JP2004083812A - Coating liquid for forming transparent film, substrate having transparent coating film and display device - Google Patents

Coating liquid for forming transparent film, substrate having transparent coating film and display device Download PDF

Info

Publication number
JP2004083812A
JP2004083812A JP2002249618A JP2002249618A JP2004083812A JP 2004083812 A JP2004083812 A JP 2004083812A JP 2002249618 A JP2002249618 A JP 2002249618A JP 2002249618 A JP2002249618 A JP 2002249618A JP 2004083812 A JP2004083812 A JP 2004083812A
Authority
JP
Japan
Prior art keywords
transparent
film
coating
forming
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002249618A
Other languages
Japanese (ja)
Inventor
Masayuki Matsuda
松 田  政 幸
Toshiharu Hirai
平 井  俊 晴
Michio Komatsu
小 松  通 郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2002249618A priority Critical patent/JP2004083812A/en
Priority to KR1020030059777A priority patent/KR100996052B1/en
Priority to CNB031577776A priority patent/CN100478411C/en
Publication of JP2004083812A publication Critical patent/JP2004083812A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/006Anti-reflective coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating liquid for forming a transparent coating film having improved film strength and conductivity without causing cracking in the formation of the film and, when a conductive layer is formed as a lower layer, causing uniform shrinkage including the conductive layer to prevent the generation of cracks and provide a substrate having transparent conductive coating layer produced by using the coating liquid and a display device provided with the substrate. <P>SOLUTION: The coating liquid for forming a transparent coating film contains a matrix precursor composed of (i) a hydrolyzed product of a tetraalkoxysilane and (ii) a hydrolyzed product of an organic silicon compound having one or more functional groups selected from epoxy group, acrylic group and vinyl group. The ratio of the component (ii) in the matrix precursor is 0.5-50 wt.%. The matrix precursor is produced by the simultaneous hydrolysis of a mixture of the tetraalkoxysilane and the organic silicon compound having one or more functional groups selected from epoxy group, acrylic group and vinyl group. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の技術分野】
本発明は、透明被膜を形成することが可能な透明被膜形成用塗布液および該塗布液を用いて形成された透明被膜を有する透明導電性被膜付基材、該基材を備えた表示装置に関する。
【0002】
【発明の技術的背景】
従来より、陰極線管、蛍光表示管、液晶表示板などの表示パネルのような透明基材の表面の帯電防止および反射防止を目的として、これらの表面に帯電防止機能および反射防止機能を有する透明被膜を形成することが行われていた。
また、陰極線管などから電磁波が放出されること知られており、従来の帯電防止、反射防止に加えてこれらの電磁波および電磁波の放出に伴って形成される電磁場を遮蔽することが望まれている。
【0003】
これらの電磁波などを遮蔽する方法の一つとして、陰極線管などの表示パネルの表面に電磁波遮断用の導電性被膜を形成する方法がある。帯電防止用導電性被膜であれば表面抵抗が少なくとも10Ω/□程度の表面抵抗を有していれば十分であるのに対し、電磁遮蔽用の導電性被膜では10〜10Ω/□のような低い表面抵抗を有することが必要であった。
【0004】
このように表面抵抗の低い導電性被膜を、従来のSbドープ酸化錫またはSnドープ酸化インジウムのような導電性酸化物を含む塗布液を用いて形成しようとすると、従来の帯電防止性被膜の場合よりも膜厚を厚くする必要があった。しかしながら、導電性被膜の膜厚は、10〜200nm程度にしないと反射防止効果は発現しないため、従来のSbドープ酸化錫またはSnドープ酸化インジウムのような導電性酸化物では、表面抵抗が低く、電磁波遮断性に優れるとともに、反射防止にも優れた導電性被膜を得ることが困難であるという問題があった。
【0005】
また、低表面抵抗の導電性被膜を形成する方法の一つとして、Agなどの金属微粒子を含む導電性被膜形成用塗布液を用いて基材の表面に金属微粒子含有被膜を形成することが行われている。この方法では、金属微粒子含有被膜形成用塗布液として、コロイド状の金属微粒子が極性溶媒に分散したものが用いられている。このような塗布液では、コロイド状金属微粒子の分散性を向上させるために、金属微粒子表面がポリビニルアルコール、ポリビニルピロリドンまたはゼラチンなどの有機系安定剤で表面処理されている。しかしながら、このような金属微粒子含有被膜形成用塗布液を用いて形成された導電性被膜は、被膜中で金属微粒子同士が安定剤を介して接触するため、粒界抵抗が大きく、被膜の表面抵抗が低くならないことがあった。このため、製膜後、400℃程度の高温で焼成して安定剤を分解除去する必要があるが、安定剤の分解除去をするため高温で焼成すると、金属微粒子同士の融着や凝集が起こり、導電性被膜の透明性やへーズが低下するという問題があった。また、陰極線管などの場合は、高温に晒すと劣化してしまうという問題もあった。
【0006】
また、金属微粒子は前記導電性酸化物と異なり本来光を透過しないために金属微粒子を用いて形成された導電性被膜は導電性被膜中の金属微粒子の密度や膜厚等に依存して透明性が低下する問題もあった。
さらに従来のAg等の金属微粒子を含む透明導電性被膜では、耐塩水性や耐酸化性が低く、金属が酸化されたり、イオン化による粒子成長したり、また場合によっては腐食が発生することがあり、塗膜の導電性や光透過率が低下し、表示装置が信頼性を欠くという問題があった。
【0007】
本発明者らは、帯電防止性能、電磁波遮蔽性能等を向上させるとともに膜の強度(硬度)やスクラッチ強度等を向上させるために鋭意研究を重ねた結果、マトリックス前駆体が特定の官能基を有する有機ケイ素化合物の加水分解物を含む塗布液を用いて、導電層表面に透明被膜を形成すると、透明被膜形成時にクラックが生成することなく、膜強度が向上するとともに導電性が向上することを見出して本発明を完成するに至った。
【0008】
【発明の目的】
本発明は、透明被膜形成時に、クラックが生成することなく、また、下層に導電層が形成されている場合に、導電層を含めた均一な収縮が起こり、このためクラックが生成することなく、膜強度とともに導電性を向上させる透明被膜を形成することが可能な透明被膜形成用塗布液および該塗布液を利用した透明導電性被膜付基材、該基材を備えた表示装置を提供することを目的としている。
【0009】
【発明の概要】
本発明に係る透明被膜形成用塗布液は、
(i)テトラアルコキシシランの加水分解物と
(ii)エポキシ基、アクリル基、ビニル基からなる群から選ばれる少なくとも1種の官能基を有する有機ケイ素化合物の加水分解物とからなるマトリックス前駆体を含み、かつ
マトリックス前駆体中の(ii)の割合が固形分として0.5〜50重量%の範囲にあることを特徴としている。
【0010】
前記マトリックス前駆体は、テトラアルコキシシランと、エポキシ基、アクリル基、ビニル基からなる群から選ばれる少なくとも1種を有する有機ケイ素化合物との混合物の同時加水分解物であることが好ましい。
前記マトリックス前駆体が、さらに
(iii)フッ素置換有機基を有する有機ケイ素化合物の加水分解物を含んでいてもよく、かかる(iii)の割合がマトリックス前駆体中に固形分として0.1〜30重量%の範囲にあればよい。
【0011】
前記フッ素置換有機基を有する有機ケイ素化合物の加水分解物が、テトラアルコキシシランとフッ素置換有機基を有する有機ケイ素化合物との混合物の同時加水分解物が好ましい。
本発明に係る透明導電性被膜付基材は、基材と、基材上の導電性微粒子を含む透明導電性微粒子層と、該透明導電性微粒子層上に設けられ、該透明導電性微粒子層よりも屈折率が低い透明被膜とからなる透明導電性被膜付基材であって、
透明被膜が前記透明被膜形成用塗布液を用いて形成されたことを特徴としている。
【0012】
本発明に係る表示装置は、前記透明導電性被膜付基材で構成された前面板を備え、透明導電性被膜が該前面板の外表面に形成されていることを特徴としている。
【0013】
【発明の具体的説明】
以下、本発明について具体的に説明する。
透明被膜形成用塗布液
本発明に係る透明被膜形成用塗布液は、マトリックス前駆体が、
(i)テトラアルコキシシランの加水分解物と
(ii)エポキシ基、アクリル基、ビニル基からなる群から選ばれる少なくとも1種の官能基を有する有機ケイ素化合物の加水分解物と
からなり、
マトリックス前駆体中の(ii)の割合が固形分として0.5〜50重量%の範囲にあることを特徴としている。
【0014】
テトラアルコキシシランとしてはテトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシランなどが挙げられる。
このようなテトラアルコキシシランの加水分解物(i)は、テトラアルコキシシランを、例えば、水−アルコール混合溶媒中で酸触媒の存在下、加水分解することによって得ることができる。
【0015】
なお、加水分解物は部分加水分解物であっても、加水分解物の縮重合物であってもよい。このようなテトラアルコキシシランの加水分解物としては、従来公知である。
本発明に用いるエポキシ基、アクリル基、ビニル基からなる群から選ばれる少なくとも1種の官能基を有する有機ケイ素化合物としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン等が挙げられる。
【0016】
これらのエポキシ基、アクリル基、ビニル基からなる群から選ばれる少なくとも1種の官能基を有する有機ケイ素化合物の加水分解物(ii)も、前記(i)テトラアルコキシシランの加水分解物と同様に、エポキシ基等の官能基を有する有機ケイ素化合物を、例えば、水−アルコール混合溶媒中で酸触媒の存在下、加水分解することによって得ることができる。このような加水分解物は部分加水分解物であっても、加水分解物の縮重合物であってもよく、従来公知の加水分解物を用いることができる。
【0017】
加水分解物の分子量は500〜20000、さらには600〜10000の範囲にあることが好ましい。
加水分解物の分子量が500未満の場合、収縮が大きく、クラックが入り易くなり、加水分解物の分子量が20000を越えると、基材との密着生が悪く強度が不充分になることがある。
【0018】
マトリックス前駆体中の(i)の割合が固形分として50〜99.5重量%、さらには70〜99重量%の範囲にあることが好ましく、マトリックス前駆体中の(ii)の割合が固形分として0.5〜50重量%、さらには1〜30重量%の範囲にあることが好ましい。
このような特定の加水分解物を含むマトリックス前駆体を使用すると、導電性微粒子層表面に透明被膜を形成したときに、クラック生成が少なく、また、導電性に優れた被膜付基材を作成することができる。
【0019】
このような特性の加水分解物をマトリックス前駆体として含むと、クラック生成が少なく、また、透明被膜を形成したときに、単に導電性微粒子を形成したときに比べて、導電性の高い被膜付き基材を形成できる理由は定かではないものの、このようなマトリックス前駆体は被膜の垂直方向(すなわち厚さ方向)の収縮が大きく、逆に、水平方向(すなわち面方向)の収縮が小さく、このため、縦(厚さ)方向の収縮が支配的になり、被膜形成時の収縮によって、クラックが生成しにくくなると考えられる。
【0020】
さらに、このような透明被膜は、被膜形成時の収縮が縦方向なので、下層に導電性微粒子層を設けた場合、透明被膜の収縮によって、導電性微粒子層自体も収縮され、導電性微粒子層中の隙間が少なくなり、これによって、導電性微粒子層中に導電性微粒子が密に充填され、導電性も向上するものと考えられる。
このため、透明被膜の厚さを薄くしても、クラックが発生することなく、しかも導電性微粒子層の導電性を高めることが可能な透明被膜を形成することが可能となる。
【0021】
マトリックス前駆体中の(ii)の割合が固形分として前記0.5重量%未満の場合は、透明被膜形成時に、水平方向の収縮が大きいためかクラックが生成することがあり、また導電性微粒子層表面に透明被膜を形成する際に、縦方向の収縮が小さいために、導電性の向上効果が不充分となったり、膜硬度の向上効果が不充分となる。
【0022】
マトリックス前駆体中の(ii)の割合が固形分として50重量%を越えると、前記水平方向および縦方向の収縮が減少するために導電性の向上効果が不充分となり、また膜硬度の向上効果も不充分となる。
マトリックス前駆体中の(ii)の割合が固形分として前記範囲内にあれば、膜厚が同一であれば導電性が向上することから、同一の表面抵抗を有する透明導電性微粒子層としては膜厚を薄くすることができ、経済性が向上するとともに、広い波長領域にわたって反射率が低下し、すなわち視感反射率の低い表示性能に優れた透明導電性被膜付基材を得ることができる。
【0023】
本発明に用いるマトリックス前駆体は、テトラアルコキシシランとエポキシ基、アクリル基、ビニル基からなる群から選ばれる少なくとも1種の官能基を有する有機ケイ素化合物との混合物の同時加水分解物であることが好ましい。このような混合物の同時加水分解物は、混合物を、例えば水−アルコール混合溶媒中で酸触媒の存在下、加水分解することによって得ることができる。この場合も、加水分解物は部分加水分解物であっても、加水分解物の縮重合物であってもよい。
【0024】
このような同時加水分解物をマトリックス前駆体として用いると、個々に加水分解物を混合した場合に比べて、よりいっそう膜の収縮が均一に起こるので、膜強度を高めることが可能であり、導電性微粒子層の導電性を高く維持することが可能である。この理由は明確ではないものの、同時加水分解することで、テトラアルコキシシランとエポキシ系有機ケイ素化合物との共重合体が生成しているものと推察される。
【0025】
なお、同時加水分解物をマトリックス前駆体として用いる場合も、マトリックス前駆体中の(ii)の割合(すなわち、同時加水分解物中に含まれるエポキシ基、アクリル基、ビニル基からなる群から選ばれる少なくとも1種の官能基を有する有機ケイ素化合物の加水分解物の割合)は、固形分として0.5〜50重量%、好ましくは1〜40重量%の範囲にあることが望ましい。
【0026】
さらに、前記マトリックス前駆体には、(iii)フッ素置換有機基を有する有機ケイ素化合物の加水分解物を含んでいてもよい。フッ素置換有機基を有する有機ケイ素化合物の加水分解物を含む場合、そのマトリックス前駆体中の(iii)の割合が固形分として0.1〜30重量%、さらには0.5〜20重量%の範囲にあることが好ましい。
【0027】
フッ素置換有機基を有する有機ケイ素化合物としては、3,3,3−トリフルオロプロピルトリメトキシシラン、メチル−3,3,3−トリフルオロプロピルジメトキシシラン、ヘプタデカトリフルオロデシルメチルジメトキシシラン、ヘプタデカトリフルオロデシルトリメトキシシラン、ヘプタデカトリフルオロトリメトキシシラン、n−パーフルオロオクチルエチルトリエトキシシラン等が挙げられる。
【0028】
このようなフッ素置換有機基を有する有機ケイ素化合物の加水分解物(iii)も、フッ素置換有機基を有する有機ケイ素化合物を、例えば、水−アルコール混合溶媒中で酸触媒の存在下、加水分解することによって得ることができる。このような加水分解物は部分加水分解物であっても、加水分解物の縮重合物であってもよく、従来公知の加水分解物を用いることができる。
【0029】
マトリックス前駆体中の(iii)の割合が固形分として前記下限未満の場合は、耐汚染性(指紋等の付着抑制)、耐水性、スクラッチ強度の向上効果が不充分となる。また、マトリックス前駆体中の(iii)の割合が固形分として前記上限を越えると、膜硬度(鉛筆硬度、スチールウール硬度)が低下することがある。
本発明に用いるマトリックス前駆体(iii)は、テトラアルコキシシランとフッ素置換有機基を有する有機ケイ素化合物との混合物の同時加水分解物であることが好ましい。このような混合物の同時加水分解物は、テトラアルコキシシランとフッ素置換有機基を有する有機ケイ素化合物との混合物を、例えば水−アルコール混合溶媒中で酸触媒の存在下、加水分解することによって得ることができる。この場合も、加水分解物は部分加水分解物であっても、加水分解物の縮重合物であってもよい。
【0030】
このように成分(i)、(ii)および(iii)をいずれも含む場合、個別の加水分解物の混合物であっても、(i)と(ii)の同時加水分解物と、(iii)の加水分解物の混合物であってもよく、また(i)と(ii)の同時加水分解物と(ii)と(iii)の同時加水分解物との混合物であっても、(ii)と(iii)の同時加水分解物と(i)の加水分解物との混合物であってもよく、さらには(i)と(ii)と(iii)との同時加水分解物であってもよい。
同時加水分解物する際の、全有機ケイ素化合物中のフッ素置換有機基を有する有機ケイ素化合物との量比は、マトリックス前駆体中の(iii)の割合が固形分として0.1〜10重量%、さらには0.5〜5重量%の範囲となるように用いることが好ましい。
【0031】
このような同時加水分解物をマトリックス前駆体(iii)として用いると、膜の収縮が均一に起こり、高い導電性向上効果および膜硬度向上効果が得られるとともに、高い耐水性やスクラッチ強度を得ることができる。
このようなフッ素置換有機基を有する有機ケイ素化合物の加水分解物も、フッ素置換有機基を有する有機ケイ素化合物を、例えば、水−アルコール混合溶媒中で酸触媒の存在下、加水分解することによって得ることができる。このような加水分解物は部分加水分解物であっても、加水分解物の縮重合物であってもよく、従来公知の加水分解物を用いることができる。
【0032】
本発明に係る透明被膜形成用塗布液には、平均粒子径が5〜300nm、好ましくは10〜200nmの範囲にあり屈折率が1.28〜1.42、さらには1.28〜1.40の範囲にある低屈折率粒子を含んでいてもよい。
低屈折率粒子の屈折率が前記範囲内にあれば、得られる透明導電性被膜付基材は、ボトム反射率および視感反射率が低く、優れた反射防止性能を発揮することができる。
【0033】
低屈折率粒子の使用量は、透明被膜中の低屈折率粒子の含有量が固形分に換算して、10〜90重量%、好ましくは20〜80重量%の範囲となるように用いることが望ましい。
このような低屈折率粒子としては、平均粒子径および屈折率が上記範囲にあれば特に制限はなく従来公知の粒子を用いることができる。例えば本願出願人の出願による特開平7−133105号公報に開示した複合酸化物ゾル、WO00/37359号公報に開示した被覆層を有する多孔質の複合酸化物粒子は好適に用いることができる。
【0034】
さらにまた、本発明の透明被膜形成用塗布液には、フッ化マグネシウムなどの低屈折率材料で構成された微粒子、透明被膜の透明度および反射防止性能を阻害しない程度に少量の導電性微粒子および/または染料または顔料などの添加剤が含まれていてもよい。
本発明では、このような透明被膜形成用塗布液を塗布して形成した被膜を、乾燥時、または乾燥後に、150℃以上で加熱するか、未硬化の被膜に可視光線よりも波長の短い紫外線、電子線、X線、γ線などの電磁波を照射するか、あるいはアンモニアなどの活性ガス雰囲気中に晒してもよい。このようにすると、被膜形成成分の硬化が促進され、得られる透明被膜の硬度が高くなる。
【0035】
透明導電性被膜付基材
次に、本発明に係る透明導電性被膜付基材について具体的に説明する。
本発明に係る透明導電性被膜付基材では、ガラス、プラスチック、セラミックなどからなるフィルム、シートあるいはその他の成形体などの基材上に、平均粒子径が1〜200nmの導電性微粒子からなる透明導電性微粒子層と、該透明導電性微粒子層上に該透明導電性微粒子層よりも屈折率が低い透明被膜が形成されてなり、該透明被膜が前記透明被膜形成用塗布液から形成されている。
【0036】
透明導電性微粒子層
[導電性微粒子]
本発明に用いる導電性微粒子としては、得られる透明導電性被膜の表面抵抗が概ね10〜10Ω/□の範囲にあれば特に制限はなく従来公知の導電性微粒子を用いることができる。
【0037】
導電性微粒子としては、酸化錫、Sb、FまたはPがドーピングざれた酸化錫、酸化インジウム、SnまたはFがドーピングされた酸化インジウム、酸化アンチモン、低次酸化チタンなどの酸化物系導電性微粒子が挙げられる。
酸化物系導電性微粒子は、平均粒子径が1〜200nm、好ましくは2〜150nmの範囲にあることが好ましい。
【0038】
平均粒子径が1nm未満の場合は、粒子が小さすぎて凝集する傾向があり、また粒子層の表面抵抗が急激に大きくなるため、本発明の目的を達成しうる程度の低抵抗値を有する被膜を得ることができないことがある。また、平均粒子径が200nmを越えると、粒子が大きいために粒子同士の接点が減少し充分な導電性が得られないことがあり。また膜強度や基材との密着性が低下したり、得られる透明導電性被膜のヘーズが高くなることがある。
【0039】
また、導電性微粒子として、従来公知の金属微粒子を用いることができ、この金属微粒子は単一成分からなる金属微粒子であってもよく、2種以上の金属成分を含む複合金属微粒子であってもよい。
具体的には、Au、Ag、Pd、Pt、Rh、Ru、Cu、Fe、Ni、Co、Sn、Ti、In、Al、Ta、Sbなどの金属から選ばれる少なくとも1種または2種以上の金属からなる金属微粒子等が挙げられる。
【0040】
また、金属微粒子を構成する好ましい2種以上の金属の組合せとしては、Au−Cu、Ag−Pt、Ag−Pd、Au−Pd、Au−Rh、Pt−Pd、Pt−Rh、Fe−Ni、Ni−Pd、Fe−Co、Cu−Co、Ru−Ag、Au−Cu−Ag、Ag−Cu−Pt、Ag−Cu−Pd、Ag−Au−Pd、Au−Rh−Pd、Ag−Pt−Pd、Ag−Pt−Rh、Fe−Ni−Pd、Fe−Co−Pd、Cu−Co−Pdなどが挙げられる。
【0041】
金属微粒子の平均粒径は、1〜200nm、好ましくは2〜70nmの範囲にあることが望ましい。このような粒径の範囲にあると、形成された導電層は透明となる。また、金属微粒子の平均粒径が200nmを越えると、金属による光の吸収が大きくなり、粒子層の光透過率が低下するとともにへーズが大きくなる。このため被膜付基材を、たとえば陰極線管の前面板として用いると、表示画像の解像度が低下することがある。また、金属微粒子の平均粒径が1nm未満の場合には粒子層の表面抵抗が急激に大きくなるため、本発明の目的を達成しうる程度の低抵抗値を有する被膜を得ることができないこともある。
【0042】
このような導電性微粒子層は、導電性被膜形成用塗布液を使用して作製することができる。
導電性被膜形成用塗布液は、上記導電性微粒子と極性溶媒とを含んでいる。
導電性被膜形成用塗布液に用いられる極性溶媒としては、水;メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコールなどのアルコール類;酢酸メチルエステル、酢酸エチルエステルなどのエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、イソプロピルグリコールなどのエーテル類;アセトン、メチルエチルケトン、アセチルアセトン、アセト酢酸エステルなどのケトン類などが挙げられる。これらは単独で使用してもよく、また2種以上混合して使用してもよい。
【0043】
なお、酸化物系導電性微粒子を含む塗布液を使用すると、帯電防止効果、電磁波遮蔽効果が発現する10〜10Ω/□程度の表面抵抗を有する透明導電性層を形成することができる。酸化物系導電性微粒子を使用して導電層を形成する場合、導電性被膜形成用塗布液中の酸化物系導電性微粒子の濃度は、0.2〜5重量%、好ましくは1〜5重量%の量で含まれていることが望ましい。
【0044】
導電性被膜形成用塗布液中の酸化物系導電性微粒子の量が前記下限未満の場合は、得られる被膜の膜厚が薄くなり、このため充分な導電性が得られないことがある。また、酸化物系導電性微粒子が前記上限を越えると、膜厚が厚くなり、膜のヘーズが悪化するとともに外観も悪くなる。
また、酸化物形導電性微粒子の代わりに金属微粒子を含む塗布液を使用すると、電磁波遮蔽効果が発現される10〜10Ω/□程度の表面抵抗を有する透明導電性層を形成することができる。金属微粒子を使用して電磁遮蔽用の導電層を形成する場合、金属微粒子は、導電性被膜形成用塗布液中の金属微粒子の濃度が0.05〜5重量%、好ましくは0.1〜2重量%の量で含まれていることが望ましい。
【0045】
導電性被膜形成用塗布液中の金属微粒子の量が、0.05重量%未満の場合は、得られる被膜の膜厚が薄くなり、このため充分な導電性が得られないことがある。また、金属微粒子が5重量%を越えると、膜厚が厚くなり、光透過率が低下して透明性が悪化するとともに外観も悪くなる。
さらに、導電性被膜形成用塗布液には、必要に応じて、着色剤、マトリックス前駆体、有機系安定剤等を含んでいてもよい。
【0046】
また着色剤としては、微粒子カーボンブラック、チタンブラック、染料、顔料などが挙げられ、このような着色剤が含まれているとコントラストに優れた表示装置を得ることができる。
さらに、導電性被膜形成用塗布液には、マトリックス前駆体が含まれていてもよい。このようなマトリックス前駆体としては、シリカからなるものが好ましく、具体的には、アルコキシシランなどの有機ケイ素化合物の加水分解重縮合物またはアルカリ金属ケイ酸塩水溶液を脱アルカリして得られるケイ酸重縮合物、あるいは塗料用樹脂などが挙げられる。このマトリックス形成成分は、固形分として導電性微粒子1重量部当たり、0.01〜0.5重量部、好ましくは0.03〜0.3重量部の量で含まれていればよい。このようなマトリックス前駆体は被膜形成後の導電性微粒子のバインダーとして作用する。
【0047】
有機系安定剤としては、ゼラチン、ポリビニルアルコール、ポリビニルピロリドン、シュウ酸、マロン酸、コハク酸、グルタール酸、アジピン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、クエン酸などの多価カルボン酸およびその塩、複素環化合物あるいはこれらの混合物などが挙げられる。
このような有機系安定剤は、特に金属微粒子を含む場合に有効で、金属微粒子1重量部に対し、0.005〜0.5重量部、好ましくは0.01〜0.2重量部含まれていればよい。有機系安定剤の量が0.005重量部未満の場合は充分な金属微粒子の分散性が得られず、0.5重量部を超えて高い場合は導電性が阻害されることがある。
【0048】
透明導電性微粒子層は、上記透明導電性被膜形成用塗布液を基材上に塗布し・乾燥して、透明導電性微粒子層を基材上に形成する。
透明導電性微粒子層を形成する方法としては、たとえば、透明導電性被膜形成用塗布液をディッピング法、スピナー法、スプレー法、ロールコーター法、フレキソ印刷法などの方法で、基材上に塗布したのち、常温〜約90℃の範囲の温度で乾燥する。
【0049】
透明導電性被膜形成用塗布液中に上記のようなマトリックス前駆体が含まれている場合には、マトリックス前駆体の硬化処理を行ってもよい。
例えば、透明導電性被膜形成用塗布液を塗布して形成した被膜を、乾燥時、または乾燥後に、150℃以上で加熱するか、未硬化の被膜に可視光線よりも波長の短い紫外線、電子線、X線、γ線などの電磁波を照射するか、あるいはアンモニアなどの活性ガス雰囲気中に晒してもよい。このようにすると、被膜形成成分の硬化が促進され、得られる被膜の硬度が高くなる。
【0050】
上記のような方法によって形成された透明導電性微粒子層の膜厚は5〜200nm、さらには10〜150nmの範囲が望ましく、この範囲の膜厚であれば帯電防止性および電磁遮蔽性に優れた透明導電性被膜付基材を得ることができる。透明導電性微粒子層の膜厚が5nm未満の場合は、前記透明被膜形成用塗布液を用いて透明被膜を形成しても、透明導電性微粒子層の収縮余地が小さいために、前記した導電性の向上効果、膜硬度の向上効果が充分得られないことがある。
【0051】
透明導電性微粒子層の膜厚が200nmを越えると、光透過率が低下したり、膜にボイドができやすくなりヘーズが高くなることがある。
透明被膜
本発明に係る透明導電性被膜付基材では、前記透明導電性微粒子層の上に、前記透明導電性微粒子層よりも屈折率の低い透明被膜が形成されている。
【0052】
透明被膜は、前記透明被膜形成用塗布液をディッピング法、スピナー法、スプレー法、ロールコーター法、フレキソ印刷法などの湿式薄膜形成方法により塗布し必要に応じて乾燥することで形成される。
このときの透明被膜の膜厚は、50〜300nm、好ましくは80〜200nmの範囲にあることが好ましい。
【0053】
透明被膜の膜厚が前記範囲上限を越えると、膜にクラックが発生したり、膜の強度が低下したりすることがあり、また膜が厚すぎて反射防止性能が不充分となることがある。また透明被膜の膜厚が前記下限未満の場合は、膜の強度や反射防止性能が劣ることがある。
このような透明被膜形成用塗布液を塗布して形成した透明被膜は、前記したように、乾燥時、または乾燥後に、150℃以上で加熱するか、未硬化の被膜に可視光線よりも波長の短い紫外線、電子線、X線、γ線などの電磁波を照射するか、あるいはアンモニアなどの活性ガス雰囲気中に晒してもよい。このようにすると、被膜形成成分の硬化が促進され、得られる透明被膜の硬度が高くなる。
【0054】
表示装置
本発明に係る透明導電性被膜付基材は、帯電防止、電磁遮蔽に必要な概ね10〜10Ω/□の範囲の表面抵抗を有し、また透明性に優れるとともに可視光領域および近赤外領域で充分な反射防止性能を有し、表示装置の前面板として好適に用いられる。
【0055】
本発明に係る表示装置は、ブラウン管(CRT)、蛍光表示管(FIP)、プラズマディスプレイ(PDP)、液晶用ディスプレイ(LCD)などのような電気的に画像を表示する装置であり、上記のような透明導電性被膜付基材で構成された前面板を備えている。
従来の前面板を備えた表示装置を作動させると、透明導電性被膜の膜硬度、スクラッチ強度等が不充分であるために傷つきやすく、ヘーズが発生し易いために画面が見にくくなることがあった。
【0056】
本発明に係る表示装置では、前面板が前記したクラックが無く膜の強度に優れた透明導電性被膜付基材で構成されており、さらに油脂、指紋等が付着しにくく、このため油脂等のふき取り等必要としないので傷の発生もないので表示性能に優れるとともに、帯電を防止したり、電磁波およびこの電磁波の放出に伴って生じる電磁場を効果的に遮蔽したりすることができる。
【0057】
また、表示装置の前面板で反射光が生じると、この反射光によって表示画像が見にくくなるが、本発明に係る表示装置では、前面板が可視光領域および近赤外領域で充分な反射防止性能を有する透明導電性被膜付基材で構成されているので、このような反射光を効果的に防止することができる。
【0058】
【発明の効果】
本発明によれば、透明被膜形成用塗布液がマトリックス前駆体として、テトラアルコキシシラン加水分解物とともに、エポキシ系、アクリル基、ビニル基から選ばれる官能基を有する有機ケイ素化合物の加水分解物、必要に応じてフッ素置換有機基含有有機ケイ素化合物の加水分解物を含んでいるので、被膜形成時にクラックが無く、膜の強度や導電性に優れ、さらに耐水性、スクラッチ強度に優れるとともに、指紋等油脂汚れを防止できる透明導電性被膜付基材を形成できる透明被膜形成用塗布液および該塗布液を用いて形成された透明被膜を有する透明導電性被膜付基材、該基材を備えた表示装置を提供することができる。
【0059】
また、透明被膜は導電性微粒子層よりも屈折率が低いので反射防止性能に優れた透明導電性被膜付基材を提供することができる。
さらに、このような透明導電性被膜付基材を表示装置の前面板として用いれば、帯電防止性能、電磁遮蔽性能に優れるとともに反射防止性能等に優れ、さらに耐久性、耐水性等に優れた表示装置を提供することができる。
【0060】
【実施例】
以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。
【0061】
【製造実施例】
a)導電性微粒子分散液の調製
本実施例および比較例で用いた導電性微粒子の分散液を以下のように調製した。
ドープ酸化インジウム (ITO) 微粒子 (P−1) 分散液の調製
硝酸インジウム79.9gを水686gに溶解して得られた溶液と、錫酸カリウム12.7gを濃度10重量%の水酸化カリウム溶液に溶解して得られた溶液とを調製し、これらの溶液を、50℃に保持された1000gの純水に2時間かけて添加した。この間、系内のpHを11に保持した。得られたSnドープ酸化インジウム水和物分散液からSnドープ酸化インジウム水和物を濾別・洗浄した後、再び水に分散させて固形分濃度10重量%の金属酸化物前駆体水酸化物分散液を調製した。この分散液を、温度100℃で噴霧乾燥して金属酸化物前駆体水酸化物粉体を調製した。上記粉体を、窒素ガス雰囲気下、550℃で2時間加熱処理した。
【0062】
これを濃度が30重量%となるようにエタノールに分散させ、さらに硝酸水溶液でpHを3.5に調製した後、この混合液を30℃に保持しながらサンドミルで0.5時間粉砕してゾルを調製した。次いで、エタノールを加えて濃度20重量%のSnドープ酸化インジウム微粒子(P−1)分散液を調製した。
得られた導電性金属酸化物粒子(P−1)については以下のように平均粒子径を測定した。
【0063】
結果を表1に示す。
導電性微粒子についてはTEM写真を撮影し20個の粒子について粒子径を測定し、この平均値を平均粒子径として表1に示す。
ドープ酸化錫 (ATO) 微粒子 (P−2) 分散液の調製
塩化錫57.7gと塩化アンチモン7.0gとをメタノール100gに溶解して溶液を調製した。調製した溶液を4時間かけて、90℃、攪拌下の純水1000gに添加して加水分解を行い、生成した沈殿を濾別・洗浄した後、再び水に分散させて固形分濃度10重量%の金属酸化物前駆体水酸化物分散液を調製した。この分散液を、温度100℃で噴霧乾燥して金属酸化物前駆体水酸化物粉体を調製した。上記粉体を、窒素ガス雰囲気下、550℃で2時間加熱処理した。この粉末30gを水酸化カリウム水溶液(KOHとして3.0g含有)70gに加え、混合液を30℃に保持しながらサンドミルで、3時間粉砕してゾルを調製した。次いでこのゾルをイオン交換樹脂処理して、脱アルカリし、純水を加えて濃度20重量%のSbドープ酸化錫微粒子(P−2)分散液を調製した。平均粒子径を測定し結果を表に示した。
【0064】
銀パラジウム合金微粒子 (P−3) の分散液の調製
純水100gに、あらかじめクエン酸3ナトリウムを得られる合金微粒子1重量部当たり0.01重量部となるように加え、これに金属換算で濃度が10重量%となり、銀とパラジウムの重量比が8:2となるように硝酸銀および硝酸パラジウム水溶液を加え、さらに硝酸銀および硝酸パラジウムの合計モル数と等モル数の硫酸第一鉄の水溶液を添加し、窒素雰囲気下で1時間攪拌して銀パラジウム合金微粒子の分散液を得た。得られた分散液は遠心分離器により水洗して不純物を除去した後、水に分散させて濃度4重量%の銀パラジウム合金微粒子(P−3)の分散液を調製した。銀パラジウム合金微粒子の平均粒子径は8nmであった。
【0065】
【実施例1】
透明導電性被膜形成用塗布液 (C−1) の調製
上記で得た微粒子(P−1)分散液とエタノール/n−プロパノール/エチルセロソルブ/イソプロピルグリコール/ジアセトンアルコール(68:12:8:8:4重量比)の混合溶媒とを混合し導電性微粒子濃度が3.5重量%の透明導電性被膜形成用塗布液(C−1)を調製した。
【0066】
透明被膜形成用塗布液 (B−1) の調製
テトラアルコキシシランとして正珪酸エチル(SiO:28.8重量%)31.3g、エポキシ系有機ケイ素化合物としてγ−グリシドキシプロピルトリメトキシシラン(信越化学(株)製:KBM−403)を3.9g、エタノール31.9gの混合溶液に、濃塩酸1.0gおよび純水31.9gの混合溶液を60℃で2時間攪拌して固形分濃度11.6重量%のマトリックス前駆体を含む混合溶液(M−1)を調製した。
【0067】
次いで、混合溶液(M−1)に、エタノール/n−プロパノール/エチルセロソルブ/イソプロピルグリコール/ジアセトンアルコール(72:12:6:6:4重量比)の混合溶媒を加えて固形分濃度1.5重量%の透明被膜形成用塗布液(B−1)を調製した。
透明導電性被膜付パネルガラスの製造
ブラウン管用パネルガラス(17”)の表面を40℃で保持しながら、スピナー法で100rpm、90秒の条件で上記透明導電性被膜形成用塗布液(C−1)を塗布し乾燥した。このときの導電層の膜厚を測定し、結果を表に示した。
【0068】
次いで、このようにして形成された透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(B−1)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。このときの透明被膜の膜厚は50nmとなるように形成した。
これらの透明導電性被膜付基材の表面抵抗を表面抵抗計(三菱油化(株)製:LORESTA)で測定し、ヘーズをへーズコンピューター(日本電色(株)製:3000A)で測定した。反射率は反射率計(大塚電子(株)製:MCPD−2000)を用いて測定し、波長400〜700nmの範囲で反射率が最も低い波長での反射率をボトム反射率とし、波長400〜700nmの平均反射率を視感反射率として求め、結果を表1に示した。
【0069】
また、消しゴム硬度、スクラッチ硬度および指紋付着性を評価し、結果を表1に示した。
消しゴム硬度
透明導電性被膜付基材の透明被膜上に消しゴム(ライオン(株)製:1K)をセットし、1±0.1Kgの荷重をかけ、約25mmのストロークで25往復させた。このとき発生する削り屑は、その都度高圧エアーで除去した。
【0070】
消しゴムを25往復させた後、1000ルックスの照明下で、透明被膜表面から45cm離れて表面の目視観察を行った。
A:引っ掻き傷が全く観察されない。
B:蛍光灯下で反射色が変化(紫色から赤色へ)。
C:蛍光灯下で反射色がなく傷が観察される。
【0071】
D:下地(基材)が見える。
スクラッチ硬度
透明導電性被膜付基材の透明被膜上に標準試験針((株)ロックウェル製:硬度HRC−60、ψ:0.5mm)をセットし、1±0.3Kgの荷重をかけ、30〜40mmのストロークで掃引した。掃引した後、1000ルックス照明下、被膜表面から45cm離れて表面の観察を行った。
【0072】
A:引っ掻き傷が全く観察されない。
B:断続的に筋条傷が観察される。
C:浅く連続した筋条傷が観察される。
D:明瞭に連続した筋条傷が観察される。
指紋付着性
透明導電性被膜付基材の透明被膜表面に指を強く押しつけて指紋を付着させた。次いで、乾いた布で5回拭いた後、膜の色目変化を目し観察し、以下の基準で評価して結果を表1に示した。
【0073】
○:色の変化が認められない。(指紋が付着してないか、容易に除去できた。)
△:色の変化が僅かに認められる。
×:色の変化が明らかに認められる。(干渉色が認められる。)
【0074】
【実施例2】
透明被膜形成用塗布液 (B−2) の調製
実施例1において、エポキシ系有機ケイ素化合物としてγ−グリシドキシプロピルトリメトキシシラン(信越化学(株)製:KBM−403)を0.8g用いた以外は同様にして透明被膜形成用塗布液(B−2)を調製した。
透明導電性被膜付パネルガラスの製造
実施例1と同様にして透明導電性被膜形成用塗布液(C−1)を塗布し乾燥した。
【0075】
次いで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(B−2)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。このときの透明被膜の膜厚は50nmとなるように形成した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価し、結果を表1に示した。
【0076】
【実施例3】
透明被膜形成用塗布液 (B−3) の調製
実施例1において、エポキシ系有機ケイ素化合物としてγ−グリシドキシプロピルトリメトキシシラン(信越化学(株)製:KBM−403)を7.9g用いた以外は同様にして透明被膜形成用塗布液(B−3)を調製した。
透明導電性被膜付パネルガラスの製造
実施例1と同様にして透明導電性被膜形成用塗布液(C−1)を塗布し乾燥した。
【0077】
次いで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(B−3)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。このときの透明被膜の膜厚は50nmとなるように形成した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価し、結果を表に示した。
【0078】
【実施例4】
透明被膜形成用塗布液 (B−4) の調製
実施例1と同様にしてマトリックス前駆体を含む混合溶液(M−1)を調製した。別途、正珪酸エチル(SiO:28.8重量%)17.4g、フッ素置換有機基含有有機ケイ素化合物としてヘプタデカトリフルオロトリメトキシシラン(信越化学(株)製:KBM−7803)を1.6g、エタノール251gの混合溶液に、濃硝酸1.0gおよび純水49.9gの混合溶液を60℃で2時間攪拌して固形分濃度2重量%のマトリックス前駆体を含む混合溶液(M−2)を調製した。
【0079】
次いで、混合溶液(M−1)と混合溶液(M−2)とを混合し、エタノール/n−プロパノール/エチルセロソルブ/イソプロピルグリコール/ジアセトンアルコール(72:12:6:6:4重量比)の混合溶媒を加えて透明被膜形成用塗布液(B−4)を調製した。
透明導電性被膜付パネルガラスの製造
実施例1と同様にして透明導電性被膜形成用塗布液(C−1)を塗布し乾燥した。
【0080】
次いで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(B−4)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。このときの透明被膜の膜厚は50nmとなるように形成した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価し、結果を表1に示す。
【0081】
【実施例5】
透明被膜形成用塗布液 (B−5) の調製
実施例4において、フッ素置換有機基含有有機ケイ素化合物としてヘプタデカトリフルオロトリメトキシシラン(信越化学(株)製:KBM−7803)を8.2g用いた以外は同様にして透明被膜形成用塗布液(B−5)を調製した。
透明導電性被膜付パネルガラスの製造
実施例1と同様にして透明導電性被膜形成用塗布液(C−1)を塗布し乾燥した。
【0082】
次いで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(B−5)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。このときの透明被膜の膜厚は50nmとなるように形成した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価し、結果を表1に示す。
【0083】
【実施例6】
透明導電性被膜形成用塗布液 (C−2) の調製
上記で得た微粒子(P−2)分散液とエタノール/n−プロパノール/エチルセロソルブ/イソプロピルグリコール/ジアセトンアルコール(68:12:8:8:4重量比)の混合溶媒とを混合し導電性微粒子濃度が3.5重量%の透明導電性被膜形成用塗布液(C−2)を調製した。
透明導電性被膜付パネルガラスの製造
実施例1と同様にして透明導電性被膜形成用塗布液(C−2)を塗布し乾燥した。
【0084】
次いで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で、実施例1と同様にして調製した透明被膜形成用塗布液(B−4)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。このときの透明被膜の膜厚は50nmとなるように形成した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価し、結果を表1に示す。
【0085】
【実施例7】
透明導電性被膜形成用塗布液 (C−3) の調製
上記で得た微粒子(P−3)分散液とエタノール/n−プロパノール/エチルセロソルブ/イソプロピルグリコール/ジアセトンアルコール(68:12:8:8:4重量比)の混合溶媒とを混合し導電性微粒子濃度が0.35重量%の透明導電性被膜形成用塗布液(C−3)を調製した。
透明導電性被膜付パネルガラスの製造
実施例1と同様にして透明導電性被膜形成用塗布液(C−3)を塗布し乾燥した。
【0086】
次いで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(B−4)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。このときの透明被膜の膜厚は50nmとなるように形成した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価し、結果を表1に示す。
【0087】
【実施例8】
透明被膜形成用塗布液 (B−8) の調製
実施例4において、フッ素置換有機基含有有機ケイ素化合物としてn−パーフルオロオクチルエチルトリエトキシシラン(東レダウコーニングシリコーン(株)製:AY43−158E)を1.6g用いた以外は同様にして透明被膜形成用塗布液(B−8)を調製した。
透明導電性被膜付パネルガラスの製造
実施例1と同様にして透明導電性被膜形成用塗布液(C−1)を塗布し乾燥した。
【0088】
次いで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(B−8)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。このときの透明被膜の膜厚は40nmとなるように形成した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価し、結果を表1に示した。
【0089】
【実施例9】
透明被膜形成用塗布液 (B−9) の調製
実施例4において、エポキシ系有機ケイ素化合物としてアクリル系のγ−メタクリロキシプロピルトリメトキシシラン(信越化学(株)製:KMB−403)4.1gを用いた以外は同様にして透明被膜形成用塗布液(B−9)を調製した。
透明導電性被膜付パネルガラスの製造
実施例1と同様にして透明導電性被膜形成用塗布液(C−1)を塗布し乾燥した。
【0090】
次いで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(B−9)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。このときの透明被膜の膜厚は50nmとなるように形成した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価し、結果を表1に示す。
【0091】
【実施例10】
透明被膜形成用塗布液 (B−10) の調製
テトラアルコキシシランとして正珪酸メチル(SiO:51重量%)17.7gg、エポキシ系有機ケイ素化合物としてγ−グリシドキシプロピルトリメトキシシラン(信越化学(株)製:KBM−403)を3.9g、エタノール45.5gの混合溶液に、濃塩酸1.0gおよび純水31.9gの混合溶液を60℃で2時間攪拌して固形分濃度11.6重量%のマトリックス前駆体を含む混合溶液(M−3)を調製した。
【0092】
別途、正珪酸メチル(SiO:51重量%)10g、フッ素置換有機基含有有機ケイ素化合物としてヘプタデカフルオロデシルトリメトキシシラン(信越化学(株)製:KBM−7803)を1.6g、エタノール263.6gの混合溶液に、濃塩酸1.0gおよび純水49.9gの混合溶液を60℃で2時間攪拌してSiO濃度1.5量%のマトリックス前駆体を含む混合溶液(M−4)を調製した。
【0093】
次いで、混合溶液(M−3)と混合溶液(M−4)とを混合し、エタノール/n−プロパノール/エチルセロソルブ/イソプロピルグリコール/ジアセトンアルコール(72:12:6:6:4重量比)の混合溶媒を加えて固形分濃度1.5重量%の透明被膜形成用塗布液(B−10)を調製した。
透明導電性被膜付パネルガラスの製造
実施例1と同様にして透明導電性被膜形成用塗布液(C−1)を塗布し乾燥した。
【0094】
次いで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(B−10)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。このときの透明被膜の膜厚は50nmとなるように形成した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価し、結果を表に示した。
【0095】
【実施例11】
透明被膜形成用塗布液 (B−11) の調製
実施例10において、エポキシ系有機ケイ素化合物としてアクリル系のγ−メタクリロキシプロピルトリメトキシシラン(信越化学(株)製:KMB−503)を4.1g用いた以外は同様にして透明被膜形成用塗布液(B−11)を調製した。透明導電性被膜付パネルガラスの製造
実施例1と同様にして透明導電性被膜形成用塗布液(C−1)を塗布し乾燥した。
【0096】
次いで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(B−11)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。このときの透明被膜の膜厚は50nmとなるように形成した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価し、結果を表1に示した。
【0097】
【比較例1】
透明被膜形成用塗布液 (RB−1) の調製
テトラアルコキシシランとして正珪酸エチル(SiO:28.8重量%)34.7g、エタノール132.4gの混合溶液に、濃塩酸1.0gおよび純水31.9gの混合溶液を60℃で2時間攪拌してSiO濃度5重量%のマトリックス前駆体を含む混合溶液(RM−1)を調製した。
【0098】
次いで、混合溶液(RM−1)に、エタノール/n−プロパノール/エチルセロソルブ/イソプロピルグリコール/ジアセトンアルコール(72:12:6:6:4重量比)の混合溶媒を加えて透明被膜形成用塗布液(RB−1)を調製した。
透明導電性被膜付パネルガラスの製造
実施例1と同様にして透明導電性被膜形成用塗布液(C−1)を塗布し乾燥した。
【0099】
次いで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(RB−1)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。このときの透明被膜の膜厚は50nmとなるように形成した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価し、結果を表1に示した。
【0100】
【比較例2】
透明被膜形成用塗布液 (RB−2) の調製
エポキシ系有機ケイ素化合物としてγ−グリシドキシプロピルトリメトキシシラン(信越化学(株)製:KBM−403)を39.4gと、エタノール193.3gの混合溶液に、濃塩酸1.0gおよび純水31.9gの混合溶液を50℃で24時間攪拌して固形分濃度10重量%のマトリックス前駆体を含む混合溶液(M−6)を調製した。
【0101】
次いで、混合溶液(M−6)に、エタノール/n−プロパノール/エチルセロソルブ/イソプロピルグリコール/ジアセトンアルコール(72:12:6:6:4重量比)の混合溶媒を加えて固形分濃度1.5重量%の透明被膜形成用塗布液(RB−2)を調製した。
透明導電性被膜付パネルガラスの製造
実施例1と同様にして透明導電性被膜形成用塗布液(C−1)を塗布し乾燥した。
【0102】
次いで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(RB−2)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。このときの透明被膜の膜厚は40nmとなるように形成した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価し、結果を表1に示した。
【0103】
【比較例3】
透明被膜形成用塗布液 (RB−3) の調製
実施例4と同様にして固形分濃度2重量%のマトリックス前駆体を含む混合溶液(M−2)を調製した。
次いで、混合溶液(M−2)にエタノール/n−プロパノール/エチルセロソルブ/イソプロピルグリコール/ジアセトンアルコール(72:12:6:6:4重量比)の混合溶媒を加えて透明被膜形成用塗布液(RB−3)を調製した。
透明導電性被膜付パネルガラスの製造
実施例1と同様にして透明導電性被膜形成用塗布液(C−1)を塗布し乾燥した。
【0104】
次いで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(RB−3)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。このときの透明被膜の膜厚は30nmとなるように形成した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価し、結果を表1に示した。
【0105】
【比較例4】
透明導電性被膜付パネルガラスの製造
実施例6と同様にして透明導電性被膜形成用塗布液(C−2)を塗布し乾燥した。次いで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で、比較例1と同様にして得た透明被膜形成用塗布液(RB−1)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。このときの透明被膜の膜厚は30nmとなるように形成した。
【0106】
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および鉛筆硬度、スクラッチ強度、指紋付着性を評価し、結果を表1に示した。
【0107】
【比較例5】
透明導電性被膜付パネルガラスの製造
実施例6と同様にして透明導電性被膜形成用塗布液(C−2)を塗布し乾燥した。
次いで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で、比較例2と同様にして得た透明被膜形成用塗布液(RB−2)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。このときの透明被膜の膜厚は30nmとなるように形成した。
【0108】
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価し、結果を表1に示した。
【0109】
【比較例6】
透明導電性被膜付パネルガラスの製造
実施例6と同様にして透明導電性被膜形成用塗布液(C−2)を塗布し乾燥した。次いで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で、比較例3と同様にして得た透明被膜形成用塗布液(RB−3)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。このときの透明被膜の膜厚は30nmとなるように形成した。
【0110】
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価し、結果を表1に示した。
【0111】
【比較例7】
透明導電性被膜付パネルガラスの製造
実施例7と同様にして透明導電性被膜形成用塗布液(C−3)を塗布し乾燥した。次いで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で、比較例1と同様にして得た透明被膜形成用塗布液(RB−1)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。このときの透明被膜の膜厚は30nmとなるように形成した。
【0112】
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価し、結果を表1に示した。
【0113】
【比較例8】
透明導電性被膜付パネルガラスの製造
実施例7と同様にして透明導電性被膜形成用塗布液(C−3)を塗布し乾燥した。次いで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で、比較例2と同様にして得た透明被膜形成用塗布液(RB−2)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。このときの透明被膜の膜厚は30nmとなるように形成した。
【0114】
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価し、結果を表1に示した。
【0115】
【比較例9】
透明導電性被膜付パネルガラスの製造
実施例7と同様にして透明導電性被膜形成用塗布液(C−3)を塗布し乾燥した。次いで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で、比較例3と同様にして得た透明被膜形成用塗布液(RB−3)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。このときの透明被膜の膜厚は30nmとなるように形成した。
【0116】
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価し、結果を表1に示した。
【0117】
【表1】

Figure 2004083812
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a coating solution for forming a transparent film capable of forming a transparent film, a substrate with a transparent conductive film having a transparent film formed using the coating solution, and a display device including the substrate. .
[0002]
TECHNICAL BACKGROUND OF THE INVENTION
2. Description of the Related Art Conventionally, a transparent film having an antistatic function and an antireflection function on the surface of a transparent substrate such as a display panel such as a cathode ray tube, a fluorescent display tube, and a liquid crystal display panel for the purpose of antistatic and antireflective purposes. Was formed.
In addition, it is known that electromagnetic waves are emitted from a cathode ray tube or the like. In addition to the conventional antistatic and antireflection methods, it is desired to shield these electromagnetic waves and an electromagnetic field formed by the emission of the electromagnetic waves. .
[0003]
As one of methods for shielding such electromagnetic waves, there is a method of forming a conductive film for shielding electromagnetic waves on the surface of a display panel such as a cathode ray tube. Surface resistance of at least 10 if the antistatic conductive coating8It is sufficient to have a surface resistance of about Ω / □.2-104It was necessary to have a low surface resistance such as Ω / □.
[0004]
When an attempt is made to form a conductive film having a low surface resistance using a coating solution containing a conductive oxide such as a conventional Sb-doped tin oxide or Sn-doped indium oxide, the conventional antistatic coating film is used. It was necessary to make the film thickness thicker than that. However, the anti-reflection effect is not exhibited unless the thickness of the conductive film is set to about 10 to 200 nm, so that a conventional conductive oxide such as Sb-doped tin oxide or Sn-doped indium oxide has low surface resistance, There has been a problem that it is difficult to obtain a conductive film having excellent electromagnetic wave shielding properties and also excellent antireflection.
[0005]
In addition, as one method of forming a conductive film having a low surface resistance, a coating solution containing fine metal particles such as Ag is formed on the surface of a substrate using a coating solution for forming a conductive film containing fine metal particles. Has been done. In this method, as a coating liquid for forming a metal fine particle-containing film, a liquid in which colloidal fine metal particles are dispersed in a polar solvent is used. In such a coating liquid, the surface of the metal fine particles is surface-treated with an organic stabilizer such as polyvinyl alcohol, polyvinyl pyrrolidone or gelatin in order to improve the dispersibility of the colloidal metal fine particles. However, a conductive film formed using such a coating solution for forming a metal fine particle-containing film has large grain boundary resistance because the metal fine particles contact each other via a stabilizer in the film, and the surface resistance of the film is high. Sometimes did not drop. For this reason, after film formation, it is necessary to bake at a high temperature of about 400 ° C. to decompose and remove the stabilizer, but when baking at a high temperature to decompose and remove the stabilizer, fusion and aggregation of the metal fine particles occur. In addition, there is a problem that the transparency and haze of the conductive film are reduced. Further, in the case of a cathode ray tube or the like, there is a problem that the tube is deteriorated when exposed to a high temperature.
[0006]
In addition, since the metal fine particles do not originally transmit light unlike the above-described conductive oxide, the conductive film formed using the metal fine particles has transparency depending on the density and thickness of the metal fine particles in the conductive film. There was also a problem of the decrease.
Further, in the conventional transparent conductive film containing fine metal particles such as Ag, the salt water resistance and oxidation resistance are low, the metal is oxidized, or the particles grow by ionization, and in some cases, corrosion may occur. There has been a problem that the conductivity and light transmittance of the coating film are reduced, and the display device lacks reliability.
[0007]
The present inventors have conducted intensive studies to improve the antistatic performance, electromagnetic wave shielding performance, etc., and also the strength (hardness) and scratch strength of the film. As a result, the matrix precursor has a specific functional group. Using a coating solution containing a hydrolyzate of an organosilicon compound to form a transparent coating on the surface of the conductive layer, it was found that cracks did not occur during the formation of the transparent coating, thereby improving the film strength and improving the conductivity. Thus, the present invention has been completed.
[0008]
[Object of the invention]
The present invention, during the formation of a transparent film, without the generation of cracks, and, when the conductive layer is formed in the lower layer, uniform shrinkage including the conductive layer occurs, without the generation of cracks, Provided is a coating liquid for forming a transparent coating capable of forming a transparent coating that improves conductivity as well as film strength, a substrate with a transparent conductive coating using the coating liquid, and a display device including the base. It is an object.
[0009]
Summary of the Invention
The coating solution for forming a transparent film according to the present invention,
(I) a hydrolyzate of tetraalkoxysilane and
(Ii) a matrix precursor comprising a hydrolyzate of an organosilicon compound having at least one functional group selected from the group consisting of an epoxy group, an acrylic group, and a vinyl group, and
The ratio of (ii) in the matrix precursor is in the range of 0.5 to 50% by weight as a solid content.
[0010]
The matrix precursor is preferably a simultaneous hydrolyzate of a mixture of a tetraalkoxysilane and an organosilicon compound having at least one selected from the group consisting of an epoxy group, an acryl group, and a vinyl group.
The matrix precursor further comprises
(Iii) may contain a hydrolyzate of an organosilicon compound having a fluorine-substituted organic group, provided that the ratio of (iii) is in the range of 0.1 to 30% by weight as a solid content in the matrix precursor. Good.
[0011]
The hydrolyzate of the organosilicon compound having a fluorine-substituted organic group is preferably a simultaneous hydrolyzate of a mixture of tetraalkoxysilane and an organosilicon compound having a fluorine-substituted organic group.
The substrate with a transparent conductive film according to the present invention includes a substrate, a transparent conductive fine particle layer containing conductive fine particles on the substrate, and the transparent conductive fine particle layer provided on the transparent conductive fine particle layer. A transparent conductive film-coated substrate comprising a transparent film having a lower refractive index than
It is characterized in that a transparent coating is formed using the coating liquid for forming a transparent coating.
[0012]
The display device according to the present invention includes a front plate formed of the base material with the transparent conductive film, and a transparent conductive film is formed on an outer surface of the front plate.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described specifically.
Coating solution for forming transparent film
The coating solution for forming a transparent film according to the present invention, a matrix precursor,
(I) a hydrolyzate of tetraalkoxysilane and
(Ii) a hydrolyzate of an organosilicon compound having at least one functional group selected from the group consisting of an epoxy group, an acrylic group, and a vinyl group;
Consisting of
The ratio of (ii) in the matrix precursor is in the range of 0.5 to 50% by weight as a solid content.
[0014]
Examples of the tetraalkoxysilane include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, and the like.
Such a hydrolyzate of tetraalkoxysilane (i) can be obtained by, for example, hydrolyzing tetraalkoxysilane in a water-alcohol mixed solvent in the presence of an acid catalyst.
[0015]
The hydrolyzate may be a partial hydrolyzate or a condensation polymer of the hydrolyzate. Such a hydrolyzate of tetraalkoxysilane is conventionally known.
Examples of the organosilicon compound having at least one functional group selected from the group consisting of an epoxy group, an acryl group, and a vinyl group used in the present invention include γ-glycidoxypropyltrimethoxysilane and γ-glycidoxypropylmethyldimethoxysilane. Ethoxysilane, γ-glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxy Examples thereof include propylmethyldiethoxysilane, γ-methacryloxypropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, and vinyltris (β-methoxyethoxy) silane.
[0016]
The hydrolyzate (ii) of the organosilicon compound having at least one functional group selected from the group consisting of these epoxy groups, acrylic groups, and vinyl groups is also similar to (i) the hydrolyzate of tetraalkoxysilane. An organosilicon compound having a functional group such as an epoxy group can be obtained by, for example, hydrolyzing in a water-alcohol mixed solvent in the presence of an acid catalyst. Such a hydrolyzate may be a partial hydrolyzate or a condensation polymer of the hydrolyzate, and a conventionally known hydrolyzate can be used.
[0017]
The molecular weight of the hydrolyzate is preferably in the range of 500 to 20,000, more preferably 600 to 10,000.
When the molecular weight of the hydrolyzate is less than 500, shrinkage is large and cracks easily occur. When the molecular weight of the hydrolyzate exceeds 20,000, adhesion to a substrate is poor and strength may be insufficient.
[0018]
The proportion of (i) in the matrix precursor is preferably in the range of 50 to 99.5% by weight, more preferably 70 to 99% by weight as solids, and the proportion of (ii) in the matrix precursor is solids. Is preferably in the range of 0.5 to 50% by weight, more preferably 1 to 30% by weight.
When a matrix precursor containing such a specific hydrolyzate is used, when a transparent film is formed on the surface of the conductive fine particle layer, the generation of cracks is small, and a coated substrate excellent in conductivity is produced. be able to.
[0019]
When a hydrolyzate having such properties is included as a matrix precursor, cracks are less generated, and when a transparent film is formed, a substrate with a coating having higher conductivity than when simply forming conductive fine particles is formed. Although it is not clear why the material can be formed, such a matrix precursor has a large shrinkage in the vertical direction (that is, the thickness direction) of the coating and, conversely, a small shrinkage in the horizontal direction (that is, the plane direction). It is considered that the shrinkage in the vertical (thickness) direction becomes dominant, and the shrinkage during the formation of the coating film makes it difficult to generate cracks.
[0020]
Furthermore, since such a transparent film shrinks at the time of film formation in the vertical direction, when a conductive fine particle layer is provided as a lower layer, the conductive fine particle layer itself is also shrunk by the shrinkage of the transparent film, and the conductive fine particle layer It is considered that the gap between the conductive fine particles is reduced, whereby the conductive fine particles are densely filled in the conductive fine particle layer, and the conductivity is also improved.
For this reason, even if the thickness of the transparent film is reduced, it is possible to form a transparent film that does not cause cracks and that can increase the conductivity of the conductive fine particle layer.
[0021]
When the ratio of (ii) in the matrix precursor is less than 0.5% by weight as a solid content, cracks may be generated due to large horizontal shrinkage during formation of the transparent film, and the conductive fine particles may be formed. When a transparent coating is formed on the surface of the layer, the effect of improving the conductivity becomes insufficient or the effect of improving the film hardness becomes insufficient because the contraction in the vertical direction is small.
[0022]
When the ratio of (ii) in the matrix precursor exceeds 50% by weight as a solid content, the shrinkage in the horizontal and vertical directions is reduced, so that the effect of improving the conductivity becomes insufficient and the effect of improving the film hardness. Will also be insufficient.
If the proportion of (ii) in the matrix precursor is within the above range as a solid content, the conductivity is improved if the film thickness is the same, so that the transparent conductive fine particle layer having the same surface resistance is a film. The thickness can be reduced, the economic efficiency is improved, and the reflectance is reduced over a wide wavelength range, that is, a substrate with a transparent conductive film having a low luminous reflectance and excellent display performance can be obtained.
[0023]
The matrix precursor used in the present invention may be a simultaneous hydrolyzate of a mixture of a tetraalkoxysilane and an organosilicon compound having at least one functional group selected from the group consisting of an epoxy group, an acrylic group, and a vinyl group. preferable. Such a co-hydrolyzate of the mixture can be obtained by hydrolyzing the mixture in, for example, a water-alcohol mixed solvent in the presence of an acid catalyst. Also in this case, the hydrolyzate may be a partial hydrolyzate or a condensation polymer of the hydrolyzate.
[0024]
When such a simultaneous hydrolyzate is used as a matrix precursor, the film shrinks more uniformly as compared to a case where the hydrolysates are individually mixed, so that the film strength can be increased, and It is possible to maintain high conductivity of the conductive fine particle layer. Although the reason is not clear, it is presumed that simultaneous hydrolysis results in formation of a copolymer of tetraalkoxysilane and epoxy-based organosilicon compound.
[0025]
When the simultaneous hydrolyzate is used as the matrix precursor, the ratio of (ii) in the matrix precursor (that is, selected from the group consisting of epoxy group, acrylic group, and vinyl group contained in the simultaneous hydrolyzate) The ratio of the hydrolyzate of the organosilicon compound having at least one functional group) is in the range of 0.5 to 50% by weight, preferably 1 to 40% by weight as a solid content.
[0026]
Further, the matrix precursor may include (iii) a hydrolyzate of an organosilicon compound having a fluorine-substituted organic group. When a hydrolyzate of an organosilicon compound having a fluorine-substituted organic group is contained, the ratio of (iii) in the matrix precursor is 0.1 to 30% by weight as a solid content, and more preferably 0.5 to 20% by weight. It is preferably within the range.
[0027]
Examples of the organosilicon compound having a fluorine-substituted organic group include 3,3,3-trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoropropyldimethoxysilane, heptadecatrifluorodecylmethyldimethoxysilane, heptadeca Trifluorodecyltrimethoxysilane, heptadecatrifluorotrifluoromethoxysilane, n-perfluorooctylethyltriethoxysilane and the like.
[0028]
The hydrolyzate (iii) of the organosilicon compound having a fluorine-substituted organic group also hydrolyzes the organosilicon compound having a fluorine-substituted organic group in, for example, a water-alcohol mixed solvent in the presence of an acid catalyst. Can be obtained by: Such a hydrolyzate may be a partial hydrolyzate or a condensation polymer of the hydrolyzate, and a conventionally known hydrolyzate can be used.
[0029]
When the ratio of (iii) in the matrix precursor is less than the lower limit as a solid content, the effects of improving stain resistance (suppression of adhesion of fingerprints and the like), water resistance, and scratch strength become insufficient. If the ratio of (iii) in the matrix precursor exceeds the upper limit as a solid content, the film hardness (pencil hardness, steel wool hardness) may decrease.
The matrix precursor (iii) used in the present invention is preferably a simultaneous hydrolyzate of a mixture of tetraalkoxysilane and an organosilicon compound having a fluorine-substituted organic group. A simultaneous hydrolyzate of such a mixture is obtained by hydrolyzing a mixture of tetraalkoxysilane and an organosilicon compound having a fluorine-substituted organic group, for example, in a water-alcohol mixed solvent in the presence of an acid catalyst. Can be. Also in this case, the hydrolyzate may be a partial hydrolyzate or a condensation polymer of the hydrolyzate.
[0030]
When all of the components (i), (ii) and (iii) are thus contained, a simultaneous hydrolyzate of (i) and (ii) and (iii) A mixture of the hydrolysates of (i) and (ii) and a mixture of the simultaneous hydrolysates of (ii) and (iii), or (ii) It may be a mixture of the simultaneous hydrolyzate of (iii) and the hydrolyzate of (i), or may be a simultaneous hydrolyzate of (i), (ii) and (iii).
When the co-hydrolysate is used, the ratio of the amount of the organosilicon compound having a fluorine-substituted organic group to the total amount of the organosilicon compound in the total amount of the organosilicon compound is such that the ratio of (iii) in the matrix precursor is 0.1 to 10% by weight as solid content. It is more preferable to use it in the range of 0.5 to 5% by weight.
[0031]
When such a simultaneous hydrolyzate is used as the matrix precursor (iii), shrinkage of the film occurs uniformly, a high effect of improving conductivity and an effect of improving film hardness are obtained, and a high water resistance and high scratch strength are obtained. Can be.
Such a hydrolyzate of an organosilicon compound having a fluorine-substituted organic group is also obtained by hydrolyzing an organosilicon compound having a fluorine-substituted organic group, for example, in a water-alcohol mixed solvent in the presence of an acid catalyst. be able to. Such a hydrolyzate may be a partial hydrolyzate or a condensation polymer of the hydrolyzate, and a conventionally known hydrolyzate can be used.
[0032]
The coating liquid for forming a transparent film according to the present invention has an average particle diameter of 5 to 300 nm, preferably 10 to 200 nm, and a refractive index of 1.28 to 1.42, and more preferably 1.28 to 1.40. May be included.
When the refractive index of the low-refractive-index particles is within the above range, the obtained substrate with a transparent conductive film has low bottom reflectance and luminous reflectance, and can exhibit excellent antireflection performance.
[0033]
The amount of the low-refractive-index particles used is such that the content of the low-refractive-index particles in the transparent coating is in the range of 10 to 90% by weight, preferably 20 to 80% by weight in terms of solid content. desirable.
The low refractive index particles are not particularly limited as long as the average particle diameter and the refractive index are in the above ranges, and conventionally known particles can be used. For example, a composite oxide sol disclosed in Japanese Patent Application Laid-Open No. Hei 7-133105 filed by the present applicant and a porous composite oxide particle having a coating layer disclosed in WO 00/37359 can be suitably used.
[0034]
Furthermore, the coating liquid for forming a transparent film of the present invention contains fine particles composed of a low refractive index material such as magnesium fluoride, a small amount of conductive fine particles and / or a small amount so as not to impair the transparency and antireflection performance of the transparent film. Alternatively, an additive such as a dye or a pigment may be included.
In the present invention, a coating film formed by applying such a coating liquid for forming a transparent film is heated at 150 ° C. or more during or after drying, or an uncured film is coated with ultraviolet light having a wavelength shorter than visible light. Alternatively, it may be irradiated with an electromagnetic wave such as an electron beam, X-ray, or γ-ray, or may be exposed to an active gas atmosphere such as ammonia. By doing so, the curing of the film forming component is promoted, and the hardness of the obtained transparent film is increased.
[0035]
Substrate with transparent conductive coating
Next, the substrate with a transparent conductive film according to the present invention will be specifically described.
In the substrate with a transparent conductive film according to the present invention, a transparent film composed of conductive fine particles having an average particle diameter of 1 to 200 nm is formed on a substrate such as a film, a sheet, or another molded body made of glass, plastic, ceramic or the like. A conductive fine particle layer, and a transparent coating having a lower refractive index than the transparent conductive fine particle layer is formed on the transparent conductive fine particle layer, and the transparent coating is formed from the coating liquid for forming a transparent coating. .
[0036]
Transparent conductive fine particle layer
[Conductive fine particles]
As the conductive fine particles used in the present invention, the surface resistance of the obtained transparent conductive film is approximately 10%.2-108There is no particular limitation as long as it is within the range of Ω / □, and conventionally known conductive fine particles can be used.
[0037]
Examples of the conductive fine particles include tin oxide, tin oxide doped with Sb, F or P, indium oxide, indium oxide doped with Sn or F, antimony oxide, and oxide conductive fine particles such as lower titanium oxide. No.
It is preferable that the oxide-based conductive fine particles have an average particle diameter in the range of 1 to 200 nm, preferably 2 to 150 nm.
[0038]
When the average particle diameter is less than 1 nm, the particles are too small and tend to agglomerate, and the surface resistance of the particle layer rapidly increases, so that a coating having a low resistance value that can achieve the object of the present invention. May not be obtained. On the other hand, if the average particle size exceeds 200 nm, the contact between particles is reduced due to the large size of the particles, and sufficient conductivity may not be obtained. Further, the film strength and the adhesion to the substrate may be reduced, and the haze of the obtained transparent conductive film may be increased.
[0039]
Further, as the conductive fine particles, conventionally known metal fine particles can be used, and the metal fine particles may be metal fine particles composed of a single component or composite metal fine particles containing two or more metal components. Good.
Specifically, at least one kind or two or more kinds selected from metals such as Au, Ag, Pd, Pt, Rh, Ru, Cu, Fe, Ni, Co, Sn, Ti, In, Al, Ta, and Sb. Metal fine particles made of a metal may, for example, be mentioned.
[0040]
Preferred combinations of two or more metals constituting the metal fine particles include Au-Cu, Ag-Pt, Ag-Pd, Au-Pd, Au-Rh, Pt-Pd, Pt-Rh, Fe-Ni, Ni-Pd, Fe-Co, Cu-Co, Ru-Ag, Au-Cu-Ag, Ag-Cu-Pt, Ag-Cu-Pd, Ag-Au-Pd, Au-Rh-Pd, Ag-Pt- Pd, Ag-Pt-Rh, Fe-Ni-Pd, Fe-Co-Pd, Cu-Co-Pd and the like can be mentioned.
[0041]
It is desirable that the average particle diameter of the metal fine particles is in the range of 1 to 200 nm, preferably 2 to 70 nm. When the particle size falls within such a range, the formed conductive layer becomes transparent. On the other hand, when the average particle size of the metal fine particles exceeds 200 nm, the absorption of light by the metal increases, the light transmittance of the particle layer decreases, and the haze increases. Therefore, when the coated substrate is used, for example, as a front plate of a cathode ray tube, the resolution of a displayed image may be reduced. Further, when the average particle diameter of the metal fine particles is less than 1 nm, the surface resistance of the particle layer rapidly increases, so that it is not possible to obtain a coating having a low resistance value that can achieve the object of the present invention. is there.
[0042]
Such a conductive fine particle layer can be prepared using a coating liquid for forming a conductive film.
The coating liquid for forming a conductive film contains the above conductive fine particles and a polar solvent.
Examples of the polar solvent used in the coating solution for forming a conductive film include water; methanol, ethanol, n-propyl alcohol, i-propyl alcohol, butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol, and Alcohols such as xylene glycol; esters such as methyl acetate, ethyl acetate; diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, isopropyl glycol, etc. Ethers; ketones such as acetone, methyl ethyl ketone, acetylacetone, and acetoacetate Etc., and the like. These may be used alone or as a mixture of two or more.
[0043]
When a coating liquid containing oxide-based conductive fine particles is used, an antistatic effect and an electromagnetic wave shielding effect are exhibited.2-108A transparent conductive layer having a surface resistance of about Ω / □ can be formed. When the conductive layer is formed using the oxide-based conductive fine particles, the concentration of the oxide-based conductive fine particles in the coating solution for forming a conductive film is 0.2 to 5% by weight, preferably 1 to 5% by weight. % Is desirable.
[0044]
When the amount of the oxide-based conductive fine particles in the coating liquid for forming a conductive film is less than the above lower limit, the film thickness of the obtained film is small, and thus sufficient conductivity may not be obtained. On the other hand, if the oxide-based conductive fine particles exceed the above-mentioned upper limit, the film thickness is increased, the haze of the film is deteriorated, and the appearance is also deteriorated.
When a coating liquid containing metal fine particles is used instead of the oxide-type conductive fine particles, an electromagnetic wave shielding effect is exhibited.2-103A transparent conductive layer having a surface resistance of about Ω / □ can be formed. When the conductive layer for electromagnetic shielding is formed using metal fine particles, the metal fine particles have a concentration of 0.05 to 5% by weight, preferably 0.1 to 2% by weight in the coating solution for forming a conductive film. Desirably, it is included in an amount of weight percent.
[0045]
When the amount of the fine metal particles in the coating liquid for forming a conductive film is less than 0.05% by weight, the film thickness of the obtained film becomes small, and thus sufficient conductivity may not be obtained. On the other hand, if the content of the metal fine particles exceeds 5% by weight, the film thickness is increased, the light transmittance is reduced, the transparency is deteriorated, and the appearance is also deteriorated.
Further, the coating liquid for forming a conductive film may contain a colorant, a matrix precursor, an organic stabilizer, and the like, as necessary.
[0046]
Examples of the coloring agent include fine particle carbon black, titanium black, a dye, and a pigment. When such a coloring agent is contained, a display device having excellent contrast can be obtained.
Further, the coating solution for forming a conductive film may contain a matrix precursor. As such a matrix precursor, those composed of silica are preferable, and specifically, a silicic acid obtained by subjecting a hydrolyzed polycondensate of an organosilicon compound such as alkoxysilane or an alkali metal silicate aqueous solution to alkali removal is used. Examples include polycondensates and coating resins. The matrix forming component may be contained in an amount of 0.01 to 0.5 part by weight, preferably 0.03 to 0.3 part by weight, per solid part of the conductive fine particles. Such a matrix precursor functions as a binder for the conductive fine particles after the film is formed.
[0047]
Organic stabilizers include polyvalent carboxylic acids such as gelatin, polyvinyl alcohol, polyvinylpyrrolidone, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, and citric acid. And a salt thereof, a heterocyclic compound or a mixture thereof.
Such an organic stabilizer is particularly effective when metal fine particles are contained, and is contained in an amount of 0.005 to 0.5 part by weight, preferably 0.01 to 0.2 part by weight, per 1 part by weight of the metal fine particles. It should just be. When the amount of the organic stabilizer is less than 0.005 parts by weight, sufficient dispersibility of the metal fine particles cannot be obtained, and when the amount exceeds 0.5 parts by weight, conductivity may be inhibited.
[0048]
The transparent conductive fine particle layer forms the transparent conductive fine particle layer on the substrate by applying the above-mentioned coating liquid for forming a transparent conductive film on a substrate and drying it.
As a method of forming the transparent conductive fine particle layer, for example, a coating solution for forming a transparent conductive film was applied on a substrate by a method such as dipping method, spinner method, spray method, roll coater method and flexographic printing method. Thereafter, drying is performed at a temperature in the range of ordinary temperature to about 90 ° C.
[0049]
When the matrix precursor as described above is contained in the coating liquid for forming a transparent conductive film, a curing treatment of the matrix precursor may be performed.
For example, a film formed by applying a coating solution for forming a transparent conductive film is heated at 150 ° C. or more at the time of drying or after drying, or an uncured film is exposed to ultraviolet rays or electron beams having a wavelength shorter than visible light. , X-rays, γ-rays or the like, or may be exposed to an active gas atmosphere such as ammonia. In this case, the curing of the film-forming component is promoted, and the hardness of the obtained film is increased.
[0050]
The thickness of the transparent conductive fine particle layer formed by the method described above is preferably in the range of 5 to 200 nm, more preferably in the range of 10 to 150 nm. If the thickness is in this range, the layer has excellent antistatic properties and electromagnetic shielding properties. A substrate with a transparent conductive film can be obtained. When the thickness of the transparent conductive fine particle layer is less than 5 nm, even if the transparent coating is formed using the transparent coating forming liquid, there is little room for shrinkage of the transparent conductive fine particle layer. And the effect of improving the film hardness may not be sufficiently obtained.
[0051]
If the thickness of the transparent conductive fine particle layer exceeds 200 nm, the light transmittance may decrease, and voids may be easily formed in the film, and the haze may increase.
Transparent coating
In the substrate with a transparent conductive film according to the present invention, a transparent film having a lower refractive index than the transparent conductive fine particle layer is formed on the transparent conductive fine particle layer.
[0052]
The transparent coating is formed by applying the coating liquid for forming a transparent coating by a wet thin film forming method such as a dipping method, a spinner method, a spray method, a roll coater method, and a flexographic printing method, and drying it as necessary.
At this time, the thickness of the transparent coating is preferably in the range of 50 to 300 nm, and more preferably in the range of 80 to 200 nm.
[0053]
When the thickness of the transparent coating exceeds the upper limit of the range, cracks may occur in the coating, the strength of the coating may be reduced, and the anti-reflection performance may be insufficient because the coating is too thick. . If the thickness of the transparent coating is less than the lower limit, the strength and antireflection performance of the coating may be poor.
As described above, the transparent coating formed by applying such a coating liquid for forming a transparent coating is heated at 150 ° C. or higher during drying or after drying, or the uncured coating has a wavelength smaller than that of visible light. Irradiation with electromagnetic waves such as short ultraviolet rays, electron beams, X-rays, and γ-rays, or exposure to an active gas atmosphere such as ammonia may be performed. By doing so, the curing of the film forming component is promoted, and the hardness of the obtained transparent film is increased.
[0054]
Display device
The substrate with a transparent conductive film according to the present invention has approximately 10 parts required for antistatic and electromagnetic shielding.2-108It has a surface resistance in the range of Ω / □, has excellent transparency, and has sufficient antireflection performance in the visible light region and the near infrared region, and is suitably used as a front plate of a display device.
[0055]
The display device according to the present invention is a device for displaying an image electrically, such as a cathode ray tube (CRT), a fluorescent display tube (FIP), a plasma display (PDP), a liquid crystal display (LCD), and the like. A front plate made of a transparent base material with a transparent conductive film.
When a conventional display device having a front panel is operated, the transparent conductive film is easily damaged due to insufficient film hardness, scratch strength, and the like, and haze is easily generated, so that the screen may be difficult to see. .
[0056]
In the display device according to the present invention, the front plate is formed of a substrate with a transparent conductive film having no cracks and excellent film strength, and furthermore, oils and fats, fingerprints and the like are less likely to adhere, and thus oils and the like Since no wiping or the like is required, no scratch is generated, so that the display performance is excellent, and further, it is possible to prevent charging, and to effectively shield electromagnetic waves and electromagnetic fields generated by emission of the electromagnetic waves.
[0057]
Further, when reflected light is generated on the front panel of the display device, the reflected light makes it difficult to view a displayed image. However, in the display device according to the present invention, the front panel has sufficient antireflection performance in the visible light region and the near infrared region. , The reflected light can be effectively prevented.
[0058]
【The invention's effect】
According to the present invention, a hydrolyzate of an organosilicon compound having a functional group selected from an epoxy group, an acryl group, and a vinyl group, together with a tetraalkoxysilane hydrolyzate as a matrix precursor is required as a matrix precursor. It contains a hydrolyzate of a fluorine-substituted organic group-containing organosilicon compound depending on the conditions, so there is no crack at the time of film formation, excellent film strength and conductivity, water resistance, scratch strength, and oils such as fingerprints A coating solution for forming a transparent film capable of forming a substrate with a transparent conductive film capable of preventing contamination, a substrate having a transparent conductive film having a transparent film formed using the coating solution, and a display device having the substrate Can be provided.
[0059]
Further, since the transparent coating has a lower refractive index than the conductive fine particle layer, it is possible to provide a substrate with a transparent conductive coating having excellent antireflection performance.
Furthermore, if such a substrate with a transparent conductive film is used as a front plate of a display device, a display having excellent antistatic performance, electromagnetic shielding performance, antireflection performance, etc., and further excellent durability, water resistance, etc. An apparatus can be provided.
[0060]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
[0061]
[Production Examples]
a) Preparation of conductive fine particle dispersion
Dispersions of the conductive fine particles used in this example and comparative examples were prepared as follows.
S n Doped indium oxide (ITO) Fine particles (P-1) Preparation of dispersion
A solution obtained by dissolving 79.9 g of indium nitrate in 686 g of water and a solution obtained by dissolving 12.7 g of potassium stannate in a potassium hydroxide solution having a concentration of 10% by weight were prepared. Was added to 1000 g of pure water maintained at 50 ° C. over 2 hours. During this time, the pH in the system was maintained at 11. The Sn-doped indium oxide hydrate dispersion was filtered and washed from the obtained Sn-doped indium oxide hydrate dispersion, and then dispersed again in water to disperse a metal oxide precursor hydroxide having a solid concentration of 10% by weight. A liquid was prepared. This dispersion was spray-dried at a temperature of 100 ° C. to prepare a metal oxide precursor hydroxide powder. The powder was heat-treated at 550 ° C. for 2 hours in a nitrogen gas atmosphere.
[0062]
This was dispersed in ethanol to a concentration of 30% by weight, and the pH was adjusted to 3.5 with an aqueous nitric acid solution. Was prepared. Next, ethanol was added to prepare a Sn-doped indium oxide fine particle (P-1) dispersion having a concentration of 20% by weight.
The average particle diameter of the obtained conductive metal oxide particles (P-1) was measured as follows.
[0063]
Table 1 shows the results.
For the conductive fine particles, a TEM photograph was taken and the particle diameter was measured for 20 particles, and the average value is shown in Table 1 as the average particle diameter.
S b Doped tin oxide (ATO) Fine particles (P-2) Preparation of dispersion
A solution was prepared by dissolving 57.7 g of tin chloride and 7.0 g of antimony chloride in 100 g of methanol. The prepared solution was added to 1000 g of pure water with stirring at 90 ° C. for 4 hours to conduct hydrolysis, and the formed precipitate was separated by filtration and washed, and then dispersed again in water to obtain a solid content of 10% by weight. Was prepared. This dispersion was spray-dried at a temperature of 100 ° C. to prepare a metal oxide precursor hydroxide powder. The powder was heat-treated at 550 ° C. for 2 hours in a nitrogen gas atmosphere. 30 g of this powder was added to 70 g of an aqueous potassium hydroxide solution (containing 3.0 g as KOH), and the mixture was pulverized with a sand mill for 3 hours while maintaining the mixture at 30 ° C. to prepare a sol. Next, this sol was treated with an ion exchange resin, dealkalized, and pure water was added to prepare a dispersion of Sb-doped tin oxide fine particles (P-2) having a concentration of 20% by weight. The average particle size was measured and the results are shown in the table.
[0064]
Silver palladium alloy fine particles (P-3) Preparation of a dispersion of
To 100 g of pure water, 0.01 parts by weight was added in advance to 1 part by weight of alloy fine particles from which trisodium citrate was obtained. The concentration was 10% by weight in terms of metal, and the weight ratio of silver to palladium was 8%. : An aqueous solution of silver nitrate and palladium nitrate was added so as to obtain an aqueous solution of ferrous sulfate in an equimolar number to the total mole number of silver nitrate and palladium nitrate, and the mixture was stirred for 1 hour under a nitrogen atmosphere to obtain a silver-palladium alloy. A dispersion of fine particles was obtained. The resulting dispersion was washed with a centrifuge to remove impurities and then dispersed in water to prepare a dispersion of silver palladium alloy fine particles (P-3) having a concentration of 4% by weight. The average particle diameter of the silver-palladium alloy fine particles was 8 nm.
[0065]
Embodiment 1
Coating solution for forming transparent conductive film (C-1) Preparation of
The fine particle (P-1) dispersion obtained above was mixed with a mixed solvent of ethanol / n-propanol / ethyl cellosolve / isopropyl glycol / diacetone alcohol (weight ratio of 68: 12: 8: 8: 4), and the mixture was made conductive. A coating liquid (C-1) for forming a transparent conductive film having a fine particle concentration of 3.5% by weight was prepared.
[0066]
Coating solution for forming transparent film (B-1) Preparation of
Ethyl silicate (SiO 2) as tetraalkoxysilane2: 28.8% by weight) 31.3 g, a mixed solution of 3.9 g of γ-glycidoxypropyltrimethoxysilane (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.) as an epoxy-based organosilicon compound and 31.9 g of ethanol Then, a mixed solution of concentrated hydrochloric acid (1.0 g) and pure water (31.9 g) was stirred at 60 ° C. for 2 hours to prepare a mixed solution (M-1) containing a matrix precursor having a solid content concentration of 11.6% by weight.
[0067]
Next, a mixed solvent of ethanol / n-propanol / ethyl cellosolve / isopropyl glycol / diacetone alcohol (72: 12: 6: 6: 4 weight ratio) was added to the mixed solution (M-1) to give a solid concentration of 1. 5% by weight of a coating liquid (B-1) for forming a transparent film was prepared.
Manufacture of panel glass with transparent conductive coating
While maintaining the surface of the CRT panel glass (17 ″) at 40 ° C., the above-mentioned coating solution (C-1) for forming a transparent conductive film was applied by a spinner method at 100 rpm for 90 seconds and dried. The thickness of the conductive layer was measured, and the results are shown in the table.
[0068]
Next, the coating liquid (B-1) for forming a transparent film is applied on the transparent conductive fine particle layer thus formed at 100 rpm for 90 seconds by the spinner method in the same manner, and dried. For 30 minutes to obtain a substrate with a transparent conductive film. At this time, the transparent film was formed to have a thickness of 50 nm.
The surface resistance of these substrates with a transparent conductive film was measured with a surface resistance meter (manufactured by Mitsubishi Yuka Co., Ltd .: LORESTA), and the haze was measured with a haze computer (manufactured by Nippon Denshoku Co., Ltd .: 3000A). . The reflectance is measured using a reflectance meter (MCPD-2000, manufactured by Otsuka Electronics Co., Ltd.), and the reflectance at the wavelength having the lowest reflectance in the wavelength range of 400 to 700 nm is defined as the bottom reflectance, and the wavelength is 400 to 400 nm. The average reflectance at 700 nm was determined as the luminous reflectance, and the results are shown in Table 1.
[0069]
The eraser hardness, scratch hardness and fingerprint adhesion were evaluated. The results are shown in Table 1.
Eraser hardness
An eraser (manufactured by Lion Corporation: 1K) was set on the transparent coating of the base material with a transparent conductive coating, and a load of 1 ± 0.1 kg was applied, and reciprocated 25 times with a stroke of about 25 mm. The shavings generated at this time were removed with high-pressure air each time.
[0070]
After the eraser was reciprocated 25 times, the surface was visually observed at a distance of 45 cm from the surface of the transparent film under illumination of 1000 lux.
A: No scratch is observed.
B: The reflected color changes under a fluorescent lamp (from purple to red).
C: Scratches are observed without a reflected color under a fluorescent lamp.
[0071]
D: The base (substrate) is visible.
Scratch hardness
A standard test needle (manufactured by Rockwell Co., Ltd .: hardness HRC-60, ψ: 0.5 mm) is set on the transparent coating of the substrate with a transparent conductive coating, and a load of 1 ± 0.3 kg is applied, and Sweep was performed with a stroke of 40 mm. After the sweep, the surface was observed at a distance of 45 cm from the surface of the coating under 1,000-lux illumination.
[0072]
A: No scratch is observed.
B: Muscle streak is observed intermittently.
C: Shallow continuous streak is observed.
D: Clearly continuous striations are observed.
Fingerprint adhesion
A finger was strongly pressed against the surface of the transparent film of the substrate with a transparent conductive film to attach a fingerprint. Then, after wiping five times with a dry cloth, the change in the color tone of the film was observed and observed. The results were evaluated according to the following criteria, and the results are shown in Table 1.
[0073]
:: No change in color was observed. (Fingerprints did not adhere or could be easily removed.)
Δ: Color change is slightly observed.
×: A change in color is clearly observed. (Interference color is recognized.)
[0074]
Embodiment 2
Coating solution for forming transparent film (B-2) Preparation of
In the same manner as in Example 1, except that 0.8 g of γ-glycidoxypropyltrimethoxysilane (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.) was used as the epoxy-based organosilicon compound, a coating solution for forming a transparent film ( B-2) was prepared.
Manufacture of panel glass with transparent conductive coating
The coating liquid (C-1) for forming a transparent conductive film was applied and dried in the same manner as in Example 1.
[0075]
Next, the coating liquid (B-2) for forming a transparent film is applied on the transparent conductive fine particle layer by the spinner method at 100 rpm for 90 seconds in the same manner, dried, and baked at 160 ° C. for 30 minutes to obtain a transparent film. A substrate with a conductive coating was obtained. At this time, the transparent coating was formed to have a thickness of 50 nm.
The resulting substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion, and the results are shown in Table 1.
[0076]
Embodiment 3
Coating solution for forming transparent film (B-3) Preparation of
In the same manner as in Example 1, except that 7.9 g of γ-glycidoxypropyltrimethoxysilane (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.) was used as the epoxy-based organosilicon compound, a coating solution for forming a transparent film ( B-3) was prepared.
Manufacture of panel glass with transparent conductive coating
The coating liquid (C-1) for forming a transparent conductive film was applied and dried in the same manner as in Example 1.
[0077]
Next, on the transparent conductive fine particle layer, similarly, a coating liquid (B-3) for forming a transparent film is applied at 100 rpm for 90 seconds by a spinner method, dried, and baked at 160 ° C. for 30 minutes to obtain a transparent film. A substrate with a conductive coating was obtained. At this time, the transparent coating was formed to have a thickness of 50 nm.
The resulting substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion, and the results are shown in the table.
[0078]
Embodiment 4
Coating solution for forming transparent film (B-4) Preparation of
A mixed solution (M-1) containing a matrix precursor was prepared in the same manner as in Example 1. Separately, ethyl orthosilicate (SiO2: 28.8% by weight) in a mixed solution of 1.6 g of heptadecatrifluorotrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-7803) as a fluorine-substituted organic group-containing organosilicon compound and 251 g of ethanol. A mixed solution of 1.0 g of concentrated nitric acid and 49.9 g of pure water was stirred at 60 ° C. for 2 hours to prepare a mixed solution (M-2) containing a matrix precursor having a solid content of 2% by weight.
[0079]
Next, the mixed solution (M-1) and the mixed solution (M-2) are mixed, and ethanol / n-propanol / ethyl cellosolve / isopropyl glycol / diacetone alcohol (72: 12: 6: 6: 4 weight ratio). Was added to prepare a coating solution (B-4) for forming a transparent film.
Manufacture of panel glass with transparent conductive coating
The coating liquid (C-1) for forming a transparent conductive film was applied and dried in the same manner as in Example 1.
[0080]
Next, the coating liquid (B-4) for forming a transparent film is applied on the transparent conductive fine particle layer by the spinner method at 100 rpm for 90 seconds in the same manner, dried, and baked at 160 ° C. for 30 minutes to form a transparent film. A substrate with a conductive coating was obtained. At this time, the transparent coating was formed to have a thickness of 50 nm.
The resulting substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion, and the results are shown in Table 1.
[0081]
Embodiment 5
Coating solution for forming transparent film (B-5) Preparation of
In the same manner as in Example 4, except that 8.2 g of heptadecatrifluorotrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-7803) was used as the fluorine-substituted organic group-containing organosilicon compound, a coating solution for forming a transparent film ( B-5) was prepared.
Manufacture of panel glass with transparent conductive coating
The coating liquid (C-1) for forming a transparent conductive film was applied and dried in the same manner as in Example 1.
[0082]
Next, on the transparent conductive fine particle layer, similarly, a coating liquid (B-5) for forming a transparent film is applied at 100 rpm for 90 seconds by a spinner method, dried, and baked at 160 ° C. for 30 minutes to obtain a transparent film. A substrate with a conductive coating was obtained. At this time, the transparent coating was formed to have a thickness of 50 nm.
The resulting substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion, and the results are shown in Table 1.
[0083]
Embodiment 6
Coating solution for forming transparent conductive film (C-2) Preparation of
The dispersion liquid of the fine particles (P-2) obtained above is mixed with a mixed solvent of ethanol / n-propanol / ethyl cellosolve / isopropyl glycol / diacetone alcohol (weight ratio of 68: 12: 8: 8: 4) to obtain a conductive property. A coating liquid (C-2) for forming a transparent conductive film having a fine particle concentration of 3.5% by weight was prepared.
Manufacture of panel glass with transparent conductive coating
The coating liquid (C-2) for forming a transparent conductive film was applied and dried in the same manner as in Example 1.
[0084]
Next, on the transparent conductive fine particle layer, similarly, a coating liquid for forming a transparent film (B-4) prepared in the same manner as in Example 1 under the conditions of 100 rpm and 90 seconds by a spinner method is applied and dried. And baked at 160 ° C. for 30 minutes to obtain a substrate with a transparent conductive film. At this time, the transparent coating was formed to have a thickness of 50 nm.
The resulting substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion, and the results are shown in Table 1.
[0085]
Embodiment 7
Coating solution for forming transparent conductive film (C-3) Preparation of
The fine particle (P-3) dispersion liquid obtained above is mixed with a mixed solvent of ethanol / n-propanol / ethyl cellosolve / isopropyl glycol / diacetone alcohol (weight ratio of 68: 12: 8: 8: 4), and the mixture is made conductive. A coating liquid (C-3) for forming a transparent conductive film having a fine particle concentration of 0.35% by weight was prepared.
Manufacture of panel glass with transparent conductive coating
The coating liquid (C-3) for forming a transparent conductive film was applied and dried in the same manner as in Example 1.
[0086]
Next, the coating liquid (B-4) for forming a transparent film is applied on the transparent conductive fine particle layer by the spinner method at 100 rpm for 90 seconds in the same manner, dried, and baked at 160 ° C. for 30 minutes to form a transparent film. A substrate with a conductive coating was obtained. At this time, the transparent coating was formed to have a thickness of 50 nm.
The resulting substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion, and the results are shown in Table 1.
[0087]
Embodiment 8
Coating solution for forming transparent film (B-8) Preparation of
A transparent coating was prepared in the same manner as in Example 4, except that 1.6 g of n-perfluorooctylethyltriethoxysilane (AY43-158E, manufactured by Toray Dow Corning Silicone Co., Ltd.) was used as the fluorine-substituted organic group-containing organosilicon compound. A coating liquid for formation (B-8) was prepared.
Manufacture of panel glass with transparent conductive coating
The coating liquid (C-1) for forming a transparent conductive film was applied and dried in the same manner as in Example 1.
[0088]
Next, a coating liquid (B-8) for forming a transparent film is applied on the transparent conductive fine particle layer by the spinner method at 100 rpm for 90 seconds in the same manner, dried, and baked at 160 ° C. for 30 minutes to form a transparent film. A substrate with a conductive coating was obtained. At this time, the thickness of the transparent film was formed to be 40 nm.
The resulting substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion, and the results are shown in Table 1.
[0089]
Embodiment 9
Coating solution for forming transparent film (B-9) Preparation of
In the same manner as in Example 4, except that 4.1 g of acrylic γ-methacryloxypropyltrimethoxysilane (KMB-403 manufactured by Shin-Etsu Chemical Co., Ltd.) was used as the epoxy-based organosilicon compound, the coating for forming a transparent film was performed in the same manner. Liquid (B-9) was prepared.
Manufacture of panel glass with transparent conductive coating
The coating liquid (C-1) for forming a transparent conductive film was applied and dried in the same manner as in Example 1.
[0090]
Next, the coating liquid (B-9) for forming a transparent film is applied and dried on the transparent conductive fine particle layer in the same manner at 100 rpm for 90 seconds by a spinner method, and baked at 160 ° C. for 30 minutes to form a transparent film. A substrate with a conductive coating was obtained. At this time, the transparent coating was formed to have a thickness of 50 nm.
The resulting substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion, and the results are shown in Table 1.
[0091]
Embodiment 10
Coating solution for forming transparent film (B-10) Preparation of
Methyl orthosilicate (SiO 2) as tetraalkoxysilane2: 51% by weight) in a mixed solution of 3.9 g of γ-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-403) as an epoxy-based organosilicon compound and 45.5 g of ethanol. A mixed solution of 1.0 g of concentrated hydrochloric acid and 31.9 g of pure water was stirred at 60 ° C. for 2 hours to prepare a mixed solution (M-3) containing a matrix precursor having a solid content concentration of 11.6% by weight.
[0092]
Separately, methyl orthosilicate (SiO2: 51% by weight), and a mixed solution of 1.6 g of heptadecafluorodecyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-7803) as a fluorine-substituted organic group-containing organosilicon compound and 263.6 g of ethanol. A mixed solution of 1.0 g of hydrochloric acid and 49.9 g of pure water was stirred at 60 ° C. for 2 hours to form2Concentration 1.5HeavyA mixed solution (M-4) containing an amount of the matrix precursor was prepared.
[0093]
Next, the mixed solution (M-3) and the mixed solution (M-4) were mixed, and ethanol / n-propanol / ethyl cellosolve / isopropyl glycol / diacetone alcohol (72: 12: 6: 6: 4 weight ratio). Was added to prepare a coating liquid (B-10) for forming a transparent film having a solid content of 1.5% by weight.
Manufacture of panel glass with transparent conductive coating
The coating liquid (C-1) for forming a transparent conductive film was applied and dried in the same manner as in Example 1.
[0094]
Next, the coating liquid (B-10) for forming a transparent film is applied and dried on the transparent conductive fine particle layer in the same manner at 100 rpm for 90 seconds by a spinner method, and dried and baked at 160 ° C. for 30 minutes. A substrate with a conductive coating was obtained. At this time, the transparent coating was formed to have a thickness of 50 nm.
The resulting substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion, and the results are shown in the table.
[0095]
Embodiment 11
Coating solution for forming transparent film (B-11) Preparation of
In the same manner as in Example 10, except that 4.1 g of acrylic γ-methacryloxypropyltrimethoxysilane (KMB-503, manufactured by Shin-Etsu Chemical Co., Ltd.) was used as the epoxy-based organosilicon compound, the coating for forming a transparent film was performed in the same manner. Liquid (B-11) was prepared.Manufacture of panel glass with transparent conductive coating
The coating liquid (C-1) for forming a transparent conductive film was applied and dried in the same manner as in Example 1.
[0096]
Next, on the transparent conductive fine particle layer, similarly, a coating liquid (B-11) for forming a transparent film is applied at 100 rpm for 90 seconds by a spinner method, dried, and baked at 160 ° C. for 30 minutes to obtain a transparent film. A substrate with a conductive coating was obtained. At this time, the transparent coating was formed to have a thickness of 50 nm.
The resulting substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion, and the results are shown in Table 1.
[0097]
[Comparative Example 1]
Coating solution for forming transparent film (RB-1) Preparation of
Ethyl silicate (SiO 2) as tetraalkoxysilane2: 28.8% by weight) In a mixed solution of 34.7 g and 132.4 g of ethanol, a mixed solution of 1.0 g of concentrated hydrochloric acid and 31.9 g of pure water was stirred at 60 ° C. for 2 hours to obtain SiO 2.2A mixed solution (RM-1) containing a matrix precursor having a concentration of 5% by weight was prepared.
[0098]
Next, a mixed solvent of ethanol / n-propanol / ethyl cellosolve / isopropyl glycol / diacetone alcohol (72: 12: 6: 6: 4 weight ratio) was added to the mixed solution (RM-1), and coating for forming a transparent film was performed. Liquid (RB-1) was prepared.
Manufacture of panel glass with transparent conductive coating
The coating liquid (C-1) for forming a transparent conductive film was applied and dried in the same manner as in Example 1.
[0099]
Next, on the transparent conductive fine particle layer, similarly, a coating liquid (RB-1) for forming a transparent film is applied at 100 rpm for 90 seconds by a spinner method, dried and baked at 160 ° C. for 30 minutes to obtain a transparent film. A substrate with a conductive coating was obtained. At this time, the transparent coating was formed to have a thickness of 50 nm.
The resulting substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion, and the results are shown in Table 1.
[0100]
[Comparative Example 2]
Coating solution for forming transparent film (RB-2) Preparation of
A mixed solution of 39.4 g of γ-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-403) as an epoxy-based organosilicon compound and 193.3 g of ethanol was mixed with 1.0 g of concentrated hydrochloric acid and pure water. 31.9 g of the mixed solution was stirred at 50 ° C. for 24 hours to prepare a mixed solution (M-6) containing a matrix precursor having a solid concentration of 10% by weight.
[0101]
Next, a mixed solvent of ethanol / n-propanol / ethyl cellosolve / isopropyl glycol / diacetone alcohol (72: 12: 6: 6: 4 weight ratio) was added to the mixed solution (M-6) to obtain a solid content concentration of 1. A coating liquid (RB-2) for forming a transparent film of 5% by weight was prepared.
Manufacture of panel glass with transparent conductive coating
The coating liquid (C-1) for forming a transparent conductive film was applied and dried in the same manner as in Example 1.
[0102]
Next, on the transparent conductive fine particle layer, similarly, a coating liquid (RB-2) for forming a transparent film is applied at 100 rpm for 90 seconds by a spinner method, dried, and baked at 160 ° C. for 30 minutes to obtain a transparent film. A substrate with a conductive coating was obtained. At this time, the thickness of the transparent film was formed to be 40 nm.
The resulting substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion, and the results are shown in Table 1.
[0103]
[Comparative Example 3]
Coating solution for forming transparent film (RB-3) Preparation of
In the same manner as in Example 4, a mixed solution (M-2) containing a matrix precursor having a solid content of 2% by weight was prepared.
Next, a mixed solvent of ethanol / n-propanol / ethyl cellosolve / isopropyl glycol / diacetone alcohol (72: 12: 6: 6: 4 weight ratio) was added to the mixed solution (M-2), and a coating solution for forming a transparent film was added. (RB-3) was prepared.
Manufacture of panel glass with transparent conductive coating
The coating liquid (C-1) for forming a transparent conductive film was applied and dried in the same manner as in Example 1.
[0104]
Next, on the transparent conductive fine particle layer, similarly, a coating liquid (RB-3) for forming a transparent film is applied at 100 rpm for 90 seconds by a spinner method, dried, and baked at 160 ° C. for 30 minutes to obtain a transparent film. A substrate with a conductive coating was obtained. At this time, the thickness of the transparent film was formed to be 30 nm.
The resulting substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion, and the results are shown in Table 1.
[0105]
[Comparative Example 4]
Manufacture of panel glass with transparent conductive coating
In the same manner as in Example 6, the coating liquid (C-2) for forming a transparent conductive film was applied and dried. Next, on the transparent conductive fine particle layer, similarly, a coating liquid for forming a transparent film (RB-1) obtained in the same manner as in Comparative Example 1 under the conditions of 100 rpm and 90 seconds by the spinner method, and dried. And baked at 160 ° C. for 30 minutes to obtain a substrate with a transparent conductive film. At this time, the thickness of the transparent film was formed to be 30 nm.
[0106]
The resulting substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, pencil hardness, scratch strength, and fingerprint adhesion, and the results are shown in Table 1.
[0107]
[Comparative Example 5]
Manufacture of panel glass with transparent conductive coating
In the same manner as in Example 6, the coating liquid (C-2) for forming a transparent conductive film was applied and dried.
Next, on the transparent conductive fine particle layer, similarly, the coating liquid for forming a transparent film (RB-2) obtained in the same manner as in Comparative Example 2 under the conditions of 100 rpm and 90 seconds by the spinner method is applied and dried. And baked at 160 ° C. for 30 minutes to obtain a substrate with a transparent conductive film. At this time, the thickness of the transparent film was formed to be 30 nm.
[0108]
The resulting substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion, and the results are shown in Table 1.
[0109]
[Comparative Example 6]
Manufacture of panel glass with transparent conductive coating
In the same manner as in Example 6, the coating liquid (C-2) for forming a transparent conductive film was applied and dried. Next, on the transparent conductive fine particle layer, similarly, a coating liquid for forming a transparent film (RB-3) obtained in the same manner as in Comparative Example 3 under the conditions of 100 rpm and 90 seconds by the spinner method is applied and dried. And baked at 160 ° C. for 30 minutes to obtain a substrate with a transparent conductive film. At this time, the thickness of the transparent film was formed to be 30 nm.
[0110]
The resulting substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion, and the results are shown in Table 1.
[0111]
[Comparative Example 7]
Manufacture of panel glass with transparent conductive coating
In the same manner as in Example 7, the coating liquid (C-3) for forming a transparent conductive film was applied and dried. Next, on the transparent conductive fine particle layer, similarly, a coating liquid for forming a transparent film (RB-1) obtained in the same manner as in Comparative Example 1 under the conditions of 100 rpm and 90 seconds by the spinner method, and dried. And baked at 160 ° C. for 30 minutes to obtain a substrate with a transparent conductive film. At this time, the thickness of the transparent film was formed to be 30 nm.
[0112]
The resulting substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion, and the results are shown in Table 1.
[0113]
[Comparative Example 8]
Manufacture of panel glass with transparent conductive coating
In the same manner as in Example 7, the coating liquid (C-3) for forming a transparent conductive film was applied and dried. Next, on the transparent conductive fine particle layer, similarly, the coating liquid for forming a transparent film (RB-2) obtained in the same manner as in Comparative Example 2 under the conditions of 100 rpm and 90 seconds by the spinner method is applied and dried. And baked at 160 ° C. for 30 minutes to obtain a substrate with a transparent conductive film. At this time, the thickness of the transparent film was formed to be 30 nm.
[0114]
The resulting substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion, and the results are shown in Table 1.
[0115]
[Comparative Example 9]
Manufacture of panel glass with transparent conductive coating
In the same manner as in Example 7, the coating liquid (C-3) for forming a transparent conductive film was applied and dried. Next, on the transparent conductive fine particle layer, similarly, a coating liquid for forming a transparent film (RB-3) obtained in the same manner as in Comparative Example 3 under the conditions of 100 rpm and 90 seconds by the spinner method is applied and dried. And baked at 160 ° C. for 30 minutes to obtain a substrate with a transparent conductive film. At this time, the thickness of the transparent film was formed to be 30 nm.
[0116]
The resulting substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion, and the results are shown in Table 1.
[0117]
[Table 1]
Figure 2004083812

Claims (6)

(i)テトラアルコキシシランの加水分解物と
(ii)エポキシ基、アクリル基、ビニル基からなる群から選ばれる少なくとも1種の官能基を有する有機ケイ素化合物の加水分解物とからなるマトリックス前駆体を含み、かつ
マトリックス前駆体中の(ii)の割合が固形分として0.5〜50重量%の範囲にあることを特徴とする透明被膜形成用塗布液。
A matrix precursor comprising (i) a hydrolyzate of tetraalkoxysilane and (ii) a hydrolyzate of an organosilicon compound having at least one functional group selected from the group consisting of an epoxy group, an acrylic group, and a vinyl group. A coating liquid for forming a transparent film, comprising (ii) in the matrix precursor, wherein the proportion of (ii) in the matrix precursor is in the range of 0.5 to 50% by weight.
前記マトリックス前駆体が、テトラアルコキシシランと、エポキシ基、アクリル基、ビニル基からなる群から選ばれる少なくとも1種を有する有機ケイ素化合物との混合物の同時加水分解物であることを特徴とする請求項1に記載の透明被膜形成用塗布液。The matrix precursor is a simultaneous hydrolyzate of a mixture of a tetraalkoxysilane and an organosilicon compound having at least one selected from the group consisting of an epoxy group, an acrylic group, and a vinyl group. 2. The coating liquid for forming a transparent film according to 1. 前記マトリックス前駆体が、さらに
(iii)フッ素置換有機基を有する有機ケイ素化合物の加水分解物を含んでなり、
マトリックス前駆体中の(iii)の割合が固形分として0.1〜30重量%の範囲にあることを特徴とする請求項1または2に記載の透明被膜形成用塗布液。
The matrix precursor further comprises (iii) a hydrolyzate of an organosilicon compound having a fluorine-substituted organic group,
3. The coating liquid for forming a transparent film according to claim 1, wherein the proportion of (iii) in the matrix precursor is in the range of 0.1 to 30% by weight as a solid content.
前記フッ素置換有機基を有する有機ケイ素化合物の加水分解物が、テトラアルコキシシランとフッ素置換有機基を有する有機ケイ素化合物との混合物の同時加水分解物であることを特徴とする請求項3に記載の透明被膜形成用塗布液。The hydrolyzate of an organosilicon compound having a fluorine-substituted organic group is a simultaneous hydrolyzate of a mixture of tetraalkoxysilane and an organosilicon compound having a fluorine-substituted organic group. Coating solution for forming transparent film. 基材と、基材上の導電性微粒子を含む透明導電性微粒子層と、該透明導電性微粒子層上に設けられ、該透明導電性微粒子層よりも屈折率が低い透明被膜とからなる透明導電性被膜付基材であって、
透明被膜が請求項1〜4のいずれかに記載の透明被膜形成用塗布液を用いて形成されたことを特徴とする透明導電性被膜付基材。
A transparent conductive layer comprising: a base material; a transparent conductive fine particle layer containing conductive fine particles on the base material; and a transparent film provided on the transparent conductive fine particle layer and having a lower refractive index than the transparent conductive fine particle layer. A substrate with a functional coating,
A substrate with a transparent conductive film, wherein the transparent film is formed using the coating liquid for forming a transparent film according to claim 1.
請求項5に記載の透明導電性被膜付基材で構成された前面板を備え、透明導電性被膜が該前面板の外表面に形成されていることを特徴とする表示装置。A display device, comprising: a front plate made of the substrate with a transparent conductive film according to claim 5, wherein the transparent conductive film is formed on an outer surface of the front plate.
JP2002249618A 2002-08-28 2002-08-28 Coating liquid for forming transparent film, substrate having transparent coating film and display device Pending JP2004083812A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002249618A JP2004083812A (en) 2002-08-28 2002-08-28 Coating liquid for forming transparent film, substrate having transparent coating film and display device
KR1020030059777A KR100996052B1 (en) 2002-08-28 2003-08-28 Coating agent for forming transparent film, transparent film coated substrate and display
CNB031577776A CN100478411C (en) 2002-08-28 2003-08-28 Coating liquid for forming transparent film and base material and display device with transparent film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002249618A JP2004083812A (en) 2002-08-28 2002-08-28 Coating liquid for forming transparent film, substrate having transparent coating film and display device

Publications (1)

Publication Number Publication Date
JP2004083812A true JP2004083812A (en) 2004-03-18

Family

ID=32056679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002249618A Pending JP2004083812A (en) 2002-08-28 2002-08-28 Coating liquid for forming transparent film, substrate having transparent coating film and display device

Country Status (3)

Country Link
JP (1) JP2004083812A (en)
KR (1) KR100996052B1 (en)
CN (1) CN100478411C (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173408A (en) * 2004-12-16 2006-06-29 Catalysts & Chem Ind Co Ltd Method of manufacturing substrate with circuit, and substrate with circuit obtained thereby
WO2008032722A1 (en) * 2006-09-14 2008-03-20 Toray Industries, Inc. Coating material, optical article using the same, and method for producing optical article
JP2009280748A (en) * 2008-05-26 2009-12-03 Panasonic Electric Works Co Ltd Coating material composition and antireflection base material
JP2014527098A (en) * 2011-07-18 2014-10-09 サザン イリノイ ユニヴァーシティ カーボンデール Self-cleaning antireflective and antifouling coating

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001869A (en) * 2006-06-26 2008-01-10 Catalysts & Chem Ind Co Ltd Coating for forming transparent film and substrate with film
WO2008081890A1 (en) * 2006-12-28 2008-07-10 Dow Corning Toray Co., Ltd. Catalyst for dealcoholization condensation reaction and method for producing organopolysiloxane using the same
BR112020023041A2 (en) 2018-05-11 2021-02-09 Astellas Pharma Inc. nucleic acid to treat dust mite allergy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100498834B1 (en) * 2000-04-04 2005-07-04 아사히 가세이 가부시키가이샤 Coating composition for the production of insulating thin films

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173408A (en) * 2004-12-16 2006-06-29 Catalysts & Chem Ind Co Ltd Method of manufacturing substrate with circuit, and substrate with circuit obtained thereby
WO2008032722A1 (en) * 2006-09-14 2008-03-20 Toray Industries, Inc. Coating material, optical article using the same, and method for producing optical article
JP2009280748A (en) * 2008-05-26 2009-12-03 Panasonic Electric Works Co Ltd Coating material composition and antireflection base material
JP2014527098A (en) * 2011-07-18 2014-10-09 サザン イリノイ ユニヴァーシティ カーボンデール Self-cleaning antireflective and antifouling coating

Also Published As

Publication number Publication date
CN100478411C (en) 2009-04-15
KR20040019978A (en) 2004-03-06
KR100996052B1 (en) 2010-11-22
CN1488698A (en) 2004-04-14

Similar Documents

Publication Publication Date Title
JP3563236B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film, method for producing the same, and display device
JP4031624B2 (en) Substrate with transparent coating, coating liquid for forming transparent coating, and display device
JP3302186B2 (en) Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
JP2004055298A (en) Coating solution for forming transparent conductive film and substrate with transparent conductive coat, and display device
US20030157317A1 (en) Transparent film-coated substrate, coating liquid for transparent film formation, and display device
JP3973330B2 (en) Substrate with transparent coating, coating liquid for forming transparent coating, and display device
JP4343520B2 (en) Coating liquid for forming transparent film, substrate with transparent film, and display device
JP4522505B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4002469B2 (en) Manufacturing method of indium metal fine particles, coating liquid for forming transparent conductive film containing indium metal fine particles, dispersion sol, substrate with transparent conductive film, display device
JP5068298B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP3982967B2 (en) Transparent film-forming coating solution, transparent film-coated substrate and display device
JP2004083812A (en) Coating liquid for forming transparent film, substrate having transparent coating film and display device
JP2001064540A (en) Transparent, electrically conductive coated film-forming coating liquid, substrate having transparent, electrically conductive coated film and display device
JP3779088B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4959067B2 (en) Coating liquid for forming transparent low-reflective conductive film, substrate with transparent low-reflective conductive film, and display device
JP5187990B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film and display device
JP2003192994A (en) Coating liquid for forming transparent electroconductive coating film, substrate with transparent electroconductive coating film and display device
JP4372301B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4425530B2 (en) Method for producing indium oxide fine particles, coating liquid for forming transparent conductive film containing fine particles, substrate with transparent conductive film, and display device
JP2003105268A (en) Coating liquid for forming transparent coated film, base material with transparent and electroconductive coated film, and display device
JP4240905B2 (en) Indium-based oxide fine particles and production method thereof, coating liquid for forming transparent conductive film containing indium-based oxide fine particles, substrate with transparent conductive film, and display device
JP4033646B2 (en) Conductive metal oxide particles, method for producing conductive metal oxide particles, substrate with transparent conductive film, and display device
JP2004204174A (en) Coating liquid for forming transparent electeroconductive film, substrate with transparent electroconductive film and displaying device
JP4902048B2 (en) Substrate with transparent conductive film and display device
JP2003261326A (en) Indium based oxide fine particle, method of producing the fine particle, coating solution for forming transparent electrically conductive film containing the fine particle, base material with transparent electrically conductive film and display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310