KR19990050193A - Continuous processing method of air pollutant in combustion flue gas and apparatus used therein - Google Patents

Continuous processing method of air pollutant in combustion flue gas and apparatus used therein Download PDF

Info

Publication number
KR19990050193A
KR19990050193A KR1019970069256A KR19970069256A KR19990050193A KR 19990050193 A KR19990050193 A KR 19990050193A KR 1019970069256 A KR1019970069256 A KR 1019970069256A KR 19970069256 A KR19970069256 A KR 19970069256A KR 19990050193 A KR19990050193 A KR 19990050193A
Authority
KR
South Korea
Prior art keywords
activated carbon
exhaust gas
flue gas
reactor
gas
Prior art date
Application number
KR1019970069256A
Other languages
Korean (ko)
Other versions
KR100264738B1 (en
Inventor
홍익표
김제영
Original Assignee
신현준
재단법인 포항산업과학연구원
홍상복
포스코신기술연구조합
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신현준, 재단법인 포항산업과학연구원, 홍상복, 포스코신기술연구조합 filed Critical 신현준
Priority to KR1019970069256A priority Critical patent/KR100264738B1/en
Publication of KR19990050193A publication Critical patent/KR19990050193A/en
Application granted granted Critical
Publication of KR100264738B1 publication Critical patent/KR100264738B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0438Cooling or heating systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0415Beds in cartridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • B01D53/565Nitrogen oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

본 발명은 각종 연소기에서 발생되는 배가스중의 대기오염물질을 연속적으로 처리하는 방법 및 이에 이용되는 연속처리장치를 제공함에 그 목적이 있다.It is an object of the present invention to provide a method for continuously treating air pollutants in flue gas generated in various combustors and a continuous treatment apparatus used therein.

상기 목적달성을 위한 본 발명의 처리방법은, 연소배가스를 상온으로 냉각시킨 다음, 이를 활성탄층에 통과시켜 배가스중의 SOx를 제거하고, 상기 배가스 중의 수분을 제습한 후, 제습된 배가스를 상기 연소배가스에 의해 70~150℃의 온도로 승온시키고 나서 다시 환원제와 함께 활성탄층에 통과시켜 배가스중의 NOx를 제거함을 포함하여 구성되며; 그리고,In the treatment method of the present invention for achieving the above object, the combustion flue gas is cooled to room temperature, and then passed through the activated carbon layer to remove SOx in the flue gas, dehumidifying the moisture in the flue gas, and then dehumidified flue gas to the combustion flue. Heated to a temperature of 70-150 ° C. by gas, and then passed through an activated carbon layer with a reducing agent to remove NOx in exhaust gas; And,

이에 이용되는 연속처리장치(100)은 연소기(11)와 냉각기(30) 사이에 위치되어 제습처리된 배가스가 통과하도록 구성되는 열교환기(20), 배가스를 상온으로 냉각시키는 냉각기(30), 상부는 제1활성탄공급조(41)측에 연결되며 하부는 제1활성탄회수조(43) 및 황산저장조(44)에 연결되는 한편 내부에 활성탄층(41)이 내재된 제1반응기(40), 제1반응기에서 처리된 배가스중의 수분을 제거하는 제습기(50) 및 상기 제습기(50)와 열교환기(20)을 거쳐 유입되는 고온 배가스가 통과되는 활성탄층(61)이 내재되어 있고, 상부는 제2활성탄공급조(61)와 환원제공급조(65)에 연결되며 하부는 제2활성탄회수조(63)와 배가스가 배출되는 굴뚝(70)에 연결되는 제2반응기(60); 를 포함하여 구성된다.The continuous processing apparatus 100 used for this is located between the combustor 11 and the cooler 30, the heat exchanger 20 configured to pass the dehumidified exhaust gas, the cooler 30 for cooling the exhaust gas to room temperature, the upper portion Is connected to the first activated carbon supply tank 41 and the lower part is connected to the first activated carbon recovery tank 43 and the sulfuric acid storage tank 44 while the first reactor 40 having the activated carbon layer 41 embedded therein, The dehumidifier 50 for removing moisture in the flue gas treated in the first reactor and the activated carbon layer 61 through which the hot flue gas flowing through the dehumidifier 50 and the heat exchanger 20 pass are inherent. A second reactor 60 connected to the second activated carbon supply tank 61 and the reducing agent supply tank 65 and connected to the second activated carbon recovery tank 63 and the chimney 70 through which exhaust gas is discharged; It is configured to include.

Description

연소배가스의 대기오염물질 연속처리방법 및 이에 이용되는 장치Continuous processing method of air pollutant in combustion flue gas and apparatus used therein

본 발명은 각종 연소기에서 발생되는 배가스중의 대기오염물질을 연속적으로 처리하는 방법 및 이에 이용되는 연속처리장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously treating air pollutants in flue gas generated in various combustors and a continuous treatment apparatus used therein.

최근 쓰레기 소각로, 제철소의 소결로 등을 비롯한 각종 연소기에서 황화합물 및 질소산화물과 함께 맹독성 물질인 다이옥신 및 푸란 등의 화합물이 발생되는 것이 알려짐에 따라 이의 제거가 중요한 문제점으로 대두되었다. 이러한 연소배가스중에 존재하는 대기오염물질의 정화처리공정에 있어 종래에는 황화합물이나 질소산화물을 주요 제거대상물질로 하고 있으며, 이산화황의 처리를 위한 습식석회석고법이나 질소산화물의 제거를 위한 선택적 환원촉매법 등이 주로 사용되어 왔다.Recently, various types of combustors including waste incinerators, steel mills, sintering furnaces, and the like, along with sulfur compounds and nitrogen oxides, have been known to generate compounds such as dioxins and furans, which are highly toxic substances. In the process of purifying air pollutants present in the combustion flue gas, sulfur compounds and nitrogen oxides are the main removal targets. This has been used mainly.

일례로 도1은 촉매를 이용하여 질소산화물을 선택적으로 환원시켜 제거하는 선택적 환원촉매장치(10)를 보이고 있다. 상기 선택적 환원촉매방법은 도1과 같이, 연소기(11)에서 발생되어 약 200℃ 정도의 온도를 유지하고 있는 배가스를 열교환기(12)에 통과시켜 약 250℃의 온도로 승온시킨 다음, 승온된 배가스를 가열기(13)에 의해 약 350℃의 온도로 가열하고, 고온의 배가스는 환원제공급조(15)로부터 투입되는 환원제와 함께 촉매 반응기(14)에서 반응시켜 선택적으로 질소산화물을 제거한 후, 처리된 배가스의 헌열에 의해 상기 열교환기(12)에서 새로이 유입되는 배가스를 승온시키고, 굴뚝(17)으로 배출하는 과정으로 이루어진다. 상기 선택적 촉매환원법은 질소산화물의 선택적 제거에는 유용하나 반응온도가 높으므로 많은 에너지가 필요하며 상대적으로 이산화황의 제거효율이 낮은 단점이 있다.For example, FIG. 1 shows a selective reduction catalyst device 10 for selectively reducing and removing nitrogen oxides using a catalyst. In the selective reduction catalyst method, as shown in FIG. 1, the exhaust gas generated in the combustor 11 and maintained at a temperature of about 200 ° C. is passed through a heat exchanger 12 to raise the temperature to about 250 ° C., and then the temperature is increased. The exhaust gas is heated to a temperature of about 350 ° C. by the heater 13, and the hot exhaust gas is reacted in the catalytic reactor 14 with the reducing agent introduced from the reducing agent supply tank 15 to selectively remove nitrogen oxides, and then treated. Due to the exhaustion of the exhaust gas, the exhaust gas newly introduced from the heat exchanger 12 is heated and discharged to the chimney 17. The selective catalytic reduction method is useful for the selective removal of nitrogen oxides, but the reaction temperature is high, requires a lot of energy and has a relatively low removal efficiency of sulfur dioxide.

한편, 상기 방법 이외에도 단일 공정내의 대기오염물질 처리방법이 있는데, 이 방법은 활성코크스를 흡착제로 사용하여 기체와 반응시키므로써 오염물질을 제거하는 방법이다(VGB Kraftwerkstechnik 72, p.572, 1992, No.7). 그러나, 이 방법은 흡착탑 내에서의 반응시 공간속도를 500/hr 이상으로 유지할 수 없으므로 흡착제층의 부피가 매우 커야 되는 단점이 있다(NKK Technical Review No.74, p.53, 1996).On the other hand, in addition to the above method, there is a method of treating air pollutants in a single process, which is a method of removing contaminants by reacting with gas using activated coke as an adsorbent (VGB Kraftwerkstechnik 72, p.572, 1992, No .7). However, this method has a disadvantage in that the volume of the adsorbent layer must be very large because the space velocity cannot be maintained at 500 / hr or more during the reaction in the adsorption tower (NKK Technical Review No. 74, p. 53, 1996).

본 발명은 종래의 활성코크스 공정의 개선을 위하여 제안된 것으로서, 휘발성 유기화합물, 및 황화합물, 질소화합물을 차례로 그리고 연속적으로 처리하면서도 공간반응속도의 향상으로 인해 고효율로 처리할 수 있는 배가스의 연속처리방법을 제공함에 그 목적이 있다.The present invention has been proposed for the improvement of the conventional activated coke process, and the continuous treatment of volatile organic compounds, sulfur compounds, nitrogen compounds sequentially and continuously, but can be treated with high efficiency due to the improvement of the space reaction rate of continuous treatment method The purpose is to provide.

또한, 본 발명의 다른 목적은 이러한 연속처리공정에 이용될 수 있는 장치를 제공함에 있다.Another object of the present invention is to provide an apparatus that can be used in such a continuous processing process.

도1은 종래의 선택적 환원촉매에 부합되는 배가스 연속처리장치의 구성도1 is a block diagram of a flue gas continuous processing apparatus that is compatible with a conventional selective reduction catalyst

도2는 본 발명의 배가스 연속처리장치의 구성도2 is a configuration diagram of the exhaust gas continuous treatment apparatus of the present invention

도3은 도2의 반응기의 상세 구조도3 is a detailed structural diagram of the reactor of FIG.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

100 .....연속처리장치 11 ..... 연소기100 ..... Continuous Processing System 11 ..... Combustor

20 ..... 열교환기 30 ..... 냉각기20 ..... Heat Exchanger 30 ..... Chiller

40 ..... 제1반응기 50 ..... 제습기40 ..... First Reactor 50 ..... Dehumidifier

60 ..... 제2반응기 70 ..... 굴뚝60 ..... Second Reactor 70 ..... Chimney

상기 목적을 달성하기 위한 본 발명은 연소배가스의 대기오염물질을 처리하는 방법에 있어서,In order to achieve the above object, the present invention provides a method for treating an air pollutant in a combustion flue gas.

연소배가스를 상온으로 냉각시키는 단계;Cooling the combustion flue gas to room temperature;

냉각 배가스를 활성탄층에 통과시켜 배가스중의 SOx를 제거하는 단계;Passing the cooling exhaust gas through the activated carbon layer to remove SOx in the exhaust gas;

SOx 가 제거된 배가스 중의 수분을 제습하는 단계;Dehumidifying moisture in the exhaust gas from which SOx is removed;

제습된 배가스를 상기 연소배가스에 의해 70~150℃의 온도로 승온시키는 단계;Heating the dehumidified exhaust gas to a temperature of 70 to 150 ° C. by the combustion exhaust gas;

승온된 배가스를 환원제와 함께 활성탄층에 통과시켜 NOx를 제거하는 단계; 및Passing the heated exhaust gas through a activated carbon layer together with a reducing agent to remove NOx; And

NOx가 제거된 배가스를 배출하는 단계; 를 포함하여 구성되는 연소배가스의 대기오염물질 연속처리방법에 관한 것이다.Exhausting flue gas from which NOx has been removed; It relates to an air pollutant continuous treatment method of a combustion flue gas comprising a.

또한, 본 발명은 연소배가스의 대기오염물질을 처리하는 장치에 있어서,In addition, the present invention is an apparatus for treating air pollutants in the combustion flue gas,

연소기와 냉각기 사이에 위치하고, 제습처리된 배가스가 통과하도록 구성되는 열교환기;A heat exchanger located between the combustor and the cooler, the heat exchanger configured to pass dehumidified exhaust gas;

상기 열교환기에서 인입되는 배가스를 상온으로 냉각시키는 냉각기;A cooler cooling the exhaust gas introduced from the heat exchanger to room temperature;

상기 냉각기에 후속하여 위치하고, 상부는 제1활성탄공급조측에 연결되며 하부는 제1활성탄회수조 및 황산저장조에 연결되는 한편 내부에 활성탄층이 내재된 제1반응기;A first reactor positioned subsequent to the cooler, the upper portion of which is connected to the first activated carbon supply tank side and the lower portion of which is connected to the first activated carbon recovery tank and sulfuric acid storage tank while having an activated carbon layer embedded therein;

상기 제1반응기에 후속하여 위치되어 제1반응기에서 처리된 배가스중의 수분을 제거하는 제습기; 및A dehumidifier positioned subsequent to the first reactor to remove moisture in the exhaust gas treated in the first reactor; And

상기 제습기와 열교환기을 거쳐 유입되는 고온 배가스가 통과되는 활성탄층이 내재되어 있고, 상부는 제2활성탄공급조와 환원제공급조에 연결되며 하부는 제2활성탄회수조와 배가스가 배출되는 굴뚝에 연결되는 제2반응기; 를 포함하여 구성되는 연소배가스의 대기오염물질 연속처리장치에 관한 것이다.The second reactor is connected to the activated carbon layer through which the hot exhaust gas flowing through the dehumidifier and the heat exchanger passes, the upper portion is connected to the second activated carbon supply tank and the reducing agent supply tank, and the lower portion is connected to the second activated carbon recovery tank and the chimney from which the exhaust gas is discharged. ; It relates to an air pollutant continuous processing apparatus of a combustion flue gas comprising a.

먼저, 본 발명의 연속처리장치를 도면을 통해 상세히 설명한다.First, the continuous processing apparatus of the present invention will be described in detail with reference to the drawings.

본 발명의 연소배가스 연속처리장치는 도2에 도시된 바와 같이, 크게 열교환기(20), 냉각기(30), 제1반응기(40), 제습기(50) 및 제2반응기(60); 를 포함하여 구성된다.As shown in FIG. 2, the combustion exhaust gas continuous processing apparatus of the present invention includes a heat exchanger 20, a cooler 30, a first reactor 40, a dehumidifier 50, and a second reactor 60; It is configured to include.

상기 열교환기(20)는 연소기(11)와 냉각기(30) 사이에 위치하고, 제습처리된 배가스가 통과하도록 구성된다. 상기 열교환기(20)는 황화합물과 휘발성 유기화합물(volatile organic compound; 이하, 단지 `VOC')의 제거가 용이하도록 연소기(11)에서 배출되는 기체의 농도를 낮취주는 동시에 상기 VOC 및 황화합물의 제거가 완료된 기체, 즉 제습처리된 기체의 온도를 상승시켜 질소산화물을 용이하게 제거하는 역할을 한다. 본 발명의 열교환기(20)는 기체-기체 열교환방식의 통상의 열교환기를 사용하면 된다.The heat exchanger 20 is located between the combustor 11 and the cooler 30, and is configured to pass through the dehumidified exhaust gas. The heat exchanger 20 lowers the concentration of the gas discharged from the combustor 11 to facilitate the removal of sulfur compounds and volatile organic compounds (hereinafter, only 'VOC') and at the same time removes the VOCs and sulfur compounds. This serves to easily remove the nitrogen oxides by raising the temperature of the completed gas, that is, the dehumidified gas. The heat exchanger 20 of the present invention may use a gas-gas heat exchanger.

또한, 상기 냉각기(30)는 열교환기(20)에서 1차적으로 냉각되어 인입되는 배가스를 더욱 상온 부근까지 냉각하여 VOC 및 황화합물의 제거가 용이하도록 해주는 역할을 한다. 본 발명의 냉각기(30)는 통상 사용되는 기체냉각기이면 충분하다.In addition, the cooler 30 serves to facilitate the removal of VOC and sulfur compounds by further cooling the exhaust gas that is primarily cooled in the heat exchanger 20 to near room temperature. The cooler 30 of the present invention may be a gas cooler that is usually used.

상기 냉각기(30)에 후속하여 위치하는 제1반응기(40)는 그 상부가 제1활성탄공급조(41)측에 연결되고, 하부는 제1활성탄회수조(43) 및 황산저장조(44)에 연결된다. 또한, 그 내부는 VOC와 황화합물을 제거하도록 활성탄층(41)이 충진된다. 도3은 제1반응기(40)의 상세 구조를 보이고 있다. 도3에 도시된 바와 같이, 제1반응기(40)의 상부에는 제1활성탄공급조(42)가 마련되어 공급피더(feeder)(46)을 통해 활성탄이 연속적으로 공급된다. 그리고, 상기 활성탄이 연속적으로 공급된 만큼 다시 연속적으로 활성탄의 제거가 가능하도록 제1반응기(40)의 하부에 제1활성탄회수조(43)가 설치된다. 제1반응기(40)의 내부에 충진된 활성탄층의 상하측에는 망상구조의 그물망상(47)(48)이 마련되어 배가스가 통과하도록 구성되어 있다. 상기 활성탄층을 통과한 배가스중의 수증기와 산소로부터 유황화합물은 활성탄에 의하여 반응되어 황산이 생성되는데, 이때 반응부산물인 황산을 그물망상(48)의 아래로 배출하여 저장할 수 있는 황산저장조(44)가 제1반응기(40)의 하부측면에 배치된다. 또한, VOC와 황화합물반응이 제거된 배가스는 제습기(50)측으로 배출된다.The first reactor 40, which is located after the cooler 30, has an upper portion connected to the first activated carbon supply tank 41 side, and a lower portion thereof in the first activated carbon recovery tank 43 and sulfuric acid storage tank 44. Connected. In addition, the activated carbon layer 41 is filled therein to remove VOC and sulfur compounds. 3 shows the detailed structure of the first reactor 40. As shown in FIG. 3, a first activated carbon supply tank 42 is provided at an upper portion of the first reactor 40 so that activated carbon is continuously supplied through a feed feeder 46. As the activated carbon is continuously supplied, the first activated carbon recovery tank 43 is installed at the lower portion of the first reactor 40 so that the activated carbon can be continuously removed. The upper and lower sides of the activated carbon layer filled in the first reactor 40 are provided with network meshes 47 and 48 having a network structure and configured to allow exhaust gas to pass therethrough. Sulfur compounds are reacted by activated carbon to generate sulfuric acid from the water vapor and oxygen in the flue gas passing through the activated carbon layer. At this time, sulfuric acid storage tank 44 capable of discharging sulfuric acid, which is a by-product of the reaction, under the netting 48. Is disposed on the lower side of the first reactor (40). In addition, the exhaust gas from which the VOC and sulfur compound reactions are removed is discharged to the dehumidifier 50 side.

상기 제습기(50)은 제1반응기(40)에 후속하여 위치되어 제1반응기에서 처리된 배가스중의 수분을 제거한다. 본 발명의 제습기(50)은 기체와 접촉하는 부분이 부식에 영향을 받지 않도록 제작된 것이면 통상적으로 사용하는 모든 종류의 제습기가 사용 가능하다.The dehumidifier 50 is positioned after the first reactor 40 to remove moisture in the exhaust gas treated in the first reactor. Dehumidifier 50 of the present invention can be used for all kinds of dehumidifiers commonly used as long as the part in contact with the gas is made so as not to be affected by corrosion.

본 발명의 연속처리장치(100)는 상기 제습기(50)를 빠져나온 상온의 배가스가 열교환기(20)을 거쳐 제2반응기(60)에 인입되도록 구성된다.The continuous processing apparatus 100 of the present invention is configured such that exhaust gas at room temperature exiting the dehumidifier 50 is introduced into the second reactor 60 through the heat exchanger 20.

상기 제2반응기(60)는 제1반응기(40)와 같이, 열교환기(20)에서 승온된 고온의 배가스가 통과되는 활성탄층(61)이 내부에 충진되어 있고, 상부에는 제2활성탄공급조(61)가 설치되며 하부에는 제2활성탄회수조(63)가 마련되어 있다. 다만, 제2반응기(60)는 배가스중의 질소화합물을 제거하기 위해 상부에 환원제공급조(65)가 마련되며, 반응후 처리된 배가스가 배출되도록 하부측이 굴뚝(70)과 연결된다. 제2반응기(60)는 제1반응기(40)와 마찬가지로 활성탄이 연속적으로 공급되고, 사용된 활성탄은 투입량만큼 연속적으로 배출된다. 본 발명의 제2반응기(60)는 제1반응기(40)와는 달리, 카트리지 형태의 반응기를 사용하면 더욱 바람직하다. 이 경우 배가스는 카트리지 반응기의 하부로부터 인입하여 상부측으로 배출되도록 구성함이 적합하다.Like the first reactor 40, the second reactor 60 is filled with an activated carbon layer 61 through which a high temperature flue gas heated in the heat exchanger 20 passes, and a second activated carbon supply tank at the top thereof. 61 is provided, and the second activated carbon recovery tank 63 is provided in the lower part. However, the second reactor 60 is provided with a reducing agent supply tank 65 in the upper portion to remove the nitrogen compound in the exhaust gas, the lower side is connected to the chimney 70 so that the treated exhaust gas is discharged after the reaction. Like the first reactor 40, the second reactor 60 is continuously supplied with activated carbon, and the used activated carbon is continuously discharged by the input amount. Unlike the first reactor 40, the second reactor 60 of the present invention is more preferably used in a cartridge type reactor. In this case, the exhaust gas is suitably configured to be drawn in from the lower part of the cartridge reactor and discharged to the upper side.

이하, 상기한 연속처리장치를 이용하여 본 발명의 배가스 연속처리방법을 상세히 설명한다.Hereinafter, the exhaust gas continuous treatment method of the present invention using the above-described continuous treatment apparatus will be described in detail.

도2와 같이, 연소기(11)에서 발생되는 배가스는 보통 200℃ 정도를 유지하는데, 열교환기(20)를 통과시키면 약 150℃ 로 온도가 저하되고, 이어서 냉각기(30)에서 상온으로 냉각된다. 즉, 연소공정에서 발생되는 배가스중의 VOC 와 황화합물은 어느정도 수분이 함유된 상태에서 제거가 용이하며 또한 고온보다 상온에서 제거가 쉽다.As shown in FIG. 2, the flue gas generated in the combustor 11 is usually maintained at about 200 ° C., when passing through the heat exchanger 20, the temperature is lowered to about 150 ° C., and then cooled to room temperature in the cooler 30. In other words, the VOC and sulfur compounds in the flue-gases generated in the combustion process are easily removed in the presence of water to some extent, and more easily at room temperature than at high temperatures.

상온으로 냉각된 배가스를 제1반응기(40)중의 활성탄층에 통과시키면 배가스중의 SOx가 제거된다. 즉, 배가스중의 수증기와 산소로부터 유황화합물이 활성탄에 의해 반응하면 황산과 같이 SOx가 제거된다. 이때 부산물로 발생되는 황산은 제1반응기(40)의 하부측에 배출되어 황산저장조(44)내로 회수 가능하다.Passing the exhaust gas cooled to room temperature through the activated carbon layer in the first reactor 40 removes SOx in the exhaust gas. That is, when sulfur compound reacts with activated carbon from water vapor and oxygen in flue-gas, SOx is removed like sulfuric acid. At this time, the sulfuric acid generated as a by-product is discharged to the lower side of the first reactor 40 can be recovered into the sulfuric acid storage tank (44).

그 다음, SOx 가 제거된 배가스는 제습기(50)에서 배가스 중의 수분을 제습하고, 제습된 배가스를 약 70~150℃의 온도로 승온시킨다. 황화합물은 어느 정도 수분이 존재하는 상온 상태에서 제거가 용이하나 배가스중의 질소산화물은 고온에서 가능한 한 습도를 낮게 유지할수록 제거가 용이하기 때문에 제2반응기(60)에서 질소산화물의 제거 효율을 높이기 위해서는 제습과정과 승온과정이 필요하다.Then, the exhaust gas from which the SOx is removed dehumidifies moisture in the exhaust gas in the dehumidifier 50 and raises the dehumidified exhaust gas to a temperature of about 70 to 150 ° C. In order to increase the efficiency of removing nitrogen oxides in the second reactor (60), sulfur compounds are easily removed at room temperature with some moisture, but nitrogen oxides in the exhaust gas are easier to remove as the humidity is kept as low as possible at high temperatures. Dehumidification process and heating process are required.

구체적으로 배가스의 절대습도를 1%미만으로 유지할 때 질소산화물의 제거효율이 양호해진다. 기체의 절대습도가 1%이상이 될 경우 습도에 따라서 질소산화물의 환원반응의 전환율이 급격히 저하되게 되어 바람직하지 않다.Specifically, when the absolute humidity of the exhaust gas is maintained at less than 1%, the removal efficiency of the nitrogen oxides is improved. When the absolute humidity of the gas is 1% or more, the conversion rate of the reduction reaction of the nitrogen oxides decreases rapidly depending on the humidity, which is not preferable.

또한, 상기 배가스의 온도를 70~150℃ 정도로 유지함이 바람직하며, 본 발명의 경우 제2반응기(60)내에서 반응되는 배가스의 승온은 상기 열교환기(20)의 현열을 이용함에 특징이 있다. 이때, 상기 반응온도가 70℃ 이하에서는 환원제와 반응에 의해 질화물이 생성되어 활성탄의 수명을 단축하게 될 수 있으며, 150℃ 이상으로 유지되는 경우 질소산화물의 활성탄에의 흡착이 곤란하게 되어 질소산화물의 환원반응이 활성탄 표면에서 활발히 일어나지 못하므로 제거가 곤란하다.In addition, it is preferable to maintain the temperature of the exhaust gas to about 70 ~ 150 ℃, in the case of the present invention is characterized in that the temperature increase of the flue gas reacted in the second reactor 60 uses the sensible heat of the heat exchanger (20). In this case, when the reaction temperature is 70 ℃ or less, the nitride is generated by the reaction with the reducing agent may shorten the life of the activated carbon, and when it is maintained at 150 ℃ or more it becomes difficult to adsorb nitrogen oxide to the activated carbon to the nitrogen oxide It is difficult to remove because the reduction does not occur actively on the surface of activated carbon.

이와같이 승온된 배가스를 환원제와 함께 활성탄층에 통과시키면 배가스중의 NOx 제거 효율이 높게 된다. 이때 활성탄중에 공급되는 환원제의 투입량은 배가스중의 질소산화물 농도의 1~1.5배로 조절하여 공급함이 바람직하다. 환원제의 농도를 배가스중의 질소산화물의 농도의 1배미만으로 하는 경우 질소산화물과 동일한 당량으로 반응되는 제2반응기(60)내의 환원반응에서 충분히 반응되지 못하므로 질소산화물의 전환율이 낮아지게 되며, 1.5배이상의 온도의 환원제를 투입하여도 환원반응의 증가효과가 없으므로 반응에 참여하지 않은 환원제의 배출에 의한 2차적인 오염이 일어나게 되므로 추가적인 환원제의 제거공정이 필요하게 된다. 본 발명의 경우 환원제로는 암모니아가 바람직하다.Passing the heated exhaust gas along with the reducing agent through the activated carbon layer increases the NOx removal efficiency in the exhaust gas. At this time, the input amount of the reducing agent supplied to the activated carbon is preferably adjusted to supply 1 to 1.5 times the concentration of nitrogen oxides in the flue gas. When the concentration of the reducing agent is less than one times the concentration of nitrogen oxides in the flue gas, the conversion rate of nitrogen oxides is lowered because it is not sufficiently reacted in the reduction reaction in the second reactor 60 which is reacted at the same amount as the nitrogen oxides. Even if a reducing agent of more than twice the temperature is added, there is no effect of increasing the reduction reaction, and thus secondary pollution is caused by the discharge of the reducing agent that does not participate in the reaction. In the case of the present invention, ammonia is preferable as the reducing agent.

또한, 본 발명의 경우 활성탄의 투입은 비표면적이 200m2/g 이상인 활성코크스를 500/hr의 공간속도로 행함이 바람직하다.In addition, in the case of the present invention, the activated carbon is preferably carried out with activated coke having a specific surface area of 200 m 2 / g or more at a space velocity of 500 / hr.

이와같이, 본 발명의 배가스 연속처리공정은 기본적으로는 황화합물과 질소화합물을 차례로 제거하여 해당 오염물질을 흡착시켜 제거하는데, 특히 400ppm이상의 농도를 갖는 질소산화물의 90%이상을 500/hr이상의 공간속도에서 처리 가능하다. 예를들면, 5%이상의 산소농도와 400ppm의 농도를 갖는 질소산화물을, 200m2/g 이상의 비표면적을 갖는 활성코크스를 충진한 70~150℃의 제2반응기(60)내에 500/hr의 공간속도로 통과시킬 경우 질소산화물의 90% 이상의 제거가 가능하다.As described above, the exhaust gas continuous treatment process of the present invention basically removes sulfur compounds and nitrogen compounds in order to adsorb corresponding pollutants, and in particular, 90% or more of nitrogen oxides having a concentration of 400 ppm or more at a space velocity of 500 / hr or more It can be processed. For example, a space of 500 / hr in a 70-150 ° C. second reactor 60 filled with nitrogen oxide having an oxygen concentration of at least 5% and a concentration of 400 ppm and an activated coke having a specific surface area of 200 m 2 / g or more. If passed at a rate, more than 90% of the nitrogen oxides can be removed.

이렇게 NOx가 제거된 배가스는 대기오염물질이 제거되어 최종적으로 굴뚝(70)으로 배출하게 된다. 이상의 공정을 특정의 연소배가스중 오염물의 제거에 사용하기 위하여는 배출되는 기체중에 포함된 분진 등의 고체상 물질을 사전에 제거하여 각 반응기에서의 활성코크스의 수명을 길게 해 줄 필요가 있는데, 이를 위하여는 통상의 백필터나 전기집진기, 습식집진설비 등을 이용하는 것이 바람직하다. 이같이 전처리된 배출기체의 온도에 따라 열교환기나 냉각기의 용량을 결정해주면 되며, 배출기체의 압력에 따라 필요한 경우 송풍기를 설치하여 기체의 흐름을 원활하게 유지해주는 것이 바람직하다.The exhaust gas from which NOx is removed is removed from the air pollutant and finally discharged to the chimney 70. In order to use the above process to remove contaminants in a specific combustion flue gas, it is necessary to remove solid phase substances such as dust contained in the discharged gas in advance to extend the life of activated coke in each reactor. It is preferable to use a conventional bag filter, an electrostatic precipitator, a wet dust collector or the like. Thus, the capacity of the heat exchanger or the cooler may be determined according to the temperature of the pretreated exhaust gas, and according to the pressure of the exhaust gas, it is preferable to install a blower to maintain the gas flow smoothly if necessary.

상술한 바와 같이, 본 발명은 기존의 배가스 처리방식과는 달리, 단일공정내에서 선택촉매환원법 등에 비하여 상대적으로 낮은 온도에서 휘발성 유기화합물, 및 황화합물, 질소화합물을 차례로 제거할 수 있을 뿐만아니라 연속적으로 처리하면서도 공간반응속도의 향상으로 인해 고효율로 처리할 수 있는 효과가 있다.As described above, unlike the conventional flue gas treatment method, the present invention can sequentially remove volatile organic compounds, sulfur compounds, and nitrogen compounds at a relatively low temperature as compared to the selective catalyst reduction method in a single process. While processing, there is an effect that can be processed with high efficiency due to the improvement of the space reaction speed.

Claims (7)

연소배가스의 대기오염물질을 처리하는 방법에 있어서,In the method of treating the air pollutants in the combustion flue gas, 연소배가스를 상온으로 냉각시키는 단계;Cooling the combustion flue gas to room temperature; 냉각 배가스를 활성탄층에 통과시켜 배가스중의 SOx를 제거하는 단계;Passing the cooling exhaust gas through the activated carbon layer to remove SOx in the exhaust gas; SOx 가 제거된 배가스 중의 수분을 제습하는 단계;Dehumidifying moisture in the exhaust gas from which SOx is removed; 제습된 배가스를 상기 연소배가스에 의해 70~150℃의 온도로 승온시키는 단계;Heating the dehumidified exhaust gas to a temperature of 70 to 150 ° C. by the combustion exhaust gas; 승온된 배가스를 환원제와 함께 활성탄층에 통과시켜 NOx를 제거하는 단계; 및Passing the heated exhaust gas through a activated carbon layer together with a reducing agent to remove NOx; And NOx가 제거된 배가스를 배출하는 단계; 를 포함하여 구성되는 연소배가스의 대기오염물질 연속처리방법Exhausting flue gas from which NOx has been removed; Air pollutant continuous treatment method of combustion flue gas comprising a 제1항에 있어서, 상기 제습단계에서 SOx 가 제거된 배가스 중의 수분을 절대습도 1% 미만으로 제습함을 특징으로 하는 연속처리방법The method of claim 1, wherein the moisture in the exhaust gas from which the SOx is removed in the dehumidification step is dehumidified to less than 1% absolute humidity. 제1항에 있어서, 상기 NOx 제거단계에서 환원제의 투입량은 배가스중의 질소산화물 농도의 1~1.5배로 조절하여 공급함을 특징으로 하는 연속처리방법The continuous treatment method according to claim 1, wherein the input amount of the reducing agent in the NOx removal step is controlled to be adjusted to 1 to 1.5 times the concentration of nitrogen oxides in the exhaust gas. 제3항에 있어서, 상기 환원제는 암모니아임을 특징으로 하는 연속처리방법The method of claim 3, wherein the reducing agent is ammonia. 제1항에 있어서, 상기 활성탄의 투입은 비표면적이 200m2/g 이상인 활성코크스를 500/hr의 공간속도로 행함을 특징으로 하는 연속처리방법The continuous processing method according to claim 1, wherein the activated carbon is introduced into a activated coke having a specific surface area of 200 m 2 / g or more at a space velocity of 500 / hr. 연소배가스의 대기오염물질을 처리하는 장치에 있어서,In the apparatus for treating air pollutants in combustion flue gas, 연소기(11)와 냉각기(30) 사이에 위치하고, 제습처리된 배가스가 통과하도록 구성되는 열교환기(20);A heat exchanger (20) located between the combustor (11) and the cooler (30) and configured to allow dehumidified exhaust gas to pass therethrough; 상기 열교환기(20)에서 인입되는 배가스를 상온으로 냉각시키는 냉각기(30);A cooler 30 for cooling the exhaust gas introduced from the heat exchanger 20 to room temperature; 상기 냉각기(30)에 후속하여 위치하고, 상부는 제1활성탄공급조(41)측에 연결되며 하부는 제1활성탄회수조(43) 및 황산저장조(44)에 연결되는 한편 내부에 활성탄층(41)이 내재된 제1반응기(40);Subsequent to the cooler 30, the upper portion is connected to the first activated carbon supply tank 41 side and the lower portion is connected to the first activated carbon recovery tank 43 and sulfuric acid storage tank 44, while the activated carbon layer 41 therein. A first reactor 40 incorporating); 상기 제1반응기(40)에 후속하여 위치되어 제1반응기에서 처리된 배가스중의 수분을 제거하는 제습기(50); 및A dehumidifier (50) positioned subsequent to the first reactor (40) to remove moisture in the flue gas treated in the first reactor; And 상기 제습기(50)와 열교환기(20)을 거쳐 유입되는 고온 배가스가 통과되는 활성탄층(61)이 내재되어 있고, 상부는 제2활성탄공급조(61)와 환원제공급조(65)에 연결되며 하부는 제2활성탄회수조(63)와 배가스가 배출되는 굴뚝(70)에 연결되는 제2반응기(60); 를 포함하여 구성됨을 특징으로 하는 연소배가스의 대기오염물질 연속처리장치The activated carbon layer 61 through which the high-temperature exhaust gas flowing through the dehumidifier 50 and the heat exchanger 20 passes is embedded, and an upper portion thereof is connected to the second activated carbon supply tank 61 and the reducing agent supply tank 65. A lower portion of the second reactor 60 connected to the second activated carbon recovery tank 63 and the chimney 70 through which exhaust gas is discharged; Air pollutant continuous processing device of the combustion flue gas, characterized in that comprising a 제6항에 있어서, 상기 제2반응기(60)는 카트리지 형식의 반응기임을 특징으로 하는 연속처리장치The continuous processing apparatus according to claim 6, wherein the second reactor (60) is a cartridge type reactor.
KR1019970069256A 1997-12-16 1997-12-16 A method for removing air pollutant from flue gas continuously and an apparatus therefor KR100264738B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970069256A KR100264738B1 (en) 1997-12-16 1997-12-16 A method for removing air pollutant from flue gas continuously and an apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970069256A KR100264738B1 (en) 1997-12-16 1997-12-16 A method for removing air pollutant from flue gas continuously and an apparatus therefor

Publications (2)

Publication Number Publication Date
KR19990050193A true KR19990050193A (en) 1999-07-05
KR100264738B1 KR100264738B1 (en) 2000-09-01

Family

ID=19527448

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970069256A KR100264738B1 (en) 1997-12-16 1997-12-16 A method for removing air pollutant from flue gas continuously and an apparatus therefor

Country Status (1)

Country Link
KR (1) KR100264738B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100788982B1 (en) * 2006-04-05 2007-12-27 주식회사 파나시아 Exhaust Gas of High Temperature Denitrifing System For A Co-Generation System and Denitrifing Method using the System
KR100919290B1 (en) * 2007-11-12 2009-10-01 한국에너지기술연구원 Circulation Water Temperature Control System for Low NOx Engine Cogeneration Plant
WO2010011008A1 (en) * 2008-07-25 2010-01-28 Kim Jongin Apparatus for removing air pollutants
KR101237084B1 (en) * 2010-11-29 2013-02-25 현대제철 주식회사 Treating apparatus for waste gas in sintering machine and treating method thereof
KR101298711B1 (en) * 2011-09-29 2013-08-21 현대제철 주식회사 Treating apparatus for waste gas in sinter machine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100375079B1 (en) * 2000-10-17 2003-03-07 안창덕 Method for recovery of volatile organic compounds by adsorption-condensation and apparatus therefor
KR100568344B1 (en) * 2001-11-21 2006-04-05 주식회사 포스코 APPARATUS FOR RECYCLING EXHAUST GAS AND REMOVING NOx
KR101277735B1 (en) * 2011-06-28 2013-06-24 현대제철 주식회사 Member for preventing scattering of catalyst, and apparatus for treating exhaust gas with the same
KR101277492B1 (en) * 2011-06-29 2013-06-21 현대제철 주식회사 Treating apparatus for waste gas in sintering machine and treating method thereof
KR101277540B1 (en) * 2011-06-29 2013-06-21 현대제철 주식회사 Treating apparatus for waste gas in sintering machine
KR101330545B1 (en) * 2011-07-28 2013-11-18 현대제철 주식회사 Treating apparatus for waste gas in sinter machine and treating method thereof
KR101291531B1 (en) * 2011-10-28 2013-08-08 현대제철 주식회사 Treating apparatus for waste gas in sintering machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08131777A (en) * 1994-11-02 1996-05-28 Sumitomo Heavy Ind Ltd Exhaust gas treatment method
JPH08224420A (en) * 1995-02-22 1996-09-03 Ebara Corp Treatment of waste gas from incinerator and device therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100788982B1 (en) * 2006-04-05 2007-12-27 주식회사 파나시아 Exhaust Gas of High Temperature Denitrifing System For A Co-Generation System and Denitrifing Method using the System
KR100919290B1 (en) * 2007-11-12 2009-10-01 한국에너지기술연구원 Circulation Water Temperature Control System for Low NOx Engine Cogeneration Plant
WO2010011008A1 (en) * 2008-07-25 2010-01-28 Kim Jongin Apparatus for removing air pollutants
KR101237084B1 (en) * 2010-11-29 2013-02-25 현대제철 주식회사 Treating apparatus for waste gas in sintering machine and treating method thereof
KR101298711B1 (en) * 2011-09-29 2013-08-21 현대제철 주식회사 Treating apparatus for waste gas in sinter machine

Also Published As

Publication number Publication date
KR100264738B1 (en) 2000-09-01

Similar Documents

Publication Publication Date Title
US6027697A (en) Method and apparatus for treating combustion exhaust gases
KR101207958B1 (en) Cement kiln firing waste gas treating apparatus and treating method
JP4615443B2 (en) Combustion exhaust gas treatment apparatus and treatment method
KR101298305B1 (en) Apparatus for removing of trace of toxic substance from exhaust gas and method of operating the same
US8883106B2 (en) Method and a device for removing nitrogen oxides and sulphur trioxide from a process gas
JP5051977B2 (en) Device for removing trace harmful substances in exhaust gas and operation method thereof
US20140170046A1 (en) Pollution control system for kiln exhaust
CN105080332B (en) Agglomerates of sintered pellets reclamation system and process
US7595033B2 (en) Regeneration of nt-scr catalysts
CN107551757A (en) A kind of flue gas desulfurization and denitration method and device
WO2012063466A1 (en) Exhaust gas treatment method and apparatus
CN104759192A (en) Low-cost coal-fired flue gas various pollutant ultralow emission system and low-cost coal-fired flue gas various pollutant ultralow emission method
KR100264738B1 (en) A method for removing air pollutant from flue gas continuously and an apparatus therefor
CN110152478A (en) A kind of flue gas wet denitration system and method based on the preposition oxidation of physical absorption
KR100607862B1 (en) Apparatus for purifying flue gas of smelting furnace for LCDs' substrate glass using low-temperature activated carbon catalyst and the method thereof
JPH119962A (en) Waste gas treatment method and apparatus therefor
CN113769551A (en) Low-temperature desulfurization and denitrification method and system for flue gas of biomass power plant
JP2977759B2 (en) Exhaust gas dry treatment method and apparatus
JP3383051B2 (en) Exhaust gas purification method and apparatus
CN110841447A (en) Wet-method-SCR combined purification method and system for waste incineration flue gas
JP4124584B2 (en) Removal method of dioxins in exhaust gas from waste treatment furnace
CN115957610A (en) Waste incineration flue gas treatment system and treatment method
JPH03293017A (en) Treatment of waste combustion gas
JPH04277006A (en) Dry exhaust gas treatment apparatus of waste refuse incinerator
CN220589535U (en) Waste incineration flue gas treatment system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080603

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee