JP2004084012A - カセットおよび薄膜堆積装置ならびに薄膜堆積方法 - Google Patents

カセットおよび薄膜堆積装置ならびに薄膜堆積方法 Download PDF

Info

Publication number
JP2004084012A
JP2004084012A JP2002247390A JP2002247390A JP2004084012A JP 2004084012 A JP2004084012 A JP 2004084012A JP 2002247390 A JP2002247390 A JP 2002247390A JP 2002247390 A JP2002247390 A JP 2002247390A JP 2004084012 A JP2004084012 A JP 2004084012A
Authority
JP
Japan
Prior art keywords
film
cassette
substrate
gas
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002247390A
Other languages
English (en)
Inventor
Tetsuya Kawakami
川上 哲哉
Hiroshi Hayashi
林 弘志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002247390A priority Critical patent/JP2004084012A/ja
Publication of JP2004084012A publication Critical patent/JP2004084012A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

【課題】欠陥の少ない量産性に優れ、製造コストを下げた成膜製品を得る。
【解決手段】ガス通過孔を形成した円筒状の密閉容器の内部に複数個の面状発熱体27を配列形成してなる本体に対し、筒状被成膜用基体26を各面状発熱体27の間にて立設して、これら各被成膜用基体26に対しホットワイヤーCVD法によりa−Si系層を成膜せしめるように成した感光体用カセット23
【選択図】図1

Description

【0001】
【発明の属する技術分野】
本発明はホットワイヤーCVD法によって筒状の被成膜用基体上にアモルファスシリコン系等の薄膜を形成するホットワイヤーCVD装置(以下、ホットワイヤーCVD装置をHW−CVD装置と略す)に用いるカセットに関するものである。さらにこのカセットを用いた薄膜堆積装置ならびに薄膜堆積方法に関するものである。
【0002】
【従来の技術】
従来、アモルファスシリコン(以下、アモルファスシリコンをa−Siと略記する)系の材料を用いた電子写真感光体の製作には、主にグロー放電プラズマCVD法を用いた成膜装置が広く用いられてきた。
【0003】
この成膜装置にてa−Siからなる電子写真感光ドラムを製作するには、図5に示すようなグロー放電プラズマCVD装置1が用いられる。
【0004】
同図はグロー放電プラズマCVD装置1の概略構成図であって、2は円筒状の真空容器であり、この真空容器2の内部のほぼ中央に、アルミニウム金属材などからなる円筒状の導電性基体4を配置し、この導電性基体4上にグロー放電プラズマによりa−Si系膜を成膜する技術である。
【0005】
導電性基体4は、その内部に設けたSUSなどからなる支持体3により保持され、導電性基体4を接地電極とし、他方の高周波電力印加電極として、この外周面と等距離になるように囲んだSUSなどからなる円筒状の金属電極5を配置している。
【0006】
金属電極5には、成膜用の原料ガスを導入するガス導入管6が接続されており、金属電極5の内周面に設けられたガス吹き出し孔7から、導電性基体4に向けて両電極間に原料ガスが導入される。
【0007】
金属電極5の上下には、接地との絶縁のためのセラミックスなどからなる絶縁リング8、8’が設けられ、金属電極5と導電性基体4との間には、高周波電源9が接続され、ガスの導入とともに、導電性基体4と金属電極5との間にてグロー放電プラズマを発生させるように成している。
【0008】
このようなグロー放電プラズマを発生させるに当り、支持体3の内部には、ニクロム線やカートリッジヒーターなどからなる基体加熱手段10が設けられ、導電性基体4を所望の温度に設定する。また、支持体3と導電性基体4は、回転用のモーター11によって、回転伝達手段12を介して一体して回転させ、これによって膜厚や膜質の均一化を図っている。
【0009】
上記構成のグロー放電プラズマCVD装置1を用いてa−Si系の膜を成膜するに当たって、所定の流量やガス比に設定された原料ガスを、ガス導入管6からガス吹き出し孔7を介して両電極間に導入するとともに、真空ポンプ(図示せず)に接続された排気配管13からの排気量を調整することにより、所定のガス圧力に設定し、そして、高周波電源9により高周波電力を印加して、両電極間にグロー放電プラズマを発生させて原料ガスを分解し、所望の温度に設定した導電性基体4上にa−Si系膜を成膜する。
【0010】
しかしながら、上記のグロー放電プラズマCVD法によれば、成膜中のa−Si系膜の表面がプラズマによりダメージを受けるため、膜特性の向上や積層膜の界面特性の制御に限界があるという問題点があった。
【0011】
また、グロー放電プラズマCVD装置1毎にグロー放電プラズマ発生用の高価な高周波電源が必要となることで製造コストが大きくなっていた。さらに高周波によるグロー放電プラズマの発生に伴って、電力の一部が高周波ノイズとして成膜装置の各部や外部に漏洩し、ガス流量やガス圧力ならびに基体温度の各種制御機器に対し誤動作を引き起こすという問題点もあった。
【0012】
加えて、プラズマによる分解生成物として、a−Si系膜の成膜中に副生成物として黄色の易燃性粉体が多量に発生し、真空容器内の導電性基体4以外の部位、すなわち電極や容器の内壁、排気配管系等にも付着し堆積し、その粉体が成膜中の導電性基体4表面に飛来して、成膜欠陥の発生原因となっていた。そして、成膜毎に反応炉内の粉体洗浄作業を必要とし、その取扱いに危険が伴っていた。
【0013】
これらの課題を解消し、a−Si系膜の特性を改善することを目的として、特許第1704110号と特許第3145536号において、ホットワイヤー(HW−CVD法(このホットワイヤーCVD法は触媒CVD法もしくはCat―CVD法とも呼ばれる)と呼ばれる成膜方法ならびにその装置が提案されている。
【0014】
このHW−CVD装置を図6に示す装置の概略図に基づいて説明する。
真空容器からなる反応室14内には、被成膜用の基体16が基体保持台15の上に保持設置し、基体16の上部に、適当な間隔をおいてタングステン等からなる発熱体17が配置され、その発熱体17を通過して基体16上に原料ガスを供給できるようガス導入管18が配置される。19は排気のために用いる真空ポンプ、20は基体加熱手段としてのヒーターである。
【0015】
このHW−CVD装置を用いてa−Si系膜を成膜するには、真空ポンプ19により真空状態に排気した反応室14内に、SiHとHの混合ガスなどからなる原料ガスをガス導入管18より導入し、1000〜2000℃に加熱された発熱体17を通過させて触媒反応を起こさせ、その反応により分解生成した反応生成物を基体16に到達させて、a−Si系膜を堆積させる。
【0016】
さらに特許2692326号によれば、発熱体と被成膜用の基体との間に気体が通過可能な開口部を有する輻射断熱部材を設け、これによって発熱体からの輻射による基体の温度上昇を防止する技術が提案されている。
【0017】
以上のようなHW−CVD装置に関連して、特開2000―277501号および特開2000−277502号には、発熱体に含まれた重金属等の不純物が膜中へ混入することを防止する技術が提案されている。
【0018】
また、特開2001−345280号によれば、Hなどの材料ガスが発熱体によって分解活性化されて活性種が生成される活性種生成空間と、SiHなどの原料ガスがこの活性種との化学反応によって基体上に膜堆積する成膜処理空間を同一真空容器内で隔離することによって、発熱体にて使用する高融点金属、たとえばタングステン線などがSiHと反応してシリコン化合物が生成し、その結果、発熱体の劣化を防止する技術である。
【0019】
さらにまた、特開2002−93723号によれば、発熱体端部の支持部をカバーで覆い、その間隙に希釈ガス、不活性ガス等を導入して発熱体端部における温度低下部を原料ガスと隔離し、これによって前記シリコン化合物の生成を防止する技術である。
【0020】
このようなHW−CVD法によれば、成膜反応においてプラズマによるダメージがなくなり、優れた膜特性が得られ、積層膜の界面特性も良好となり、しかも、水素を含むa−Si:H膜中の水素含有量が低減でき、これにより、a−Si:H膜の光学的バンドギャップが小さくなり、その結果、太陽電池の光電変換効率が向上し、太陽電池やイメージセンサにおける光劣化が改善され、TFTでのキャリア移動度が改善される。
【0021】
【発明が解決しようとする課題】
しかしながら、本発明者がこのHW−CVD装置を用いて、円筒状などの基体上にa−Si系膜を形成し、電子写真感光体を作製したところ、プラズマCVD法にて発生したごとき易燃性粉体が生成されなかったが、その反面、分解生成物がプラズマCVD法と同様に反応室の内壁等、基体以外の部分にも多量に到達し、それでもって成膜体が形成されていた。
【0022】
そして、このようなHW−CVD装置装置にて繰り返し成膜処理を行ったところ、基体以外の反応室の内壁に付着した成膜体が剥離し、そして、飛来することで、基体表面に付着し、成膜欠陥を発生させていた。
【0023】
感光体の成膜欠陥は、電子写真装置において著しい画像品質の低下を招くのみならず、製造歩留まりの低下から大幅な生産性の低下を招いていた。これを防ぐには、頻繁に装置内の成膜体の除去等メンテナンスが必要となるが、頻繁に装置のメンテナンスを行うことは、著しく生産性を低下させ、製造コストが大きくなっていた。
【0024】
したがって本発明の目的は反応室のクリーニングをできるだけ避けるようにして、製造コストを下げるとともに、複数の成膜を同時におこなう量産タイプの薄膜堆積装置ならびに薄膜堆積方法を提供することにある。
【0025】
本発明の他の目的は、a−Si系膜に対し上記のような成膜欠陥のない高品質かつ高信頼性の成膜製品が得られる薄膜堆積装置ならびに薄膜堆積方法を提供することにある。
【0026】
また、本発明の目的は成膜欠陥のない高品質かつ高信頼性のa−Si電子写真感光体を提供することにある。
【0027】
本発明のさらに他の目的は、かかる薄膜堆積装置および薄膜堆積方法に用いるカセットを提供することにある。
【0028】
【課題を解決するための手段】
本発明のカセットは、ガス通過孔を形成した円筒状の密閉容器の内部に複数個の面状発熱体を配列形成してなる本体に対し、筒状被成膜用基体を各面状発熱体の間にて立設して、これら各被成膜用基体に対しホットワイヤーCVD法によりa−Si系層を成膜せしめるように成したことを特徴とする。
【0029】
本発明の薄膜堆積装置は、本発明のカセットを、ガス導入孔を設けた反応室内に装着しホットワイヤーCVD法により被成膜用基体上に成膜せしめるように成したことを特徴とする。
【0030】
本発明の薄膜堆積方法は、順次下記(イ)〜(ホ)の各工程を経て、ホットワイヤーCVD法により被成膜用基体上に成膜せしめることを特徴とする。
(イ)本発明のカセットを反応室に設置する。
(ロ)反応室内に供給したガスを、前記ガス通過孔を通してカセット内に導入するとともに、発熱体を加熱し、前記被成膜用基体上にホットワイヤーCVD法により成膜する。
(ハ)前工程のカセットを反応室より取出す。
(ニ)前工程にて取出されたカセットより成膜基体を取出す。
(ホ)成膜基体を取出したカセット本体をクリーニングする。
【0031】
【発明の実施の形態】
以下、本発明をa−Si電子写真感光体を作製する場合を例にして図面により説明する。
図1はカセットを実装したHW−CVD装置の概略を示す正面図であり、図2は、その横断面の概略図である。図3は本発明に係る発熱体の斜視図であり、図4と図5はそれぞれ本発明に係る発熱体の要部正面図である。図6はa−Si電子写真感光体の層構成を示す断面図である。
【0032】
(HW−CVD装置)
図1と図2に示すHW―CVD装置21によれば、22は円筒形状の真空容器となる反応室であり、この反応室22の内部に円筒形状のカセット23を配置する。これら反応室22とカセット23は横断面がほぼ同心円となるように設計する。
【0033】
このカセット23によれば、その本体の外周壁24に多数のガス通過孔25を形成し、さらに本体の内部に被成膜用基体26を設けて、被成膜用基体26に対しホットワイヤーCVD法により成膜せしめる構成である。
【0034】
また、カセット23の本体には、5枚の面状発熱体27を配列形成している。大きな面積の面状発熱体27を内側に3枚立てるように配置し、その両側にそれぞれ1枚の小さな面積の面状発熱体27を立てるように配置している。
【0035】
そして、円筒状の被成膜用基体26を各面状発熱体27の間にて立設して、これら各被成膜用基体26に対しホットワイヤーCVD法によりa−Si系層を成膜する。
【0036】
配列した複数の被成膜用基体26については、各中心軸がほぼ等距離になるように立設している。
【0037】
また、かかる本体の外周壁24と被成膜用基体26との間に、発熱体27を介在させている。さらに発熱体27の上方と下方にはそれぞれ導入端子28が接続されている。
【0038】
発熱体27によれば、図3に示すようにカセット23の上板である絶縁性の保持部材23aに導電性電極23bを形成し、さらにこの導電性電極23bと対向する部位にも導電性電極23cを配設した構造である。そして、導電性電極23bと導電性電極23cとの間に発熱主体となるワイヤ27aを張った一面にわたって形成した面状構造である。
【0039】
さらにまた、被成膜用基体26は支持体29によって支持固定され、この支持体29の内部には、発熱体27からの輻射熱を受けても成膜中の基体温度を所望の値に維持するために、基体温度制御手段30を設ける。
【0040】
この基体温度制御手段30は、さらに必要に応じて温度検出手段、加熱手段および冷却手段からなる。
【0041】
温度検出手段としては、熱電対やサーミスタ等を用いて支持体29に保持された被成膜用基体26の温度状態をモニターしながら、温度調節器(図示せず)により加熱手段および/または冷却手段を制御して、基体温度を所望の値に維持する。
【0042】
上記の加熱手段には、ニクロム線やシーズヒーター、カートリッジヒーター等の電気的なものや、油等の熱媒体が用いられる。
【0043】
前記冷却手段は、空気や窒素ガス等の気体や、水、油等からなる冷却媒体を基体温度制御手段30の内部を循環させて用いる。
【0044】
このような加熱手段および/または冷却手段からなる基体温度制御手段30により、成膜中の基体温度を100〜500℃、好適には200〜350℃の範囲内に制御するとよい。
【0045】
さらに支持体29は、回転モーター34に接続された回転伝達手段35によって基体26と一体的に回転する。この回転伝達手段35は真空中で接続や切り離しができる構成である。このような接続機構としては、電気的な配線については電流接続端子とソレノイドの組合せやスリップリングとブラシの組合せ等が用いられ、媒体についてはクイックカップリングとソレノイドの組合せ等が用いられる。
【0046】
また、回転や搬送の動力の伝達については、ギヤ同士の組合せやギヤとソレノイドの組合せ等が用いられる。回転伝達手段35と反応室22の上壁(保持部材23a)との接点には装置内部の真空を維持する回転機構が設けられる。このような回転機構としては、回転軸を二重もしくは三重構造としてオイルシールやメカニカルシール等の真空シール手段を用いるとよい。
【0047】
前記発熱体27の材料としては、原料ガスの熱分解反応を起こして、その反応生成物を堆積種となすのがよい。望ましくは発熱材料自身が昇華や蒸発により堆積される膜中に混入しにくいものが選択される。
【0048】
このような材料として、たとえばタングステン(W)、白金(Pt)、パラジウム(Pd)、モリブデン(Mo)、Ti、ニオブ(Nb)、タンタル(Ta)、コバルト(Co)、Ni、Cr、Mn、カーボン(C)もしくはこれらの合金がある。
【0049】
発熱体27は反応室22の外部から導入端子28を介して電力が供給され、通電によるジュール熱で500〜2200℃、好適には800〜2000℃の高温に加熱される。
【0050】
37は反応室22の外壁に設けたガス導入孔であり、38は反応室22の内部にて成膜に供与されたガスの残余を排出するガス排出孔である。
【0051】
この装置21によると、ガス導入孔37より導入されたガスは、反応室22の外壁とカセット23との隙間に入り、さらに隙間にて拡散し、ガス通過孔25を通してカセット23の本体内に入る。そして、発熱体27を通過するに際し、ガスが分解され活性化され、さらに熱拡散し、発熱体27の内周部の活性種の大部分は基体26の外周面に成膜される。
【0052】
他方、発熱体27から外側に熱拡散する活性種がある場合には、そのほとんどの活性種は、カセット23の本体の外周壁24の内面に成膜される。
【0053】
成膜終了後、反応室22の上部からカセット23が一体的に取り出され、カセット23はクリーニングされた後、再び複数の基体26がセットされ、反応室22へセットされる。
【0054】
基体26の材質は、製品の用途に応じて、導電性または絶縁性あるいは絶縁性基体の表面に導電処理を施したものが選択される。
【0055】
導電性基体としては、たとえばアルミニウム(Al)、ステンレススチール(SUS)、鉄(Fe)、ニッケル(Ni)、クロム(Cr)、マンガン(Mn)、銅(Cu)、チタン(Ti)等の金属もしくはこれらの合金がある。
【0056】
絶縁性基体としては、ホウ珪酸ガラスやソーダガラス、パイレックス(R)ガラス等のガラスや、セラミックス、石英、サファイヤ等の無機絶縁物、あるいはフッ素樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリエステル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアミド、ビニロン、エポキシ、マイラー等の合成樹脂絶縁物がある。
【0057】
これらの絶縁性基体は、必要に応じて、少なくとも成膜を行なう側の表面が導電処理される。この導電処理は、絶縁性基体の表面にITO(インジウム・スズ・酸化物)、酸化錫、酸化鉛、酸化インジウム、ヨウ化銅等の導電層や、Al、Ni、金(Au)等からなる金属層を、真空蒸着法、活性反応蒸着法、イオンプレーティング法、RFスパッタリング法、DCスパッタリング法、RFマグネトロンスパッタリング法、DCマグネトロンスパッタリング法、熱CVD法、プラズマCVD法、スプレー法、塗布法、浸漬法等で形成することで行なう。
【0058】
つぎに発熱体27の構成について、さらに図3と図4に示す。
図3に示す発熱体27によれば、(イ)、(ロ)、(ハ)の3とおりの構成でもって示すごとく、いずれも上述した発熱体27の材料でもって発熱主体となるワイヤ27aを面状に張った構造である。
【0059】
(イ)に示す発熱体27においては、各ワイヤ27aの両端を金属製電極41と接合させ、双方の金属製電極41(導電性電極23bと導電性電極23c)はそれぞれ電流導入端子28を介して外部と通電される。43はワイヤ27aを金属製電極41に固定する取り付けフックである。
【0060】
(ロ)と(ハ)に示す発熱体27においては、取り付けフック44でもってワイヤ27aをジグザグ状に張っている。
【0061】
このようにワイヤ27aを、もしくはフィラメント、リボン等を用いて、グリッド状、のこぎり状、固形波状にて平面型に1本乃至複数本張ることで、ガスが透過する構造となる。
【0062】
あるいは、上述した発熱体27の材料でもって発熱主体となるように、その主体を、図5に示す発熱体27である(a)〜(f)の6とおりでもって示すごとく、格子状や網目状、メッシュ状、ハニカム状に組み合わせた構造、もしくはワイヤーやフィラメント、リボン等を、格子状や網目状、メッシュ状、ハニカム状と組み合わせた構造にしてもよい。
【0063】
また、上記の材料で作られた薄い平板に、円形や三角形、正方形、長方形、菱形、六角形、縦長のスリット状、横長のスリット状、斜めのスリット状、またはそれらの組合せからなる種々の通気孔を多数設けた構成にしてもよい。このような構成の発熱体27を図5に示す(g)〜(k)の5とおりでもって示す。
【0064】
その他、通気孔を設けた複数の筒状平板を、互いの通気孔が重ならず、かつ互いの筒状平板間にガスの通過する間隙を有するように、重ね合わせた構成の発熱体27にしてもよい。これらの発熱体27を(i)と(m)にて示す。
【0065】
以上のような構成の発熱体37によれば、反応室22の外部から端子28を介して電力が供給され、通電によるジュール熱で500〜2200℃、好適には800〜2000℃の高温に加熱される。
【0066】
そして、支持体29に保持された被成膜用基体26の位置については、発熱体27からの熱輻射が発散され、これが吸収されるように、効果な設計をおこなうとよい。
【0067】
本発明者が繰り返しおこなった実験によれば、支持体29および被成膜用基体26の材質、厚さ、大きさ等によっても異なるが、熱輻射と堆積密度、膜厚の均一性などの点から、被成膜用基体26と発熱体27との間隔を10〜150mm、好適には40〜80mm、最適には50〜70mmとするとよい。
【0068】
本発明のHW−CVD装置21を用いてa−Si系膜を成膜する場合には、そのa−Si系膜の原料ガスは、グロー放電プラズマCVD法にて用いられるものと同じである。
【0069】
成膜原料ガスとしては、シリコンと水素やハロゲン元素とからなる化合物、たとえばSiH 、Si H 、Si H 、SiF 、SiCl 、SiCl H 等が用いられる。
【0070】
希釈用ガスとしては、H 、N 、He、Ar、Ne、Xe等が用いられる。
【0071】
価電子制御ガスには、P型不純物としては元素周期律表第III族Bの元素(B、Al、Ga等)を含む化合物、たとえばB H 、B(CH ) 、Al(CH 、Al(C H ) 、Ga(CH 等が用いられ、N型不純物としては元素周期律表第V族Bの元素(P、As、Sb等)を含む化合物、たとえばPH 、P H 、AsH 、SbH 等が用いられる。
【0072】
また、バンドギャップ調整用ガスとしては、バンドギャップを拡大する元素であるC、N、Oを含む化合物、たとえばCH 、C H 、C H 、N 、NH 、NO、N O、NO 、O 、CO、CO 等や、バンドギャップを狭める元素であるGe、Snを含む化合物、たとえばGeH 、SnH 、Sn(CH 等が用いられる。
【0073】
成膜に当たっては、これらのガスを減圧弁やマスフローコントローラーなどを用いて所望の流量や混合比に調整し、反応室22に導入して、カセット23の本体の外周壁24に形成した多数のガス通過孔25を通して、発熱体27に供給される。
【0074】
成膜時のガス圧力は、0.133〜266Pa、好適には0.665〜133Pa、好適には1.33〜66.5Paに設定するとよく、ガス圧力をこの範囲に設定することで、供給されたガスが効率的に分解され、輸送される。また、反応生成物同士の気相中での2次反応が抑制され、その結果、各基体上に良質なa−Si系膜を形成することができる。
【0075】
なお、より高品質の膜を得るためには、成膜を開始するに先立って、基体がセットされた後の反応室22内を一旦10−4Pa程度の高真空に排気し、反応室22内の水分や残留不純物ガスを除去しておくことが望ましい。また、反応室22には、さらに真空度をモニターする圧力計(図示せず)も接続する。
【0076】
以上のような構成のHW−CVD装置21によれば、a−Si系電子写真感光ドラムを作製するに当り、支持体29を筒状にして、円筒状の基体26を保持し、そして、支持体29の内部に基体温度制御手段30を設けたことで、成膜中に発熱体27からの輻射熱を受けても、ガスの利用効率を低下させることなく基体温度が所定とおりに維持できた。また、基体26を支持体29とともに回転させる機構を設け、その位置精度も高めたことで、各基体26上に対しそれぞれ均質かつ均等な厚みの成膜をおこなうことができた。
【0077】
(薄膜堆積方法)
本発明に係る薄膜堆積方法は、上記構成のHW−CVD装置21を用いて、順次下記(イ)〜(ホ)の各工程を経る。これら各工程を図6に示す。
【0078】
この工程の前に本発明のカセット23を用意する。このカセット23によれば、図1に示すごとく、カセット本体の内部に発熱体27を形成したものであるが、さらにこの本体内に対し、被成膜用基体26や支持体29を設けたものである。
【0079】
(イ)工程:カセット23を反応室22(図6に示す反応炉に対応する)に設置する。
【0080】
(ロ)前述したごとく、反応室22内に供給したガスを、ガス通過孔25を通してカセット23内に導入するとともに、発熱体27を加熱し、被成膜用基体26上にホットワイヤーCVD法により成膜する。
【0081】
(ハ)カセット23を反応室22より取出す。
【0082】
(ニ)カセット23より成膜基体を取出す。
【0083】
(ホ)成膜基体を取出したカセット本体をクリーニングする。
【0084】
カセットのクリーニングについては、ホーニング等の物理的に成膜体を除去する方法や、苛性ソーダ等のアルカリ系の溶剤と反応させて化学的に成膜体を除去する方法が用いられる。
【0085】
このような方法によれば、発熱体27から熱拡散された化学種のうちの、基体以外に付着する化学種のほぼ全体をカセット23の内部にて捕獲し、これにより、簡易な構造でもって当該カセットを成膜毎にクリーニングすることができ、その結果、反応室22を成膜毎にクリーニングする必要がなくなり、量産性が向上する。
【0086】
かくして本発明の薄膜堆積方法によれば、カセット23を反応室22より取出すだけで、そのカセット23のみをクレーニングすればよく、従来のごとく反応室をクリーニングすることもなくなり、これにより、簡便なクリーニングとなり、その結果、製造工程が削減し、製造コストを下げることができた。
【0087】
また、本発明の薄膜堆積方法によれば、前記構成のHW−CVD装置21のごとく、複数個の面状発熱体27を配列形成し、そして、被成膜用基体26を各面状発熱体27の間にて立設した構成であって、かかる構成でもってカセット23は反応室22に比べ、小さな容積となり、その結果、この容積内のガスが成膜に効率的寄与されることで、製造コストを低下させることができた。
【0088】
さらにまた、本発明によれば、カセット23の本体の外周壁24に多数のガス通過孔25を形成したことで、カセット23の本体の内壁に成膜されようとしても、それがガス流によって阻害され、その結果、ガスが効率的に利用され、製造コストを低減させることができた。
【0089】
しかも、従来のHW−CVD装置によれば、その反応室の内壁に付着した成膜体が剥離し、そして、飛来することで、基体表面に付着し、成膜欠陥を発生させていたが、これに対し、そのように反応室の内壁に成膜体が付着し、そして、剥離することもなくなった。また、成膜中に剥がれた成膜体の被成膜用基体26への飛来を大幅に減少させ、その結果、成膜欠陥のない高品質かつ高信頼性のa−Si成膜製品、たとえばa−Si電子写真感光体が得られた。
【0090】
【実施例】
以下、実施例を述べる。
上述したHW−CVD装置21を用いて、図7に示す層構成のa−Si電子写真感光ドラムを作製した。
【0091】
同図において、表面を鏡面仕上げしたアルミニウム金属からなる円筒状の基体45(外径30mm、長手寸法254mm)の外周面上にキャリア注入阻止層46、光導電層47および表面保護層48を順次積層している。
【0092】
また、カセット23によれば、図2に示すごとく、12本の被成膜用基体26(基体45)を各中心軸がほぼ等距離に立設している。
【0093】
発熱体27には、0.5mm径の純度99.99%のタングステンワイヤ27aを用いて、図3の(イ)に示す構成でもって配置したものである。そして、このような発熱体27と基体26との距離は50mmとした。また、基体の加熱手段31にはカートリッジヒーターを用いた。
【0094】
この装置21によれば、基体温度を250℃に加熱しながら、ロータリーポンプとターボ分子ポンプにより1×10−4 Paの真空度まで真空排気を行なった。
【0095】
つぎに発熱体27に対し通電し、1800℃に加熱し、表1の成膜条件でもってキャリア注入阻止層46、光導電層47および表面保護層48を順次形成し、a−Si電子写真感光ドラム(以下、a−Siドラムと略す)Aを作製した。
【0096】
【表1】
Figure 2004084012
【0097】
このa−SiドラムAの帯電特性を、+6kVの電圧を印加したコロナ帯電器を用いて測定し、光感度特性をセンター波長680nm、半値幅2nmに分光された単色光にて250Vからの半減露光量、残留電位にて評価したところ、帯電能270V、半減露光量0.40μJ/cmと良好で、残留電位も5V以下優れた特性を示した。
【0098】
そして、このa−SiドラムAを京セラ製電子写真プリンタFS−1800に搭載し,画像評価を行なった結果、バックかぶりのない、解像力の優れた画像が得られた。
【0099】
つぎに、装置の連続成膜回数と、画像における黒点や白点等の画像欠陥の発生数を評価した結果を表2に示す。この発生数は、連続成膜にて欠陥発止率が10%以下である回数である。
【0100】
同表において、装置1は上記の本発明のHW−CVD装置21を用いて、成膜毎にカセット23のクリーニングを行った場合である。
【0101】
また、比較例として、装置2は特許3145536号公報に記載の従来のa−Si感光体用HW−CVD装置を用いて、すなわち同公報にて実施例の例1において図1に示す触媒CVD装置を用いて、その真空装置のクリーニングを行わなかった場合である。さらにまた、装置3は従来のプラズマCVD装置であり、成膜毎に真空装置のクリーニング(反応室の分解・洗浄)を行った場合である。
【0102】
【表2】
Figure 2004084012
【0103】
この表から明らかなとおり、本発明によれば、真空装置のクリーニングを行わなくても、欠陥の少ない量産性に優れたHW−CVD装置を提供できた。
【0104】
上記の結果から明らかなように、従来の装置においては数回にて欠陥発生率が大幅に増加しているのに対し、真空装置のクリーニングを行わなくても初期の状態を維持できる量産性に優れたHW−CVD装置を提供できた。
【0105】
なお、本発明は上記実施形態例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更や改良等はなんら差し支えない。
【0106】
たとえば、被成膜用基体を円筒体にして、a−Si電子写真感光体を作製する場合を例にしたが、これに代えて、被成膜用基体を平板にしてもよく、そして、これに伴なって発熱体およびカセット本体の形状を変えればよい。
【0107】
また、この例では一つの真空容器における実施例を示したが、その他の変形例として、特許3145536号の例3に記載したごとく、同様の真空容器を複数個連結した装置であっても、本発明と同じ作用効果を奏する。
【0108】
【発明の効果】
以上のとおり、本発明のカセットによれば、ガス通過孔を形成した円筒状の密閉容器の内部に複数個の面状発熱体を配列形成してなる本体に対し、筒状被成膜用基体を各面状発熱体の間にて立設して、これら各被成膜用基体に対しホットワイヤーCVD法によりa−Si系層を成膜せしめるように成し、そして、本発明の薄膜堆積方法において、順次(イ)本発明のカセットを反応室に設置する、(ロ)反応室内に供給したガスを、前記ガス通過孔を通してカセット内に導入するとともに、発熱体を加熱し、前記被成膜用基体上にホットワイヤーCVD法により成膜する、(ハ)前工程の感光体用カセットを反応室より取出す、(ニ)前工程にて取出されたカセットより成膜基体を取出す、(ホ)成膜基体を取出したカセット本体をクリーニングする、という各工程を経て、ホットワイヤーCVD法により被成膜用基体上に成膜せしめることで、成膜毎に反応室のクリーニングを行わなくても欠陥の少ない量産性に優れた成膜製品が得られた。
【0109】
また、本発明のカセットまたは本発明の薄膜堆積装置を用いたことで、もしくは本発明の薄膜堆積方法を用いたことで、ガスが効率的に利用され、その結果、製造コストを低減させることができた。
【図面の簡単な説明】
【図1】本発明の薄膜堆積方法または薄膜堆積装置に用いるカセットを実装したHW−CVD装置の概略を示す正面図である。
【図2】本発明のHW−CVD装置の概略を示す概略断面図である。
【図3】本発明に係る発熱体の斜視図である。
【図4】(イ)〜(ハ)は本発明に係る発熱体の正面図である。
【図5】(a)〜(m)は本発明に係る発熱体の要部正面図である。
【図6】本発明の薄膜堆積方法を示す工程図である。
【図7】a−Si電子写真感光体の層構成を示す断面図である。
【図8】従来のグロー放電プラズマCVD装置の概略を示す正面図である。
【図9】従来のHW−CVD装置の概略を示す正面図である。
【符号の説明】
21・・・HW―CVD装置
22・・・反応室
23・・・カセット
26・・・被成膜用基体
27・・・発熱体
29・・・支持体
30・・・基体温度制御手段

Claims (3)

  1. ガス通過孔を形成した円筒状の密閉容器の内部に複数個の面状発熱体を配列形成してなる本体に対し、筒状被成膜用基体を各面状発熱体の間にて立設して、これら各被成膜用基体に対しホットワイヤーCVD法によりアモルファスシリコン系層を成膜せしめるように成したカセット。
  2. 請求項1のカセットを、ガス導入孔を設けた反応室内に装着しホットワイヤーCVD法により被成膜用基体上に成膜せしめるように成した薄膜堆積装置。
  3. 順次下記(イ)〜(ホ)の各工程を経て、ホットワイヤーCVD法により被成膜用基体上に成膜せしめる薄膜堆積方法。
    (イ)請求項1のカセットを反応室に設置する。
    (ロ)反応室内に供給したガスを、前記ガス通過孔を通してカセット内に導入するとともに、発熱体を加熱し、前記被成膜用基体上にホットワイヤーCVD法により成膜する。
    (ハ)前工程のカセットを反応室より取出す。
    (ニ)前工程にて取出されたカセットより成膜基体を取出す。
    (ホ)成膜基体を取出したカセット本体をクリーニングする。
JP2002247390A 2002-08-27 2002-08-27 カセットおよび薄膜堆積装置ならびに薄膜堆積方法 Pending JP2004084012A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002247390A JP2004084012A (ja) 2002-08-27 2002-08-27 カセットおよび薄膜堆積装置ならびに薄膜堆積方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002247390A JP2004084012A (ja) 2002-08-27 2002-08-27 カセットおよび薄膜堆積装置ならびに薄膜堆積方法

Publications (1)

Publication Number Publication Date
JP2004084012A true JP2004084012A (ja) 2004-03-18

Family

ID=32055053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002247390A Pending JP2004084012A (ja) 2002-08-27 2002-08-27 カセットおよび薄膜堆積装置ならびに薄膜堆積方法

Country Status (1)

Country Link
JP (1) JP2004084012A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019043784A (ja) * 2017-08-30 2019-03-22 下田 一喜 ダイヤモンドの製造方法及び熱フィラメントcvd装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019043784A (ja) * 2017-08-30 2019-03-22 下田 一喜 ダイヤモンドの製造方法及び熱フィラメントcvd装置
JP7029134B2 (ja) 2017-08-30 2022-03-03 一喜 下田 ダイヤモンドの製造方法

Similar Documents

Publication Publication Date Title
US20090145555A1 (en) Processing apparatus, exhaust processing process and plasma processing process
JPH0387372A (ja) 堆積膜形成方法
JPH0647727B2 (ja) 堆積膜形成法
JP3145536B2 (ja) 触媒cvd装置
JP2004091821A (ja) 薄膜デバイス用製造装置および薄膜デバイスの製造方法
JP2004084012A (ja) カセットおよび薄膜堆積装置ならびに薄膜堆積方法
JP2004091820A (ja) カセットおよび薄膜堆積装置ならびに薄膜堆積方法
JP4383133B2 (ja) 薄膜堆積装置
JP4051233B2 (ja) カセットおよび該カセットを装着した薄膜堆積装置、並びに薄膜堆積方法
JP2004091802A (ja) 感光体用カセットおよび薄膜堆積装置ならびに薄膜堆積方法
JP2004083959A (ja) 感光体用カセットおよび薄膜堆積装置ならびに薄膜堆積方法
JP4986516B2 (ja) 堆積膜形成装置および堆積膜の形成方法
JP2004115844A (ja) 薄膜デバイス用製造装置および薄膜デバイスの製造方法
JP2004197209A (ja) ホットワイヤcvd装置
JP4344521B2 (ja) ホットワイヤcvd装置
JP2004027326A (ja) カセットおよび薄膜堆積方法
JP2004190132A (ja) ホットワイヤcvd装置
JP4054234B2 (ja) 薄膜デバイス用製造装置および薄膜デバイスの製造方法
JP4054232B2 (ja) 積層型薄膜デバイスの製造方法
JP4467281B2 (ja) 発熱体cvd法による成膜方法
JP4493379B2 (ja) 発熱体cvd装置
JP2004197208A (ja) ホットワイヤcvd装置
JP4498032B2 (ja) 発熱体cvd装置及び発熱体cvd法
JP2004060022A (ja) 薄膜堆積装置
JP2004169153A (ja) 薄膜堆積装置