JP4012011B2 - Desulfurization method and desulfurization apparatus for recovering SO2 as CaSO4 by coexisting NO2 in a gas to be treated - Google Patents

Desulfurization method and desulfurization apparatus for recovering SO2 as CaSO4 by coexisting NO2 in a gas to be treated Download PDF

Info

Publication number
JP4012011B2
JP4012011B2 JP2002246125A JP2002246125A JP4012011B2 JP 4012011 B2 JP4012011 B2 JP 4012011B2 JP 2002246125 A JP2002246125 A JP 2002246125A JP 2002246125 A JP2002246125 A JP 2002246125A JP 4012011 B2 JP4012011 B2 JP 4012011B2
Authority
JP
Japan
Prior art keywords
gas
treated
caso
desulfurization
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002246125A
Other languages
Japanese (ja)
Other versions
JP2004081975A (en
Inventor
正毅 定方
旭常 徐
将輝 西岡
徳彦 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002246125A priority Critical patent/JP4012011B2/en
Priority to PCT/JP2003/010699 priority patent/WO2004020077A1/en
Priority to CNB038201127A priority patent/CN1331568C/en
Publication of JP2004081975A publication Critical patent/JP2004081975A/en
Application granted granted Critical
Publication of JP4012011B2 publication Critical patent/JP4012011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/83Solid phase processes with moving reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids

Description

【0001】
【発明の属する技術分野】
本発明は、被処理ガス、例えば排ガス中のSOをCaSOとして分離回収する脱硫方法および脱硫装置におけるCaSOの回収率を改善した前記被処理ガスの脱硫方法および脱硫装置、特に被処理ガス中に10〜480ppmのNO を共存させることを特徴とする被処理ガス中のSOをCaSOとして分離回収する脱硫方法および脱硫装置に関する。
【0002】
【従来の技術】
SOは環境及び人の健康に重大な影響がある物質であり、石炭の燃焼プロセスなどから発生するSOは大きな社会問題である。そのために、従来から、SOを吸収除去するシステムが研究されている。その一つにCaOを用いた吸収除去方法がある。このCaOを用いたSOの吸収除去は、SOの拡散と、固体反応によるCaSO/CaSOの形成の過程を経て行われる。従って、CaOの粒子の特性、すなわち、表面積、孔径、孔容積等が前記吸収除去に大きな影響がある。市販のCaOはSOを吸収除去の特性に関しては、カルシウム利用率が良いとは言えない。
【0003】
また、サンダー等(Sanders et al.)は、フライアッシュと消石灰との混合スラリーを用いるとSOの吸収除去特性が改善されることを報告している(Sanders et al.,Ind.Eng.Chem.Res.1995,34(4),302−307)。その報告の中で、SOの吸収除去特性の改善は、カルシウムと珪酸アルミナとの水和反応により生成する珪酸カルシウム水和物の存在にあり、反応性の違いは珪酸カルシウム水和物の構造にあると説明している。他に、γ−アルミナ−CaO吸着剤(Svoboda et al.)、CaO、硫酸カルシウム、及びフライアッシュからのスラリーを約100℃で熟成した後、乾燥して得た吸着剤(Hiroaki et al.)(エトリンゲイトが形成されていると考えられている。特公平3−59737号公報にも類似の技術が開示されている。)等が提案されているが、それらの吸着剤の調製方法は水の使用量が比較的多く、水利の良くない地域においての利用性が悪いこと、および水を取り除くのに長時間および/または多くのエネルギーが必要であること、およびSO吸着剤の調製時における吸着特性を改善する組成の形成は工程の管理が難しいなどのことから、SO吸着剤の製造装置を脱硫装置に直結するような脱硫装置の設計が難しいという不都合があった。
【0004】
これに対して、本発明者等は、CaOとフライアッシュとを水中混合して吸着剤を調製するプロセスにおける水和のプロセスのメカニズムを知ることにより、前記原料からより実用プロセスとなり得るような活性なSO吸着特性を示す脱硫剤を製造する研究を鋭意進めて来た(Energy & Fuels,Vol.13,No5,1015−1020,1999.文献A)。しかし、ここでは該脱硫剤を調製するのに使用する水の量は、HO/(キャリヤー粒子+Ca(OH))の重量比が1.5と比較的多いものであり、このような水の使用の条件では、水資源の少ない地域においては脱硫方法としての利用するにはまだ改善が必要である。更に、その際、廃棄物をできるだけ少なくするために、副生物の利用性の向上と、添加する脱硫剤の利用効率の改善が重要なことであった。そこで、本発明者等は、前記技術を更に進めて乾式脱硫プロセスを、ほぼ実用レベルで設計できる脱硫剤を研究し、比較的大きな粒径を持ちSOの吸収脱硫成分であるCa(OH)を表面に被覆できるキャリヤー粒子を用いることにより、SOの吸収脱硫成分であるCa(OH)のCaの利用率を向上させ、かつ効率良く、利用性の高いCaSOを副生品として分離・回収できる脱硫方法および脱硫装置発明を完成し発表している(特開2002−113326号公報)。また、本発明者は〔Fuel, 78/9,1089−1095(1999)〕において、脱硫プロセスにおけるガス中に存在するNOの連鎖反応による効果を発表しているけれども、大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤を用いて、被処理ガス中のSOをCaSOとして分離回収する脱硫方法における、CaSOの回収率に対する効果については全く検討されていない。
【0005】
【発明が解決しようとする課題】
本願発明の課題は、大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤を用いて有用な副製品であるCaSOをより高率に回収できる脱硫方法および脱硫装置を提供することである。前記脱硫剤を用いる脱硫方法および脱硫装置においは、Ca(OH)を被覆した大粒径のキャリヤー粒子表面で被処理ガス中のSOと反応して生成するCaSOが、キャリヤー表面から効率よく剥離されることがCaSOをより高率に回収するために重要である。
前記剥離の効率の向上にはどのようなファクターが関連するか不明であったが、前記脱硫剤を用いる脱硫方法の改善のために、前記本発明者らが発表した脱硫処理におけるNO(Xは1から2)共存効果に着目して、10〜480ppmのNOを共存させたところ、CaSOの回収特性が改善されることを見出し、前記課題を解決することができた。
【0006】
【課題を解決するための手段】
本発明の第1は、(1)SOを含む被処理ガスにNO を10〜480ppm共存させ、大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤を前記SOを含む被処理ガスと流動層を形成した状態で反応塔中で接触させ、前記脱硫剤とSOとを反応させながら前記被処理ガスと共に前記反応塔中を上昇させ、該反応塔の上部から前記SOとキャリヤー粒子表面の微粒子のCa(OH)との反応により形成されたCaSOを前記キャリヤー粒子および被処理ガスと共に第1の気体−固体分離器に流動させ、前記第1の気体−固体分離器中で前記キャリヤー粒子表面のCa(OH)とSOとの反応により形成され剥離したCaSOを含む気体から該キャリヤー粒子を沈降させて分離し、該CaSOを含む気体を前記第1の気体−固体分離器上部から第2の気体−固体分離器に流動させ、第2の気体−固体分離器において被処理ガスから前記CaSOを分離・回収することを特徴とする被処理ガス中のSOをCaSOとして分離回収する脱硫方法である。好ましくは、(2)被処理ガス中にNO を10〜480ppm共存させて被処理ガス中のSOをCaSOとして分離回収する脱硫方法が、排ガス中にNO が含まれていないか、含まれていても不十分な場合外部からNO を供給することを特徴とする前記(1)記載の被処理ガス中のSOをCaSOとして分離回収する脱硫方法であり、一層好ましくは、(3)被処理ガス中にNO が10〜480ppm含まれていなく、10〜480ppmのNOを共存させて被処理ガス中のSOをCaSOとして分離回収する脱硫方法において、被処理ガス中にNOが存在する場合には、被処理ガス中のNOの少なくとも一部をNOに変換する処理手段を経由させて、またNOおよびNOが存在しない場合にはNOの少なくとも一部をNOに変換する処理手段の前にNOを供給するか、NOを外部から処理ガス中に供給し、被処理ガス中に10〜480ppmのNO を共存させて、被処理ガスを大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤が存在する反応塔に供給することを特徴とする前記(1)または(2)に記載の被処理ガス中のSOをCaSOとして分離回収する脱硫方法であり、より一層好ましくは、(4)NOの少なくとも一部をNOに変換する処理手段が300℃〜400℃においてメタノール、t−ブチルパーオキサイドを霧化圧入することにより酸化するものであることを特徴とする前記(3)に記載の被処理ガス中のSOをCaSOとして分離回収する脱硫方法である。
【0007】
本発明の第2は、(5)大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤が被処理ガスの供給により流動層を形成する反応塔1、前記反応塔に大粒径のキャリヤー粒子表面に微粒子のCa(OH)が被覆されたSO脱硫剤を供給する脱硫剤供給装置、SOを含む被処理ガス中に10〜480ppmのNOを共存させる装置、10〜480ppmのNOを共存させたSOを含む被処理ガスを吹き込む被処理ガス吹き込み装置、前記脱硫剤をSOを含む被処理ガスと流動層を形成する状態で反応塔中で接触させ、前記脱硫剤とSOとを反応させながら前記被処理ガスと共に前記反応塔中を上昇させ、該反応塔の上部から前記SOとキャリヤー粒子表面の微粒子のCa(OH)との反応により形成されたCaSOを前記キャリヤー粒子および被処理ガスと共に吹き込まれ、前記キャリヤー粒子を前記キャリヤー表面で形成され・脱離したCaSOを含む被処理ガスから前記キャリヤー粒子を沈降させて分離する第1の気体−固体分離器および前記第1の気体−固体分離器から前記CaSOを含む被処理ガスが吹き込まれ、吹き込まれた被処理ガスから該CaSOを分離する第2の気体−固体分離器を持つことを特徴とする被処理ガス中のSOをCaSOとして分離回収する脱硫装置であり、好ましくは、(6)SOを含む被処理ガス中に10〜480ppmのNOを共存させる装置が、SOをCaSOとして分離回収する被処理ガスを流動層を形成する反応塔1に供給する前に配置され、前記被処理ガス中のNO を10〜480ppmにする外部からNOおよび/またはNOを供給する装置および/またはNOをNOに変換するコンバーターを含むことを特徴とする前記(5)に記載の被処理ガス中のSOをCaSOとして分離回収する脱硫装置であり、より好ましくは、(7)流動層を形成する反応塔1とCaSOを含む被処理ガスから前記キャリヤー粒子を沈降させて分離する第1の気体−固体分離器とで循環型流動層を形成していることを特徴とする前記(5)または(6)に記載の被処理ガス中のSOをCaSOとして分離回収する脱硫装置である。
【0008】
【本発明の実施の態様】
本発明をより詳細に説明する。
A.第1図は、本発明のSOを含む被処理ガスにNOおよび/またはNOを10〜480ppm共存させ、特に被処理ガスにNO を10〜480ppm共存させ大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤を前記SOを含む被処理ガスと流動層を形成した状態で反応塔中で接触させ被処理ガス中のSOをCaSOとして分離回収する脱硫装置の概念図である。1は、多孔板(PP)を備えた流動層形成反応塔である。前記反応塔1の前記多孔板PPの下方には、例えばボイラーBからの被処理ガス(被処理気体)に10〜〜480ppmのNOおよび/またはNOを共存させた被処理ガスを供給する装置、例えば送風ポンプが接続されている。被処理ガスにNOおよび/またはNO共存させるために、前記被処理ガスを供給する装置の前にNOおよび/またはNOを供給する装置、および/または被処理ガス中に共存したNOの少なくとも一部をNOに変換する装置CVおよび前記変換を促進する酸化剤を吹き込む酸化剤供給手段(OD)が設けられている。
【0009】
多孔板PPの上方にはSO脱硫剤供給装置9、ここでは、脱硫剤の製造装置が反応塔1に直結している。脱硫剤および反応塔以降の装置類は本発明者らが既に提案している前記特開2002−113326号公報に詳細に記載されている。前記公報に記載の技術的説明は、大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤をSOを含む被処理ガスと流動層を形成した状態で反応塔中で接触させ被処理ガス中のSOをCaSOとして分離回収する脱硫方法および脱硫装置において「被処理ガスにNOおよび/またはNO共存させる」という本発明の技術的特徴、特に被処理ガスにNO 共存させること、を除いては、本発明と密接に関連することであるから、本発明の技術的説明の一部をなすものとして理解すべきである。
【0010】
【実施例】
ここでの説明は、本発明の理解をし易くするだけのものであり、本発明を限定するものではない。
実施例1
被処理ガスとして、SO含有量が1500ppm、CO含有量が12%、O含有量が8%のものを試料とした。脱硫剤としては、キャリヤー粒子として、下記の表1に記載の化学組成を持ち、平均粒径137μm、表面積126m/gのフライアッシュを用い、これに、Ca(OH)を(キャリヤー粒子+Ca(OH))との重量比が1.5となるように被覆したものを用いた。これを、Ca/S比が1.7となるように供給し、ガス空塔速度0.75 m/s、反応器(循環型流動層形成反応塔)温度350℃、気相滞留時間1.5秒(s)、圧力損失1kPa(脱硫剤粒子充填率に相当)とした。
【0011】
【表1】

Figure 0004012011
【0012】
表2に記載のNOまたはNOを共存(ppm)させて脱硫した時と、これらNOが共存しなかった時の脱硫特性(%)を表2に示す。NOまたはNOの共存効果を比較すると、同じ共存量において、NOの共存効果の方が大きいことが表2から理解される。このことから、NOをNOに変換するコンバーターCVを設けることが、SOをCaSOとして分離回収する脱硫法において顕著な改善をもたらすことは明らかである。またNOおよび/またはNOの共存量が50ppm〜300ppm以上ではこれらの共存効果はほぼ飽和しており、被処理ガス中に共存すべき最低濃度は10pmmであるが上限はない。
【0013】
【表2】
Figure 0004012011
【0014】
実施例2
NO、NOの共存量がそれぞれ480ppmにおける脱硫率(Ca/S)の効果を実験した結果を表3に示す。
前記実験を、被処理ガスとして、SO含有量が1500ppm、CO含有量が12%、O含有量が8%のを試料を、脱硫剤として、実施例1で用いたものと同じ化学組成、平均粒径および表面積を持つフライアッシュを用い、これに、のCa(OH)を(キャリヤー粒子+Ca(OH))との重量比が1.5になるように被覆したものを用いて、実施した。表3の結果から、脱硫率に対するNOおよびNOの共存の効果が明らかであり、NOの共存による脱硫率の向上への効果は、NOの共存による脱硫率の向上への効果に比べて安定していることも分かった。このことは、NOの共存は脱硫反応の安定した反応に効果があることが理解される。
【0015】
【表3】
Figure 0004012011
【0016】
実施例3
ここでは、大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤を用いた場合における、キャリヤー粒子表面の微粒子のCa(OH)とSOとの反応により形成されたCaSOをキャリヤー粒子表面から脱離する特性に対するNO(480ppm)およびNO(480ppm)の共存効果を、粒子飛沫量の経時変化として表4と図2に示す。
【0017】
【表4】
Figure 0004012011
【0018】
粒子飛沫量=(飛沫した粒子のうちのCaの量g/分)÷(供給した脱硫剤のCa量g/分)である。NO(□)およびNO(▲)の添加により、飛沫粒子が増えている〔NOもNOも共存しない場合は(◆)で示した。〕。このことはNOもNOの共存により脱硫剤が有効にはたらき、効率よく石膏が得られていることを意味する。NOの場合は、経時と飛沫量の関係を示す上記結果を見ると、変動が大きく、飛沫量が安定していない、換言すれば安定な反応が進行していなく、制御性あまり良くない。これに対して、NOの共存の場合には飛沫量が非常に安定している。このことから、NOの共存下でSO含有被処理ガス中のSOをCaSOとして分離回収する脱硫法がより効果的であることが理解される。
【0019】
【発明の効果】
以上述べたように、本発明は、SOを含む被処理ガスにNOおよび/またはNOを10〜480ppm共存させ、大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤と接触させてSOをCaSOとして分離回収する脱硫方法を確立し、SOを高効率で有用な副生物であるCaSOとして回収可能にし、実用的な環境改善手段を供給した点で、社会に貢献すること多大であることは明らかである。
【図面の簡単な説明】
【図1】本発明の脱硫装置の概念図
【図2】SO含有被処理ガス中へのNOおよびNOの共存のSOをCaSOとして分離回収特性と粒子飛沫の量の経時変化の相関
【符号の説明】
1 流動層形成反応塔 2 第1の気体−固体分離器 3 第2の気体−固体分離器
4 被処理ガス吹き込み部 5 分離キャリヤー粒子の還流管
6 CaSOを含む気体の移送管 7 処理済み被処理ガス
8 回収CaSOを含む固体反応物取り出し配管
9 SO脱硫剤供給部(SO脱硫剤製造・供給装置)
CV NOコンバーター OD 酸化剤供給手段
B ボイラー(被処理ガス発生源)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a desulfurization method for separating and recovering a gas to be processed, for example, SO 2 in exhaust gas as CaSO 4 and a desulfurization method for the gas to be processed and a desulfurization apparatus in which the recovery rate of CaSO 4 in the desulfurization apparatus is improved. The present invention relates to a desulfurization method and a desulfurization apparatus for separating and recovering SO 2 in a gas to be treated as CaSO 4 , characterized in that 10 to 480 ppm of NO 2 coexists.
[0002]
[Prior art]
SO 2 is a substance that has a significant impact on the environment and human health, and SO 2 generated from coal combustion processes is a major social problem. Therefore, conventionally, a system for absorbing and removing SO 2 has been studied. One of them is an absorption removal method using CaO. The absorption removal of SO 2 using CaO is performed through the process of diffusion of SO 2 and formation of CaSO 4 / CaSO 3 by solid reaction. Therefore, the characteristics of CaO particles, that is, the surface area, the pore diameter, the pore volume, and the like have a great influence on the absorption removal . Commercially available CaO cannot be said to have a good calcium utilization rate with respect to the property of absorbing and removing SO 2 .
[0003]
Sanders et al. (Sanders et al., Ind. Eng. Chem.) Reported that SO 2 absorption and removal characteristics are improved when a mixed slurry of fly ash and slaked lime is used. Res. 1995, 34 (4), 302-307). Among the reports, the improvement of SO 2 absorption and removal characteristics lies in the presence of calcium silicate hydrate produced by the hydration reaction between calcium and alumina silicate, and the difference in reactivity is the structure of calcium silicate hydrate. It is explained that. In addition, γ-alumina-CaO adsorbent (Svobo et al.), CaO, calcium sulfate, and a slurry from fly ash were aged at about 100 ° C. and dried (Hiroaki et al.). (It is considered that an ettringate is formed. A similar technique is also disclosed in Japanese Patent Publication No. 3-59737), but the method for preparing these adsorbents is water. Relatively low usage, poor availability in poor water areas, and long time and / or lots of energy required to remove water, and adsorption during preparation of SO 2 adsorbent forming a composition for improving the properties since such is difficult to manage the process, it is difficult to design a desulfurization unit, such as a direct drive apparatus for producing sO 2 sorbent to the desulfurization apparatus There is an inconvenience to say.
[0004]
On the other hand, the present inventors know the mechanism of the hydration process in the process of preparing the adsorbent by mixing CaO and fly ash in water, so that the activity that can be made more practical from the raw material. a SO 2 came extensive studying of manufacturing a desulfurizing agent showing adsorption characteristics (Energy & Fuels, Vol.13, No5,1015-1020,1999 . Document a). However, the amount of water used to prepare the desulfurization agent is relatively high at a weight ratio of H 2 O / (carrier particles + Ca (OH) 2 ) of 1.5. Under the conditions of water use, improvement is still necessary for use as a desulfurization method in areas where water resources are scarce. Furthermore, at that time, in order to reduce waste as much as possible, it is important to improve the utilization of by-products and the utilization efficiency of the added desulfurizing agent. Therefore, the present inventors further studied the desulfurization agent capable of designing the dry desulfurization process at an almost practical level by further advancing the above technology, and Ca (OH), which has a relatively large particle size and is an SO 2 absorption desulfurization component. By using carrier particles that can coat 2 on the surface, the utilization rate of Ca in the Ca (OH) 2 that is an absorption desulfurization component of SO 2 is improved, and CaSO 4 that is efficient and highly available is used as a by-product. A desulfurization method and desulfurization apparatus invention that can be separated and recovered have been completed and disclosed (Japanese Patent Laid-Open No. 2002-113326). In addition, the present inventor has announced in [Fuel, 78/9, 1089-1095 (1999)] the effect of the chain reaction of NO x present in the gas in the desulfurization process. The effect on the recovery rate of CaSO 4 in the desulfurization method in which SO 2 in the gas to be treated is separated and recovered as CaSO 4 using an SO 2 desulfurization agent coated with fine particles of Ca (OH) 2 on the surface has been completely studied. Not.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a desulfurization method and desulfurization capable of recovering CaSO 4 which is a useful by-product at a higher rate by using a SO 2 desulfurization agent in which fine particles of Ca (OH) 2 are coated on the surface of a carrier particle having a large particle diameter. Is to provide a device. Desulfurizing method and desulfurizing apparatus odor using the desulfurizing agent, CaSO 4 which reacts with SO 2 in the processed gas at the carrier particles surface with a large particle size coated with Ca (OH) 2 is, from the carrier surface Efficient peeling is important for recovering CaSO 4 at a higher rate.
It was unclear what factors were associated with the improvement in the efficiency of the exfoliation. However, in order to improve the desulfurization method using the desulfurization agent, NO x (X 1 to 2) Focusing on the coexistence effect, it was found that when 10 to 480 ppm of NO 2 was allowed to coexist, the recovery characteristics of CaSO 4 were improved, and the above problems could be solved.
[0006]
[Means for Solving the Problems]
In the first aspect of the present invention, (1) an SO 2 desulfurization agent in which 10 to 480 ppm of NO 2 coexists in a gas to be treated containing SO 2 and the surface of a large carrier particle is coated with fine Ca (OH) 2 is used. The gas to be treated containing SO 2 is contacted in a reaction tower in a state where a fluidized bed is formed, and the reaction tower is raised together with the gas to be treated while reacting the desulfurizing agent and SO 2. CaSO 4 formed by the reaction of the SO 2 and fine particles of Ca (OH) 2 on the surface of the carrier particles is flowed to the first gas-solid separator together with the carrier particles and the gas to be treated from above the first gas-solid separator. 1 gas - from gas containing CaSO 4 that releases peeling is formed by reaction of the Ca (OH) 2 and SO 2 of the carrier particles surface with the solid separator in allowed to settle the carrier particles are separated, the C Wherein the gas containing SO 4 first gas - solid separator top from the second gas - to flow to the solid separator, a second gas - the CaSO 4 to separate and recover from the gas to be treated in the solid separator This is a desulfurization method for separating and recovering SO 2 in a gas to be treated as CaSO 4 . Preferably, (2) the desulfurization method in which 10 to 480 ppm of NO 2 coexists in the gas to be treated and SO 2 in the gas to be treated is separated and recovered as CaSO 4 is NO 2 in the exhaust gas, a and, more preferably contained said, characterized by also supplying the externally et NO 2 if insufficient optionally (1) desulfurization process for separating and recovering a SO 2 in the treated gas according as CaSO 4 , (3) NO 2 is not contained 10~480ppm to be treated in the gas, in the desulfurizing method for separating and recovering the SO 2 in the treated gas coexist NO 2 of 10~480ppm as CaSO 4, to be treated when the nO is present in the gas, by way of the processing means for converting at least a portion of nO in the treated gas to nO 2, also when the nO and nO 2 is not present in the nO Either deliver NO before the processing means for converting a portion to NO 2 even without supplies NO 2 in the treated gas from the outside, coexist NO 2 of 10~480ppm in the gas to be treated, the The process gas according to (1) or (2), wherein the treatment gas is supplied to a reaction tower having a SO 2 desulfurization agent in which fine particles of Ca (OH) 2 are coated on the surface of carrier particles having a large particle size. It is a desulfurization method in which SO 2 in the process gas is separated and recovered as CaSO 4 , and more preferably, (4) the treatment means for converting at least a part of NO into NO 2 is methanol, t- The desulfurization method for separating and recovering SO 2 in the gas to be treated as CaSO 4 according to the above ( 3) , wherein butyl peroxide is oxidized by atomizing and pressing.
[0007]
The second aspect of the present invention is: (5) a reaction tower 1 in which a SO 2 desulfurization agent in which fine particles of Ca (OH) 2 are coated on the surface of a carrier particle having a large particle size forms a fluidized bed by supplying a gas to be treated; A desulfurization agent supply device for supplying an SO 2 desulfurization agent in which fine particle Ca (OH) 2 is coated on the surface of a carrier particle having a large particle size to the tower 1, and 10 to 480 ppm of NO 2 in a gas to be treated containing SO 2. An apparatus for coexisting, a process gas blowing apparatus for blowing a process gas containing SO 2 coexisting with 10 to 480 ppm of NO 2 , and a reaction tower in a state where a fluidized bed is formed with the process gas containing SO 2 and the process gas containing SO 2 The reaction gas is brought into contact with the desulfurizing agent and SO 2 to react with the gas to be treated, and is raised in the reaction tower. From the upper part of the reaction tower, the SO 2 and fine particles of Ca (OH) 2 on the surface of the carrier particles are introduced. With Insufflated CaSO 4 formed by response together with the carrier particles and the gas to be treated, is separated by settling the carrier particles from the treated gas containing said CaSO 4 to the carrier particles detached are formed, at the surface of the carrier first gas - solid separator and the first gas - solid treated gas containing CaSO 4 from the separator is blown, the second gas to separate the CaSO 4 from the processing gas blown - solid A desulfurization apparatus for separating and recovering SO 2 in a gas to be treated as CaSO 4 characterized by having a separator, preferably (6) 10 to 480 ppm of NO 2 in the gas to be treated containing SO 2 The coexisting device is disposed before supplying the gas to be treated for separating and recovering SO 2 as CaSO 4 to the reaction tower 1 forming the fluidized bed, The apparatus according to ( 5) above, comprising a device for supplying NO and / or NO 2 from the outside to adjust NO 2 in the gas to be treated to 10 to 480 ppm and / or a converter for converting NO to NO 2 More preferably, the desulfurization apparatus separates and recovers SO 2 in the gas to be processed as CaSO 4 , and (7) the carrier particles are precipitated from the gas to be processed including the reaction tower 1 forming the fluidized bed and the CaSO 4. A circulating fluidized bed is formed with the first gas-solid separator to be separated, and SO 2 in the gas to be treated according to (5) or (6) is separated and recovered as CaSO 4 Desulfurization equipment.
[0008]
[Embodiments of the present invention]
The present invention will be described in more detail.
A. Figure 1 is NO and / or NO 2 in the treated gas containing SO 2 in the present invention coexist 10 ~480Ppm, especially the NO 2 in the gas to be treated to the carrier particles surface with a large particle size is 10~480ppm coexist contacting in a reaction column in a state in which the SO 2 desulfurizing agent coated with Ca (OH) 2 fine particles to form a fluidized bed and treated gas containing SO 2 separation and recovery of SO 2 in the treated gas as CaSO 4 It is a conceptual diagram of a desulfurization apparatus. 1 is a fluidized bed forming reaction tower equipped with a perforated plate (PP). An apparatus for supplying a gas to be processed in which 10 to 480 ppm of NO and / or NO 2 coexist in a gas to be processed (gas to be processed) from the boiler B, for example, below the porous plate PP of the reaction tower 1 For example, a blower pump is connected. To NO and / or NO 2 coexist in the gas to be treated, at least of NO coexisted the device for supplying NO and / or NO 2 in front of the device for supplying a gas to be treated, and / or to be treated in the gas device CV and blow can Komu oxidant supply means an oxidant that promotes the conversion into a NO 2 (OD) is provided partially.
[0009]
Above the perforated plate PP, an SO 2 desulfurization agent supply device 9, here, a desulfurization agent production device, is directly connected to the reaction tower 1. The desulfurization agent and the apparatus after the reaction tower are described in detail in the above-mentioned JP-A No. 2002-113326 already proposed by the present inventors. Technical Description according to the publication, the reaction tower in a state in which the SO 2 desulfurizing agent to the carrier particle surfaces with a large particle size were coated microparticles of Ca (OH) 2 to form a fluidized bed and treated gas containing SO 2 In the desulfurization method and desulfurization apparatus in which SO 2 in the gas to be treated is separated and recovered as CaSO 4 and brought into contact therewith, the technical feature of the present invention , in particular, the gas to be treated is made to coexist with NO and / or NO 2 Except for coexisting with NO 2 , it is closely related to the present invention and should be understood as part of the technical description of the present invention.
[0010]
【Example】
The description here is only to facilitate understanding of the present invention and is not intended to limit the present invention.
Example 1
As a gas to be treated, a sample having an SO 2 content of 1500 ppm, a CO 2 content of 12%, and an O 2 content of 8% was used as a sample. As the desulfurizing agent, as carrier particles, fly ash having the chemical composition shown in Table 1 below and having an average particle size of 137 μm and a surface area of 126 m 2 / g was used, and Ca (OH) 2 was added to (carrier particles + Ca What was coated so that the weight ratio with (OH) 2 ) would be 1.5 was used. This was supplied so that the Ca / S ratio was 1.7, the gas superficial velocity was 0.75 m / s, the reactor (circulating fluidized bed forming reaction tower) temperature was 350 ° C., and the gas phase residence time was 1. The pressure loss was set to 5 seconds (s), and the pressure loss was 1 kPa (corresponding to the desulfurization agent particle filling rate).
[0011]
[Table 1]
Figure 0004012011
[0012]
Table 2 shows the desulfurization characteristics (%) when NO or NO 2 listed in Table 2 coexists with desulfurization (ppm) and when NO X does not coexist. When comparing the coexistence effect of NO or NO 2 , it can be seen from Table 2 that the coexistence effect of NO 2 is larger at the same coexistence amount. From this, it is clear that the provision of the converter CV that converts NO to NO 2 brings about a significant improvement in the desulfurization method in which SO 2 is separated and recovered as CaSO 4 . Also these coexistence effect in amount coexistence more 50ppm~300ppm of NO and / or NO 2 is almost saturated, the lowest concentration should coexist in the gas to be treated is a 10pmm no upper limit.
[0013]
[Table 2]
Figure 0004012011
[0014]
Example 2
Table 3 shows the results of experiments on the effect of desulfurization rate (Ca / S) when the coexistence amounts of NO and NO 2 are 480 ppm, respectively.
The same chemistry as that used in Example 1 was used for the experiment, using as a gas to be treated a sample having an SO 2 content of 1500 ppm, a CO 2 content of 12%, and an O 2 content of 8% as a desulfurization agent. composition, using fly ash having an average particle size and surface area, with which this weight ratio of Ca to (OH) 2 and (carrier particles + Ca (OH) 2) of coated so that 1.5 And implemented. From the results of Table 3, the effect of coexistence of NO and NO 2 on the desulfurization rate is clear, and the effect of improving the desulfurization rate due to the coexistence of NO 2 is compared with the effect of improving the desulfurization rate due to the coexistence of NO 2. I also found it stable. This means that the coexistence of NO 2 is effective for a stable reaction of the desulfurization reaction.
[0015]
[Table 3]
Figure 0004012011
[0016]
Example 3
Here, in the case where an SO 2 desulfurization agent in which fine particle Ca (OH) 2 is coated on the surface of a large particle particle is used, it is formed by the reaction of fine particle Ca (OH) 2 on the carrier particle surface with SO 2. Table 4 and FIG. 2 show the coexistence effect of NO (480 ppm) and NO 2 (480 ppm) on the property of desorbing the CaSO 4 that has been released from the carrier particle surface as time-dependent changes in the amount of particle droplets.
[0017]
[Table 4]
Figure 0004012011
[0018]
Particle splash amount = (Ca amount g / min of splashed particles) ÷ (Ca amount g / min of supplied desulfurization agent). The addition of NO (□) and NO 2 (▲) increases the amount of splash particles [when neither NO nor NO 2 coexist is indicated by (♦). ]. This means that NO and NO 2 coexist and the desulfurization agent works effectively, and gypsum is obtained efficiently. In the case of NO, looking at the above results showing the relationship between time and the amount of droplets, the fluctuation is large and the amount of droplets is not stable, in other words, a stable reaction does not proceed and controllability is not very good. In contrast, in the case of coexistence of NO 2 is the amount of splash is very stable. Therefore, it is understood desulfurization method of separating and recovering SO 2 of SO 2 containing treated gas as CaSO 4 in the presence of NO 2 is more effective.
[0019]
【The invention's effect】
As described above, in the present invention, SO and NO 2 and / or NO 2 coexist in a gas to be treated containing SO 2 , and the surface of large carrier particles is coated with fine particles of Ca (OH) 2. Established a desulfurization method that separates and recovers SO 2 as CaSO 4 by bringing it into contact with 2 desulfurizing agent, enables SO 2 to be recovered as CaSO 4 which is a highly efficient and useful by-product, and provided practical environmental improvement means. In terms, it is clear that contributing to society is enormous.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a desulfurization apparatus according to the present invention. FIG. 2 is a graph showing changes over time in the separation and recovery characteristics and the amount of particle droplets when SO 2 in the coexistence of NO and NO 2 in a SO 2 -containing gas is CaSO 4 . Correlation [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fluidized bed formation reaction tower 2 1st gas-solid separator 3 2nd gas-solid separator 4 To-be-treated gas blowing part 5 Separation carrier particle reflux pipe 6 Gas transfer pipe containing CaSO 4 7 Treated Process gas 8 Solid reactant extraction pipe 9 containing recovered CaSO 4 SO 2 desulfurization agent supply unit (SO 2 desulfurization agent production / supply device)
CV NO 2 converter OD Oxidant supply means B Boiler (treated gas generation source)

Claims (7)

SOを含む被処理ガスにNO を10〜480ppm共存させ、大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤を前記SOを含む被処理ガスと流動層を形成した状態で反応塔中で接触させ、前記脱硫剤とSOとを反応させながら前記被処理ガスと共に前記反応塔中を上昇させ、該反応塔の上部から前記SOとキャリヤー粒子表面の微粒子のCa(OH)との反応により形成されたCaSOを前記キャリヤー粒子および被処理ガスと共に第1の気体−固体分離器に流動させ、前記第1の気体−固体分離器中で前記キャリヤー粒子表面のCa(OH)とSOとの反応により形成され剥離したCaSOを含む気体から該キャリヤー粒子を沈降させて分離し、該CaSOを含む気体を前記第1の気体−固体分離器上部から第2の気体−固体分離器に流動させ、第2の気体−固体分離器において被処理ガスから前記CaSOを分離・回収することを特徴とする被処理ガス中のSOをCaSOとして分離回収する脱硫方法。An SO 2 desulfurizing agent in which 10 to 480 ppm of NO 2 coexists in a gas to be treated containing SO 2 and fine particles of Ca (OH) 2 are coated on the surface of carrier particles having a large particle diameter flows with the gas to be treated containing SO 2. contacting in a state of forming a layer in a reaction column, wherein while the desulfurizing agent and the SO 2 is reacted to increase the in the reaction column together with the process gas, the SO 2 and the carrier particle surface from the top of the reaction column The CaSO 4 formed by the reaction of the fine particles of Ca (OH) 2 with the carrier particles and the gas to be treated is flowed to the first gas-solid separator, and the CaSO 4 is allowed to flow in the first gas-solid separator. from gas containing CaSO 4 that releases peeling is formed by reaction of the Ca (OH) 2 and SO 2 of the carrier particle surface to precipitate the carrier particles are separated, before the gas containing the CaSO 4 The upper part of the first gas-solid separator is flowed to the second gas-solid separator, and the CaSO 4 is separated and recovered from the gas to be treated in the second gas-solid separator. A desulfurization method in which SO 2 in the process gas is separated and recovered as CaSO 4 . 被処理ガス中にNO を10〜480ppm共存させて被処理ガス中のSOをCaSOとして分離回収する脱硫方法が、排ガス中にNO が含まれていないか、含まれていても不十分な場合外部からNO を供給することを特徴とする請求項1に記載の被処理ガス中のSOをCaSOとして分離回収する脱硫方法。Desulfurization process for separating and recovering the NO 2 in the gas to be treated is 10~480ppm coexist with SO 2 in the treated gas as CaSO 4 is, does not contain any NO 2 in the exhaust gas, also contain non desulfurization process for separating and recovering a SO 2 as CaSO 4 of the treated gas according to claim 1, characterized in that to supply sufficient if externally et NO 2. 被処理ガス中にNO が10〜480ppm含まれていなく、10〜480ppmのNOを共存させて被処理ガス中のSOをCaSOとして分離回収する脱硫方法において、被処理ガス中にNOが存在する場合には、被処理ガス中のNOの少なくとも一部をNOに変換する処理手段を経由させて、またNOおよびNOが存在しない場合にはNOの少なくとも一部をNOに変換する処理手段の前にNOを供給するか、NOを外部から処理ガス中に供給し、被処理ガス中に10〜480ppmのNO を共存させて被処理ガスを大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤が存在する反応塔に供給することを特徴とする請求項1または2に記載の被処理ガス中のSOをCaSOとして分離回収する脱硫方法。In the desulfurization method in which 10 to 480 ppm of NO 2 is not contained in the gas to be treated, and SO 2 in the gas to be treated is separated and recovered as CaSO 4 in the presence of 10 to 480 ppm of NO 2 , NO 2 is contained in the gas to be treated. Is present, it is passed through a processing means for converting at least part of NO in the gas to be treated into NO 2 , and when NO and NO 2 are not present, at least part of NO is converted to NO 2 . Either NO is supplied before the processing means for conversion or NO 2 is supplied into the processing gas from the outside , and 10 to 480 ppm of NO 2 coexists in the processing gas to make the processing gas a large particle particle. and CaSO 4 with SO 2 in the treated gas according to supplied to the reaction tower SO 2 desulfurizing agent coated with Ca (OH) 2 fine particles are present in claim 1 or 2, characterized in the surface Desulfurization process for separating and recovering Te. NOの少なくとも一部をNOに変換する処理手段が300℃〜400℃においてメタノール、t−ブチルパーオキサイドを霧化圧入することにより酸化するものであることを特徴とする請求項3に記載の被処理ガス中のSOをCaSOとして分離回収する脱硫方法。Methanol in at least processing means for converting part of the NO 2 is 300 ° C. to 400 ° C. NO, the according to claim 3, characterized in that the oxidation by atomizing press-t- butyl peroxide A desulfurization method in which SO 2 in a gas to be treated is separated and recovered as CaSO 4 . 大粒径のキャリヤー粒子表面に微粒子のCa(OH)を被覆したSO脱硫剤が被処理ガスの供給により流動層を形成する反応塔1、前記反応塔に大粒径のキャリヤー粒子表面に微粒子のCa(OH)が被覆されたSO脱硫剤を供給する脱硫剤供給装置、SOを含む被処理ガス中に10〜480ppmのNOを共存させる装置、10〜480ppmのNOを共存させたSOを含む被処理ガスを吹き込む被処理ガス吹き込み装置、前記脱硫剤をSOを含む被処理ガスと流動層を形成する状態で反応塔中で接触させ、前記脱硫剤とSOとを反応させながら前記被処理ガスと共に前記反応塔中を上昇させ、該反応塔の上部から前記SOとキャリヤー粒子表面の微粒子のCa(OH)との反応により形成されたCaSOを前記キャリヤー粒子および被処理ガスと共に吹き込まれ、前記キャリヤー粒子を前記キャリヤー表面で形成され・脱離したCaSOを含む被処理ガスから前記キャリヤー粒子を沈降させて分離する第1の気体−固体分離器および前記第1の気体−固体分離器から前記CaSOを含む被処理ガスが吹き込まれ、吹き込まれた被処理ガスから該CaSOを分離する第2の気体−固体分離器を持つことを特徴とする被処理ガス中のSOをCaSOとして分離回収する脱硫装置。Reaction column 1 SO 2 desulfurizing agent coated with particles of Ca (OH) 2 to the carrier particle surface with a large particle size to form a fluidized bed by the supply of the gas to be treated, the carrier particles surface with a large particle size into the reaction tower 1 A desulfurization agent supply device for supplying an SO 2 desulfurization agent coated with fine particles of Ca (OH) 2 on the surface, a device for allowing 10 to 480 ppm of NO 2 to coexist in a gas to be treated containing SO 2 , and 10 to 480 ppm of NO 2 A treatment gas blowing apparatus for blowing a treatment gas containing SO 2 coexisting with the gas, a desulfurization agent and a treatment gas containing SO 2 in contact with each other in a reaction tower in a state of forming a fluidized bed, and the desulfurization agent and SO 2 is raised in the reaction tower together with the gas to be treated while reacting with 2, and formed from the upper part of the reaction tower by the reaction of the SO 2 with fine Ca (OH) 2 on the surface of the carrier particles. SO 4 is blown together with the carrier particles and the gas to be treated, and a first gas that settles and separates the carrier particles from the gas to be treated containing CaSO 4 formed and desorbed on the surface of the carrier. A gas to be treated containing CaSO 4 is blown from a solid separator and the first gas-solid separator, and a second gas-solid separator is provided for separating the CaSO 4 from the blown gas to be treated. A desulfurization apparatus for separating and recovering SO 2 in a gas to be treated as CaSO 4 . SOを含む被処理ガス中に10〜480ppmのNOを共存させる装置が、SOCaSO として分離回収する被処理ガスを流動層を形成する反応塔1に供給する前に配置され、前記被処理ガス中のNO を10〜480ppmにする外部からNOおよび/またはNOを供給する装置および/またはNOをNOに変換するコンバーターを含むことを特徴とする請求項5に記載の被処理ガス中のSOをCaSOとして分離回収する脱硫装置。The apparatus in which 10 to 480 ppm of NO 2 coexists in the gas to be treated containing SO 2 is disposed before supplying the gas to be treated for separating and recovering SO 2 as CaSO 4 to the reaction tower 1 forming the fluidized bed , 6. The apparatus according to claim 5 , further comprising: a device for supplying NO and / or NO 2 from the outside to adjust NO 2 in the gas to be treated to 10 to 480 ppm and / or a converter for converting NO to NO 2 . A desulfurization apparatus that separates and recovers SO 2 in the gas to be treated as CaSO 4 . 流動層を形成する反応塔1とCaSOを含む被処理ガスから前記キャリヤー粒子を沈降させて分離する第1の気体−固体分離器とで循環型流動層を形成していることを特徴とする請求項5または6に記載の被処理ガス中のSOをCaSOとして分離回収する脱硫装置。A circulation type fluidized bed is formed by the reaction tower 1 forming a fluidized bed and the first gas-solid separator for separating and separating the carrier particles from the gas to be treated containing CaSO 4. desulfurization apparatus for separating recovered as CaSO 4 and SO 2 in the treated gas according to claim 5 or 6.
JP2002246125A 2002-08-27 2002-08-27 Desulfurization method and desulfurization apparatus for recovering SO2 as CaSO4 by coexisting NO2 in a gas to be treated Expired - Fee Related JP4012011B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002246125A JP4012011B2 (en) 2002-08-27 2002-08-27 Desulfurization method and desulfurization apparatus for recovering SO2 as CaSO4 by coexisting NO2 in a gas to be treated
PCT/JP2003/010699 WO2004020077A1 (en) 2002-08-27 2003-08-25 METHOD AND APPARATUS FOR DESULFURIZATION COMPRISING INCORPORATING NO AND/OR NO2 IN GAS TO BE TREATED, TO RECOVER SO2 AS CaSO4
CNB038201127A CN1331568C (en) 2002-08-27 2003-08-25 Method and apparatus for desulfurization comprising incorporating NO and/or NO2 in gas to be treated, to recover SO2 as CaSO4

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002246125A JP4012011B2 (en) 2002-08-27 2002-08-27 Desulfurization method and desulfurization apparatus for recovering SO2 as CaSO4 by coexisting NO2 in a gas to be treated

Publications (2)

Publication Number Publication Date
JP2004081975A JP2004081975A (en) 2004-03-18
JP4012011B2 true JP4012011B2 (en) 2007-11-21

Family

ID=31972405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002246125A Expired - Fee Related JP4012011B2 (en) 2002-08-27 2002-08-27 Desulfurization method and desulfurization apparatus for recovering SO2 as CaSO4 by coexisting NO2 in a gas to be treated

Country Status (3)

Country Link
JP (1) JP4012011B2 (en)
CN (1) CN1331568C (en)
WO (1) WO2004020077A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102000492B (en) * 2010-11-26 2013-02-27 中冶赛迪工程技术股份有限公司 Lime slurry jetting circulating fluid bed semi-dry process desulfurizer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783325A (en) * 1985-05-14 1988-11-08 Jones Dale G Process and apparatus for removing oxides of nitrogen and sulfur from combustion gases
JPH05337325A (en) * 1992-06-08 1993-12-21 Hokkaido Electric Power Co Inc:The Method for desulfurizing exhaust gas in dry state
JP3711488B2 (en) * 2000-10-10 2005-11-02 独立行政法人科学技術振興機構 Desulfurization method and desulfurization apparatus capable of separating by-products with a novel desulfurization agent

Also Published As

Publication number Publication date
JP2004081975A (en) 2004-03-18
WO2004020077A1 (en) 2004-03-11
CN1331568C (en) 2007-08-15
CN1678384A (en) 2005-10-05

Similar Documents

Publication Publication Date Title
CN101934191B (en) Method for desulfurizing and denitrating smoke simultaneously through ammonia method
EP0487102B1 (en) Recycling system for the recovery and utilization of CO2 gas
CN105727730A (en) Efficient flue gas desulfurization and denitrification method and materials adopted by same
CN105771617A (en) Flue gas desulfurization and denitrification method
JP2009539605A (en) Integrated dry and wet flue gas purification methods and systems
CN110280125B (en) Containing arsenic and SO3Dry purification method of smelting flue gas
WO2010081289A1 (en) Method for removing h2s from gaseous stream at normal temperature
CN106714938A (en) A process for the oxidation of hydrogen sulfide to sulfur trioxide with subsequent sulfur trioxide removal and a plant for carrying out the process
CN102489132A (en) Novel dual-alkali desulfurization method for removal of sulfur dioxide from flue gas and generation of elemental sulfur as byproduct
EP0074258B1 (en) Improved process for flue gas desulfurization
CN109569251B (en) By using a gas containing SO2Device and method for preparing dilute sulfuric acid from flue gas
CN102284238A (en) Bialkali-method flue-gas desulphurization process
WO2016198369A1 (en) Hydrogen sulfide abatement via removal of sulfur trioxide
WO2021193476A1 (en) Device and method pertaining to combustion exhaust gas purification treatment
CN1206735A (en) Fine preparation method for gas
KR101644538B1 (en) Method and apparatus for capturing and resourcing carbon dioxide from flue gas containing carbon dioxide
JP4012011B2 (en) Desulfurization method and desulfurization apparatus for recovering SO2 as CaSO4 by coexisting NO2 in a gas to be treated
KR100653046B1 (en) Method for removal of hydrogen sulfide by reaction of catalyst
PL144335B1 (en) Method of obtaining highly porous mineral bodies of polyform structure,in particular those having adsorptive properties
JPS6372322A (en) Method of removing sulfur dioxide from flue gas
RU2692382C1 (en) Method for removing off gases from sulfur oxides with obtaining commercial products
JP4507291B2 (en) Method and apparatus for treating flue gas desulfurization waste
CN110090550A (en) A kind of coke oven flue gas sulfur method thermally decomposed in advance based on magnesium salts
JP3711488B2 (en) Desulfurization method and desulfurization apparatus capable of separating by-products with a novel desulfurization agent
JPH06228573A (en) Treatment of tail gas in coal gasification plant

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees