coil and the lower coil) and C (the lower part of the lower coil).
M) 10 fields of view (2400 μm) of 5000 times photograph trace
2 ) Image analysis device (manufactured by Nireco Corporation, trade name: LU
The particle size of the carbide was examined by analysis with ZEX500). Then, the results are shown together with the heating rate (measured value) at the transformation point (A c1 ) ± 50 ° C. of each part of the wire coil,
The results are shown in Table 1 below.

【0016】次いで、上記球状化焼鈍を経た線材コイル
を伸線加工後に焼鈍を実施した状態で、前記と同様にし
て、線材コイル各部の炭化物の粒径を調べ、その結果を
下記表1に併せて示した。また、実施例の線材コイルの
B部の金属組織について、顕微鏡下において観察した観
察図(1500倍)を図4に示した。そして、比較のた
めに、比較例の線材コイルのB部の金属組織について、
同様の観察図を図5に示した。
Next, in the state where the wire rod coil that had been subjected to the above spheroidizing annealing was annealed after being drawn, the grain size of carbides in each part of the wire rod coil was examined in the same manner as above, and the results are summarized in Table 1 below. Showed. Further, FIG. 4 shows an observation view (1500 times) observed under a microscope for the metal structure of the portion B of the wire rod coil of the example. Then, for comparison, with respect to the metal structure of the portion B of the wire rod coil of the comparative example,
A similar observation diagram is shown in FIG.

【0017】さらに、焼入れ後の線材コイルを成形・研
摩加工して、直径7.9mmのベアリングボールを作製
し、その研摩加工時間比を下記表1に併せて示した。
Further, the hardened wire rod coil was shaped and polished to prepare a bearing ball having a diameter of 7.9 mm, and the polishing processing time ratio is also shown in Table 1 below.

【0018】[0018]

【表1】 [Table 1]

【0019】かかる表1の結果と図4より明らかなよう
に、実施例では、球状化焼鈍後において、炭化物の平均
粒径が0.54μm以下となり、偏差もσ:≦0.21
となり、粗大化及びばらつきが良好に防止されている。
また、B部の炭化物の平均粒径が0.49μmとなって
おり、偏差も小さく、加熱条件が良好に改善されてA,
C部との温度履歴の差が効果的に縮められていることが
判る。そして、伸線加工後の焼鈍においても、炭化物の
粗大化及びばらつきが抑制されていることによって、均
一な組織が得られており、その結果、ベアリング加工時
間が短縮されることを示している。
As is clear from the results of Table 1 and FIG. 4, in the examples, after the spheroidizing annealing, the average grain size of the carbide was 0.54 μm or less, and the deviation was σ: ≦ 0.21.
Therefore, the coarsening and the variation are well prevented.
Further, the average grain size of the carbide in the B part is 0.49 μm, the deviation is small, and the heating condition is improved satisfactorily.
It can be seen that the difference in the temperature history with the C part is effectively reduced. Further, it is shown that even in the annealing after the wire drawing work, a uniform structure is obtained by suppressing the coarsening and variation of the carbide, and as a result, the bearing working time is shortened.

【0020】これに対して、比較例では、球状化焼鈍後
において、炭化物の平均粒径及び偏差が大きくなり、特
に熱処理時の線材コイル内部(軸方向中央部)に相当す
るB部で炭化物の粗大化及びばらつきが顕著となってい
る。また、伸線加工後の焼鈍において、炭化物の平均粒
径及び偏差がかなり増加しており、その結果、ベアリン
グ加工時間が長くなり且つばらついてしまっている。
On the other hand, in the comparative example, after the spheroidizing annealing, the average grain size and deviation of the carbides became large, and particularly in the portion B corresponding to the inside (axial center portion) of the wire coil during heat treatment. Coarsening and variation are remarkable. Further, in the annealing after the wire drawing, the average grain size and the deviation of the carbide are considerably increased, and as a result, the bearing processing time becomes long and varies.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の球状化焼鈍の温度カーブの一例を示すグ
ラフである。
FIG. 1 is a graph showing an example of a conventional temperature curve for spheroidizing annealing.

【図2】従来の球状化焼鈍によって変化する軸受鋼の炭
化物の状態を示す説明図であり、それぞれ、(a)は加
熱前の状態、(b)は昇温後の状態、(b′)は均熱後
の状態、(c)は冷却中の状態、(d)は冷却後の状態
を示す。
FIG. 2 is an explanatory view showing a state of carbide of bearing steel which is changed by the conventional spheroidizing annealing, in which (a) is a state before heating, (b) is a state after heating, and (b ′). Shows a state after soaking, (c) shows a state during cooling, and (d) shows a state after cooling.

【図3】実施例において使用した、対流加熱構造を有す
る熱処理炉を示す断面説明図である。
FIG. 3 is a cross-sectional explanatory view showing a heat treatment furnace having a convection heating structure used in Examples.

【図4】実施例の線材コイルのB部の金属組織につい
て、顕微鏡下において観察した観察図(1500倍)で
ある。
FIG. 4 is an observation view (1500 times) observed under a microscope for a metal structure of a B portion of the wire coil of the example.

【図5】比較例の線材コイルのB部の金属組織につい
て、顕微鏡下において観察した観察図(1500倍)で
ある。
FIG. 5 is an observation diagram (1500 times) observed under a microscope for a metal structure of a portion B of a wire rod coil of a comparative example.

【符号の説明】[Explanation of symbols]

10 炉体 12 収容室 14 吹出口 16 吹入口 18 攪拌扇 20 線材コイル 22 閉塞板 24 ラジアントチューブ DESCRIPTION OF SYMBOLS 10 Furnace body 12 Storage chamber 14 Outlet port 16 Inlet port 18 Stirring fan 20 Wire rod coil 22 Closure plate 24 Radiant tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高炭素クロム軸受鋼の線材コイルを熱処
理炉内に配置し、変態点(Ac1)よりも高い所定の温度
まで加熱し、次いで所定時間保持して、均熱した後、徐
冷することにより、パーライト組織中の炭化物の球状化
を図る球状化焼鈍において、 前記熱処理炉として対流加熱可能なものを用い、そして
前記加熱操作を、炉内雰囲気を強制的に対流させて、線
材コイルの内部から外部へ或いはその逆に流通させなが
ら行なうようにすると共に、変態点(Ac1)±50℃の
温度域での加熱速度が70℃/時間以上となるようにし
て、炭化物を微細化し且つ均一に分布させることを特徴
とする高炭素クロム軸受鋼線材の球状化焼鈍における炭
化物の整粒化方法。
1. A high carbon chromium bearing steel wire coil is placed in a heat treatment furnace, heated to a predetermined temperature higher than the transformation point (A c1 ), and then held for a predetermined time, soaked, and then gradually heated. In spheroidizing annealing for spheroidizing carbides in the pearlite structure by cooling, a convection heatable furnace is used as the heat treatment furnace, and the heating operation is performed by forcibly convection the atmosphere in the furnace to obtain a wire rod. The heating is performed in the temperature range of the transformation point (A c1 ) ± 50 ° C to be 70 ° C / hour or more, and the carbide is finely divided while the coil is circulated from the inside to the outside or vice versa. A method for sizing carbides in spheroidizing annealing of high carbon chromium bearing steel wire rods, characterized in that they are uniformly dispersed.
JP12560492A 1992-04-17 1992-04-17 Method for uniformizing carbide grain in spheroidizing annealing of high carbon chromium bearing steel wire rod Pending JPH0673437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12560492A JPH0673437A (en) 1992-04-17 1992-04-17 Method for uniformizing carbide grain in spheroidizing annealing of high carbon chromium bearing steel wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12560492A JPH0673437A (en) 1992-04-17 1992-04-17 Method for uniformizing carbide grain in spheroidizing annealing of high carbon chromium bearing steel wire rod

Publications (1)

Publication Number Publication Date
JPH0673437A true JPH0673437A (en) 1994-03-15

Family

ID=14914240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12560492A Pending JPH0673437A (en) 1992-04-17 1992-04-17 Method for uniformizing carbide grain in spheroidizing annealing of high carbon chromium bearing steel wire rod

Country Status (1)

Country Link
JP (1) JPH0673437A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100645767B1 (en) * 2005-07-28 2006-11-14 두산중공업 주식회사 A heat treatment method for fining crystal particle of blade material
JP2007191796A (en) * 1997-01-20 2007-08-02 Nsk Ltd Method of manufacturing rolling bearing
CN104032099A (en) * 2014-06-27 2014-09-10 江苏中热机械设备有限公司 Hot air circulating oven
CN109338035A (en) * 2018-11-08 2019-02-15 江阴兴澄特种钢铁有限公司 A kind of wind-driven generator wheel-box bearing steel and its production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191796A (en) * 1997-01-20 2007-08-02 Nsk Ltd Method of manufacturing rolling bearing
KR100645767B1 (en) * 2005-07-28 2006-11-14 두산중공업 주식회사 A heat treatment method for fining crystal particle of blade material
CN104032099A (en) * 2014-06-27 2014-09-10 江苏中热机械设备有限公司 Hot air circulating oven
CN109338035A (en) * 2018-11-08 2019-02-15 江阴兴澄特种钢铁有限公司 A kind of wind-driven generator wheel-box bearing steel and its production method

Similar Documents

Publication Publication Date Title
Dunlop et al. Precipitation of VC in ferrite and pearlite during direct transformation of a medium carbon microalloyed steel
CN109536689B (en) Hot working process method of bearing steel part
JP3851095B2 (en) Heat-treated steel wire for high-strength springs
JP7159445B2 (en) Soft heat treatment time shortened cold forging wire and its manufacturing method
JP2004100016A (en) Rolled wire rod for bearing and drawn wire rod
JP2007056289A (en) Tool steel stock for hardening
JPH0673437A (en) Method for uniformizing carbide grain in spheroidizing annealing of high carbon chromium bearing steel wire rod
CN109628713B (en) Spheroidizing annealing method of low-carbon steel
CN112048603A (en) Manufacturing method for obtaining high-strength high-toughness ultrafine grain austenitic stainless steel
JPH03240919A (en) Production of steel wire for wiredrawing
JP2009215656A (en) Tool steel material for quenching
JPS58141331A (en) Heat treatment of forging
JP2001011533A (en) Heat treatment of heat resistant steel
JPS58141333A (en) Heat treatment of forging
KR101019628B1 (en) Methods of spheroidizing medium and high carbon steels by severe plastic deformation, apparatus for severe plastic deformation, and spheroidized medium and high carbon steels prepared therefrom
JP3999727B2 (en) Hypereutectoid steel
JP6752624B2 (en) Manufacturing method of carburized steel
JPH0559527A (en) Production of steel excellent in wear resistance and rolling fatigue characteristic
JP2004068064A (en) Steel for machine structure superior in cold forgeability after spheroidizing annealing, and manufacturing method therefor
CN109825691A (en) A kind of medium carbon steel of Austenite Grain Refinement and preparation method thereof
CN112090958B (en) Rolling process for controlling actual grain size of low-carbon deep-drawing steel
JP2826260B2 (en) Manufacturing method of wear-resistant cast steel curved pipe
WO2021065713A1 (en) Method for spheroidizing annealing case-hardening steel
JP2007246956A (en) Steel pipe superior in cold forgeability and manufacturing method therefor
KR100342673B1 (en) A method of manufacturing meduium carbon steel wire rods for spheroidization heat treatment