JP2004081958A - Method of backwashing bag filter and bag filter - Google Patents

Method of backwashing bag filter and bag filter Download PDF

Info

Publication number
JP2004081958A
JP2004081958A JP2002244844A JP2002244844A JP2004081958A JP 2004081958 A JP2004081958 A JP 2004081958A JP 2002244844 A JP2002244844 A JP 2002244844A JP 2002244844 A JP2002244844 A JP 2002244844A JP 2004081958 A JP2004081958 A JP 2004081958A
Authority
JP
Japan
Prior art keywords
bag filter
gas
pulse jet
filter device
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002244844A
Other languages
Japanese (ja)
Inventor
Keizo Hamaguchi
浜口 敬三
Mitsuhiro Tada
多田 光宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2002244844A priority Critical patent/JP2004081958A/en
Publication of JP2004081958A publication Critical patent/JP2004081958A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of backwashing a pulse-jet type bag filter which can surely prevent the clogging of a filter cloth over a long period to make the safe operation of the bag filter possible, and the bag filter. <P>SOLUTION: When an exhaust gas containing at least water and an acidic component is treated by the pulse-jet type bag filter 1, a gas heated at a prescribed temperature equal to or below the heat-resistance temperature of the filter cloth 7 is used as a pulse-jet gas for backwashing. A heating means 12 for heating the pulse-jet gas at the prescribed temperature is installed in the bag filter 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、HCl、SOx等の酸性成分および水分を含有する排ガスを処理するためのパルスジェット式バグフィルタ装置における逆洗方法およびバグフィルタ装置に関するものである。
【0002】
【従来の技術】
都市ごみ、産業廃棄物等の可燃性廃棄物の焼却、ガス化、溶融の各種工程から排出される排ガス、スクラップ熔解やアルミ精錬等の各種金属精錬過程で排出される排ガス、さらには各種製造工場、化学工場、発電設備等で排出される排ガスには、ばいじん、HClやSOx等の酸性成分、窒素酸化物、水銀等の重金属、ダイオキシン類およびその前駆物質等の有機ハロゲン化合物など、さまざまな有害物質が含まれている。
【0003】
これらの有害成分のうち、HCl、SOx等の酸性成分およびばいじんは、200℃以下の反応バグフィルタによって処理されることが多くなってきた。
すなわち、上記酸性成分を中和除去するための消石灰粉をバグフィルタ装置の上流煙道で噴霧して、バグフィルタ装置内のろ布によるろ過集塵過程で、排ガス中のばいじんおよび消石灰粉を捕集するとともに、中和反応により排ガス中の酸性成分を除去する方式である。ろ布表面には未反応の中和剤(消石灰)と反応生成物(CaCl、CaSO等)とばいじんが混合した粉体層(集塵灰)が形成されるが、この層は一定時間ごとに逆洗手段により払い落とされ、連続的に噴霧される消石灰粉により、更新され、排ガスの連続的な処理を可能とする。
【0004】
逆洗手段、方式としては、逆風式、パルスジェット方式、振動式の各種があげられるが、現在は取扱いの容易性からパルスジェット方式が主流となっている。図5に示すように、パルスジェット方式は周知のとおり、排ガスのろ過過程における、例えば10本程度(図3では7本)の一直線上に並ぶ一列のろ布7群に、噴射管8を介してパルスジェット空気を噴射して、ろ布7に付着した粉体層(集塵灰)を払い落とす方法である。このパルスジェット噴射を全ろ布7に順次繰り返すことにより、排ガス中の酸性ガス除去とろ布7の粉体層の更新(払い落とし)を連続的に行っている。パルスジェット用の噴射空気は例えば常温空気をコンプレッサ11により昇圧してヘッダ管9に貯留し、2〜5kg/cmGの噴射圧力でろ布7に吹き付け、逆洗を実施している。
すなわち、従来、逆洗に用いるパルスジェット空気は、常温空気を単に昇圧したものを用いていた。
【0005】
【発明が解決しようとする課題】
しかしながら、パルスジェット空気として従来のごとく常温の空気を用いると、パルスジェット噴射の過程で、ろ布7が一時的に過度に冷却され、この冷却により、ろ布7に堆積する粉体層に含まれる塩類の潮解や固着が発生してしまうおそれがあった。このことを以下に詳述する。
【0006】
上述の各種の排ガス発生手段から排出される有害成分を含む排ガスは、焼却、加熱、ガス化、溶融等の各種過程から発生する水分を多量に含有している。排ガス中にHClが含まれる場合には、このHClの中和処理のための消石灰粉の噴霧によりバグフィルタろ布表面でCaClが生成され、排ガス中の上記水分により、CaClは水和物となり、潮解を引き起こすおそれがあった。また、排ガス中にSOxが含まれる場合には、上記の中和反応の過程でCaSOおよびCaSOが生成され、特に後者のCaSOが水和物となって石膏に類似した固着性を帯びてしまうことがあった。ろ布表面における反応生成物の石膏化現象は不明な点が多いが、CaSO・nHOにおけるnの値が低温空気噴射時の急激な温度履歴により変化し、特に低温になると固着が進行するものと推察される。
【0007】
これら潮解や固着が進行すると、ろ布の粉体層の通気抵抗が著しく上昇し、ろ布の目詰まりといったゆゆしき問題に至る。ところで、通常の運転温度、例えば150〜200℃の温度では、排ガス中の水分が20%以上であっても、上記の潮解や石膏化による固着はほとんど発生しない。しかしながら、中和反応効率を高く維持するために、ろ布の粉体層を厚くして長時間保持させたり、あるいは払い落としが結果として不十分であるために一部の粉体層が長期にわたりろ布に滞在すると、この粉体層が、パルスジェット式逆洗用の低温空気(常温の圧縮空気)により、一時的に過度に冷却される頻度が上昇し、粉体層中の反応生成物が潮解を引き起こしたり、あるいは石膏化による固着が進行する不具合が発生する。
【0008】
これにより、ろ布の通気抵抗(差圧)が上昇するので、一定差圧確保のため、パルスジェットによる逆洗の頻度を上昇させたり、噴射圧を上昇させる必要が生じるが、前者の場合は、冷却頻度が増し、後者の場合は一度の冷却空気量が多くなるので、何れもろ布をよけいに冷却してしまうこととなる。すなわち、パルスジェット噴射の際、従来の低温空気噴射では、運転の経過とともにろ布を過度に冷却せざるを得ない状況にあるので、潮解や固着を誘発してろ布の深刻な目詰まりに至るおそれが高い。
【0009】
もちろん、これらの潮解、固着によるろ布の目詰まり現象は、連続運転の開始初期には見られず、運転の過程で潮解、固着が徐々に進行し、十分経過した時期、例えば、6ケ月あるいは1年以上経過して、発生することが多い。しかし高価で本数の多いろ布を1年程度で交換することは経済的に不利であるので、ろ布の物理強度が確保できる範囲、例えば5〜10年の範囲で、できるだけ長期にわたり目詰まりのない安定運転が望まれる。
【0010】
本発明は、長期にわたって、ろ布の目詰まりを確実に回避できて安定運転が可能なパルスジェット式バグフィルタ装置の逆洗方法およびバグフィルタ装置を提供することを目的としたものである。
【0011】
【課題を解決するための手段】
(1)本発明に係るバグフィルタ装置の逆洗方法は、少なくとも水分および酸性成分を含む排ガスをパルスジェット式バグフィルタ装置で処理する際に、ろ布の耐熱温度以下の所定温度に加熱した高温気体を逆洗用のパルスジェット気体として用いるようにしたものである。
【0012】
(2)また、本発明に係るバグフィルタの逆洗方法は、少なくとも水分および酸性成分を含む排ガスをパルスジェット式バグフィルタ装置で処理する際に、積算通ガス時間が所定日数を経た後に、ろ布の耐熱温度以下の所定温度に加熱した高温気体を逆洗用のパルスジェット気体として用いるようにしたものである。
【0013】
(3)さらに、本発明に係るバグフィルタの逆洗方法は、少なくとも水分および酸性成分を含む排ガスをパルスジェット式バグフィルタ装置で処理する際に、ろ布の目詰まりの兆候を検知した後に、ろ布の耐熱温度以下の所定温度に加熱した高温気体を逆洗用のパルスジェット気体として用いるようにしたものである。
【0014】
(4)上記(1)〜(3)のいずれかのバグフィルタ装置の洗浄方法において、少なくとも水分および酸性成分を含む排ガスをパルスジェット式バグフィルタ装置で処理する際に、酸性成分除去用の中和剤の少なくとも一部をNa系薬剤としたものである。
【0015】
(5)本発明に係るバグフィルタ装置は、少なくとも水分および酸性成分を含む排ガスを処理するパルスジェット式バグフィルタ装置であって、逆洗用のパルスジェット気体を所定温度に加熱する加熱手段を具備したものである。
【0016】
(6)また、本発明に係るバグフィルタ装置は、少なくとも水分および酸性成分を含む排ガスを処理するパルスジェット式バグフィルタ装置であって、パルスジェット気体をバグフィルタ装置本体内の排ガス顕熱により所定温度に加熱できるように、逆洗用のパルスジェット気体を貯留するヘッダ管を前記バグフィルタ装置本体内に埋設したものである。
【0017】
【発明の実施の形態】
[実施の形態1]
図1は本発明の実施の形態1に係るバグフィルタ装置の逆洗方法および装置を説明するための立面模式図、図2は図1の上部平断面模式図である。なお、説明を簡単にするために、ろ布およびヘッダ管の本数を実装置より少なく記載し、周辺機器、制御機器等は省略してある。
両図において、1はバグフィルタ装置の本体、2は排ガス導入ダクト、3は排ガス排出ダクト、4はダスト排出部、5は消石灰供給装置、6はNa系薬剤供給装置、7はろ布、8は噴射管、9はヘッダ管、10は電磁弁、11はコンプレッサ、12は加熱装置である。
【0018】
都市ごみ、産業廃棄物等の可燃性廃棄物の焼却、ガス化、溶融の各種工程から排出される排ガス、スクラップ熔解やアルミ精錬等の各種金属精錬過程で排出される排ガス、さらには各種製造工場、化学工場、発電設備等で排出される排ガスは、図示しない熱回収過程、冷却過程等を経て、200℃以下の例えば160℃の排ガスとなって、排ガス導入ダクト2を介して、バグフィルタ装置の本体1(以下、バグフィルタ装置を符号1として記すことがある)に導入される。一方、排ガス中の酸性成分を除去するための消石灰粉が消石灰供給装置5より煙道2に噴霧され、ろ布7の排ガスろ過集塵過程で、中和反応により排ガス中のHCl、SOx等の酸性成分とともに排ガス中のばいじん(飛灰、ダスト)が除去される。
【0019】
酸性成分およびばいじんが除去された排ガスは、ろ布7の内側を通過して上部の排ガス排出ダクト3を介して清浄ガスとなり、系外に排出される。なお、バグフィルタ装置1に導入する排ガスは、少なくとも水分および酸性成分を含んでいればよく、ばいじんが予め除去された排ガスでも同等に適用できる。
【0020】
さて、ろ布7の表面には排ガスに含まれるばいじんおよび消石灰粉が粉体層(反応層)となって堆積し、逆洗時以外は平均的に一定の厚みを保持している。この粉体層を排ガスが通過する過程で、効率よく排ガス中の酸性成分が除去される。CaC1、CaSO等の反応生成物を含む反応層は、1本または複数の噴射管8からパルスジェット気体として高温空気が電磁弁10の開閉により一定時間間隔で噴射され、ろ布7の反応層が順次払い落とされて更新される。噴射管8から噴射される高温空気は、コンプレッサ11の圧縮空気をヘッダ管9に一時貯留し、ヘッダ管9に設置された加熱装置12により所定温度まで昇温されたものを用いる。
【0021】
反応層は、もともと潮解性や固着性を有する反応生成物CaCl、CaSOを多く含有しているが、高温空気をパルスジェット噴射に用いたので、ろ布7に残存するこれら反応生成物が冷却されて潮解や固着を発生させることなく、あるいは潮解や固着を進行させることなく、安定した酸性成分除去と払い落とし操作が達成できる。高温空気のパルスジェットにより払い落とされた反応層は下部ホッパ部のダスト排出部4より系外に排出される。
【0022】
このように、本実施の形態においては、逆洗用のパルスジェット気体として、従来の常温気体に代えて高温気体を用いるので、ろ布7を過度に冷却することが回避でき、ろ布7の表面の粉体層中の反応生成物による潮解や固着といったろ布7の目詰まり原因の発生を未然に確実に回避することができ、以て、長期にわたりバグフィルタ装置1の安定稼働が達成できる。また、高温気体を用いるので、気体の実体積が上昇し所定噴射圧で噴射する際の気体の消費量を節約でき、コンプレッサ11の負荷を軽減できる。さらに、高温の気体をろ布7の耐熱温度以下としたので、ろ布7の物理強度を損ねることなく、ろ布7の物理的耐久性が許す範囲の長期にわたり上記の安定稼働を達成できる。
【0023】
ここで、逆洗用のパルスジェット気体として、高温空気を用いるのは、積算通ガス時間が所定日数を経た後に実施を開始することが望ましい。
【0024】
このように、通ガス時間が所定日数を経た後に、逆洗用のパルスジェット気体として、従来の常温気体に代えて高温気体を用いるので、所定日数経過後は、ろ布7を過度に冷却することが回避でき、ろ布7表面の粉体層中の反応生成物による潮解や固着といったろ布7の目詰まり原因の発生を未然に確実に回避することができるので、長期にわたりバグフィルタ装置1の安定稼働が達成できる。また、高温気体を用いるので、気体の実体積が上昇し所定噴射圧で噴射する際の気体の消費量を節約でき、コンプレッサ11の負荷を軽減できる。さらに、高温の気体をろ布7の耐熱温度以下としたので、ろ布の物理強度を損ねることなく、ろ布7の物理的耐久性が許す範囲の長期にわたり上記の安定稼働を達成できる。稼働開始から所定日数、例えば60日までは、常温空気をパルスジェット用の噴射気体として用いても、ろ布7の潮解や固着による目詰まりは発生しないので、常温空気を用いることができ、高温気体製造の熱源を節約できる利点が得られる。
【0025】
ここで、所定日数は、排ガス性状、すなわち、水分濃度、温度、酸性成分濃度等により異なるが、例えば、廃棄物焼却施設から発生する150〜200℃の範囲の排ガスをパルスジェット式バグフィルタ装置1で、ろ過速度が0.5〜2.0m/minの範囲で処理する際には、60日を選定することができる。あるいは、水分濃度が30%以上と高いか、排ガス温度が150℃またはこれ以下である場合は、30日と短く選定することができ、水分濃度が10%以下と低いか、排ガス温度が200℃またはこれ以上である場合は、120日を選定することができる。但し、運転の諸事情によりこれら日数は適宜採択することが可能である。
【0026】
所定日数までは高温気体を用いなくてもよいことの理由は、本発明者らの以下の着眼・検討に基づくものである。すなわち、水分および酸性成分を含む排ガスをバグフィルタ装置1で、消石灰等の中和剤を噴霧して反応集塵(中和反応処理および反応生成物の集塵処理)を行う際に、中和反応効率を向上させるため、ろ布7の表面にある程度の厚みの反応層(消石灰等の中和剤からなる粉体層)を構成させる必要があるが、稼働当初はこの反応層が安定して形成されておらず、一定の厚みを安定して保持させるために、ある程度の日数を必要とする。この日数までの間は、ろ布7と粉体が相対的に強く付着しておらず、容易に払い落とすことができるので、逆洗頻度を少なくでき、パルスジェット噴射時に低温の常温空気を噴射しても、低温による潮解や固着がほとんど進行しないことがその理由である。
【0027】
そして、稼働初期に逆洗頻度が少ないこと等により、ある程度の日数経過後に反応層(粉体層)が安定して形成されるようになるが、その後、継続的に長期にわたり、パルスジェット気体として低温空気を用いたままであると、一定差圧を確保するため低温空気の噴射頻度が上昇し、明確な兆候がないまま不所望に潮解や固着が徐々に進行し、最終的にろ布7の深刻な目詰まりに至るおそれがある。このため、所定日数経過後、すなわち、ろ布7の反応層が安定して形成されるようになった後は、パルスジェット気体としてろ布7の耐熱温度以下の高温気体を用いることが必要である。言い換えると、ろ布7の反応層が安定して形成されるまでは、高温気体を用いる必要がないが、その後は、低温空気による潮解、固着の進行を確実に回避するため、高温気体をパルスジェット噴射気体として用いる必要がある。
【0028】
ここで、安定した反応層の形成について説明すると、反応集塵過程では、中和剤の吹込みによる反応層形成と、パルスジェット噴射による逆洗(反応層の更新)が交互になされるが、装置全体のろ布7の平均として、ろ布7の反応層の厚みが一定であることが望ましく、かつ、この反応層は潮解物や固着物がごく少ないことが望ましい。すなわち、潮解物や固着物で構成される粉体層は、通気抵抗を大幅に上昇させるとともに、実質的に中和反応に寄与する割合が少なく酸性成分除去率が低下してしまう不具合を発生するが、このような潮解物、固着物の発生を回避または低減することに本発明の主眼がある。そして、潮解物、固着物がごく少ない状態で運転を継続すること、すなわち、中和反応に関わる反応層が平均として一定で得られ、通常の逆洗条件下(パルスジェット噴射圧、噴射頻度等)で差圧を一定に保持できる状態を、安定した反応層の形成と言う。
【0029】
また、逆洗用のパルスジェット気体として、高温空気を用いるのは、ろ布7の目詰まりの兆候を検知した直後に開始することが望ましい。
【0030】
このように、ろ布7の目詰まりの兆候検知した直後に、逆洗用のパルスジェット気体として、従来の常温気体に代えて高温気体を用いるので、ろ布7を過度に冷却することを可及的に回避でき、ろ布7の表面の粉体層中の反応生成物による潮解や固着といったろ布7の目詰まり原因の発生を未然に確実に回避することができるため、長期にわたりバグフィルタ装置1の安定稼働が達成できる。また、高温気体を用いるので、気体の実体積が上昇し所定噴射圧で噴射する際の気体の消費量を節約でき、コンプレッサ11の負荷を軽減できる。また、高温の気体をろ布7の耐熱温度以下としたので、ろ布7の物理強度を損ねることなく、ろ布7の物理的耐久性が許す範囲の長期にわたり上記の安定稼働を達成できる。
【0031】
ろ布7の目詰まりの兆候とは、例えば、差圧の上昇、またはこれに伴うパルスジェット噴射頻度若しくは噴射圧の上昇、あるいはこれらに関連した中和剤噴霧量の上昇、処理後の酸性成分濃度の上昇を指し、実質的なろ布7の目詰まりに到達していない段階の兆候を指す。そして、これらの兆候を検知したらできるだけ速やかに、パルスジェット噴射気体を高温気体に切り替えることが必要である。また、逆にろ布7の目詰まりの兆候を検知するまでの間は、高温空気を用いることなく、常温空気をパルスジェット気体として用いることができ、加熱用の熱源を節約できる。
【0032】
ろ布7の目詰まりの兆候を検知するまでの間、高温気体を用いなくてもよいことの理由は、本発明者らの以下の着眼・検討に基づくものである。すなわち、水分および酸性成分を含む排ガスをバグフィルタ装置1で、消石灰等の中和剤を噴霧して反応集塵(中和反応処理および反応生成物の集塵処理)を行う際に、中和反応効率を向上させるため、ろ布7の表面にある程度の厚みの反応層(消石灰等の中和剤からなる粉体層)を構成させる必要があるが、稼働当初はこの反応層が安定して形成されておらず、一定の厚みを安定して保持させるために、ある程度の日数を必要とする。このある程度の日数は、ろ布7の目詰まりの兆候を検知するまでの日数として表現できる。この日数までの間は、ろ布7と粉体が相対的に強く付着しておらず、容易に払い落とすことができるので、逆洗頻度を少なくでき、パルスジェット噴射時に低温の常温空気を噴射しても、低温による潮解や固着がほとんど進行しないことがその理由である。
【0033】
そして、稼働初期に逆洗頻度が少ないこと等により、ある程度の日数経過後に反応層(粉体層)が安定して形成されるようになるが、その後、継続的に長期にわたり、パルスジェット気体として低温空気を用いたままであると、一定差圧を確保するため低温空気の噴射頻度が上昇し、不所望に潮解や固着が徐々に進行し、最終的にろ布7の深刻な目詰まりに至るおそれがある。このため、ろ布7の目詰まり兆候を検知した後、すなわち、ろ布7の反応層が安定して形成されるようになった後は、パルスジェット気体としてろ布7の耐熱温度以下の高温気体を用いることが必要である。言い換えると、ろ布7の反応層が安定して形成されるまでは、高温気体を用いる必要がないが、その後は、低温空気による潮解、固着の進行を確実に回避するため、高温気体をパルスジェット噴射気体として用いる必要がある。
【0034】
ここで、安定した反応層の形成について説明すると、反応集塵過程では、中和剤の吹込みによる反応層形成と、パルスジェット噴射による逆洗(反応層の更新)が交互になされるが、装置全体のろ布7の平均として、ろ布7の反応層の厚みが一定であることが望ましく、かつ、この反応層は潮解物や固着物がごく少ないことが望ましい。すなわち、潮解物や固着物で構成される粉体層は、通気抵抗を大幅に上昇させるとともに、実質的に中和反応に寄与する割合が少なく酸性成分除去率が低下してしまう不具合を発生するが、このような潮解物、固着物の発生を回避または低減することに本発明の主眼がある。そして、潮解物、固着物がごく少ない状態で運転を継続すること、すなわち、中和反応に関わる反応層が平均として一定で得られ、通常の逆洗条件下(パルスジェット噴射圧、噴射頻度等)で差圧を一定に保持できる状態を、安定した反応層の形成と言う。
【0035】
さらに、酸性成分除去用の中和剤の少なくとも一部をNaHCO、NaCOなどのNa系薬剤とすることが望ましい。
図1において、消石灰供給装置5から酸性成分除去用中和剤としての消石灰粉が排ガス中に噴霧されるとともに、Na系薬剤供給装置6から、例えばNaHCO(重曹)粉が同様に煙道に噴霧される。これら薬剤は、サイロ内で予め混合させたものを用いてもよいし、図1のように別経路としてもよい。噴霧量の制御は、出口酸性成分濃度を検知して中和剤合計量に対してフィードバック制御してもよいが、Na系薬剤の噴霧量を一定にし、消石灰噴霧量のみをフィードバック制御してよい。あるいは、フィードフォワード制御、組み合わせ制御など公知の制御が用いられる。Na薬剤を噴霧開始するのは、稼働当初からでもよいし、前述のように所定日数経過の後、初めて噴霧開始するようにしてもよい。
【0036】
このように、酸性成分除去用の中和剤の一部としてNa系薬剤の粉体を用いると、消石灰との反応生成物であるCaClやCaSOの含有割合が少なくなり、潮解、固着の進行を遅延または軽減することができ、上記の各作用がより確実に得られる。Na薬剤として、各種薬剤が採用できるが、例えば比較的安価なNaHCO、NaCOが好適に採用できる。使用割合は、任意に選択可能であるが、一般に前記粉体は安価とは言え消石灰粉に対して数倍以上と高価であることと、反応層に一定量分散していれば潮解、固着を遅延、軽減できる作用が得られるので、使用割合は全中和剤の10〜50%が実用的である。また、NaHCOを用いれば、雰囲気ガス中の温度により、一部がNaCOに分解する過程でHOが脱離するのでポーラス(多孔質)となり、酸性成分吸収率が向上するので、NaHCOがより好適である。
【0037】
[実施の形態2]
次に、本発明の実施の形態2を図3、図4を用いて説明する。なお、実施の形態1と同一構成部分にはれこと同じ符号を付し、説明を省略する。
本実施の形態は、実施の形態1のパルスジェット気体を貯留するヘッダ管9を、バグフィルタ装置1の本体内に設置したものであり、設置位置を上部の排ガス清浄室1aにした。排ガス清浄室1aの空間の顕熱によりヘッダ管9は例えば120℃に加熱され、加熱された高温空気がパルスジェット噴射管8を介してろ布7に噴射される。加熱する高温気体の温度は、装置内にヘッダ管9を設置したので、少なくとも装置内温度またはこれ以下となり、ヘッダ管8から噴射する頻度、空気量により影響される。
このように、ヘッダ管9をバグフィルタ装置1内に設置したので、熱源を別途必要とすることなく、容易な手段で、実施の形態1に係る作用、効果が得られるバグフィルタ装置を提供できる。
【0038】
以上、図1〜図4を用いて本発明の実施の形態を説明したが、共通事項として、以下を補足する。
本発明で加熱装置により製造するパルスジェット高温気体の温度は、ろ布7の耐熱温度以下であれば採用できるが、常温よりも高ければ効果が得られる。しかし顕著な効果を得るためには、100℃以上であることが望ましい。加熱する気体の種類は、空気および不活性ガスとしてN、COが用いられるが、可燃性成分を含む排ガスや還元雰囲気処理などは後者が用いられ、用途に応じた各種気体が用いられる。また、空気を用いる場合は、多少の水分を含んでいても加熱により、相対湿度が低下するので、採用可能であるが、加熱温度が相対的に低い場合は、予め湿分を除去してもよい。実施の形態1の加熱装置としては、電気式、排ガス熱交換式、蒸気熱交換式、など公知の加熱手段が用いられる。図1には、ヘッダ管9を電気加熱手段で加熱する例を示したが、コンプレッサ11に加熱手段を設置してもよい。耐熱性コンプレッサであれば、コンプレッサ11の前に加熱手段を設置してもよいし、コンプレッサ11からヘッダ管9までの配管に加熱手段を設置してもよく、結果として、パルスジェット気体を高温気体に加熱できる方法・手段であればよい。
【0039】
本発明は、パルスジェット噴射式のバグフィルタ装置に採用するものであるが、逆風式バグフィルタ装置にも採用が可能で相当の効果が得られる。図1〜図6に例示したパルスジェット式バグフィルタ装置1は、簡単のため、ヘッダ管9が1個、噴射管8が10本、ろ布7が70本の構成を例示したが、例えば、排ガス処理量40000Nm/hであれば、ろ布7は500〜800本使用し、ヘッダ管9は両側面に設置し合計2〜6個使用し、噴射管8は20〜100本使用するといったように、大規模であることが多い。
【0040】
パルスジェット高温空気を噴射する時間(電磁弁を開とする時間)は、例えば、0.05〜0.5秒、噴射頻度(ある噴射管から次の噴射管までの時間)は、30秒〜30分、噴射圧力は、1〜5kg/cmGがそれぞれ選ばれる。ただし、排ガス性状やその他運転事情によりこれに限定されるものでなく、例えば噴射圧は、ろ布7の強度の許す範囲で、上記より高圧として噴射頻度をより少なくすることもできる。ろ布7の材質は限定するものでなく、ガラス繊維、ポリイミド、テフロン(登録商標)など公知の各種材質が採用でき、少なくとも、高温気体を噴射する際の耐熱性が確保されていればよい。
【0041】
また、実施の形態では、バグフィルタ装置1の上流煙道に中和剤(消石灰)供給装置5を設置した場合を示したが、バグフィルタ装置1内の空間に直接噴霧するように構成してもよい。また、排ガス中のダイオキシン除去のため、活性炭粉を同様に噴霧してもよく、中和剤と事前混合させてもよいし同一搬送経路で噴霧してもよい。さらに、運転初期または継続運転中に珪藻土等のプレコート剤、剥離剤を噴霧する公知の方法を採用してもよい。なお、プレコート剤を噴霧しても、長期の運転ではろ布7の表面の剥離効果が薄れてしまうこと、また、連続運転中に剥離剤を噴霧しても、低温空気を長期にわたってパルスジェット噴射し続けるとやがて潮解や固着が発生するが、もちろん、本発明によればこのような間題を解決することができる。
【0042】
本発明が採用可能な被処理ガスはすでに例示したとおりであるが、これに限るものではなく、排ガスに少なくとも、水分および酸性成分が含まれていれば採用できる。また、KCl、NaCl、ZnCl2 など排ガス中の煤塵にこれら金属塩化物を多く含む排ガス、例えば、ガス化溶融炉、灰溶融炉等の各種廃棄物溶融炉の排ガスは、煤塵が微細であり上記塩類を多く含むので、ろ布7の目詰まりに至るおそれがより高いが、本発明を採用すれば、これを確実に回避することができる。
【0043】
また、高温空気を用いた燃焼炉排ガス、排ガス循環システムを用いた排ガス、熱回収せずに多量の水噴霧により冷却した排ガスなど、排ガス量に対して水分量が多い排ガスでは、潮解、固着がより発生しやすいが、本発明を採用すれば、これを確実に回避することができる。また、被処理排ガスの処理温度は、特に限定しないが排ガスに有機ハロゲン化合物であるダイオキシン類が含まれる場合は、ダイオキシン発生のごく少ない200℃以下の例えば、150〜180℃が採用できる。さらに、本発明は、より潮解や固着の発生のしやすい150℃以下の、酸露点を考慮した120〜150℃の排ガスにも好適に採用でき、潮解や固着によるろ布7の目詰まりを長期にわたり回避することができる。
以上、各種補足を述べたが、本明細の図や文章の記載に限らず、本発明の技術的範囲内で様々な変更が可能である。
【0044】
【発明の効果】
(1)本発明に係るバグフィルタの逆洗方法によれば、少なくとも水分および酸性成分を含む排ガスをパルスジェット式バグフィルタ装置で処理する際に、ろ布の耐熱温度以下の所定温度に加熱した高温気体を逆洗用のパルスジェット気体として用いたので、ろ布を過度に冷却することが回避でき、ろ布表面の粉体層中の反応生成物による潮解や固着といったろ布の目詰まり原因の発生を未然に確実に回避することができるため、長期にわたりバグフィルタ装置の安定稼働が達成できる。また、高温気体を用いるので、気体の実体積が上昇し所定噴射圧で噴射する際の気体の消費量を節約でき、コンプレッサの負荷を軽減できる。さらに、高温の気体をろ布の耐熱温度以下としたので、ろ布の物理強度を損ねることなく、ろ布の物理的耐久性が許す範囲の長期にわたり上記の安定稼働を達成できる。
【0045】
(2)また、本発明に係るバグフィルタ装置は、少なくとも水分および酸性成分を含む排ガスを処理するパルスジェット式バグフィルタ装置であって、逆洗用のパルスジェット気体を所定温度に加熱する加熱手段を具備したので、上記(1)の効果を容易かつ確実に得ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係るバグフィルタの逆洗方法およびバグフィルタ装置を説明するための立面模式図である。
【図2】図1の上部平断面模式図である。
【図3】本発明の実施の形態2に係るバグフィルタの逆洗方法およびバグフィルタ装置を説明するための立面模式図である。
【図4】図3の上部平断面模式図である。
【図5】従来のバグフィルタ装置の一例の立面模式図である。
【図6】図5の上部平断面模式図である。
【符号の説明】
1 バグフィルタ装置(本体)
2 排ガス導入ダクト
3 排ガス排出ダクト
4 ダスト排出部
5 消石灰供給装置
6 Na系薬剤供給装置
7 ろ布
8 噴射管
9 ヘッダ管
10 電磁弁
11 コンプレッサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a backwashing method and a bag filter device in a pulse jet type bag filter device for treating exhaust gas containing acidic components such as HCl and SOx and moisture.
[0002]
[Prior art]
Exhaust gas emitted from various processes such as incineration, gasification and melting of combustible waste such as municipal solid waste and industrial waste, exhaust gas emitted during various metal refining processes such as scrap melting and aluminum refining, and various manufacturing plants Various harmful substances such as dust, acidic components such as HCl and SOx, nitrogen oxides, heavy metals such as mercury, and organic halogen compounds such as dioxins and their precursors are included in exhaust gas discharged from chemical plants and power generation facilities. Contains substances.
[0003]
Among these harmful components, acidic components such as HCl and SOx and soot and dust are often processed by a reaction bag filter at 200 ° C. or lower.
That is, slaked lime powder for neutralizing and removing the above-mentioned acidic components is sprayed in the flue upstream of the bag filter device, and soot and slaked lime powder in the exhaust gas are captured during the filtration and collection process using the filter cloth in the bag filter device. It collects and removes acidic components in the exhaust gas by a neutralization reaction. An unreacted neutralizing agent (slaked lime) and a reaction product (CaCl 2 , CaSO 4 Etc.) and soot and dust are mixed, and a powder layer (dust collection ash) is formed. This layer is washed off at regular intervals by backwashing means, and is continuously updated with slaked lime powder that is continuously sprayed. Enables continuous processing.
[0004]
As the backwashing means and method, there are various types such as a reverse wind type, a pulse jet type, and a vibration type. At present, the pulse jet type is mainly used due to its easy handling. As shown in FIG. 5, the pulse jet method is, as is well known, in a process of filtering exhaust gas, for example, a group of filter cloths 7 arranged in a line on a straight line of about 10 (7 in FIG. 3) through an injection pipe 8. In this method, the powder layer (dust ash) attached to the filter cloth 7 is blown off by jetting pulse jet air. By repeating this pulse jet injection on all the filter cloths 7 sequentially, the removal of the acid gas in the exhaust gas and the renewal (clearing) of the powder layer of the filter cloth 7 are continuously performed. For the jet air for the pulse jet, for example, room temperature air is pressurized by the compressor 11 and stored in the header tube 9 to be 2 to 5 kg / cm 2 The filter cloth 7 is sprayed at the injection pressure of G to perform backwashing.
That is, conventionally, pulsed jet air used for backwashing is obtained by simply increasing the pressure of room temperature air.
[0005]
[Problems to be solved by the invention]
However, when air at room temperature is used as conventional pulse jet air, the filter cloth 7 is temporarily excessively cooled in the process of pulse jet injection, and this cooling causes the filter layer 7 to be contained in the powder layer deposited on the filter cloth 7. There is a possibility that deliquescence or sticking of the salt may occur. This will be described in detail below.
[0006]
The exhaust gas containing harmful components discharged from the various exhaust gas generating means described above contains a large amount of water generated from various processes such as incineration, heating, gasification, and melting. When HCl is contained in the exhaust gas, CaCl is sprayed on the surface of the bag filter cloth by spraying slaked lime powder for neutralization treatment of the HCl. 2 Is generated, and the above water in the exhaust gas causes CaCl 2 Became a hydrate and could cause deliquescence. When SOx is contained in the exhaust gas, CaSO is added during the neutralization reaction. 3 And CaSO 4 Is produced, and in particular, the latter CaSO 4 Was sometimes hydrated and had a sticking property similar to gypsum. The gypsum phenomenon of the reaction product on the surface of the filter cloth has many unclear points. 4 ・ NH 2 It is presumed that the value of n in O changes due to the rapid temperature history at the time of the low-temperature air injection, and particularly at low temperatures, the sticking proceeds.
[0007]
As the deliquescence and fixation progress, the airflow resistance of the powder layer of the filter cloth increases significantly, leading to a serious problem such as clogging of the filter cloth. By the way, at a normal operating temperature, for example, a temperature of 150 to 200 ° C., even if the moisture in the exhaust gas is 20% or more, the above-described deliquescent or gypsum hardly occurs. However, in order to maintain the neutralization reaction efficiency high, the powder layer of the filter cloth is thickened and held for a long time. When staying in the filter cloth, this powder layer is temporarily excessively cooled by the low-temperature air (normal-temperature compressed air) for pulse jet backwashing, and the frequency of reaction products in the powder layer increases. Causes deliquescence, or sticking due to gypsum progresses.
[0008]
As a result, the ventilation resistance (differential pressure) of the filter cloth increases, so that it is necessary to increase the frequency of backwashing by pulse jet or to increase the injection pressure in order to secure a constant differential pressure. In addition, the cooling frequency increases, and in the latter case, the amount of cooling air at one time increases, so that the filter cloths are all cooled except for them. That is, in the case of the pulse jet injection, in the conventional low-temperature air injection, the filter cloth must be excessively cooled with the progress of the operation, so that deliquescence or sticking is induced to cause severe clogging of the filter cloth. High risk.
[0009]
Of course, these clogging phenomena of the filter cloth due to deliquescence and sticking are not seen at the beginning of the continuous operation, and deliquescence and sticking gradually progress in the course of the operation, and when sufficient time elapses, for example, six months or It often occurs after one year or more. However, it is economically disadvantageous to replace an expensive and large number of filter cloths in about one year. Therefore, in a range where the physical strength of the filter cloths can be ensured, for example, in a range of 5 to 10 years, the clogging of the filter cloths is as long as possible. No stable operation is desired.
[0010]
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for backwashing a pulse jet type bag filter device and a bag filter device capable of reliably avoiding clogging of a filter cloth for a long period of time and performing stable operation.
[0011]
[Means for Solving the Problems]
(1) The method for backwashing a bag filter device according to the present invention is characterized in that, when an exhaust gas containing at least water and an acidic component is treated with a pulse jet type bag filter device, the bag filter device is heated to a predetermined temperature equal to or lower than the heat resistant temperature of the filter cloth. The gas is used as a pulse jet gas for backwashing.
[0012]
(2) In the bag filter backwashing method according to the present invention, when the exhaust gas containing at least water and an acidic component is treated by the pulse jet type bag filter device, after the accumulated gas passage time has passed a predetermined number of days, the filtration is performed. A high-temperature gas heated to a predetermined temperature below the heat-resistant temperature of the cloth is used as a pulse jet gas for backwashing.
[0013]
(3) Further, the bag filter backwashing method according to the present invention, when treating an exhaust gas containing at least water and an acidic component with a pulse jet type bag filter device, after detecting a sign of clogging of the filter cloth, A high-temperature gas heated to a predetermined temperature lower than the heat-resistant temperature of the filter cloth is used as a pulse jet gas for backwashing.
[0014]
(4) In the method for cleaning a bag filter device according to any one of the above (1) to (3), when treating exhaust gas containing at least moisture and an acidic component with a pulse jet type bag filter device, a medium for removing an acidic component is used. At least a part of the sum is a Na-based drug.
[0015]
(5) The bag filter device according to the present invention is a pulse jet type bag filter device for treating exhaust gas containing at least moisture and an acidic component, and includes a heating means for heating the pulse jet gas for backwashing to a predetermined temperature. It was done.
[0016]
(6) Further, the bag filter device according to the present invention is a pulse jet type bag filter device for treating exhaust gas containing at least water and an acidic component, wherein the pulse jet gas is subjected to predetermined heat by exhaust gas sensible heat inside the bag filter device body. A header tube for storing a back jet pulse jet gas is buried in the bag filter device main body so as to be heated to a temperature.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
[Embodiment 1]
FIG. 1 is a schematic elevational view for explaining a method and an apparatus for backwashing a bag filter device according to Embodiment 1 of the present invention, and FIG. 2 is a schematic plan sectional view of the upper part of FIG. For simplicity of description, the number of filter cloths and header pipes is smaller than that of the actual device, and peripheral devices, control devices, and the like are omitted.
In both figures, 1 is a main body of the bag filter device, 2 is an exhaust gas introduction duct, 3 is an exhaust gas discharge duct, 4 is a dust discharge unit, 5 is slaked lime supply device, 6 is a Na-based chemical supply device, 7 is filter cloth, and 8 is An injection pipe, 9 is a header pipe, 10 is a solenoid valve, 11 is a compressor, and 12 is a heating device.
[0018]
Exhaust gas emitted from various processes such as incineration, gasification and melting of combustible waste such as municipal solid waste and industrial waste, exhaust gas emitted during various metal refining processes such as scrap melting and aluminum refining, and various manufacturing plants Exhaust gas discharged from a chemical plant, a power generation facility, etc., passes through a heat recovery process, a cooling process, etc. (not shown), becomes an exhaust gas of 200 ° C. or less, for example, 160 ° C. (Hereinafter, the bag filter device may be described as reference numeral 1). On the other hand, slaked lime powder for removing acidic components in the exhaust gas is sprayed onto the flue 2 from the slaked lime supply device 5, and during the exhaust gas filtration and collection of the filter cloth 7, HCl, SOx, and the like in the exhaust gas are subjected to a neutralization reaction. Soot and dust (fly ash and dust) in the exhaust gas are removed together with the acidic components.
[0019]
The exhaust gas from which the acidic components and dust have been removed passes through the inside of the filter cloth 7, becomes a clean gas through the exhaust gas discharge duct 3 on the upper side, and is discharged outside the system. The exhaust gas introduced into the bag filter device 1 only needs to contain at least moisture and an acidic component, and the exhaust gas from which soot and dust have been removed in advance can be applied equally.
[0020]
The dust and slaked lime powder contained in the exhaust gas are deposited on the surface of the filter cloth 7 as a powder layer (reaction layer), and maintain a constant thickness on average except during backwashing. In the process of passing the exhaust gas through the powder layer, acidic components in the exhaust gas are efficiently removed. CaC1 2 , CaSO 4 The reaction layer containing a reaction product such as the above is injected at a fixed time interval as high-temperature air as a pulse jet gas from one or a plurality of injection pipes 8 by opening and closing the solenoid valve 10, and the reaction layer of the filter cloth 7 is sequentially wiped off. Being updated. As the high-temperature air injected from the injection pipe 8, the compressed air of the compressor 11 is temporarily stored in the header pipe 9, and the high-temperature air heated to a predetermined temperature by the heating device 12 installed in the header pipe 9 is used.
[0021]
The reaction layer is originally composed of a reaction product CaCl 2 having deliquescent and sticking properties. 2 , CaSO 4 However, since high-temperature air is used for pulse jet injection, these reaction products remaining on the filter cloth 7 are cooled to prevent deliquescence or sticking, or to promote deliquescence or sticking. As a result, stable removal of the acidic components and the removal operation can be achieved. The reaction layer removed by the pulse jet of high-temperature air is discharged out of the system from the dust discharge unit 4 in the lower hopper.
[0022]
As described above, in the present embodiment, since the high-temperature gas is used as the pulse jet gas for backwashing instead of the conventional normal-temperature gas, excessive cooling of the filter cloth 7 can be avoided, and The clogging of the filter cloth 7 such as deliquescence or sticking due to reaction products in the powder layer on the surface can be reliably prevented from occurring, so that stable operation of the bag filter device 1 can be achieved for a long period of time. . In addition, since a high-temperature gas is used, the actual volume of the gas increases and the amount of gas consumed when injecting at a predetermined injection pressure can be saved, and the load on the compressor 11 can be reduced. Furthermore, since the high-temperature gas is set to be equal to or lower than the heat-resistant temperature of the filter cloth 7, the above-mentioned stable operation can be achieved for a long period of time as long as the physical durability of the filter cloth 7 allows, without impairing the physical strength of the filter cloth 7.
[0023]
Here, the use of high-temperature air as the pulse jet gas for backwashing is desirably started after the accumulated gas passage time has passed a predetermined number of days.
[0024]
As described above, after the gas passage time has passed a predetermined number of days, a high-temperature gas is used in place of the conventional normal temperature gas as the pulse jet gas for backwashing, so that the filter cloth 7 is excessively cooled after the predetermined number of days has passed. And the occurrence of clogging of the filter cloth 7 such as deliquescence or sticking due to reaction products in the powder layer on the surface of the filter cloth 7 can be reliably avoided beforehand. Stable operation can be achieved. In addition, since a high-temperature gas is used, the actual volume of the gas increases and the amount of gas consumed when injecting at a predetermined injection pressure can be saved, and the load on the compressor 11 can be reduced. Further, since the high-temperature gas is set to be equal to or lower than the heat-resistant temperature of the filter cloth 7, the above-mentioned stable operation can be achieved for a long period of time as long as the physical durability of the filter cloth 7 allows, without impairing the physical strength of the filter cloth. For a predetermined number of days from the start of operation, for example, up to 60 days, even if room temperature air is used as a jet gas for pulse jet, clogging due to deliquescence or sticking of the filter cloth 7 does not occur. The advantage is that the heat source for gas production can be saved.
[0025]
Here, the predetermined number of days depends on the properties of the exhaust gas, that is, the moisture concentration, the temperature, the concentration of the acidic component, and the like. For example, the exhaust gas in the range of 150 to 200 ° C. generated from the waste incineration facility is subjected to the pulse jet type bag filter device 1. When processing at a filtration speed of 0.5 to 2.0 m / min, 60 days can be selected. Alternatively, when the water concentration is as high as 30% or more, or when the exhaust gas temperature is 150 ° C. or lower, it can be selected as short as 30 days, and when the water concentration is as low as 10% or less or the exhaust gas temperature is 200 ° C. Or, if it is longer, 120 days can be selected. However, these days can be adopted as appropriate depending on driving circumstances.
[0026]
The reason why the high-temperature gas does not need to be used until the predetermined number of days is based on the following viewpoints and studies by the present inventors. That is, neutralization is performed when exhaust gas containing water and acidic components is sprayed with a neutralizing agent such as slaked lime by the bag filter device 1 to perform reactive dust collection (neutralization reaction treatment and dust collection treatment of reaction products). In order to improve the reaction efficiency, it is necessary to form a reaction layer (a powder layer made of a neutralizing agent such as slaked lime) on the surface of the filter cloth 7 to a certain thickness. It is not formed and requires a certain number of days to stably maintain a certain thickness. Until this number of days, the filter cloth 7 and the powder are not relatively strongly adhered to each other and can be easily washed off, so that the frequency of backwashing can be reduced, and low-temperature normal-temperature air is injected during pulse jet injection. Even so, the reason is that deliquescent and sticking due to low temperature hardly proceed.
[0027]
The reaction layer (powder layer) is formed stably after a certain number of days due to the low frequency of backwashing in the early stage of operation. If the low-temperature air is used, the frequency of the low-temperature air injection increases to secure a constant differential pressure, and undesired deliquescence or fixation gradually progresses without a clear sign. Serious clogging may occur. For this reason, after a lapse of a predetermined number of days, that is, after the reaction layer of the filter cloth 7 has been stably formed, it is necessary to use a high-temperature gas equal to or lower than the heat-resistant temperature of the filter cloth 7 as the pulse jet gas. is there. In other words, it is not necessary to use a high-temperature gas until the reaction layer of the filter cloth 7 is formed stably, but after that, in order to reliably avoid the progress of deliquescence and fixation by low-temperature air, the high-temperature gas is pulsed. It must be used as a jet gas.
[0028]
Here, the formation of a stable reaction layer will be described. In the reaction dust collection process, the formation of a reaction layer by blowing a neutralizing agent and the backwashing (renewal of the reaction layer) by pulse jet injection are alternately performed. As an average of the filter cloth 7 of the entire apparatus, it is desirable that the thickness of the reaction layer of the filter cloth 7 is constant, and that the reaction layer has very little deliquescent matter or solid matter. In other words, the powder layer composed of deliquescent and adhered matter significantly increases the airflow resistance, and causes a problem that the rate of contribution to the neutralization reaction is small and the removal rate of the acidic component is reduced. However, it is an object of the present invention to avoid or reduce the occurrence of such deliquescence and sticking matter. Then, the operation should be continued with very little deliquescent and solid matter, that is, the reaction layer involved in the neutralization reaction can be obtained at a constant average, and under normal backwashing conditions (pulse jet injection pressure, injection frequency, etc.) The state in which the differential pressure can be kept constant in step (1) is called formation of a stable reaction layer.
[0029]
In addition, it is desirable that the use of high-temperature air as the pulse jet gas for backwashing be started immediately after the sign of clogging of the filter cloth 7 is detected.
[0030]
As described above, immediately after detecting the sign of clogging of the filter cloth 7, high-temperature gas is used as the pulse jet gas for backwashing instead of the conventional normal temperature gas, so that the filter cloth 7 can be excessively cooled. To prevent the occurrence of clogging of the filter cloth 7 such as deliquescence or sticking due to the reaction products in the powder layer on the surface of the filter cloth 7, so that the bag filter can be used for a long time. The stable operation of the device 1 can be achieved. In addition, since a high-temperature gas is used, the actual volume of the gas increases and the amount of gas consumed when injecting at a predetermined injection pressure can be saved, and the load on the compressor 11 can be reduced. In addition, since the high-temperature gas is set to be equal to or lower than the heat-resistant temperature of the filter cloth 7, the above-mentioned stable operation can be achieved for a long period of time as long as the physical durability of the filter cloth 7 allows, without impairing the physical strength of the filter cloth 7.
[0031]
The signs of clogging of the filter cloth 7 include, for example, an increase in the differential pressure, an increase in the frequency of the pulse jet injection or an increase in the injection pressure, or an increase in the amount of the neutralizing agent sprayed related thereto, and an acid component after the treatment. It indicates an increase in the concentration, and indicates a sign of a stage where the clogging of the filter cloth 7 has not been substantially reached. Then, it is necessary to switch the pulse jet gas to a high-temperature gas as soon as possible after detecting these signs. Conversely, until a sign of clogging of the filter cloth 7 is detected, normal-temperature air can be used as pulse jet gas without using high-temperature air, and a heat source for heating can be saved.
[0032]
The reason why the high-temperature gas does not need to be used until the sign of clogging of the filter cloth 7 is detected is based on the following viewpoints and studies of the present inventors. That is, neutralization is performed when exhaust gas containing water and acidic components is sprayed with a neutralizing agent such as slaked lime by the bag filter device 1 to perform reactive dust collection (neutralization reaction treatment and dust collection treatment of reaction products). In order to improve the reaction efficiency, it is necessary to form a reaction layer (a powder layer made of a neutralizing agent such as slaked lime) on the surface of the filter cloth 7 to a certain thickness. It is not formed and requires a certain number of days to stably maintain a certain thickness. This certain number of days can be expressed as the number of days until a sign of clogging of the filter cloth 7 is detected. Until this number of days, the filter cloth 7 and the powder are not relatively strongly adhered to each other and can be easily washed off, so that the frequency of backwashing can be reduced, and low-temperature normal-temperature air is injected during pulse jet injection. Even so, the reason is that deliquescent and sticking due to low temperature hardly proceed.
[0033]
The reaction layer (powder layer) is formed stably after a certain number of days due to the low frequency of backwashing in the early stage of operation. If the low-temperature air is used, the frequency of the low-temperature air injection increases to secure a constant differential pressure, and deliquescence and fixation gradually progress undesirably, eventually leading to serious clogging of the filter cloth 7. There is a risk. For this reason, after detecting the sign of clogging of the filter cloth 7, that is, after the reaction layer of the filter cloth 7 has been stably formed, a high temperature below the heat resistant temperature of the filter cloth 7 is used as a pulse jet gas. It is necessary to use gas. In other words, it is not necessary to use a high-temperature gas until the reaction layer of the filter cloth 7 is formed stably, but after that, in order to reliably avoid the progress of deliquescence and fixation by low-temperature air, the high-temperature gas is pulsed. It must be used as a jet gas.
[0034]
Here, the formation of a stable reaction layer will be described. In the reaction dust collection process, the formation of a reaction layer by blowing a neutralizing agent and the backwashing (renewal of the reaction layer) by pulse jet injection are alternately performed. As an average of the filter cloth 7 of the entire apparatus, it is desirable that the thickness of the reaction layer of the filter cloth 7 is constant, and that the reaction layer has very little deliquescent matter or solid matter. In other words, the powder layer composed of deliquescent and adhered matter significantly increases the airflow resistance, and causes a problem that the rate of contribution to the neutralization reaction is small and the removal rate of the acidic component is reduced. However, it is an object of the present invention to avoid or reduce the occurrence of such deliquescence and sticking matter. Then, the operation should be continued with very little deliquescent and solid matter, that is, the reaction layer involved in the neutralization reaction can be obtained at a constant average, and under normal backwashing conditions (pulse jet injection pressure, injection frequency, etc.) The state in which the differential pressure can be kept constant in step (1) is called formation of a stable reaction layer.
[0035]
Further, at least a part of the neutralizing agent for removing acidic components is replaced with NaHCO. 3 , Na 2 CO 3 It is desirable to use a Na-based drug such as
In FIG. 1, slaked lime powder as a neutralizing agent for removing an acidic component is sprayed into exhaust gas from a slaked lime supply device 5 and, for example, NaHCO 3 3 (Baking soda) powder is similarly sprayed into the flue. These drugs may be used in a pre-mixed manner in a silo, or may be provided as a separate route as shown in FIG. The spray amount may be controlled by feedback control of the total amount of the neutralizing agent by detecting the concentration of the acidic component at the outlet, or the spray amount of the Na-based agent may be kept constant, and only the spray amount of slaked lime may be feedback controlled. . Alternatively, known control such as feedforward control and combination control is used. The spraying of the Na agent may be started from the beginning of operation, or may be started for the first time after a predetermined number of days have elapsed as described above.
[0036]
As described above, when the powder of the Na-based chemical is used as a part of the neutralizing agent for removing the acidic component, CaCl which is a reaction product with slaked lime is used. 2 And CaSO 4 , The progress of deliquescence and sticking can be delayed or reduced, and the above-mentioned actions can be obtained more reliably. As the Na drug, various drugs can be adopted. For example, relatively inexpensive NaHCO 3 , Na 2 CO 3 Can be suitably adopted. The use ratio can be arbitrarily selected, but in general, the powder is inexpensive but several times or more expensive than slaked lime powder, and if a certain amount is dispersed in the reaction layer, deliquescence and sticking will occur. Since the effect of delay and reduction can be obtained, it is practical to use 10 to 50% of the total neutralizing agent. NaHCO 3 If Na is used, a part of Na 2 CO 3 In the process of decomposing into H 2 O is desorbed and becomes porous (porous), and the absorption rate of acidic components is improved. 3 Is more preferable.
[0037]
[Embodiment 2]
Next, a second embodiment of the present invention will be described with reference to FIGS. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the present embodiment, the header pipe 9 for storing the pulse jet gas of the first embodiment is installed in the main body of the bag filter device 1, and the installation position is the upper exhaust gas cleaning chamber 1a. The header tube 9 is heated to, for example, 120 ° C. by the sensible heat of the space of the exhaust gas cleaning chamber 1 a, and the heated high-temperature air is injected to the filter cloth 7 through the pulse jet injection tube 8. The temperature of the high-temperature gas to be heated is at least equal to or lower than the internal temperature of the apparatus since the header pipe 9 is installed in the apparatus, and is affected by the frequency of injection from the header pipe 8 and the amount of air.
As described above, since the header tube 9 is installed in the bag filter device 1, it is possible to provide a bag filter device which can obtain the operation and effect according to the first embodiment by a simple means without requiring a separate heat source. .
[0038]
As described above, the embodiment of the present invention has been described with reference to FIGS. 1 to 4.
The temperature of the pulse jet high-temperature gas produced by the heating device in the present invention can be adopted as long as it is equal to or lower than the heat-resistant temperature of the filter cloth 7, but the effect is obtained if it is higher than normal temperature. However, in order to obtain a remarkable effect, the temperature is desirably 100 ° C. or higher. The type of gas to be heated is air and N2 as an inert gas. 2 , CO 2 The latter is used for an exhaust gas containing a combustible component, a reducing atmosphere treatment, and the like, and various gases are used depending on the application. In addition, when air is used, even if it contains a small amount of water, the relative humidity is reduced by heating, so it can be adopted.However, if the heating temperature is relatively low, moisture may be removed in advance. Good. As the heating device of the first embodiment, known heating means such as an electric type, an exhaust gas heat exchange type, and a steam heat exchange type are used. FIG. 1 shows an example in which the header tube 9 is heated by the electric heating means, but a heating means may be provided in the compressor 11. In the case of a heat-resistant compressor, a heating means may be installed before the compressor 11 or a heating means may be installed in a pipe from the compressor 11 to the header pipe 9. Any method and means can be used as long as it can be heated to a desired temperature.
[0039]
Although the present invention is applied to a pulse jet injection type bag filter device, it can also be applied to a headwind type bag filter device, and a considerable effect can be obtained. The pulse jet type bag filter device 1 illustrated in FIGS. 1 to 6 has a configuration in which one header tube 9, ten injection tubes 8, and 70 filter cloths 7 are illustrated for simplicity. Exhaust gas throughput 40000Nm 3 / H, 500-800 filter cloths 7 are used, header pipes 9 are installed on both side surfaces, a total of 2-6 pieces are used, and jet pipes 8 are used in a large scale such as 20-100 pieces. Often it is.
[0040]
The time for injecting the pulse jet high-temperature air (the time for opening the solenoid valve) is, for example, 0.05 to 0.5 seconds, and the frequency of injection (the time from one injection pipe to the next injection pipe) is 30 seconds to 30 minutes, injection pressure is 1-5kg / cm 2 G is chosen respectively. However, the injection pressure is not limited to the above depending on the properties of the exhaust gas or other operating conditions. For example, the injection frequency may be set higher than the above and the injection frequency may be further reduced as long as the strength of the filter cloth 7 allows. The material of the filter cloth 7 is not limited, and various known materials such as glass fiber, polyimide, and Teflon (registered trademark) can be adopted, as long as heat resistance at the time of injecting a high-temperature gas is at least secured.
[0041]
Further, in the embodiment, the case where the neutralizing agent (slaked lime) supply device 5 is installed in the flue upstream of the bag filter device 1 has been described, but it is configured to directly spray the space in the bag filter device 1. Is also good. In addition, activated carbon powder may be sprayed in the same manner, may be premixed with a neutralizing agent, or may be sprayed on the same transport route in order to remove dioxin in exhaust gas. Further, a known method of spraying a precoating agent such as diatomaceous earth or a release agent during the initial operation or during the continuous operation may be employed. In addition, even if the precoat agent is sprayed, the peeling effect of the surface of the filter cloth 7 is weakened in the long-term operation. Also, even if the release agent is sprayed during the continuous operation, the low-temperature air is jetted for a long time. If this is continued, deliquescence or sticking will occur soon, but of course, according to the present invention, such a problem can be solved.
[0042]
The gas to be treated that can be employed in the present invention is as described above, but is not limited thereto, and may be employed as long as the exhaust gas contains at least moisture and acidic components. Also, KCl, NaCl, ZnCl 2 Exhaust gas containing a large amount of these metal chlorides in dust in exhaust gas, for example, exhaust gas from various waste melting furnaces such as a gasification melting furnace and an ash melting furnace has fine dust and a large amount of the above salts. Although there is a higher risk of clogging of No. 7, this can be reliably avoided by employing the present invention.
[0043]
Also, exhaust gas with a high moisture content such as exhaust gas from a combustion furnace using high-temperature air, exhaust gas using an exhaust gas circulation system, or exhaust gas cooled by a large amount of water spray without heat recovery, may cause deliquescent and sticking. This is more likely to occur, but this can be reliably avoided by employing the present invention. The treatment temperature of the exhaust gas to be treated is not particularly limited, but when the exhaust gas contains dioxins, which are organic halogen compounds, a temperature of 200 ° C. or less, for example, 150 ° C. to 180 ° C. where dioxin generation is very small can be adopted. Furthermore, the present invention can be suitably adopted to exhaust gas of 150 to 150 ° C. or less, in which deliquescent and sticking are more likely to occur, and taking into account the acid dew point, to prevent clogging of the filter cloth 7 due to deliquescent and sticking for a long time. Can be avoided over time.
As described above, various supplements have been described. However, the present invention is not limited to the drawings and texts in the present specification, and various changes can be made within the technical scope of the present invention.
[0044]
【The invention's effect】
(1) According to the bag filter backwashing method of the present invention, when treating exhaust gas containing at least moisture and acidic components with a pulse jet bag filter device, the exhaust gas is heated to a predetermined temperature equal to or lower than the heat resistant temperature of the filter cloth. Since high-temperature gas was used as pulse jet gas for backwashing, it was possible to avoid excessive cooling of the filter cloth and cause clogging of the filter cloth such as deliquescence and sticking due to reaction products in the powder layer on the filter cloth surface. Can be reliably avoided beforehand, so that stable operation of the bag filter device can be achieved for a long period of time. Further, since a high-temperature gas is used, the actual volume of the gas increases, so that the gas consumption when injecting at a predetermined injection pressure can be saved, and the load on the compressor can be reduced. Further, since the high-temperature gas is set to be equal to or lower than the heat-resistant temperature of the filter cloth, the above-mentioned stable operation can be achieved for a long period of time as long as the physical durability of the filter cloth allows, without impairing the physical strength of the filter cloth.
[0045]
(2) Further, the bag filter device according to the present invention is a pulse jet type bag filter device for treating exhaust gas containing at least water and an acidic component, and a heating means for heating a pulse jet gas for backwashing to a predetermined temperature. Therefore, the effect (1) can be easily and reliably obtained.
[Brief description of the drawings]
FIG. 1 is a schematic elevational view for explaining a bag filter backwashing method and a bag filter device according to Embodiment 1 of the present invention.
FIG. 2 is a schematic plan view of the upper plane in FIG. 1;
FIG. 3 is a schematic elevational view for explaining a bag filter backwashing method and a bag filter device according to Embodiment 2 of the present invention.
FIG. 4 is a schematic plan view of the upper plane in FIG. 3;
FIG. 5 is a schematic elevation view of an example of a conventional bag filter device.
FIG. 6 is a schematic top plan sectional view of FIG. 5;
[Explanation of symbols]
1 Bag filter device (main body)
2 Exhaust gas introduction duct
3 Exhaust gas exhaust duct
4 Dust discharge section
5 Slaked lime supply device
6 Na-based drug supply device
7 Filter cloth
8 Injection tube
9 Header tube
10 Solenoid valve
11 Compressor

Claims (6)

少なくとも水分および酸性成分を含む排ガスをパルスジェット式バグフィルタ装置で処理する際に、ろ布の耐熱温度以下の所定温度に加熱した高温気体を逆洗用のパルスジェット気体として用いることを特徴とするバグフィルタ装置の逆洗方法。When treating an exhaust gas containing at least water and an acidic component with a pulse jet type bag filter device, a high temperature gas heated to a predetermined temperature equal to or lower than the heat resistance temperature of the filter cloth is used as a pulse jet gas for backwashing. Backwashing method of bag filter device. 少なくとも水分および酸性成分を含む排ガスをパルスジェット式バグフィルタ装置で処理する際に、積算通ガス時間が所定日数を経た後に、ろ布の耐熱温度以下の所定温度に加熱した高温気体を逆洗用のパルスジェット気体として用いることを特徴とするバグフィルタ装置の逆洗方法。When treating exhaust gas containing at least water and acidic components with a pulse jet type bag filter device, after the accumulated gas passage time has passed a predetermined number of days, the high temperature gas heated to a predetermined temperature below the heat resistant temperature of the filter cloth is backwashed. Backwashing method for a bag filter device, wherein the method is used as a pulse jet gas. 少なくとも水分および酸性成分を含む排ガスをパルスジェット式バグフィルタ装置で処理する際に、ろ布の目詰まりの兆候を検知した後に、ろ布の耐熱温度以下の所定温度に加熱した高温気体を逆洗用のパルスジェット気体として用いることを特徴とするバグフィルタ装置の逆洗方法。When processing exhaust gas containing at least moisture and acidic components with a pulse jet bag filter device, after detecting signs of clogging of the filter cloth, backwash high temperature gas heated to a predetermined temperature below the heat resistance temperature of the filter cloth. Backwashing method for a bag filter device, characterized in that the bag filter device is used as a pulse jet gas. 少なくとも水分および酸性成分を含む排ガスをパルスジェット式バグフィルタ装置で処理する際に、酸性成分除去用の中和剤の少なくとも一部をNa系薬剤とすることを特徴とする請求項1〜3のいずれかに記載のバグフィルタ装置の逆洗方法。The exhaust gas containing at least water and an acidic component is treated with a pulse jet bag filter device, wherein at least a part of the neutralizing agent for removing the acidic component is a Na-based agent, wherein the Na-based agent is used. A backwash method for the bag filter device according to any one of the above. 少なくとも水分および酸性成分を含む排ガスを処理するパルスジェット式バグフィルタ装置であって、逆洗用のパルスジェット気体を所定温度に加熱する加熱手段を具備したことを特徴とするバグフィルタ装置。What is claimed is: 1. A pulse jet type bag filter device for treating exhaust gas containing at least water and an acidic component, comprising a heating means for heating a pulse jet gas for backwashing to a predetermined temperature. 少なくとも水分および酸性成分を含む排ガスを処理するパルスジェット式バグフィルタ装置であって、パルスジェット気体をバグフィルタ装置本体内の排ガス顕熱により所定温度に加熱できるように、逆洗用のパルスジェット気体を貯留するヘッダ管を前記バグフィルタ装置本体内に埋設したことを特徴とするバグフィルタ装置。A pulse jet type bag filter device for treating exhaust gas containing at least water and an acidic component, wherein a pulse jet gas for back washing is used so that the pulse jet gas can be heated to a predetermined temperature by sensible heat of exhaust gas in a bag filter device main body. A bag filter device, wherein a header tube for storing the gas is embedded in the bag filter device main body.
JP2002244844A 2002-08-26 2002-08-26 Method of backwashing bag filter and bag filter Pending JP2004081958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002244844A JP2004081958A (en) 2002-08-26 2002-08-26 Method of backwashing bag filter and bag filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002244844A JP2004081958A (en) 2002-08-26 2002-08-26 Method of backwashing bag filter and bag filter

Publications (1)

Publication Number Publication Date
JP2004081958A true JP2004081958A (en) 2004-03-18

Family

ID=32053202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002244844A Pending JP2004081958A (en) 2002-08-26 2002-08-26 Method of backwashing bag filter and bag filter

Country Status (1)

Country Link
JP (1) JP2004081958A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135823A1 (en) * 2006-05-19 2007-11-29 Asahi Glass Company, Limited Method of removing halogen gas and remover for halogen gas
JP2017213499A (en) * 2016-05-31 2017-12-07 株式会社タクマ Exhaust gas treatment facility and exhaust gas treatment method
KR20200025424A (en) * 2018-08-30 2020-03-10 주식회사 엘지화학 Bag filter type dust collector with blow tube heating system
JP2020163268A (en) * 2019-03-29 2020-10-08 日本スピンドル製造株式会社 Dust collection system and heat exchange device
KR102445213B1 (en) * 2022-06-10 2022-09-19 황정하 Air header for preventing corrosion of dust collector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135823A1 (en) * 2006-05-19 2007-11-29 Asahi Glass Company, Limited Method of removing halogen gas and remover for halogen gas
US7976808B2 (en) 2006-05-19 2011-07-12 Asahi Glass Company, Limited Method for removing halogen series gas and agent for removing halogen series gas
JP2017213499A (en) * 2016-05-31 2017-12-07 株式会社タクマ Exhaust gas treatment facility and exhaust gas treatment method
KR20200025424A (en) * 2018-08-30 2020-03-10 주식회사 엘지화학 Bag filter type dust collector with blow tube heating system
KR102540225B1 (en) * 2018-08-30 2023-06-08 주식회사 엘지화학 Bag filter type dust collector with blow tube heating system
JP2020163268A (en) * 2019-03-29 2020-10-08 日本スピンドル製造株式会社 Dust collection system and heat exchange device
JP7356810B2 (en) 2019-03-29 2023-10-05 日本スピンドル製造株式会社 Dust collection system and heat exchange equipment
KR102445213B1 (en) * 2022-06-10 2022-09-19 황정하 Air header for preventing corrosion of dust collector

Similar Documents

Publication Publication Date Title
CA2856974C (en) Method of removing sulfur trioxide from a flue gas stream
EP2760565B1 (en) Dry sorbent injection during non-steady state conditons in dry scrubber
JP5961514B2 (en) Fly ash circulation type exhaust gas treatment method
CN104258709A (en) Waste derived fuel burning smoke separation and purifying process
JP2009507632A (en) Removal of sulfur trioxide from exhaust gas stream
JP2015037764A (en) Fly ash circulation exhaust gas treatment method
US20180326351A1 (en) Process for treating flue gases resulting from a combustion or calcination furnace and plant for the implementation of such a process
JP2013173106A (en) Method and device for recovering mercury in exhaust gas
KR100711940B1 (en) Wet scrubbing unit for a exhausted gas purifying device
NL1003151C2 (en) Method and device for removing harmful substances, in particular dioxin.
CN111111404A (en) Flue gas treatment system and method for cement kiln
CN108452663A (en) Solid waste incineration flue gas processing method
KR100607862B1 (en) Apparatus for purifying flue gas of smelting furnace for LCDs&#39; substrate glass using low-temperature activated carbon catalyst and the method thereof
JP2004081958A (en) Method of backwashing bag filter and bag filter
KR19990050193A (en) Continuous processing method of air pollutant in combustion flue gas and apparatus used therein
CN109340769A (en) The exhaust gas treating method and system of discarded circuit board pyrolysis
JP2004261766A (en) Wet bag filter apparatus
JP4647960B2 (en) Glass melting furnace exhaust gas treatment method and treatment apparatus
JPH09243050A (en) Exhaust gas treatment method and apparatus
JP3603648B2 (en) Exhaust gas treatment method
JP3491141B2 (en) Exhaust gas treatment method and apparatus
JP3681130B2 (en) Denitration apparatus and method in cement plant
US20170165607A1 (en) Methods and apparatus to treat exhaust streams
CN212523634U (en) High temperature smelting pot tail gas processing system
JP3820027B2 (en) Removal equipment for hydrogen chloride and sulfur dioxide