JP2004081975A - Desulfurization method and desulfurization equipment for recovering so2 in gas to be treated as caso4 in coexistence of no and/or no2 - Google Patents

Desulfurization method and desulfurization equipment for recovering so2 in gas to be treated as caso4 in coexistence of no and/or no2 Download PDF

Info

Publication number
JP2004081975A
JP2004081975A JP2002246125A JP2002246125A JP2004081975A JP 2004081975 A JP2004081975 A JP 2004081975A JP 2002246125 A JP2002246125 A JP 2002246125A JP 2002246125 A JP2002246125 A JP 2002246125A JP 2004081975 A JP2004081975 A JP 2004081975A
Authority
JP
Japan
Prior art keywords
gas
treated
caso
separating
recovering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002246125A
Other languages
Japanese (ja)
Other versions
JP4012011B2 (en
Inventor
Masaki Sadakata
定方 正毅
Xuchang Xu
徐 旭常
Masateru Nishioka
西岡 将輝
Norihiko Matsushima
松島 徳彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002246125A priority Critical patent/JP4012011B2/en
Priority to PCT/JP2003/010699 priority patent/WO2004020077A1/en
Priority to CNB038201127A priority patent/CN1331568C/en
Publication of JP2004081975A publication Critical patent/JP2004081975A/en
Application granted granted Critical
Publication of JP4012011B2 publication Critical patent/JP4012011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/83Solid phase processes with moving reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids

Abstract

<P>PROBLEM TO BE SOLVED: To separate and recover SO<SB>2</SB>in a gas to be treated as CaSO<SB>4</SB>in a high efficiency. <P>SOLUTION: The gas to be treated is brought into contact with an SO<SB>2</SB>desulfurizing agent, which is obtained by coating the surface of carrier particles having a large particle size with Ca(OH)<SB>2</SB>of fine particles, in a fluidized bed type reaction column 1 by making 10-5,000 ppm NO and/or NO<SB>2</SB>coexist in the SO<SB>2</SB>-containing gas to be treated. The CaSO<SB>4</SB>produced in the column 1 is fluidized in the first gas-solid separator 2 together with the carrier particle and the gas to be treated so that the carrier particle is separated by sedimentation from the gas containing the CaSO<SB>4</SB>produced in the column 1 and exfoliated. The gas containing the CaSO<SB>4</SB>is withdrawn from the upper part of the separator 2 and fed to the second gas-solid separator 3 so that the CaSO<SB>4</SB>is separated and recovered from the gas to be treated by fluidization. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、被処理ガス、例えば排ガス中のSOをCaSOとして分離回収する脱硫方法および脱硫装置におけるCaSOの回収率を改善した前記被処理ガスの脱硫方法および脱硫装置、特に被処理ガス中に少なくとも10ppm、好ましくは100ppmのNOおよび/またはNOを共存させることを特徴とする被処理ガス中のSOをCaSOとして分離回収する脱硫方法および脱硫装置に関する。
【0002】
【従来の技術】
SOは環境及び人の健康に重大な影響がある物質であり、石炭の燃焼プロセスなどから発生するSOは大きな社会問題である。そのために、従来から、SOを吸収除去するシステムが研究されている。その一つにCaOを用いた吸収除去方法がある。このCaOを用いたSOの吸収除去は、SOの拡散と、固体反応によるCaSO/CaSOの形成の過程を経て行われる。従って、CaOの粒子の特性、すなわち、表面積、孔径、孔容積等が前記吸着反応に大きな影響がある。市販のCaOはSOを吸収除去の特性に関しては、カルシウム利用率が良いとは言えない。
【0003】
また、サンダー等(Sanders et al.)は、フライアッシュと消石灰との混合スラリーを用いるとSOの吸収除去特性が改善されることを報告している(Sanders et al.,Ind.Eng.Chem.Res.1995,34(4),302−307)。その報告の中で、SOの吸収除去特性の改善は、カルシウムと珪酸アルミナとの水和反応により生成する珪酸カルシウム水和物の存在にあり、反応性の違いは珪酸カルシウム水和物の構造にあると説明している。他に、γ−アルミナ−CaO吸着剤(Svoboda et al.)、CaO、硫酸カルシウム、及びフライアッシュからのスラリーを約100℃で熟成した後、乾燥して得た吸着剤(Hiroaki et al.)(エトリンゲイトが形成されていると考えられている。特公平3−59737号公報にも類似の技術が開示されている。)等が提案されているが、それらの吸着剤の調製方法は水の使用量が比較的多く、水利の良くない地域においての利用性が悪いこと、および水を取り除くのに長時間および/または多くのエネルギーが必要であること、およびSO吸着剤の調製時における吸着特性を改善する組成の形成は工程の管理が難しいなどのことから、SO吸着剤の製造装置を脱硫装置に直結するような脱硫装置の装置を設計が難しいという不都合があった。
【0004】
これに対して、本発明者等は、CaOとフライアッシュとを水中混合して吸着剤を調製するプロセスにおける水和のプロセスのメカニズムを知ることにより、前記原料からより実用プロセスとなり得るような活性なSO吸着特性を示す脱硫剤を製造する研究を鋭意進めて来た(Energy & Fuels,Vol.13,No5,1015−1020,1999.文献A)。しかし、ここでは該脱硫剤を調製するのに使用する水の量は、HO/(キャリヤー粒子+Ca(OH))の重量比が1.5と比較的多いものであり、このような水の使用の条件では、水資源の少ない地域においては脱硫方法としての利用するにはまだ改善が必要である。更に、その際、廃棄物をできるだけ少なくするために、副生物の利用性の向上と、添加する脱硫剤の利用効率の改善が重要なことであった。そこで、本発明者等は、前記技術を更に進めて乾式脱硫プロセスを、ほぼ実用レベルで設計できる脱硫剤を研究し、比較的大きな粒径を持ちSOの吸収脱硫成分であるCa(OH)を表面に被覆できるキャリヤー粒子を用いることにより、SOの吸収脱硫成分であるCa(OH)のCaの利用率を向上させ、かつ効率良く、利用性の高いCaSOを副生品として分離・回収できる脱硫方法および脱硫装置発明を完成し発表している(特開2002−113326号公報)。また、本発明者は〔Fuel, 78/9,1089−1095(1999)〕において、脱硫プロセスにおけるガス中に存在するNOの連鎖反応による効果を発表しているけれども、大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤を用いて、被処理ガス中のSOをCaSOとして分離回収する脱硫方法における、CaSOの回収率に対する効果については全く検討されていない。
【0005】
【発明が解決しようとする課題】
本願発明の課題は、大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤を用いて有用な副製品であるCaSOをより高率に回収できる脱硫方法および脱硫装置を提供することである。前記脱硫剤を用いる脱硫方法および脱硫装置においは、Ca(OH)を被覆した大粒径のキャリヤー粒子表面で被処理月中のSOと反応して生成するCaSOが、キャリヤー表面から効率よく剥離されることがCaSOをより高率に回収するために重要である。
前記剥離の効率の向上にはどのようなファクターが関連するか不明であったが、前記脱硫剤を用いる脱硫方法の改善のために、前記本発明者らが発表した脱硫処理におけるNO(Xは1から2)共存効果に着目して、NOおよび/またはNOを共存させたところ、CaSOの回収特性が改善されることを見出し、前記課題を解決することができた。
【0006】
【課題を解決するための手段】
本発明の第1は、排ガス中にNOおよび/またはNOを10〜5000ppm共存させて被処理ガス中のSOをCaSOとして分離回収する脱硫方法である。好ましくは、SOを含む被処理ガスにNOおよび/またはNOを10〜5000ppm共存させ、大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤を前記SOを含む被処理ガスと流動層を形成した状態で反応塔中で接触させ、前記脱硫剤とSOとを反応させながら前記被処理ガスと共に前記反応塔中を上昇させ、該反応塔の上部から前記SOとキャリヤー粒子表面の微粒子のCa(OH)との反応により形成されたCaSOを前記キャリヤー粒子および被処理ガスと共に第1の気体−固体分離器に流動させ、前記第1の気体−固体分離器中で前記キャリヤー粒子表面のCa(OH)とSOとの反応により形成され・剥離したCaSOを含む気体から該キャリヤー粒子を沈降させて分離し、該CaSOを含む気体を前記第1の気体−固体分離器上部から第2の気体−固体分離器に流動させ、第2の気体−固体分離器において被処理ガスから前記CaSOを分離・回収することを特徴とする前記被処理ガス中のSOをCaSOとして分離回収する脱硫方法であり、より好ましくは、被処理ガス中にNOおよび/またはNOを10〜5000ppm共存させて被処理ガス中のSOをCaSOとして分離回収する脱硫方法が、排ガス中にNOおよび/またはNOが含まれていないか、含まれていても不十分な場合外部からNOおよび/またはNOを供給することを特徴とする前記各被処理ガス中のSOをCaSOとして分離回収する脱硫方法であり、一層好ましくは、被処理ガス中にNOが含まれていなく、少なくともNOを共存させて被処理ガス中のSOをCaSOとして分離回収する脱硫方法が、被処理ガス中にNOが存在する場合には、被処理ガス中のNOの少なくとも一部をNOに変換する処理手段を経由させて、またNOおよびNOが存在しない場合にはNOの少なくとも一部をNOに変換する処理手段の前にNOを供給するか、NOを外部から処理ガス中に供給した後、被処理ガスを大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤が存在する反応塔に供給することを特徴とする前記各被処理ガス中のSOをCaSOとして分離回収する脱硫方法であり、より一層好ましくは、NOの少なくとも一部をNOに変換する処理手段が300℃〜400℃においてメタノール、t−ブチルパーオキサイドを霧化圧入することにより酸化するものであることを特徴とする前記被処理ガス中のNOの少なくとも一部をNOに変換する処理手段を経由させて被処理ガス中のSOをCaSOとして分離回収する脱硫方法である。
【0007】
本発明の第2は、大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤が被処理ガスの供給により流動層を形成する反応塔1、前記反応塔に大粒径のキャリヤー粒子表面に微粒子のCa(OH)が被覆されたSO脱硫剤を供給する脱硫剤供給装置、SOを含む被処理ガス中にNOおよび/またはNOを共存させる装置、NOおよび/またはNOを共存させたSOを含む被処理ガスをを吹き込む被処理ガス吹き込み装置、前記脱硫剤をSOを含む被処理ガスと流動層を形成する状態で反応塔中で接触させ、前記脱硫剤とSOとを反応させながら前記被処理ガスと共に前記反応塔中を上昇させ、該反応塔の上部から前記SOとキャリヤー粒子表面の微粒子のCa(OH)との反応により形成されたCaSOを前記キャリヤー粒子および被処理ガスと共に吹き込まれ、前記キャリヤー粒子を前記キャリヤー表面で形成され・脱離したCaSOを含む被処理ガスから前記キャリヤー粒子を沈降させて分離する第1の気体−固体分離器および前記第1の気体−固体分離器から前記CaSOを含む被処理ガスが吹き込まれ、吹き込まれた被処理ガスから該CaSOを分離する第2の気体−固体分離器を持つことを特徴とする被処理ガス中のSOをCaSOとして分離回収する脱硫装置である。好ましくは、SOを含む被処理ガス中にNOおよび/またはNOを共存させる装置が、SOをCaSOとして分離回収する被処理ガスを流動層を形成する反応塔に供給する前に配置され、前記被処理ガスのNOおよび/またはNOを10〜5000ppmにする外部からNOおよび/またはNOを供給する装置および/またはNOをNOに変換するコンバーターを含むものであることを特徴とする前記被処理ガス中のSOをCaSOとして分離回収する脱硫装置であり、より好ましくは、流動層を形成する反応塔1とCaSOを含む被処理ガスから前記キャリヤー粒子を沈降させて分離する第1の気体−固体分離器とで循環型流動層を形成していることを特徴とする前記各被処理ガス中のSOをCaSOとして分離回収する脱硫装置である。
【0008】
【本発明の実施の態様】
本発明をより詳細に説明する。
A.第1図は、本発明のSOを含む被処理ガスにNOおよび/またはNOを10〜5000ppm共存させ、大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤を前記SOを含む被処理ガスと流動層を形成した状態で反応塔中で接触させ被処理ガス中のSOをCaSOとして分離回収する脱硫装置の概念図である。1は、多孔板(PP)を備えた流動層形成反応塔である。前記反応塔1の前記多孔板PPの下方には、例えばボイラーBからの被処理ガス(被処理気体)に10〜5000ppmのNOおよび/またはNOを共存させた被処理ガスを供給する装置、例えば送風ポンプが接続されている。被処理ガスにNOおよび/またはNO共存させるために、前記被処理ガスを供給する装置の前にNOおよび/またはNOを供給する装置、および/または被処理ガス中に共存したNOの少なくとも一部をNOに変換する装置CVおよび前記変換を促進する酸化剤をを吹き込むODが設けられている。
【0009】
多孔板PPの上方にはSO脱硫剤供給装置9、ここでは、脱硫剤の製造装置が反応塔1に直結している。脱硫剤および反応塔以降の装置類は本発明者らが既に提案している前記特開2002−113326号公報に詳細に記載されている。前記公報に記載の技術的説明は、大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤をSOを含む被処理ガスと流動層を形成した状態で反応塔中で接触させ被処理ガス中のSOをCaSOとして分離回収する脱硫方法および脱硫装置において「被処理ガスにNOおよび/またはNO共存させる」という本発明の技術的特徴を除いては、本発明と密接に関連することであるから、本発明の技術的説明の一部をなすものとして理解すべきである。
【0010】
【実施例】
ここでの説明は、本発明の理解をし易くするだけのものであり、本発明を限定するものではない。
実施例1
被処理ガスとして、SO含有量が1500ppm、CO含有量が12%、O含有量が8%のものを試料とした。脱硫剤としては、キャリヤー粒子として、下記の表1に記載の化学組成を持ち、平均粒径137μm、表面積126m/gのフライアッシュを用い、これに、Ca(OH)を(キャリヤー粒子+Ca(OH))との重量比が1.5となるように被覆したものを用いた。これを、Ca/S比が1.7となるように供給し、ガス空塔速度0.75 m/s、反応器(循環型流動層形成反応塔)温度350℃、気相滞留時間1.5秒(s)、圧力損失1kPa(脱硫剤粒子充填率に相当)とした。
【0011】
【表1】

Figure 2004081975
【0012】
表2に記載のNOまたはNOを共存(ppm)させて脱硫した時と、これらNOが共存しなかった時の脱硫特性(%)を表2に示す。NOまたはNOの共存効果を比較すると、同じ共存量において、NOの共存効果の方が大きいことが表2から理解される。このことから、NOをNOに変換するコンバーターCVを設けることが、SOをCaSOとして分離回収する脱硫法において顕著な改善をもたらすことは明らかである。またNOおよび/またはNOの共存量が50ppm〜300ppm以上ではこれらの共存効果はほぼ飽和しており、被処理ガス中に共存すべき最低濃度は10pmmであるが上限はない。
【0013】
【表2】
Figure 2004081975
【0014】
実施例2
NO、NOの共存量がそれぞれ480ppmにおける脱硫率(Ca/S)の効果を実験した結果を表3に示す。
前記実験を、被処理ガスとして、SO含有量が1500ppm、CO含有量が12%、O含有量が8%のを試料を、脱硫剤として、実施例1で用いたものと同じ化学組成、平均粒径および表面積を持つフライアッシュを用い、これに、のCa(OH)を(キャリヤー粒子+Ca(OH))との重量比が1.5になるように被覆したものを用いて、実施した。表3の結果から、脱硫率に対するNOおよびNOの共存の効果が明らかであり、NOの共存による脱硫率の向上への効果は、NOの共存による脱硫率の向上への効果に比べて安定していることも分かった。このことは、NOの共存は脱硫反応の安定した反応に効果があることが理解される。
【0015】
【表3】
Figure 2004081975
【0016】
実施例3
ここでは、大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤を用いた場合における、キャリヤー粒子表面の微粒子のCa(OH)とSOとの反応により形成されたCaSOをキャリヤー粒子表面から脱離する特性に対するNO(480ppm)およびNO(480ppm)の共存効果を、粒子飛沫量の経時変化として表4と図2に示す。
【0017】
【表4】
Figure 2004081975
【0018】
粒子飛沫量=(飛沫した粒子のうちのCaの量g/分)÷(供給した脱硫剤のCa量g/分)である。NO(□)およびNO(▲)の添加により、飛沫粒子が増えている〔NOもNOも共存しない場合は(◆)で示した。〕。このことはNOもNOの共存により脱硫剤が有効にはたらき、効率よく石膏が得られていることを意味する。NOの場合は、経時と飛沫量の関係を示す上記結果を見ると、変動が大きく、飛沫量が安定していない、換言すれば安定な反応が進行していなく、制御性あまり良くない。これに対して、NOの共存の場合には飛沫量が非常に安定している。このことから、NOの共存下でSO含有被処理ガス中のSOをCaSOとして分離回収する脱硫法がより効果的であることが理解される。
【0019】
【発明の効果】
以上述べたように、本発明は、SOを含む被処理ガスにNOおよび/またはNOを10〜5000ppm共存させ、大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤と接触させてSOをCaSOとして分離回収する脱硫方法を確立し、SOを高効率で有用な副生物であるCaSOとして回収可能にし、実用的な環境改善手段を供給した点で、社会に貢献すること多大であることは明らかである。
【図面の簡単な説明】
【図1】本発明の脱硫装置の概念図
【図2】SO含有被処理ガス中へのNOおよびNOの共存のSOをCaSOとして分離回収特性と粒子飛沫の量の経時変化の相関
【符号の説明】
1 流動層形成反応塔 2 第1の気体−固体分離器 3 第2の気体−固体分離器
4 被処理ガス吹き込み部 5 分離キャリヤー粒子の還流管
6 CaSOを含む気体の移送管 7 処理済み被処理ガス
8 回収CaSOを含む固体反応物取り出し配管
9 SO脱硫剤供給部(SO脱硫剤製造・供給装置)
CV NOコンバーター OD 酸化剤供給手段
B ボイラー(被処理ガス発生源)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a desulfurization method for separating and recovering a gas to be treated, for example, SO 2 in an exhaust gas as CaSO 4 , and a desulfurization method and a desulfurization device for the gas to be treated, wherein the recovery rate of CaSO 4 in a desulfurization device is improved. The present invention relates to a desulfurization method and a desulfurization apparatus for separating and recovering SO 2 in a gas to be treated as CaSO 4 , wherein at least 10 ppm, and preferably 100 ppm of NO and / or NO 2 coexist therein.
[0002]
[Prior art]
SO 2 is a substance that has a significant impact on the environment and human health, and SO 2 generated from the coal combustion process is a major social problem. Therefore, systems for absorbing and removing SO 2 have been studied. One of them is an absorption removal method using CaO. The absorption and removal of SO 2 using CaO is performed through a process of diffusion of SO 2 and formation of CaSO 4 / CaSO 3 by a solid-state reaction. Therefore, the characteristics of the CaO particles, that is, the surface area, pore diameter, pore volume, etc., have a great influence on the adsorption reaction. Commercially available CaO does not have a good calcium utilization factor in terms of SO 2 absorption and removal properties.
[0003]
Sanders et al. (Sanders et al.) Have reported that the use of a mixed slurry of fly ash and slaked lime improves the SO 2 absorption and removal characteristics (Sanders et al., Ind. Eng. Chem.). Res. 1995, 34 (4), 302-307). In that report, the improvement in the absorption and removal characteristics of SO 2 is due to the presence of calcium silicate hydrate formed by the hydration reaction between calcium and alumina silicate, and the difference in reactivity is due to the structure of calcium silicate hydrate. It is explained that there is. In addition, a γ-alumina-CaO adsorbent (Svoboda et al.), A slurry from CaO, calcium sulfate, and fly ash are aged at about 100 ° C., and then dried to obtain an adsorbent (Hiroaki et al.). (It is considered that ettringate is formed. A similar technique is disclosed in Japanese Patent Publication No. 3-59737). However, a method for preparing these adsorbents is water. Relatively high usage, poor availability in poorly watered areas, and long and / or high energy requirements to remove water, and adsorption during preparation of SO 2 adsorbent forming a composition for improving the properties since such management process is difficult, to design an apparatus of the desulfurization apparatus so as to direct the production apparatus of the sO 2 sorbent to the desulfurization apparatus There is a disadvantage that Shii.
[0004]
On the other hand, the present inventors know the mechanism of the hydration process in the process of mixing CaO and fly ash in water to prepare an adsorbent, so that the activity from the raw material to a more practical process can be obtained. The research for producing a desulfurizing agent having excellent SO 2 adsorption characteristics has been intensively conducted (Energy & Fuels, Vol. 13, No. 5, 1015-1020, 1999. Reference A). However, here, the amount of water used to prepare the desulfurizing agent is such that the weight ratio of H 2 O / (carrier particles + Ca (OH) 2 ) is relatively high, such as 1.5. The conditions of water use still need improvement in areas where water resources are scarce, for use as desulfurization methods. Further, at that time, in order to minimize waste, it is important to improve the utilization of by-products and the utilization efficiency of the added desulfurizing agent. Therefore, the present inventors have further advanced the above-mentioned technology and studied a desulfurizing agent which can design a dry desulfurization process at a practical level, and found that Ca (OH) which has a relatively large particle size and is an absorption desulfurization component of SO 2 is used. The use of carrier particles capable of coating the surface with Ca 2 improves the utilization rate of Ca of Ca (OH) 2 , which is an absorption and desulfurization component of SO 2 , and uses CaSO 4 efficiently and highly as a by-product. A desulfurization method and a desulfurization device invention capable of separation and recovery have been completed and disclosed (Japanese Patent Application Laid-Open No. 2002-113326). Further, the present inventors in [Fuel, 78 / 9,1089-1095 (1999)], but has published the effect of chain reaction of the NO x present in the gas in the desulfurization process, the carrier particles with a large particle size The effect on the recovery rate of CaSO 4 in the desulfurization method of separating and recovering SO 2 in the gas to be treated as CaSO 4 using an SO 2 desulfurizing agent coated on the surface with fine particle Ca (OH) 2 has been completely studied. Not.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a desulfurization method and a desulfurization method capable of recovering CaSO 4 as a useful by-product at a higher rate by using a SO 2 desulfurizing agent in which fine-particle Ca (OH) 2 is coated on the surface of a large-sized carrier particle. It is to provide a device. In the desulfurization method and the desulfurization apparatus using the desulfurizing agent, CaSO 4 generated by reacting with SO 2 in the month to be treated on the surface of the large-size carrier particles coated with Ca (OH) 2 is efficiently converted from the carrier surface. Good exfoliation is important for recovering CaSO 4 at a higher rate.
It was not clear what factors were involved in the improvement of the stripping efficiency. However, in order to improve the desulfurization method using the desulfurizing agent, NO x (X 1) 2) Focusing on the coexistence effect, when NO and / or NO 2 coexisted, it was found that the recovery characteristics of CaSO 4 were improved, and the above problem could be solved.
[0006]
[Means for Solving the Problems]
The first invention is a desulfurization process of separating and recovering a SO 2 in the treated gas with 10~5000ppm coexist NO and / or NO 2 in the exhaust gas as CaSO 4. Preferably, the NO and / or NO 2 in the treated gas containing SO 2 is 10~5000ppm coexist, said SO 2 desulfurizing agent coated with particles of Ca (OH) 2 to the carrier particle surface of the large particle size SO 2 In a reaction tower in a state where a fluidized bed is formed with the gas to be treated, and while the desulfurizing agent reacts with SO 2 , the reaction gas is raised in the reaction tower together with the gas to be treated, and from the top of the reaction tower, CaSO 4 formed by the reaction between the SO 2 and the fine particles of Ca (OH) 2 on the surface of the carrier particles flows to the first gas-solid separator together with the carrier particles and the gas to be treated, and the first gas - in the gas containing CaSO 4 it was formed, removed by reaction with Ca (OH) 2 and SO 2 of the carrier particles surface with the solid separator in precipitated the carrier particles Release, the gas containing the CaSO 4 wherein the first gas - to flow to the solid separator, a second gas - - from the solid separator upper second gas separation the CaSO 4 from the gas to be treated in the solid separator A desulfurization method for separating and recovering SO 2 in the gas to be treated as CaSO 4 , which is characterized in that the gas to be treated is more preferably recovered by coexisting 10 to 5000 ppm of NO and / or NO 2 in the gas to be treated. When the desulfurization method for separating and recovering SO 2 in the gas to be treated as CaSO 4 does not contain NO and / or NO 2 in the exhaust gas, or if it is insufficient, NO and / or NO characterized in that said supplying 2 SO 2 in the treated gas are desulfurization process of separating and recovering as CaSO 4, more preferably, is NO 2 in the gas to be treated contains Not have to, desulfurization process for separating and recovering a SO 2 in the treated gas coexist least NO 2 as CaSO 4 is, when NO is present in the gas to be treated, at least the NO of the treated gas part by way of the processing means for converting to nO 2, also when the nO and nO 2 is not present to supply nO to the front of the processing means for converting at least a portion of nO to nO 2 or, nO 2 Is supplied into the processing gas from the outside, and then the gas to be processed is supplied to the reaction tower in which the SO 2 desulfurizing agent in which the fine particles of Ca (OH) 2 are coated on the surface of the large-sized carrier particles is present. This is a desulfurization method in which SO 2 in each of the gases to be treated is separated and recovered as CaSO 4 , and more preferably, the treatment means for converting at least a part of NO into NO 2 is at 300 ° C. to 400 ° C. Gas to be oxidized by atomizing and injecting tanol and t-butyl peroxide into the gas to be processed via a processing means for converting at least a part of NO in the gas to be processed to NO 2 the SO 2 in a desulfurization method of separating and recovering as CaSO 4.
[0007]
The second aspect of the present invention is a reaction column 1 in which an SO 2 desulfurizing agent in which fine particles of Ca (OH) 2 are coated on the surface of carrier particles having a large particle diameter forms a fluidized bed by supplying a gas to be treated. A desulfurizing agent supply device for supplying a SO 2 desulfurizing agent in which fine particles of Ca (OH) 2 are coated on the surface of carrier particles having a particle size, a device for causing NO and / or NO 2 to coexist in a gas to be treated containing SO 2 , A gas blowing device for blowing a gas to be treated containing SO 2 in which NO and / or NO 2 coexists, wherein the desulfurizing agent is brought into contact with the gas to be treated containing SO 2 in a reaction tower in a state of forming a fluidized bed. Then, the desulfurizing agent and SO 2 are reacted with each other to rise in the reaction tower together with the gas to be treated, and from the upper part of the reaction tower, the SO 2 reacts with the fine particles of Ca (OH) 2 on the surface of the carrier particles. By shape Insufflated CaSO 4 that are together with the carrier particles and the gas to be treated, the gas to be treated containing the CaSO 4 to the carrier particles detached are formed, at the surface of the carrier first separating by settling the carrier particles A gas to be treated containing the CaSO 4 is blown from the gas-solid separator and the first gas-solid separator, and a second gas-solid separator that separates the CaSO 4 from the blown gas to be treated. This is a desulfurization apparatus that separates and recovers SO 2 in a gas to be treated as CaSO 4 , which is characterized by having the same. Preferably, the apparatus for causing NO and / or NO 2 to coexist in the gas to be treated containing SO 2 is disposed before supplying the gas to be treated for separating and recovering SO 2 as CaSO 4 to the reaction tower forming the fluidized bed. it is, wherein the is intended to include a converter for converting the NO and / or device for supplying NO and / or NO 2 from the outside to the NO 2 to 10~5000ppm and / or NO in the gas to be treated to NO 2 A desulfurization apparatus for separating and recovering SO 2 in the gas to be treated as CaSO 4 , and more preferably sediments and separates the carrier particles from the gas to be treated including CaSO 4 and a reaction tower 1 forming a fluidized bed. first gas - solid separator and that forms a circulating fluidized layer and CaSO 4 the SO 2 in the treated gas, wherein in A desulfurization apparatus for separating and recovering Te.
[0008]
[Embodiment of the present invention]
The present invention will be described in more detail.
A. FIG. 1 shows SO 2 desulfurization in which 10 to 5000 ppm of NO and / or NO 2 coexist in a gas to be treated containing SO 2 according to the present invention, and fine Ca (OH) 2 is coated on the surface of large-size carrier particles. FIG. 2 is a conceptual diagram of a desulfurization apparatus for bringing an agent into contact with a gas to be treated containing SO 2 in a reaction tower in a state of forming a fluidized bed to separate and recover SO 2 in the gas to be treated as CaSO 4 . 1 is a fluidized bed formation reaction tower provided with a perforated plate (PP). An apparatus for supplying a gas to be treated in which 10 to 5000 ppm of NO and / or NO 2 coexists in the gas to be treated (gas to be treated) from the boiler B, for example, below the porous plate PP of the reaction tower 1; For example, a blower pump is connected. To NO and / or NO 2 coexist in the gas to be treated, at least of NO coexisted the device for supplying NO and / or NO 2 in front of the device for supplying a gas to be treated, and / or to be treated in the gas A device CV for converting a part to NO 2 and an OD for blowing an oxidizing agent for promoting the conversion are provided.
[0009]
Above the perforated plate PP, an SO 2 desulfurizing agent supply device 9, here, a desulfurizing agent manufacturing device, is directly connected to the reaction tower 1. The desulfurizing agent and devices after the reaction tower are described in detail in the above-mentioned Japanese Patent Application Laid-Open No. 2002-113326, which has already been proposed by the present inventors. The technical description described in the above-mentioned publication describes that a SO 2 desulfurizing agent in which fine particles of Ca (OH) 2 are coated on the surface of large-sized carrier particles is mixed with a gas to be treated containing SO 2 to form a fluidized bed. In the desulfurization method and desulfurization apparatus for separating and recovering SO 2 in the gas to be treated as CaSO 4 by contacting inside the gas to be treated, except for the technical feature of the present invention of “coexisting NO and / or NO 2 in the gas to be treated”, It should be understood that they are closely related to the present invention and form a part of the technical description of the present invention.
[0010]
【Example】
The description herein is only for facilitating the understanding of the present invention, and does not limit the present invention.
Example 1
As the gas to be treated, a sample having an SO 2 content of 1500 ppm, a CO 2 content of 12%, and an O 2 content of 8% was used as a sample. As the desulfurizing agent, as the carrier particles, fly ash having the chemical composition shown in Table 1 below, having an average particle size of 137 μm, and a surface area of 126 m 2 / g was used, and Ca (OH) 2 was added to the (carrier particles + Ca). (OH) 2 ) was used so as to have a weight ratio of 1.5. This was supplied so that the Ca / S ratio became 1.7, the gas superficial velocity was 0.75 m / s, the temperature of the reactor (circulating fluidized bed forming reaction tower) was 350 ° C., and the gas phase residence time was 1. 5 seconds (s) and a pressure loss of 1 kPa (corresponding to the desulfurizing agent particle filling rate).
[0011]
[Table 1]
Figure 2004081975
[0012]
And when desulfurization of NO or NO 2 coexist (ppm) shown in Table 2, the desulfurization characteristics when these NO X does not coexist (%) shown in Table 2. Comparing the coexistence effect of NO or NO 2, in the same coexistence amount, it is understood from Table 2 towards the coexistence effect of NO 2 is large. From this, it is clear that providing a converter CV for converting NO to NO 2 provides a remarkable improvement in a desulfurization method for separating and recovering SO 2 as CaSO 4 . Also these coexistence effect in amount coexistence more 50ppm~300ppm of NO and / or NO 2 is almost saturated, the lowest concentration should coexist in the gas to be treated is a 10pmm no upper limit.
[0013]
[Table 2]
Figure 2004081975
[0014]
Example 2
Table 3 shows the results of experiments on the effect of the desulfurization rate (Ca / S) when the coexistence amounts of NO and NO 2 were 480 ppm, respectively.
In the above experiment, the same chemical as that used in Example 1 was used as a desulfurizing agent, using a sample having a SO 2 content of 1500 ppm, a CO 2 content of 12%, and an O 2 content of 8% as a gas to be treated. composition, using fly ash having an average particle size and surface area, with which this weight ratio of Ca to (OH) 2 and (carrier particles + Ca (OH) 2) of coated so that 1.5 And implemented. From the results in Table 3, the effect of the coexistence of NO and NO 2 on the desulfurization rate is clear, and the effect of the coexistence of NO 2 on the improvement of the desulfurization rate is greater than the effect of the coexistence of NO on the improvement of the desulfurization rate. It turned out to be stable. This indicates that the coexistence of NO 2 is effective for a stable desulfurization reaction.
[0015]
[Table 3]
Figure 2004081975
[0016]
Example 3
Here, formed by reaction of in the case of using the SO 2 desulfurizing agent coated with particles of Ca (OH) 2 to the carrier particle surface with a large grain size, and Ca (OH) 2 and SO 2 of the fine particles of the carrier particles surface Table 4 and FIG. 2 show the effect of coexistence of NO (480 ppm) and NO 2 (480 ppm) on the characteristics of desorbing CaSO 4 from the surface of the carrier particles, as a change with time of the amount of particles splashed.
[0017]
[Table 4]
Figure 2004081975
[0018]
Particle droplet amount = (Ca amount g / min in droplets) / (Ca amount g / min of supplied desulfurizing agent). The addition of NO (□) and NO 2 (▲) resulted in an increase in the number of droplets. (If neither NO nor NO 2 coexist, this is indicated by (◆). ]. This is NO desulfurization agent effectively works by coexistence of NO 2, which means that efficient gypsum is obtained. In the case of NO, the above results showing the relationship between time and the amount of droplets show that the variation is large, the amount of droplets is not stable, in other words, a stable reaction does not progress, and the controllability is not very good. On the other hand, in the case of coexistence of NO 2, the amount of droplets is very stable. Therefore, it is understood desulfurization method of separating and recovering SO 2 of SO 2 containing treated gas as CaSO 4 in the presence of NO 2 is more effective.
[0019]
【The invention's effect】
As described above, the present invention relates to an SO in which NO and / or NO 2 is present in the gas to be treated containing SO 2 in an amount of 10 to 5000 ppm, and the surface of large-size carrier particles is coated with fine Ca (OH) 2. (2) Established a desulfurization method for separating and recovering SO 2 as CaSO 4 by contacting it with a desulfurizing agent, enabling SO 2 to be recovered as CaSO 4 , which is a highly efficient and useful by-product, and supplying practical environmental improvement means. In this respect, it is clear that contributing to society is great.
[Brief description of the drawings]
[1] of the desulfurization apparatus of the present invention conceptual diagram [2] SO 2 content of the separation and recovery characteristics and particle splash the SO 2 coexistence of NO and NO 2 to be treated in the gas as CaSO 4 the amount of change over time Correlation [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fluidized bed formation reaction tower 2 1st gas-solid separator 3 2nd gas-solid separator 4 Gas injection part 5 Reflux pipe of separation carrier particles 6 Transfer pipe of gas containing CaSO 4 7 Treated pipe Processing gas 8 Solid reactant removal pipe containing recovered CaSO 4 9 SO 2 desulfurizing agent supply unit (SO 2 desulfurizing agent production / supply device)
CV NO 2 converter OD Oxidant supply means B Boiler (source of gas to be treated)

Claims (8)

被処理ガス中にNOおよび/またはNOを10〜5000ppm共存させて被処理ガス中のSOをCaSOとして分離回収する脱硫方法。A desulfurization method in which 10 to 5000 ppm of NO and / or NO 2 coexist in a gas to be treated and SO 2 in the gas to be treated is separated and recovered as CaSO 4 . SOを含む被処理ガスにNOおよび/またはNOを10〜5000ppm共存させ、大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤を前記SOを含む被処理ガスと流動層を形成した状態で反応塔中で接触させ、前記脱硫剤とSOとを反応させながら前記被処理ガスと共に前記反応塔中を上昇させ、該反応塔の上部から前記SOとキャリヤー粒子表面の微粒子のCa(OH)との反応により形成されたCaSOを前記キャリヤー粒子および被処理ガスと共に第1の気体−固体分離器に流動させ、前記第1の気体−固体分離器中で前記キャリヤー粒子表面のCa(OH)とSOとの反応により形成され・剥離したCaSOを含む気体から該キャリヤー粒子を沈降させて分離し、該CaSOを含む気体を前記第1の気体−固体分離器上部から第2の気体−固体分離器に流動させ、第2の気体−固体分離器において被処理ガスから前記CaSOを分離・回収することを特徴とする請求項1に記載の被処理ガス中のSOをCaSOとして分離回収する脱硫方法。NO and / or NO 2 is present in the gas to be treated containing SO 2 in an amount of 10 to 5000 ppm, and the SO 2 desulfurizing agent in which fine particles of Ca (OH) 2 are coated on the surface of large-size carrier particles is treated with the SO 2 containing SO 2. process gas is contacted in a reaction column at a state of forming a fluidized bed, wherein while reacting the desulfurizing agent and SO 2 increased the reaction column together with the gas to be treated, from said top of said reactor SO 2 and the carrier particles the surface of the microparticle Ca (OH) 2 and the first gas to CaSO 4 formed by the reaction together with the carrier particles and the treated gas - to flow to the solid separator, said first gas - solid separation separated from gas containing CaSO 4 was formed, removed by reaction with Ca (OH) 2 and SO 2 in the carrier particle surfaces in a vessel and allowed to settle the carrier particles, the C Wherein the gas containing SO 4 first gas - solid separator top from the second gas - to flow to the solid separator, a second gas - the CaSO 4 to separate and recover from the gas to be treated in the solid separator desulfurization process for separating and recovering a SO 2 in the treated gas according as CaSO 4 in claim 1, characterized in that. 被処理ガス中にNOおよび/またはNOを10〜5000ppm共存させて被処理ガス中のSOをCaSOとして分離回収する脱硫方法が、排ガス中にNOおよび/またはNOが含まれていないか、含まれていても不十分な場合外部からNOおよび/またはNOを供給することを特徴とする請求項1または2に記載の被処理ガス中のSOをCaSOとして分離回収する脱硫方法。The desulfurization method for separating and recovering SO 2 in the gas to be treated as CaSO 4 by coexisting 10 to 5000 ppm of NO and / or NO 2 in the gas to be treated does not include NO and / or NO 2 in the exhaust gas. 3. Desulfurization for separating and recovering SO 2 in a gas to be treated as CaSO 4 according to claim 1 or 2, wherein NO and / or NO 2 is supplied from the outside when the content is insufficient. Method. 被処理ガス中にNOが含まれていなく、少なくともNOを共存させて被処理ガス中のSOをCaSOとして分離回収する脱硫方法が、被処理ガス中にNOが存在する場合には、被処理ガス中のNOの少なくとも一部をNOに変換する処理手段を経由させて、またNOおよびNOが存在しない場合にはNOの少なくとも一部をNOに変換する処理手段の前にNOを供給するか、NOを外部から処理ガス中に供給した後、被処理ガスを大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤が存在する反応塔に供給することを特徴とする請求項1または2に記載の被処理ガス中のSOをCaSOとして分離回収する脱硫方法。Not include a NO 2 in the gas to be treated, desulfurization process for separating and recovering a SO 2 in the treated gas coexist least NO 2 as CaSO 4 is, when NO is present in the gas to be treated , pre-processing means for converting at least a portion of nO in the treated gas by way of the processing means for converting to nO 2, also when the nO and nO 2 is not present at least a portion of nO to nO 2 After the supply of NO or the supply of NO 2 from the outside into the processing gas, the gas to be processed is reacted with a SO 2 desulfurizing agent in which fine particles of Ca (OH) 2 are coated on the surface of large-sized carrier particles. desulfurization process for separating and recovering a SO 2 as CaSO 4 of the treated gas according to claim 1 or 2, characterized in that fed to the column. NOの少なくとも一部をNOに変換する処理手段が300℃〜400℃においてメタノール、t−ブチルパーオキサイドを霧化圧入することにより酸化するものであることを特徴とする請求項4に記載の被処理ガス中のSOをCaSOとして分離回収する脱硫方法。Methanol in at least processing means for converting part of the NO 2 is 300 ° C. to 400 ° C. NO, the according to claim 4, characterized in that the oxidation by atomizing press-t- butyl peroxide A desulfurization method for separating and recovering SO 2 in a gas to be treated as CaSO 4 . 大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤が被処理ガスの供給により流動層を形成する反応塔1、前記反応塔に大粒径のキャリヤー粒子表面に微粒子のCa(OH)が被覆されたSO脱硫剤を供給する脱硫剤供給装置、SOを含む被処理ガス中にNOおよび/またはNOを共存させる装置、NOおよび/またはNOを共存させたSOを含む被処理ガスを吹き込む被処理ガス吹き込み装置、前記脱硫剤をSOを含む被処理ガスと流動層を形成する状態で反応塔中で接触させ、前記脱硫剤とSOとを反応させながら前記被処理ガスと共に前記反応塔中を上昇させ、該反応塔の上部から前記SOとキャリヤー粒子表面の微粒子のCa(OH)との反応により形成されたCaSOを前記キャリヤー粒子および被処理ガスと共に吹き込まれ、前記キャリヤー粒子を前記キャリヤー表面で形成され・脱離したCaSOを含む被処理ガスから前記キャリヤー粒子を沈降させて分離する第1の気体−固体分離器および前記第1の気体−固体分離器から前記CaSOを含む被処理ガスが吹き込まれ、吹き込まれた被処理ガスから該CaSOを分離する第2の気体−固体分離器を持つことを特徴とする被処理ガス中のSOをCaSOとして分離回収する脱硫装置。A reaction tower 1 in which a SO 2 desulfurizing agent in which fine particles of Ca (OH) 2 are coated on the surface of large-size carrier particles forms a fluidized bed by supplying a gas to be treated. A desulfurizing agent supply device for supplying an SO 2 desulfurizing agent coated with fine particle Ca (OH) 2 , a device for allowing NO and / or NO 2 to coexist in a gas to be treated containing SO 2 , NO and / or NO 2 A gas-to-be-processed gas blowing device for blowing a gas to be treated containing SO 2 coexisting, the desulfurizing agent is brought into contact with the gas to be treated containing SO 2 in a reaction tower in a state of forming a fluidized bed, and the desulfurizing agent and SO 2 Is raised in the reaction tower together with the gas to be treated, and CaSO 4 formed by the reaction between the SO 2 and the fine particles of Ca (OH) 2 on the surface of the carrier particles from above the reaction tower. Is blown together with the carrier particles and the gas to be treated, and the carrier particles are settled and separated from the gas to be treated containing CaSO 4 formed and desorbed on the surface of the carrier by first settling. A gas-to-be-processed gas containing the CaSO 4 is blown from the vessel and the first gas-solid separator, and a second gas-solid separator for separating the CaSO 4 from the blown gas-to-be-processed is provided. A desulfurization apparatus for separating and recovering SO 2 in the gas to be treated as CaSO 4 . SOを含む被処理ガス中にNOおよび/またはNOを共存させる装置が、SOをCaSOとして分離回収する被処理ガスを流動層を形成する反応塔に供給する前に配置され、前記被処理ガス中のNOおよび/またはNOを10〜5000ppmにする外部からNOおよび/またはNOを供給する装置および/またはNOをNOに変換するコンバーターを含むことを特徴とする請求項6に記載の被処理ガス中のSOをCaSOとして分離回収する脱硫装置。An apparatus for allowing NO and / or NO 2 to coexist in the gas to be treated containing SO 2 before the gas to be treated for separating and recovering SO 2 as CaSO 4 is supplied to a reaction tower for forming a fluidized bed; claim, characterized in that it comprises a converter for converting the device and / or NO supplying NO and / or NO 2 from the outside to the NO and / or NO 2 in the treated gas to 10~5000ppm to NO 2 6 3. A desulfurization apparatus for separating and recovering SO 2 in a gas to be treated as CaSO 4 . 流動層を形成する反応塔1とCaSOを含む被処理ガスから前記キャリヤー粒子を沈降させて分離する第1の気体−固体分離器とで循環型流動層を形成していることを特徴とする請求項6または7に記載の被処理ガス中のSOをCaSOとして分離回収する脱硫装置。A circulating fluidized bed is formed by the reaction column 1 forming a fluidized bed and the first gas-solid separator for sedimenting and separating the carrier particles from the gas to be treated containing CaSO 4. A desulfurization apparatus for separating and recovering SO 2 in a gas to be treated according to claim 6 or 7 as CaSO 4 .
JP2002246125A 2002-08-27 2002-08-27 Desulfurization method and desulfurization apparatus for recovering SO2 as CaSO4 by coexisting NO2 in a gas to be treated Expired - Fee Related JP4012011B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002246125A JP4012011B2 (en) 2002-08-27 2002-08-27 Desulfurization method and desulfurization apparatus for recovering SO2 as CaSO4 by coexisting NO2 in a gas to be treated
PCT/JP2003/010699 WO2004020077A1 (en) 2002-08-27 2003-08-25 METHOD AND APPARATUS FOR DESULFURIZATION COMPRISING INCORPORATING NO AND/OR NO2 IN GAS TO BE TREATED, TO RECOVER SO2 AS CaSO4
CNB038201127A CN1331568C (en) 2002-08-27 2003-08-25 Method and apparatus for desulfurization comprising incorporating NO and/or NO2 in gas to be treated, to recover SO2 as CaSO4

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002246125A JP4012011B2 (en) 2002-08-27 2002-08-27 Desulfurization method and desulfurization apparatus for recovering SO2 as CaSO4 by coexisting NO2 in a gas to be treated

Publications (2)

Publication Number Publication Date
JP2004081975A true JP2004081975A (en) 2004-03-18
JP4012011B2 JP4012011B2 (en) 2007-11-21

Family

ID=31972405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002246125A Expired - Fee Related JP4012011B2 (en) 2002-08-27 2002-08-27 Desulfurization method and desulfurization apparatus for recovering SO2 as CaSO4 by coexisting NO2 in a gas to be treated

Country Status (3)

Country Link
JP (1) JP4012011B2 (en)
CN (1) CN1331568C (en)
WO (1) WO2004020077A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102000492A (en) * 2010-11-26 2011-04-06 中冶赛迪工程技术股份有限公司 Lime slurry jetting circulating fluid bed semi-dry process desulfurizer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783325A (en) * 1985-05-14 1988-11-08 Jones Dale G Process and apparatus for removing oxides of nitrogen and sulfur from combustion gases
JPH05337325A (en) * 1992-06-08 1993-12-21 Hokkaido Electric Power Co Inc:The Method for desulfurizing exhaust gas in dry state
JP3711488B2 (en) * 2000-10-10 2005-11-02 独立行政法人科学技術振興機構 Desulfurization method and desulfurization apparatus capable of separating by-products with a novel desulfurization agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102000492A (en) * 2010-11-26 2011-04-06 中冶赛迪工程技术股份有限公司 Lime slurry jetting circulating fluid bed semi-dry process desulfurizer

Also Published As

Publication number Publication date
WO2004020077A1 (en) 2004-03-11
CN1331568C (en) 2007-08-15
CN1678384A (en) 2005-10-05
JP4012011B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
EP3272414B1 (en) Method for removing nitrogen oxides from a gas stream
TWI323182B (en) Verfahren zum reinigen von abgasen eines sinterprozesses von erzen und/oder anderen metallhaltigen materialien in der metalllerzeugung
CN1125157A (en) Composite clay materials for removal of sox from gas streams
CN105727730A (en) Efficient flue gas desulfurization and denitrification method and materials adopted by same
CN1660476A (en) Improved process for the removal of contaminants from gas
CN102227248A (en) Carbon dioxide purification using activated carbon as nox and so2 sorbent / catalyst
JP2009539605A (en) Integrated dry and wet flue gas purification methods and systems
CN106714938A (en) A process for the oxidation of hydrogen sulfide to sulfur trioxide with subsequent sulfur trioxide removal and a plant for carrying out the process
JP2007191670A (en) System for producing alkaline soil-improving material, combined with flue-gas desulfurization
WO2021193476A1 (en) Device and method pertaining to combustion exhaust gas purification treatment
KR100653046B1 (en) Method for removal of hydrogen sulfide by reaction of catalyst
CN102464299A (en) Method for producing hydrogen through fluidized-bed methane steam reforming
JP2004081975A (en) Desulfurization method and desulfurization equipment for recovering so2 in gas to be treated as caso4 in coexistence of no and/or no2
CN111097271B (en) Method and device for removing SOx and NOx in catalytic cracking flue gas
JP2003240226A (en) Exhaust gas processing device and processing method
JP3711488B2 (en) Desulfurization method and desulfurization apparatus capable of separating by-products with a novel desulfurization agent
JP3486696B2 (en) Desulfurization method using gas containing sulfurous acid gas as gas to be treated
CN112158840B (en) System and method for high-sulfur high-oxygen smelting flue gas tempering and carbon material activation
JP2007319782A (en) Exhaust gas treatment method
JP3632152B2 (en) Absorbent for desulfurization and method for producing desulfurization agent
WO2005072853A1 (en) Exhaust gas treating agent, method for treating exhaust gas and apparatus for treating exhaust gas
CN115093886B (en) Circulating moving bed process method and device for desulfurizing and dedusting gasified synthetic gas
RU2740015C1 (en) Method of cleaning off-gases from chlorine and sulfur oxide to obtain binder
JP2002028445A (en) Waste gas treatment method and its device
JPS6230527A (en) Method for regenerating dolomite type desulfurization agent

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070906

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees