JP2004079994A - Conductive paste and laminated electronic component - Google Patents

Conductive paste and laminated electronic component Download PDF

Info

Publication number
JP2004079994A
JP2004079994A JP2003143436A JP2003143436A JP2004079994A JP 2004079994 A JP2004079994 A JP 2004079994A JP 2003143436 A JP2003143436 A JP 2003143436A JP 2003143436 A JP2003143436 A JP 2003143436A JP 2004079994 A JP2004079994 A JP 2004079994A
Authority
JP
Japan
Prior art keywords
particles
conductive
diameter
resin particles
internal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003143436A
Other languages
Japanese (ja)
Other versions
JP4403488B2 (en
Inventor
Masaharu Konoue
河野上 正晴
Kimiharu Anafuto
穴太 公治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003143436A priority Critical patent/JP4403488B2/en
Publication of JP2004079994A publication Critical patent/JP2004079994A/en
Application granted granted Critical
Publication of JP4403488B2 publication Critical patent/JP4403488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive paste suitable for forming gaps between an internal electrode and component material members, and to provide a laminated electronic component having satisfactory electrical characteristics without bringing structural defects and having excellent reliability by furnishing satisfactory continuity in the internal electrode. <P>SOLUTION: The conductive paste is composed of conductive particles, resin particles, and an organic vehicle, wherein the ratio of D<SB>50</SB>of the resin particles to that of the conductive particles is 0.25 to 1.5; the volume ratio of the resin particles to the conductive particles is 0.5 to 1; the total content of the conductive particles and the resin particles is 30 to 60vol%; the conductive particles and the resin particles are almost spherical in shape, and their ratios of the major axis to minor axis are 0.7 to 1.0μm; the ratio of D<SB>50</SB>of the conductive particles and the resin particles are 1.0 to 4.0μm and 0.25 to 6.0μm, respectively, while their particle size distributions satisfy D<SB>10</SB>≥ D<SB>50</SB>/2 and D<SB>10</SB>≤ 2D<SB>90</SB>, respectively; and the resin particles are burnt away at a temperature lower than the sintering temperature of the conductive particles. As a result, gaps 5, 5' are formed between the internal electrode 3 and ceramic material members 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は導電性ペースト及び積層型電子部品に関し、より詳しくは内部電極と部品素体との間に空隙が形成された積層型電子部品において前記内部電極を形成するための導電性ペースト、及び該導電性ペーストを使用して内部電極が形成された積層型インダクタ等の積層型電子部品に関する。
【0002】
【従来の技術】
積層型のセラミック電子部品は、通常、薄層のセラミックシートの表面に内部電極用導電性ペーストをスクリーン印刷して電極パターンを形成し、斯かる電極パターンの形成されたセラミックシートを所定枚数積層・圧着して圧着ブロックを形成した後、該圧着ブロックに焼成処理を施し、その後外部電極を形成することにより製造される。
【0003】
そして、この種の積層型電子部品に使用される内部電極用導電性ペーストとしては、従来より、Pd等の金属粉末とカーボン粉末とを有機質ビヒクル中に分散させた技術が提案されている(特許文献1)。
【0004】
特許文献1では、カーボン粉末を金属粉末の酸化領域温度で完全に燃焼・除去して金属粉末の酸化膨張を抑制し、これにより内部電極と誘電体層間のデラミネーション(層間剥離)発生を防止し、また、内部電極の膨張を抑制してクラックの発生を回避している。
【0005】
また、この種の積層型電子部品では、内部電極を構成する導電性材料と部品素体を構成するセラミック材料の熱膨張係数が異なるため、収縮挙動が異なり、このため焼成時の冷却過程で部品素体と内部電極の間で引張応力が発生し、デラミネーション等の構造欠陥が発生する虞がある。
【0006】
そこで、このような収縮挙動の相違を解消する技術として、導電性ペーストが導電性粒子と有機ビヒクルとを含有し、さらに難溶解性又は非溶解性を有する炭水化物等の有機化合物粒子及びカーボン粒子の少なくとも1種からなる収縮制御剤を前記有機ビヒクルに含有させた技術が提案されている(特許文献2)。
【0007】
特許文献2では、粒子径が導電性粒子より大きい難溶解性又は非溶解性の有機化合物粒子やカーボン粒子を導電性ペーストに含有させ、有機化合物粒子やカーボン粒子を焼成過程で完全に焼失させて内部電極の連続性を確保すると共に、焼成時における内部電極の熱収縮挙動をセラミックの熱収縮挙動に近づけることによりデラミネーションの発生を防止している。
【0008】
また、他の公知技術としては、粒径範囲が0.1〜50μmの球状又は粒状からなるCu等の導電性金属粉末80〜93wt%と、粒径範囲が0.1〜50μmの結晶セルロース等の不溶性樹脂粉末2〜10wt%と、有機ビヒクル5〜18wt%とを含有した導電性ペーストも提案されている(特許文献3)。
【0009】
特許文献3では、導電性ペーストに不溶性樹脂粉末を配合することにより、ビアホールへの導電性ペーストの充填性を向上させると共に、焼成時には前記不溶性樹脂粉末が導電性ペースト中の導電性金属の収縮を遅らせ、これにより焼成後のビアホール内の導体金属に亀裂(クラック)が発生するのを抑制している。
【0010】
また、その他の公知技術としては、粒径範囲が0.1〜50μmの球状又は粒状からなるCu等の導電性金属粉末80〜94wt%と、溶剤に膨潤する粒径範囲が0.1〜40μmのウレタン樹脂等の樹脂粉末1〜10wt%と、有機ビヒクル5〜19wt%とを含有した導電性ペーストが提案されている(特許文献4)。
【0011】
特許文献4では、溶剤に膨潤する樹脂粉末を導電性ペーストに含有させることにより、前記特許文献3と同様、ビアホールへの導電性ペーストの充填性を向上させると共に、焼成後のビアホール内で導体金属に亀裂(クラック)が発生するのを抑制している。
【0012】
【特許文献1】
特開平5−342911号公報
【特許文献2】
特開平9−186044号公報
【特許文献3】
特開平10−172345号公報
【特許文献4】
特開平11−274717号公報
【0013】
【発明が解決しようとする課題】
ところで、積層型電子部品の部品素体がフェライト材料で形成されている場合、部品素体と内部電極の間で生じた引張応力によって上述したデラミネーションの他、インダクタンスやインピーダンス等の電気特性が低下したり、直流重畳後の電気特性が回復しない等の不具合が生じる。
【0014】
そして、このような不具合を解消するためには、内部電極の収縮量を大きくして内部電極とセラミックスとの間に空隙を形成するのが望ましく、斯かる空隙を形成するのに好適した導電性ペーストの出現が要請されている。
【0015】
しかしながら、上記特許文献1は、金属粉末の酸化領域温度(Pdの場合300〜800℃)でカーボン粉末を燃焼・除去しているが、カーボンの熱分解温度が高いため、内部電極の収縮量を大きくすることができず、このため前記特許文献1における導電性ペーストを使用しても内部電極とセラミックとの間に所望の空隙を形成することができないと考えられる。
【0016】
また、上記特許文献2は、内部電極の収縮挙動をセラミックの収縮挙動に近付けたものであり、内部電極の収縮量を大きくして内部電極とセラミックと間に空隙を形成するものではない。
【0017】
さらに、上記特許文献2では、有機化合物粒子やカーボン粒子を焼失させることにより、内部電極の連続性を向上させることができるが、有機化合物粒子やカーボン粒子の粒子径が導電性粉末の粒子径よりも大きいことを所望しており、このため導電性粒子同士が接触できない部分が発生して内部電極が島状に焼結する虞があり、その結果内部電極の連続性が低下し、微細な配線パターンを有する積層型電子部品では耐サージ特性の低下を招来する。
【0018】
しかも、上記特許文献2では、カーボン粉末のように熱分解温度の高い物質を導電性ペーストに含有させた場合、焼成後に大量の炭素成分が残留する虞がある。すなわち、内部電極と部品素体との間の引張応力を緩和させるには、内部電極の収縮量を大きくすると共に、脱脂・焼成処理で残留炭素を極力低減して緻密に焼結させる必要があるが、残留炭素は空孔の発生原因となることから、大量の炭素成分が残留し、緻密な電極を形成することができなくなる。
【0019】
また、上記特許文献3及び特許文献4は、導電性ペーストに不溶性樹脂粉末又は膨潤性樹脂粉末を含有させて導電性材料の収縮挙動をセラミックの収縮挙動に近付けたものであるが、樹脂粒子の添加量が少ないため、所望の空隙を形成するのは困難である。すなわち、上記特許文献3及び特許文献4では、樹脂粒子の添加量が導電性粒子に比べて少な過ぎ、このため成形密度を大幅に下げることができず、したがって高収縮を得ることができず所望の空隙を形成することができない。
【0020】
本発明はこのような事情に鑑みなされたものであって、内部電極と部品素体との間に空隙を形成するのに好適した導電性ペースト、及びクラック等の構造欠陥が生じることなく、良好な電気特性を有し、しかも内部電極の連続性も良好で信頼性に優れた積層型電子部品を提供することを目的とする。
【0021】
【課題を解決するための手段】
積層型電子部品の部品素体がフェライト材料で形成されている場合、部品素体と内部電極との間で発生する引張応力に起因した電気特性の低下を防止するには、〔発明が解決しようとする課題〕の項で述べたように、部品素体と内部電極との間に意図的に空隙を設けて引張応力を低減するのが好ましいと考えられ、そのためには比重の軽い樹脂粒子を導電性ペーストに含有させて成形密度を下げ、内部電極の収縮量を大きくする必要がある。
【0022】
しかしながら、単に樹脂粒子を導電性ペーストに含有させたのみでは、導電性粒子同士が島状に焼結して内部電極の連続性が低下する虞があり、耐サージ特性の低下を招来する。
【0023】
そこで、本発明者らが鋭意研究したところ、積算ふるい上分布で樹脂粒子の50%径D50を導電性粒子の50%径D50に対し0.25〜1.5の範囲とすることにより、導電性粒子が島状に焼結することもなく、収縮量を大きくすることができ、内部電極の連続性を確保すると共に、電気特性の低下を招来することのない所望の空隙を形成することができるという知見を得た。
【0024】
本発明はこのような知見に基づきなされたものであって、本発明に係る導電性ペーストは、内部電極と部品素体との間に空隙が形成された積層型電子部品において前記内部電極を形成するための導電性ペーストであって、少なくとも導電性粒子と樹脂粒子とを含み、積算ふるい上分布で前記樹脂粒子の50%径D50が、前記導電性粒子の50%径D50に対し0.25〜1.5であることを特徴としている。
【0025】
上記導電性ペーストによれば、所望の空隙を形成することが可能であるので、内部電極と部品素体との間の引張応力の発生が抑制され、良好な電気特性を有し、且つ耐サージ特性に優れた積層型電子部品を製造することが可能となる。
【0026】
また、本発明者らの研究により、所望の高収縮を得ることができ、且つ内部電極の連続性を確保するためには、樹脂粒子と導電性粒子とが、体積比率で0.5:1〜1:1である必要があり、またペースト状の導電性材料を得るためには樹脂粒子及び前記導電性粒子の含有量総計が、体積%で30%〜60%とする必要のあることが判明した。
【0027】
そこで、本発明の導電性ペーストは、前記樹脂粒子の含有量は、前記導電性粒子の含有量に対し体積比率で0.5〜1であり、前記樹脂粒子及び前記導電性粒子の含有量総計は、体積%で30%〜60%であることを特徴としている。
【0028】
また、導電性粒子及び前記樹脂粒子が薄片状或いは歪な形状になると圧着したときに成形密度が増加して高収縮を得ることができず、所望の空隙を形成することができなくなる。
【0029】
そこで、本発明者らが鋭意研究した結果、導電性粒子及び前記樹脂粒子の粒子形状は略球形状が好ましく、その場合長軸に対する短軸の比率が共に0.7〜1.0が好ましいことが判明した。
【0030】
すなわち、本発明の導電性ペーストは、前記導電性粒子及び前記樹脂粒子の粒子形状は略球形状であって、長軸に対する短軸の比率が共に0.7〜1.0であることを特徴としている。
【0031】
また、導電性粒子の粒径が過度に小さくなると導電性粒子同士が凝集して分散性に欠け、また導電性粒子は焼成時に拡散し易くなる。一方、導電性粒子の粒径が過度に大きすぎると導電性粒子が部分的に偏在し易くなり、分布にバラツキが生じて所望の高収縮を得ることができず、しかも導電性粒子が島状に焼結し易くなって内部電極の連続性低下を招来する。さらに粒度分布が狭い範囲で揃っている方が成形密度の低下を促進して収縮量を大きくすることができる。
【0032】
そこで、本発明の導電性ペーストは、前記導電性粒子の50%径D50が1.0〜4.0μmであり、前記樹脂粒子の50%径D50が0.25〜6.0μmであり、且つ、積算ふるい上分布で前記導電性粒子及び前記樹脂粒子の10%径D10が、前記50%径D50に対し共に0.5以上であり、前記導電性粒子及び前記樹脂粒子の90%径D90が、前記50%径D50に対し共に2.0以下であることを特徴としている。
【0033】
上記導電性ペーストによれば、導電性粒子及び樹脂粒子の粒径及び粒度分布を規定しているので、内部電極の連続性低下を防止することができると共に、高収縮を確保することができる。
【0034】
また、空隙を形成するためには、樹脂粒子を導電性粒子の焼結温度よりも低温で焼失を開始させ、或いは完全に消失させ、導電性粒子の焼結を部品素体の焼結よりも早期に完了させる必要がある。
【0035】
そこで、本発明の導電性ペーストは、前記樹脂粒子は、前記導電性粒子の焼結温度以下の低温で少なくとも焼失を開始することを特徴としている。
【0036】
また、本発明に係る積層型電子部品は、上述した導電性ペーストを使用して内部電極が形成され、該内部電極と部品素体との間に空隙が形成されていることを特徴としている。
【0037】
上記積層型電子部品によれば、内部電極と部品素体との間に空隙が形成されているので、部品素体と内部電極との間に引張応力が発生するのを回避することができ、電気特性が低下したり、デラミネーション等の構造欠陥が発生することもない。
【0038】
また、本発明の積層型電子部品は、前記内部電極は、一の導電性粒子が少なくとも1つ以上の他の導電性粒子と接した状態であることを特徴としている。
【0039】
上記積層型電子部品によれば、導電性粒子が島状に焼結するのを回避することができ、内部電極の連続性低下を阻止して良好な耐サージ特性を確保することができる。
【0040】
【発明の実施の形態】
次に、本発明の実施の形態を図面を参照しながら詳説する。
【0041】
本発明の一実施の形態としての導電性ペーストは、導電性粒子と樹脂粒子と有機ビヒクルとから構成され、下記(1)〜(7)を充足するように作製されている。すなわち、本導電性ペーストは、
(1)積算ふるい上分布で樹脂粒子の50%径D50が、導電性粒子の50%径D50に対し0.25〜1.5
(2)樹脂粒子の含有量が、導電性粒子の含有量に対し体積比率で0.5〜1
(3)樹脂粒子及び導電性粒子の含有量総計が、体積%で30〜60vol%
(4)導電性粒子及び樹脂粒子の粒子形状が略球形状であって、長軸に対する短軸の比率が共に0.7〜1.0
(5)導電性粒子の50%径D50が1.0〜4.0μm、樹脂粒子の50%径D50が0.25〜6.0μm
(6)導電性粒子及び樹脂粒子の粒度分布が、共にD10≧D50/2、D90≦2D50
(7)樹脂粒子は導電性粒子の焼結温度以下の低温で少なくとも焼失を開始すること
の要件を満たしている。
【0042】
そして、これにより、本導電性ペーストを積層型セラミック電子部品の内部電極用ペーストに使用することにより、内部電極とセラミックス素体との間には焼成後に空隙が形成されて内部電極とセラミックス素体との間の引張応力の発生が抑制され、これによりクラック等の構造欠陥が生じることなく、良好な電気特性を有し、しかも内部電極の連続性も良好で信頼性の優れた積層型電子部品を得ることができる。
【0043】
以下、上記(1)〜(7)について詳述する。
【0044】
(1)樹脂粒子の粒径
比重の軽い樹脂粒子を導電性粒子と混合させることにより成形密度が下がるため、内部電極の収縮量を大きくすることができ、これにより内部電極とセラミック素体との間に空隙を形成することができるが、樹脂粒子の50%径D50が導電性粒子の50%径D50に対し0.25未満になると、樹脂粒子の粒径が導電性粒子の粒径に対して相対的に小さくなりすぎ、このため樹脂粒子が導電性粒子の隙間に入り込んで成形密度を下げることができず、所望の高収縮を得ることができない。
【0045】
一方、樹脂粒子の50%径D50が導電性粒子の50%径D50に対し1.5を超えると、樹脂粒子が相対的に大きくなりすぎ、このため導電性粒子同士が接触できなくなって該導電性粒子が島状に焼結してしまい、内部電極の連続性が低下する。
【0046】
そこで、本実施の形態では、樹脂粒子の50%径D50を、導電性粒子の50%径D50に対し0.25〜1.5、好ましくは0.6〜1.0となるようにした。
【0047】
(2)樹脂粒子の含有量
樹脂粒子の含有量が、導電性粒子に対し体積比率で0.5未満になると、導電性ペースト中に含有される樹脂粒子も過度に少なくなり、上記(1)と同様、成形密度を下げることができず、所望の高収縮を得ることができない。
【0048】
一方、樹脂粒子の含有量が、導電性粒子に対し体積比率で1.0を超えると樹脂粒子が多くなり過ぎ、このため導電性粒子同士が接触できなくなって導電性粒子が島状に焼結してしまい、内部電極の連続性が低下する。
【0049】
そこで、本実施の形態では、樹脂粒子の含有量を導電性粒子の含有量に対し体積比率で0.5〜1、好ましくは0.65〜0.85となるようにした。
【0050】
(3)樹脂粒子及び導電性粒子の含有量総計
導電性ペーストは、上述したように導電性粒子と樹脂粒子と有機ビヒクルとから構成されるが、固形分である樹脂粒子及び導電性粒子の含有量総計が60vol%を超えると有機ビヒクルの含有量が少なくなりすぎてペースト状とすることができない。
【0051】
一方、樹脂粒子及び導電性粒子の含有量総計が30vol%未満になると有機ビヒクルの含有量が多くなりすぎ、ペーストを作製することができても、塗布したときに電極パターンを所定膜厚とすることができない。
【0052】
そこで、本実施の形態では樹脂粒子及び導電性粒子の含有量総計を30〜60vol%、好ましくは40〜53vol%となるようにした。
【0053】
(4)導電性粒子及び樹脂粒子の粒子形状
成形密度を下げて収縮量を大きくする観点からは、導電性粒子と樹脂粒子の粒子形状は共に球形状であって、長軸に対する短軸の比率(以下、この比率を「真球度」という)は1.0であるのが望ましいが、導電性粒子と樹脂粒子の真球度を全て1.0とするのは現状では生産技術的に困難である。
【0054】
しかしながら、導電性粒子及び樹脂粒子の真球度が0.7未満の歪な形状になると真球度の低い導電性粒子及び樹脂粒子が略球形状の各粒子間の隙間を埋める形で入り込み、その結果成形密度が増加し、所望の高収縮を得ることができなくなる。しかも、内部電極は、通常、導電性ペーストをスクリーン印刷して形成されるが、斯かる印刷処理で真球度の低い導電性粒子及び樹脂粒子がスクリーンに引っ掛かり、生産性の低下を招来する。
【0055】
そこで、本実施の形態では、導電性粒子及び樹脂粒子の粒子形状は略球形状であって、真球度が0.7〜1.0、好ましくは0.9〜1.0となるようにした。
【0056】
(5)導電性粒子の粒径
内部電極の連続性を考慮すると、導電性粒子は内部電極中に均一に分散させるのが好ましいが、導電性粒子の50%径D50が1.0μm未満になると導電性粒子が微細になりすぎて凝集し、均一に分散し難くなり、また焼成処理で導電性粒子が拡散し易くなる。一方、導電性粒子の50%径D50が4.0μmを超えると内部電極の厚み方向に導電性粒子のみ又は樹脂粒子のみが配されたり、或いは導電性粒子或いは樹脂粒子の一方が極端に少ない部分が生じ、均一な分散が損なわれ、このため所望の高収縮が得られなかったり、内部電極の連続性が低下する。
【0057】
そこで、導電性粒子の50%径D50を1.0〜4.0μm、好ましくは1.0〜2.0μmとし、上記(1)との関係から樹脂粒子の50%径D50を0.25〜6.0μm、好ましくは0.25〜3.0μmとした。
【0058】
(6)導電性粒子及び樹脂粒子の粒度分布
粒度分布が広い場合は、大きな粒子間に小さな粒子が容易に入り込み、成形密度が増加して高収縮を得ることができなくなる。すなわち、導電性粒子及び樹脂粒子の粒度分布は狭い範囲で揃っているのが好ましく、斯かる観点から本実施の形態では、導電性粒子及び樹脂粒子の粒度分布が、D10≧D50/2、D90≦2D50となるようにした。
【0059】
(7)樹脂粒子の焼失温度
上述したように本実施の形態では上記導電性ペーストを使用することにより、内部電極とセラミック素体との間に空隙を形成せんとしているが、斯かる空隙を形成するためには、導電性粒子が焼結する以前に樹脂粒子の焼失を開始させ、或いは完全に消失させ、導電性ペーストの焼結がセラミック素体の焼結よりも早く完了させる必要がある。すなわち、例えば、導電性粒子としてAg粒子を使用した場合は、Agの焼結温度は300〜500℃であるので、樹脂粒子はAgの焼結温度である300〜500℃以下の低温で少なくとも焼失を開始させる必要があり、樹脂粒子としては、斯かる導電性粒子の焼結を阻害しない熱分解性の良好なものを使用する必要がある。
【0060】
そして、このような熱分解性に優れた樹脂として、例えばアクリル樹脂、メタクリル樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリオレフィン樹脂、ポリイソブチレン樹脂、ポリエチレングリコール樹脂等を使用することができる。
【0061】
尚、圧縮強さが70MPa以上の樹脂を用いた場合は、セラミックグリーンシートを圧着する工程で樹脂粒子の潰れを抑制することができ、より高い電気特性を得ることができるため、特に好ましい。圧縮強さが70MPa以上の樹脂としては、例えば、ポリメタクリル酸メチル(PMMA)樹脂や、ポリスチレン樹脂等を使用することができる。これら樹脂のASTM試験法D695による圧縮強さは、例えばPMMA樹脂が73〜125MPa、ポリスチレン樹脂が82〜89MPaである。
【0062】
また、導電性ペーストに含有される有機ビヒクルは有機バインダと溶剤とからなり、有機バインダとしては、例えばエチルセルロース樹脂、アクリル樹脂、ブチラール樹脂を使用することができ、溶剤としては、例えばα−テルピネオール、テトラリン、ブチルカルビトールを使用することができる。また、有機バインダと溶剤は、配合比率が、例えば1:9となるように調製される。
【0063】
また、導電性粒子としては、導電性を有していれば特に限定されるものではなく、Ag、Pd、Pt、Au、Ni、Cuや、これらの2種又は2種以上の合金を使用することができる。
【0064】
次に、上記導電性ペーストを使用して製造された積層型電子部品について詳説する。
【0065】
図1は本発明に係る積層型電子部品としての積層型インダクタの一実施の形態を示す斜視図であり、図2は積層型インダクタの断面図である。
【0066】
図1及び図2において、本積層型インダクタは、Ni−Zn−Cuフェライト系材料からなるセラミック素体1と、該セラミック素体1の両端部に形成された外部電極2a、2bと、セラミック素体1の内部にコイル状に埋設された内部電極3(3a〜3g)とから構成されている。
【0067】
内部電極3aは、具体的には図3に示すように、セラミック素体1に対し部分的に接触しており、セラミック素体1と内部電極3aとの間で空隙5a、5a′を有するように間隙4a内に埋設されている。
【0068】
尚、本実施の形態では内部電極3aの一部拡大図で説明したが、他の内部電極3b〜3gについても同様であり、これら内部電極3b〜3gはセラミック素体1との間で空隙5b〜5g、5b′〜5g′を有するように間隙4b〜4g内に埋設されている。
【0069】
そして、上記積層型インダクタでは、内部電極3aの引き出し部5が一方の外部電極2bと電気的に接続されると共に、内部電極3gの引き出し部6は他方の外部電極2aと電気的に接続されている。そして、各内部電極3a〜3gは、セラミック素体1の図中、上下方向に形成されたビアホール(不図示)を介して電気的に直列接続され、時計回り方向に巻回されたコイルパターンを形成している。
【0070】
以下、本積層型インダクタの製造方法を説明する。
【0071】
まず、NiO、CuO、ZnO、Fe等のフェライト系材料を所定量秤量した後、これら秤量物をボールミルに投入して湿式で混合粉砕し、次いで乾燥・仮焼を行う。
【0072】
そして、この仮焼物を再びボールミルで十分に湿式粉砕し、乾燥して仮焼粉末を作製し、この後、該仮焼粉末をバインダ、可塑剤、分散剤と混合させ、溶剤中に分散させてセラミックスラリーを作製し、該セラミックスラリーをドクターブレード法等によりシート状に成形してセラミックグリーンシートを作製する。
【0073】
次に、導電性ペーストを以下の手順で作製する。
【0074】
すなわち、有機バインダと溶剤の配合比率が、例えば1:9となるように調製して有機ビヒクルを作製し、次いで、該有機ビヒクルに所定の導電性粒子及び樹脂粒子を混ぜて3本ロールミルで混練し、導電性ペーストを作製する。
【0075】
そしてこの後、セラミックシート上の所定位置にビアホールを貫設した後、該セラミックグリーンシートの表面に上記導電性ペーストをスクリーン印刷し、所定コイルパターンを形成する。
【0076】
次いで、コイルパターンの形成されたセラミックグリーンシートがビアホールを介して電気的に直列接続可能となるように該セラミックグリーンシートを複数枚積層して積層体を形成すると共に、コイルパターンの形成されていないセラミックグリーンシートで前記積層体を挟持して圧着し、圧着ブロックを作製する。
【0077】
尚、本実施の形態では、圧着後の内部電極中で、一の導電性粒子は必ず少なくとも1つ以上の他の導電性粒子と接触するようにし、これにより導電性粒子が島状に焼結して内部電極の連続性が低下するのを防止している。
【0078】
そしてこの後、圧着ブロックを所定サイズに切断した後、脱バインダ処理を行い、その後焼成処理を行なってセラミック焼結体を作製する。
【0079】
次いで、該セラミック焼結体にバレル研磨を施した後、該セラミック焼結体の両端部に導電性ペーストを塗布、焼き付けて外部導電部を形成する。
【0080】
そしてこの後、電解めっきを施して外部導電部の表面にニッケル皮膜及びスズ皮膜を順次作製して外部電極を形成し、これにより積層型インダクタが製造される。
【0081】
このように本実施の形態では、上記導電性ペーストを使用して積層型インダクタを製造しているので、内部電極3が高収縮となって該内部電極3とセラミック素体1との間に所望の空隙4が形成され、これによって両者間に引張応力が発生するのを回避することができ、インダクタンスやインピーダンス等の電気特性が良好でクラック等の構造欠陥が生じることのない積層型インダクタを製造することが可能となる。
【0082】
また、導電性粒子が均一に分散し、さらには樹脂粒子は導電性粒子の焼結温度よりも低温で熱分解が進行するようにしているので、残留炭素も少なく内部電極の連続性低下を招くことなく、サージ耐性に優れた積層型インダクタを得ることができる。
【0083】
尚、本発明は上記実施の形態に限定されるものではない。上記実施の形態ではセラミック材料としてフェライト系材料を使用したが、ガラス粉末材料やその他のセラミック材料に適用できるのはいうまでもない。
【0084】
また、上記実施の形態では、セラミックグリーンシートを複数枚積層するシート工法を使用したが、例えば印刷工法等、その他の工法を使用できるのはいうまでもない。
【0085】
【実施例】
次に、本発明の実施例を具体的に説明する。
【0086】
(実施例1)
本発明者らは、まず、NiO、CuO、ZnO、Fe等のフェライト系材料を所定量秤量した後、粉砕媒体として直径1mmのPSZ(部分安定化ジルコニア)が内有されたボールミルに前記秤量物を投入し、湿式で混合粉砕してスラリー状粉末とし、該スラリー状粉末をPSZと分離した後、スプレードライヤで乾燥し、温度650℃で2時間仮焼し、仮焼物を作製した。
【0087】
次に、該仮焼物を前記ボールミルに再投入して十分に湿式で粉砕し、スプレードライヤで乾燥して仮焼粉末を作製した。
【0088】
次に、この仮焼粉末にバインダとしてポリビニルブチラール、可塑剤としてジブチルフタレート、分散剤としてポリカルボン酸アンモニウム塩、溶剤としてトルエン及びエチルアルコールを加えて混合し、セラミックスラリーを作製し、次いで、該セラミックスラリーをドクターブレード法によりシート状に成形し、厚さ50μmの磁性体シート(セラミックグリーンシート)を作製した。
【0089】
一方、本発明者らは以下のようにして導電性ペーストを作製した。
【0090】
すなわち、まず、10%径D10が1.03μm、50%径D50が1.52μm、90%径D90が2.30μm、真球度が0.9のAg粒子と、10%径D10が0.73μm、50%径D50が1.04μm、90%径D90が1.55μm、真球度が0.9のアクリル樹脂粒子を用意した。
【0091】
尚、Ag粒子及びアクリル樹脂粒子の粒度は、レーザー回折散乱型粒度分布測定装置であるマイクロトラックHRA粒度分布計(リーズ&ノーステップ社製9320−X100)で測定し、また、真球度は走査型電子顕微鏡(SEM)(JEOL社製JSM−5310)で測定した。
【0092】
次に、溶剤としてα−テルピネオール、有機バインダとしてエチルセルロース樹脂を夫々使用し、エチルセルロース樹脂とα−テルピネオールとの比が10vol%:90vol%となるようにエチルセルロース樹脂をα−テルピネオールに溶解させて有機ビヒクルを作製し、Ag粒子の含有量が23vol%、アクリル樹脂粒子の含有量が17vol%となるようにAg粒子及びアクリル樹脂粒子を有機ビヒクルと共に3本ロールミルで十分に混練し、導電性ペーストを作製した。
【0093】
次に、本発明者らは、内部電極同士が電気的に直列接続可能となるようにレーザ加工機を使用してビアホールを形成し、前記導電性ペーストを使用して電極パターンをスクリーン印刷し、コイルパターンを形成した。
【0094】
そしてこの後、コイルパターンの形成された磁性体シートを複数枚積層して積層体を形成すると共に、コイルパターンの形成されていない磁性体シートで前記積層体を挟持し、9.8×10Pa(1000kgf/cm)で圧着し、圧着ブロックを作製した。
【0095】
次に、前記圧着ブロックを縦1.92mm、横0.96mm、厚み0.96mmに切断した後、温度500℃以下で脱バインダ処理を行い、温度870℃で焼成処理を行ってセラミック焼結体を作製した。
【0096】
さらに、本発明者らは、Ag粉末にガラスフリット及び有機ビヒクルを加えて分散させた外部電極用Agペーストを別途作製すると共に、前記セラミック焼結体をバレル研磨し、該セラミック焼結体の両端部に外部電極用Agペーストを塗布、700℃で焼き付け、外部導電部を形成した。
【0097】
そしてこの後、周知の電解めっき処理を施して外部導電部の表面にニッケル皮膜及びスズ皮膜を順次作製して外部電極を形成し、実施例1の積層型インダクタを製造した。
【0098】
(実施例2)
10%径D10が1.44μm、50%径D50が2.25μm、90%径D90が3,39μm、真球度が0.9のアクリル樹脂粒子を使用して導電性ペーストを作製した以外は、実施例1と同様の方法・手順により、実施例2の積層型インダクタを作製した。
【0099】
(実施例3)
Ag粒子とアクリル樹脂粒子の導電性ペースト中の含有量が、共に20vol%となるように配合して導電性ペーストを作製した以外は、実施例1と同様の方法・手順により、実施例3の積層型インダクタを作製した。
【0100】
(実施例4)
Ag粒子とアクリル樹脂粒子の導電性ペースト中の含有量が、夫々26.7vol%、13.3vol%となるように配合して導電性ペーストを作製した以外は、実施例1と同様の方法・手順により、実施例4の積層型インダクタを作製した。
【0101】
(実施例5)
10%径D10が1.01μm、50%径D50が1.49μm、90%径D90が2.29μm、真球度が0.7のAg粒子と、10%径D10が0.72μm、50%径D50が1.02μm、90%径D90が1.51μm、真球度が0.7のアクリル樹脂粒子を使用して導電性ペーストを作製した以外は、実施例1と同様の方法・手順により、実施例5の積層型インダクタを作製した。
【0102】
(実施例6)
10%径D10が0.76μm、50%径D50が1.51μm、90%径D90が2.97μm、真球度が0.9のAg粒子と、10%径D10が0.51μm、50%径D50が0.98μm、90%径D90が1.93μm、真球度が0.9のアクリル樹脂粒子を使用して導電性ペーストを作製した以外は、実施例1と同様の方法・手順により、実施例6の積層型インダクタを作製した。
【0103】
(実施例7)
10%径D10が0.70μm、50%径D50が1.03μm、90%径D90が1.50μm、真球度が0.9のAg粒子と、10%径D10が0.44μm、50%径D50が0.74μm、90%径D90が0.97μm、真球度が0.9のアクリル樹脂粒子を使用して導電性ペーストを作製した以外は、実施例1と同様の方法・手順により、実施例7の積層型インダクタを作製した。
【0104】
(実施例8)
10%径D10が0.10μm、50%径D50が0.27μm、90%径D90が0.52μm、真球度が0.9のアクリル樹脂粒子を使用した以外は実施例7と同様にして導電性ペーストを作製し、その他は実施例1と同様の方法・手順により、実施例8の積層型インダクタを作製した。
【0105】
(実施例9)
10%径D10が3.08μm、50%径D50が3.96μm、90%径D90が6.11μm、真球度が0.9のAg粒子と、10%径D10が2.39μm、50%径D50が3.22μm、90%径D90が4.95μm、真球度が0.9のアクリル樹脂粒子を使用して導電性ペーストを作製した以外は、実施例1と同様の方法・手順により、実施例9の積層型インダクタを作製した。
【0106】
(実施例10)
10%径D10が4.35μm、50%径D50が5.90μm、90%径D90が9.12μm、真球度が0.9のアクリル樹脂粒子を使用した以外は実施例9と同様にして導電性ペーストを作製し、その他は実施例1と同様の方法・手順により、実施例10の積層型インダクタを作製した。
【0107】
(比較例1)
10%径D10が0.16μm、50%径D50が0.31μm、90%径D90が0.56μm、真球度が0.9のアクリル樹脂粒子を使用して導電性ペーストを作製した以外は実施例1と同様の方法・手順により、比較例1の積層型インダクタを作製した。
【0108】
(比較例2)
10%径D10が1.73μm、50%径D50が2.58μm、90%径D90が3.86μm、真球度が0.9のアクリル樹脂粒子を使用して導電性ペーストを作製した以外は、実施例1と同様の方法・手順により、比較例2の積層型インダクタを作製した。
【0109】
(比較例3)
Ag粒子とアクリル樹脂粒子の導電性ペースト中の含有量が、夫々17.8vol%、22.2vol%となるように配合して導電性ペーストを作製した以外は実施例3と同様の方法・手順により、比較例3の積層型インダクタを作製した。
【0110】
(比較例4)
Ag粒子とアクリル樹脂粒子の導電性ペースト中の含有量が、夫々32vol%、8vol%となるように配合して導電性ペーストを作製した以外は、実施例3と同様の方法・手順により、比較例4の積層型インダクタを作製した。
【0111】
(比較例5)
10%径D10が1.05μm、50%径D50が1.52μm、90%径D90が2.33μm、真球度が0.4のAg粒子を使用した以外は実施例5と同様にして導電性ペーストを作製し、その他は実施例1と同様の方法・手順により、比較例5の積層型インダクタを作製した。
【0112】
(比較例6)
10%径D10が0.51μm、50%径D50が1.55μm、90%径D90が3.99μm、真球度が0.9のAg粒子を使用した以外は実施例6と同様にして導電性ペーストを作製し、その他は実施例1と同様の方法・手順により、比較例6の積層型インダクタを作製した。
【0113】
(比較例7)
10%径D10が0.30μm、50%径D50が0.57μm、90%径D90が1.06μm、真球度が0.9のAg粒子と、10%径D10が0.22μm、50%径D50が0.41μm、90%径D90が0.83μm、真球度が0.9のアクリル樹脂粒子を使用して導電性ペーストを作製した以外は、実施例1と同様の方法・手順により、比較例7の積層型インダクタを作製した。
【0114】
(比較例8)
10%径D10が0.70μm、50%径D50が1.03μm、90%径D90が1.50μm、真球度が0.9のAg粒子と、10%径D10が0.09μm、50%径D50が0.21μm、90%径D90が0.43μm、真球度が0.9のアクリル樹脂粒子を使用して導電性ペーストを作製した以外は、実施例1と同様の方法・手順により、比較例8の積層型インダクタを作製した。
【0115】
(比較例9)
10%径D10が3.83μm、50%径D50が4.90μm、90%径D90が7.06μm、真球度が0.9のAg粒子と、10%径D10が2.78μm、50%径D50が3.89μm、90%径D90が5.81μm、真球度が0.9のアクリル樹脂粒子を使用して導電性ペーストを作製した以外は、実施例1と同様の方法・手順により、比較例9の積層型インダクタを作製した。
【0116】
(比較例10)
10%径D10が4.76μm、50%径D50が6.78μm、90%径D90が9.77μm、真球度が0.9のアクリル樹脂粒子を使用して導電性ペーストを作製した以外は、実施例1と同様の方法・手順により、比較例10の積層型インダクタを作製した。
【0117】
次に、本発明者らは、各試験片(実施例及び比較例)について、1MHzにおけるインダクタンスを及び100MHzにおけるインピーダンスをRFインピーダンスアナライザ(ヒューレット・パッカード社製HP4291A)で測定した。
【0118】
また、100個の各試験片について、鏡面研磨した断面を実体顕微鏡で観察し、クラックの発生有無を観察し、構造欠陥の発生率を算出した。
【0119】
さらに、100個の各試験片について、30kVのサージ電流を通電し、断線率を算出した。
【0120】
表1は導電性ペーストに含有されるAg粒子及びアクリル樹脂粒子の仕様を示し、表2は各種測定結果を示している。
【0121】
【表1】

Figure 2004079994
【0122】
【表2】
Figure 2004079994
尚、表中、*は本発明範囲外を示している
この表1及び表2から明らかなように比較例1は、Ag粒子の50%径D50に対するアクリル樹脂粒子の50%径D50の比、すなわちD50比が0.20と小さすぎるため、アクリル樹脂粒子がAg粒子の隙間に入り込み、成形密度が大きくなり内部電極の収縮量が小さくなる。このため、内部電極とセラミック素体との間に所望の空隙を形成することができず、焼成の冷却過程で熱膨張係数の相違による引張応力が生じ、インダクタンスやインピーダンスが極端に低くなり、また、構造欠陥発生率が24%と悪化することが分かった。
【0123】
比較例2はD50比が1.70と大きすぎるため、Ag粒子同士が接触できない場合が生じ、Ag粒子が島状に焼結して内部電極の連続性が低下し、耐サージ試験での断線率が17%と悪化することが分かった。
【0124】
比較例3は体積比率が1.25であり、アクリル樹脂粒子の含有量が多すぎるため、Ag粒子同士が接触できなくなり、比較例2と同様、Ag粒子が島状に焼結して内部電極の連続性が低下し、その結果耐サージ試験での断線率が14%と悪化することが分かった。
【0125】
比較例4は体積比率が0.25であり、樹脂粒子のペースト中での含有量が少なすぎるため、圧着した時の内部電極の成形密度が大きくなって高収縮を得ることができず、インダクタンスやインピーダンスが低く、また構造欠陥発生率が21%と悪化することが分かった。
【0126】
比較例5はAg粒子の真球度が0.4と低いため、圧着した時の電極の成形密度が大きくなって高収縮を得ることができず、このためインダクタンスやインピーダンスが低く、電気特性が低下し、また構造欠陥の発生率が5%であった。
【0127】
比較例6はAg粒子のD10/D50が0.33であり、またD90/D50が2.57であり、粒度分布が広いため、粒径の小さいAg粒子が粒径の大きなAg粒子の間に入り込んで圧着した時の内部電極の成形密度が大きくなり、このため高収縮を得ることができず、その結果インダクタンスやインピーダンスが低く、電気特性が低下し、また構造欠陥の発生率が4%であった。
【0128】
比較例7はAg粒子の50%径D50が0.57μmと小さすぎるため、Ag粒子とアクリル樹脂粒子の分散性が悪くなって内部電極の連続性が低下し、また、焼成時にAg粒子が拡散し易くなり、耐サージ試験で断線率が15%と悪化することが分かった。
【0129】
比較例8はアクリル樹脂粒子の50%径D50が小さく、またその粒度分布も広いため、アクリル樹脂粒子がAg粒子の間に入り込み、内部電極の収縮が小さくなった。このため内部電極とセラミック素体との間に所望の空隙を形成することができず、焼成の冷却過程で腺膨張係数の相違による引張応力が生じ、インダクタンスやインピーダンスが極端に低くなり、また、構造欠陥の発生率が4%であった。
【0130】
比較例9はAg粒子の50%径D50が4.90μmと大きいため、内部電極の厚み方向のAg粒子やアクリル樹脂粒子の充填割合にバラツキが生じ、例えば内部電極の位置によって厚み方向にAg粒子が多すぎたり、或いは樹脂粒子が多すぎたりし、部分的に収縮が小さくなって内部電極の連続性が低下していると推認される。そしてこのためインダクタンスやインピーダンス等の電気特性が低下し、また、構造欠陥の発生率が7%、耐サージ試験での断線率が8%と悪化することが分かった。
【0131】
比較例10はアクリル樹脂粒子の50%径D50が6.78μmと大きく、またD50比が1.71となって相対的にもAg粒子に比べてアクリル樹脂粒子の粒径が大きく、このためAg粒子同士が接触できなくなって島状に焼結し、その結果内部電極の連続性が低下し、耐サージ試験での断線率が20%と悪化することが分かった。
【0132】
これに対し実施例1〜10は、Ag粒子の50%径D50が1.0〜4.0μm、アクリル樹脂粒子の50%径D50が0.25〜6.0μmであり、両者の粒度分布は共にD10≧D50/2、D90≦2D50を充足し、両者のD50比は0.25〜1.5、体積比率は0.5〜1、真球度は共に0.7〜1.0であるので、圧着した時の内部電極の成形密度を下げることができて焼成時に内部電極を所望の高収縮にすることができ、これにより内部電極とセラミック素体との間に空隙を形成することができ、内部電極の連続性も良好であり、さらには良好な電気特性を得ることができると共に、構造欠陥の発生を抑制することのできることが確認された。
【0133】
【発明の効果】
以上詳述したように本発明に係る導電性ペーストは、内部電極と部品素体との間に空隙を有する積層型電子部品において前記内部電極を形成するための導電性ペーストであって、少なくとも導電性粒子と樹脂粒子とを含み、積算ふるい上分布で前記樹脂粒子の50%径D50が、前記導電性粒子の50%径D50に対し0.25〜1.5であるので、導電性粒子同士が接した状態で圧着時の成形密度を下げることができ、内部電極の連続性を損なうこともなく内部電極と部品素体との間に所望の空隙を形成することができ、これにより内部電極と部品素体との間で引張応力が発生するのを抑制してインピーダンスやインダクタンス等の電気特性に優れ、且つクラック等の構造欠陥の生じることのない積層型電子部品を製造することが可能となる。
【0134】
また、前記樹脂粒子の含有量は、前記導電性粒子の含有量に対し体積比率で0.5〜1であり、前記樹脂粒子及び前記導電性粒子の含有量総計は、体積%で30%〜60%であるので、樹脂粒子が導電性ペースト中に所望量含まれることとなり、焼成により所望の高収縮を得ることができ、また所望膜厚の電極パターンを形成することが可能となる。
【0135】
また、前記導電性粒子及び前記樹脂粒子の粒子形状は略球形状であって、長軸に対する短軸の比率が共に0.7〜1.0であるので、歪な形状の粒子が導電性粒子や樹脂粒子の間に入り込むことはなく、成形密度が増加することもなく高収縮を確保することができる。
【0136】
また、前記導電性粒子の50%径D50が1.0〜4.0μmであり、前記樹脂粒子の50%径D50が0.25〜6.0μmであり、且つ、積算ふるい上分布で前記導電性粒子及び前記樹脂粒子の10%径D10が、前記50%径D50に対し共に0.5以上であり、前記導電性粒子及び前記樹脂粒子の90%径D が、前記50%径D50に対し共に2.0以下であるので、粒子の分散性も良好であり、粒度分布が狭い範囲で揃っており、成形密度の低下を促進して高収縮を得ることができる。
【0137】
また、前記樹脂粒子は、前記導電性粒子の焼結温度以下の低温で少なくとも焼失を開始するので、内部電極の焼結を部品素体が焼結する以前に完了することが可能となり、内部電極と部品素体との収縮挙動を意図的に異ならせて所望の空隙を形成することができる。
【0138】
また、本発明に係る積層型電子部品は、上記導電性ペーストを使用して内部電極が形成され、該内部電極と部品素体との間に空隙が形成されているので、内部電極と部品素体との間で引張応力が発生するのを抑制することができ、インピーダンスやインダクタンス等の電気特性に優れ、且つクラック等の構造欠陥の生じることのない積層型電子部品を得ることができる。
【0139】
また、本発明の積層型電子部品は、前記内部電極は、一の導電性粒子が少なくとも1つ以上の他の導電性粒子と接した状態であるので、内部電極の連続性が良好であり、直流抵抗も低く耐サージ特性に優れた積層型電子部品を得ることができる。
【図面の簡単な説明】
【図1】本発明の導電性ペーストを使用して製造された積層型電子部品としての積層型インダクタの一実施の形態を示す斜視図である。
【図2】上記積層型インダクタの縦断面図である。
【図3】図2のA部拡大断面図である。
【符号の説明】
1 セラミック素体(部品素体)
3a〜3g 内部電極
5a〜5g 空隙
5a′〜5g′ 空隙[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a conductive paste and a multilayer electronic component, and more specifically, a conductive paste for forming the internal electrode in a multilayer electronic component in which a gap is formed between an internal electrode and a component body, and The present invention relates to a multilayer electronic component such as a multilayer inductor having an internal electrode formed using a conductive paste.
[0002]
[Prior art]
Laminated ceramic electronic components are usually formed by screen-printing a conductive paste for internal electrodes on the surface of a thin ceramic sheet to form an electrode pattern, and laminating a predetermined number of ceramic sheets on which such an electrode pattern is formed. After crimping to form a crimp block, the crimp block is subjected to a baking treatment, and then is manufactured by forming external electrodes.
[0003]
As a conductive paste for an internal electrode used in this type of laminated electronic component, a technique in which a metal powder such as Pd and a carbon powder are dispersed in an organic vehicle has been proposed (patented). Reference 1).
[0004]
In Patent Literature 1, carbon powder is completely burned and removed at an oxidizing region temperature of the metal powder to suppress oxidative expansion of the metal powder, thereby preventing delamination (delamination) between the internal electrode and the dielectric layer. Further, the occurrence of cracks is avoided by suppressing the expansion of the internal electrodes.
[0005]
Also, in this type of laminated electronic component, the conductive material forming the internal electrode and the ceramic material forming the component element have different thermal expansion coefficients, and thus have different shrinkage behaviors. A tensile stress may be generated between the element body and the internal electrode, and structural defects such as delamination may occur.
[0006]
Therefore, as a technique for eliminating such a difference in the shrinkage behavior, a conductive paste contains conductive particles and an organic vehicle, and further contains hardly soluble or insoluble organic compound particles such as carbohydrates and carbon particles. A technique in which at least one type of shrinkage controlling agent is contained in the organic vehicle has been proposed (Patent Document 2).
[0007]
In Patent Literature 2, a sparingly soluble or insoluble organic compound particle or carbon particle having a particle size larger than the conductive particle is contained in the conductive paste, and the organic compound particle or the carbon particle is completely burned off in a firing process. The continuity of the internal electrodes is ensured, and the occurrence of delamination is prevented by bringing the thermal contraction behavior of the internal electrodes during firing close to that of the ceramic.
[0008]
Other known techniques include spherical or granular conductive metal powders such as Cu having a particle size range of 0.1 to 50 μm, 80 to 93 wt%, and crystalline cellulose having a particle size range of 0.1 to 50 μm. A conductive paste containing 2 to 10% by weight of an insoluble resin powder and 5 to 18% by weight of an organic vehicle has also been proposed (Patent Document 3).
[0009]
In Patent Document 3, the filling property of the conductive paste into the via hole is improved by blending the conductive paste with the insoluble resin powder, and at the time of firing, the insoluble resin powder reduces the shrinkage of the conductive metal in the conductive paste. This suppresses the occurrence of cracks in the conductor metal in the via hole after firing.
[0010]
Further, as other known techniques, a spherical or granular conductive metal powder such as Cu having a particle size range of 0.1 to 50 μm is 80 to 94 wt%, and a particle size range of swelling in a solvent is 0.1 to 40 μm. A conductive paste containing 1 to 10 wt% of resin powder such as urethane resin and 5 to 19 wt% of an organic vehicle has been proposed (Patent Document 4).
[0011]
In Patent Document 4, by filling a conductive paste with a resin powder that swells in a solvent, the filling property of the conductive paste into the via hole is improved as in Patent Document 3, and the conductive metal is filled in the via hole after firing. The generation of cracks is suppressed.
[0012]
[Patent Document 1]
JP-A-5-342911
[Patent Document 2]
JP-A-9-186044
[Patent Document 3]
JP-A-10-172345
[Patent Document 4]
JP-A-11-274717
[0013]
[Problems to be solved by the invention]
By the way, when the component body of the multilayer electronic component is formed of a ferrite material, in addition to the above-described delamination, electric characteristics such as inductance and impedance deteriorate due to tensile stress generated between the component body and the internal electrode. And electrical characteristics after DC superposition do not recover.
[0014]
In order to solve such a problem, it is desirable to increase the amount of shrinkage of the internal electrode to form a gap between the internal electrode and the ceramic, and it is preferable to form a conductive layer suitable for forming such a gap. The appearance of paste is required.
[0015]
However, in Patent Document 1, the carbon powder is burned and removed at the oxidizing region temperature of the metal powder (300 to 800 ° C. in the case of Pd). However, since the thermal decomposition temperature of carbon is high, the contraction amount of the internal electrode is reduced. Therefore, it is considered that a desired gap cannot be formed between the internal electrode and the ceramic even if the conductive paste in Patent Document 1 is used.
[0016]
In Patent Document 2, the contraction behavior of the internal electrode is made closer to the contraction behavior of the ceramic, and a gap is not formed between the internal electrode and the ceramic by increasing the contraction amount of the internal electrode.
[0017]
Further, in Patent Document 2, the continuity of the internal electrode can be improved by burning out the organic compound particles and the carbon particles. However, the particle diameter of the organic compound particles and the carbon particles is larger than that of the conductive powder. Therefore, there is a risk that a portion where the conductive particles cannot contact each other may be generated, and the internal electrodes may be sintered in an island shape. As a result, the continuity of the internal electrodes may be reduced and fine wiring may be required. In a multilayer electronic component having a pattern, the surge resistance is reduced.
[0018]
Moreover, in Patent Document 2, when a substance having a high thermal decomposition temperature such as carbon powder is contained in the conductive paste, a large amount of carbon component may remain after firing. That is, in order to alleviate the tensile stress between the internal electrode and the component element body, it is necessary to increase the amount of shrinkage of the internal electrode, reduce the residual carbon as much as possible by degreasing and firing, and perform dense sintering. However, since residual carbon causes vacancies, a large amount of carbon component remains, and a dense electrode cannot be formed.
[0019]
Further, Patent Documents 3 and 4 disclose that the conductive paste contains an insoluble resin powder or a swellable resin powder so that the shrinkage behavior of the conductive material approaches the shrinkage behavior of the ceramic. Due to the small amount of addition, it is difficult to form a desired void. That is, in Patent Literature 3 and Patent Literature 4, the addition amount of the resin particles is too small as compared with the conductive particles, and therefore, the molding density cannot be significantly reduced, and therefore, high shrinkage cannot be obtained and the desired amount cannot be obtained. Gap cannot be formed.
[0020]
The present invention has been made in view of such circumstances, and a conductive paste suitable for forming a gap between an internal electrode and a component body, and without causing structural defects such as cracks, It is an object of the present invention to provide a laminated electronic component having excellent electrical characteristics, good continuity of internal electrodes, and excellent reliability.
[0021]
[Means for Solving the Problems]
When the component body of the multilayer electronic component is formed of a ferrite material, in order to prevent a decrease in electrical characteristics due to tensile stress generated between the component body and the internal electrode, it is necessary to solve the problem described below. Problem), it is considered preferable to intentionally provide a gap between the component body and the internal electrode to reduce tensile stress, and for that purpose, resin particles having a low specific gravity are used. It is necessary to reduce the molding density by containing the conductive paste in the conductive paste and increase the shrinkage of the internal electrode.
[0022]
However, if the resin particles are simply included in the conductive paste, the conductive particles may be sintered in an island shape and the continuity of the internal electrode may be reduced, resulting in a reduction in surge resistance.
[0023]
Therefore, the present inventors have conducted intensive research and have found that the 50% diameter D50Is 50% diameter D of the conductive particles.50In the range of 0.25 to 1.5, the amount of shrinkage can be increased without sintering the conductive particles in the form of islands, and the continuity of the internal electrodes can be secured, and It has been found that desired voids can be formed without deteriorating characteristics.
[0024]
The present invention has been made based on such knowledge, and the conductive paste according to the present invention forms the internal electrode in a laminated electronic component in which a gap is formed between the internal electrode and the component element body. A conductive paste containing at least conductive particles and resin particles, and having a 50% diameter D of the resin particles in an integrated sieve distribution.50Is 50% diameter D of the conductive particles.500.25 to 1.5.
[0025]
According to the conductive paste, a desired void can be formed, so that the generation of a tensile stress between the internal electrode and the component body is suppressed, and the conductive paste has good electric characteristics and has a surge resistance. It is possible to manufacture a laminated electronic component having excellent characteristics.
[0026]
According to the study of the present inventors, in order to obtain a desired high shrinkage and ensure continuity of the internal electrodes, the resin particles and the conductive particles are mixed in a volume ratio of 0.5: 1. To 1: 1, and in order to obtain a paste-like conductive material, the total content of the resin particles and the conductive particles needs to be 30% to 60% by volume%. found.
[0027]
Therefore, in the conductive paste of the present invention, the content of the resin particles is 0.5 to 1 in volume ratio to the content of the conductive particles, and the total content of the resin particles and the conductive particles is Is characterized by being 30% to 60% by volume%.
[0028]
Further, when the conductive particles and the resin particles have a flaky or distorted shape, the molding density increases when pressed, and high shrinkage cannot be obtained, and desired voids cannot be formed.
[0029]
Therefore, as a result of extensive studies by the present inventors, the particle shape of the conductive particles and the resin particles is preferably substantially spherical, in which case the ratio of the minor axis to the major axis is preferably 0.7 to 1.0. There was found.
[0030]
That is, the conductive paste of the present invention is characterized in that the conductive particles and the resin particles have a substantially spherical particle shape, and the ratio of the minor axis to the major axis is both 0.7 to 1.0. And
[0031]
If the particle size of the conductive particles is excessively small, the conductive particles are aggregated with each other and lack dispersibility, and the conductive particles are easily diffused during firing. On the other hand, if the particle size of the conductive particles is too large, the conductive particles are likely to be partially unevenly distributed, resulting in a variation in distribution and a desired high shrinkage cannot be obtained. Sintering is likely to occur and the continuity of the internal electrode is reduced. Further, when the particle size distribution is uniform in a narrow range, the reduction of the molding density can be promoted and the amount of shrinkage can be increased.
[0032]
Therefore, the conductive paste of the present invention has a 50% diameter D of the conductive particles.50Is 1.0 to 4.0 μm, and the 50% diameter D of the resin particles is50Is 0.25 to 6.0 μm, and 10% diameter D of the conductive particles and the resin particles in an integrated sieve distribution.10Is the 50% diameter D50Is 90% or more of the conductive particles and the resin particles.90Is the 50% diameter D50Are both 2.0 or less.
[0033]
According to the conductive paste, the particle size and the particle size distribution of the conductive particles and the resin particles are defined, so that the continuity of the internal electrode can be prevented from lowering and high shrinkage can be ensured.
[0034]
Further, in order to form voids, the resin particles are started to be burned at a temperature lower than the sintering temperature of the conductive particles, or are completely eliminated, and the sintering of the conductive particles is performed more than the sintering of the component element body. It needs to be completed early.
[0035]
Therefore, the conductive paste of the present invention is characterized in that the resin particles start burning at least at a low temperature equal to or lower than the sintering temperature of the conductive particles.
[0036]
Further, the multilayer electronic component according to the present invention is characterized in that an internal electrode is formed using the above-mentioned conductive paste, and a gap is formed between the internal electrode and the component element body.
[0037]
According to the multilayer electronic component, since a gap is formed between the internal electrode and the component element, it is possible to avoid the occurrence of tensile stress between the component element and the internal electrode, There is no reduction in electrical characteristics or occurrence of structural defects such as delamination.
[0038]
Further, in the multilayer electronic component of the present invention, the internal electrode is in a state where one conductive particle is in contact with at least one or more other conductive particles.
[0039]
According to the multilayer electronic component, it is possible to prevent the conductive particles from sintering in an island shape, to prevent a reduction in continuity of the internal electrodes, and to secure a good surge resistance.
[0040]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
[0041]
The conductive paste according to one embodiment of the present invention includes conductive particles, resin particles, and an organic vehicle, and is manufactured so as to satisfy the following (1) to (7). That is, the conductive paste is
(1) 50% diameter D of resin particles in distribution on the integrated sieve50Is the 50% diameter D of the conductive particles.500.25 to 1.5
(2) The content of the resin particles is 0.5 to 1 in volume ratio to the content of the conductive particles.
(3) The total content of the resin particles and the conductive particles is 30 to 60% by volume in volume%.
(4) The particle shape of the conductive particles and the resin particles is substantially spherical, and the ratio of the minor axis to the major axis is both 0.7 to 1.0.
(5) 50% diameter D of conductive particles50Is 1.0 to 4.0 μm, and 50% diameter D of the resin particles.50Is 0.25 to 6.0 μm
(6) The particle size distribution of both the conductive particles and the resin particles is D10≧ D50/ 2, D90≦ 2D50
(7) The resin particles start burning at least at a low temperature lower than the sintering temperature of the conductive particles.
Meets the requirements of
[0042]
By using this conductive paste as the paste for the internal electrode of the multilayer ceramic electronic component, a gap is formed between the internal electrode and the ceramic body after firing, so that the internal electrode and the ceramic body are The generation of tensile stress between the laminated electronic components is suppressed, thereby preventing the occurrence of structural defects such as cracks, having good electrical characteristics, and also having good internal electrode continuity and excellent reliability. Can be obtained.
[0043]
Hereinafter, the above (1) to (7) will be described in detail.
[0044]
(1) Particle size of resin particles
Since the molding density is reduced by mixing the resin particles having a low specific gravity with the conductive particles, the amount of shrinkage of the internal electrode can be increased, thereby forming a gap between the internal electrode and the ceramic body. Yes, but 50% diameter D of resin particles50Is 50% diameter D of conductive particles50When it is less than 0.25, the particle size of the resin particles becomes too small relative to the particle size of the conductive particles, so that the resin particles may enter the gaps between the conductive particles and lower the molding density. The desired high shrinkage cannot be obtained.
[0045]
On the other hand, the 50% diameter D of the resin particles50Is 50% diameter D of conductive particles50When the ratio exceeds 1.5, the resin particles become relatively large, so that the conductive particles cannot contact with each other, the conductive particles are sintered in an island shape, and the continuity of the internal electrode is reduced. descend.
[0046]
Therefore, in the present embodiment, the 50% diameter D of the resin particles50With the 50% diameter D of the conductive particles.500.25 to 1.5, preferably 0.6 to 1.0.
[0047]
(2) Content of resin particles
When the content of the resin particles is less than 0.5 in volume ratio with respect to the conductive particles, the amount of the resin particles contained in the conductive paste is excessively reduced, and the molding density is reduced as in the above (1). And a desired high shrinkage cannot be obtained.
[0048]
On the other hand, if the content of the resin particles exceeds 1.0 by volume ratio with respect to the conductive particles, the amount of the resin particles becomes too large, so that the conductive particles cannot contact with each other and the conductive particles are sintered in an island shape. As a result, the continuity of the internal electrodes is reduced.
[0049]
Therefore, in the present embodiment, the content of the resin particles is set to be 0.5 to 1, preferably 0.65 to 0.85 by volume ratio with respect to the content of the conductive particles.
[0050]
(3) Total content of resin particles and conductive particles
The conductive paste is composed of the conductive particles, the resin particles, and the organic vehicle as described above. If the total content of the solid resin particles and the conductive particles exceeds 60 vol%, the content of the organic vehicle is increased. Is too small to form a paste.
[0051]
On the other hand, when the total content of the resin particles and the conductive particles is less than 30 vol%, the content of the organic vehicle becomes too large, and even if a paste can be produced, the electrode pattern is formed to a predetermined thickness when applied. I can't.
[0052]
Therefore, in the present embodiment, the total content of the resin particles and the conductive particles is set to 30 to 60 vol%, preferably 40 to 53 vol%.
[0053]
(4) Particle shapes of conductive particles and resin particles
From the viewpoint of reducing the molding density and increasing the amount of shrinkage, the particle shape of both the conductive particles and the resin particles is spherical, and the ratio of the minor axis to the major axis (hereinafter, this ratio is referred to as “sphericity”) ) Is desirably 1.0, but it is currently difficult in production technology to make all the sphericity of the conductive particles and the resin particles 1.0.
[0054]
However, when the sphericity of the conductive particles and the resin particles becomes a distorted shape of less than 0.7, the conductive particles and the resin particles having a low sphericity enter the gaps between the substantially spherical particles, As a result, the molding density increases, and the desired high shrinkage cannot be obtained. In addition, the internal electrodes are usually formed by screen-printing a conductive paste. However, in such a printing process, the conductive particles and resin particles having low sphericity are caught on the screen, resulting in a decrease in productivity.
[0055]
Therefore, in the present embodiment, the particle shape of the conductive particles and the resin particles is substantially spherical, and the sphericity is 0.7 to 1.0, preferably 0.9 to 1.0. did.
[0056]
(5) Particle size of conductive particles
In consideration of the continuity of the internal electrode, it is preferable that the conductive particles are uniformly dispersed in the internal electrode.50When the particle size is less than 1.0 μm, the conductive particles become too fine and agglomerate, making it difficult to uniformly disperse, and the conductive particles are liable to be diffused by the firing treatment. On the other hand, 50% diameter D of the conductive particles50Exceeds 4.0 μm, only the conductive particles or only the resin particles are arranged in the thickness direction of the internal electrode, or an extremely small portion of one of the conductive particles or the resin particles is generated, and uniform dispersion is impaired. For this reason, a desired high shrinkage cannot be obtained, or the continuity of the internal electrode is reduced.
[0057]
Therefore, 50% diameter D of the conductive particles50Is set to 1.0 to 4.0 μm, preferably 1.0 to 2.0 μm, and from the relationship with the above (1), the 50% diameter D of the resin particles50Was set to 0.25 to 6.0 μm, preferably 0.25 to 3.0 μm.
[0058]
(6) Particle size distribution of conductive particles and resin particles
When the particle size distribution is wide, small particles easily enter between large particles, so that the molding density increases and high shrinkage cannot be obtained. That is, the particle size distribution of the conductive particles and the resin particles is preferably uniform in a narrow range. From this viewpoint, in this embodiment, the particle size distribution of the conductive particles and the resin particles is D10≧ D50/ 2, D90≦ 2D50It was made to become.
[0059]
(7) Burnout temperature of resin particles
As described above, in the present embodiment, by using the conductive paste, a gap is formed between the internal electrode and the ceramic body, but in order to form such a gap, conductive particles are used. Before the sintering, the burning of the resin particles must be started or completely eliminated, and the sintering of the conductive paste must be completed earlier than the sintering of the ceramic body. That is, for example, when Ag particles are used as the conductive particles, the sintering temperature of Ag is 300 to 500 ° C., so that the resin particles are at least burned down at a low temperature of 300 to 500 ° C. or less, which is the sintering temperature of Ag. It is necessary to use resin particles having good thermal decomposability that do not hinder sintering of the conductive particles.
[0060]
As such a resin having excellent thermal decomposability, for example, acrylic resin, methacrylic resin, polypropylene resin, polyethylene resin, polystyrene resin, polyester resin, polyolefin resin, polyisobutylene resin, polyethylene glycol resin and the like can be used. .
[0061]
It is particularly preferable to use a resin having a compressive strength of 70 MPa or more, since the collapse of the resin particles can be suppressed in the step of pressing the ceramic green sheet and higher electric characteristics can be obtained. As the resin having a compressive strength of 70 MPa or more, for example, a polymethyl methacrylate (PMMA) resin, a polystyrene resin, or the like can be used. The compression strength of these resins according to ASTM test method D695 is, for example, 73 to 125 MPa for PMMA resin and 82 to 89 MPa for polystyrene resin.
[0062]
Further, the organic vehicle contained in the conductive paste comprises an organic binder and a solvent.As the organic binder, for example, ethyl cellulose resin, acrylic resin, butyral resin can be used, and as the solvent, for example, α-terpineol, Tetralin, butyl carbitol can be used. Further, the organic binder and the solvent are prepared such that the mixing ratio is, for example, 1: 9.
[0063]
The conductive particles are not particularly limited as long as they have conductivity, and Ag, Pd, Pt, Au, Ni, Cu, or an alloy of two or more of these are used. be able to.
[0064]
Next, the laminated electronic component manufactured using the conductive paste will be described in detail.
[0065]
FIG. 1 is a perspective view showing an embodiment of a multilayer inductor as a multilayer electronic component according to the present invention, and FIG. 2 is a cross-sectional view of the multilayer inductor.
[0066]
1 and 2, the present laminated inductor includes a ceramic body 1 made of a Ni—Zn—Cu ferrite material, external electrodes 2 a and 2 b formed at both ends of the ceramic body 1, and a ceramic body. And an internal electrode 3 (3a to 3g) embedded in a coil shape inside the body 1.
[0067]
Specifically, as shown in FIG. 3, the internal electrode 3a is partially in contact with the ceramic body 1 and has gaps 5a, 5a 'between the ceramic body 1 and the internal electrode 3a. Buried in the gap 4a.
[0068]
Although the embodiment has been described with reference to a partially enlarged view of the internal electrode 3a, the same applies to the other internal electrodes 3b to 3g. 55 g, 5b'〜5 g 'are embedded in the gaps 4bb4g.
[0069]
In the multilayer inductor, the lead 5 of the internal electrode 3a is electrically connected to the one external electrode 2b, and the lead 6 of the internal electrode 3g is electrically connected to the other external electrode 2a. I have. Each of the internal electrodes 3a to 3g is electrically connected in series via a via hole (not shown) formed vertically in the drawing of the ceramic body 1, and has a coil pattern wound clockwise. Has formed.
[0070]
Hereinafter, a method for manufacturing the multilayer inductor will be described.
[0071]
First, NiO, CuO, ZnO, Fe2O3After weighing a predetermined amount of a ferrite-based material such as the above, the weighed material is put into a ball mill, mixed and pulverized by a wet method, and then dried and calcined.
[0072]
Then, the calcined product is sufficiently wet-pulverized again with a ball mill and dried to produce a calcined powder. After that, the calcined powder is mixed with a binder, a plasticizer, and a dispersant, and dispersed in a solvent. A ceramic slurry is prepared, and the ceramic slurry is formed into a sheet shape by a doctor blade method or the like to prepare a ceramic green sheet.
[0073]
Next, a conductive paste is prepared in the following procedure.
[0074]
That is, an organic vehicle is prepared by adjusting the compounding ratio of the organic binder and the solvent to, for example, 1: 9, and then the predetermined conductive particles and resin particles are mixed with the organic vehicle and kneaded with a three-roll mill. Then, a conductive paste is produced.
[0075]
Then, after a via hole is formed at a predetermined position on the ceramic sheet, the conductive paste is screen-printed on the surface of the ceramic green sheet to form a predetermined coil pattern.
[0076]
Next, a plurality of ceramic green sheets are laminated to form a laminate so that the ceramic green sheets on which the coil patterns are formed can be electrically connected in series via via holes, and the coil patterns are not formed. The laminate is sandwiched and pressed by ceramic green sheets to form a pressure-bonded block.
[0077]
In the present embodiment, in the internal electrode after the compression, one conductive particle is always in contact with at least one or more other conductive particles, whereby the conductive particles are sintered in an island shape. Thus, the continuity of the internal electrodes is prevented from lowering.
[0078]
After that, after the crimping block is cut into a predetermined size, a binder removal process is performed, and then a firing process is performed to produce a ceramic sintered body.
[0079]
Next, after barrel polishing is performed on the ceramic sintered body, a conductive paste is applied to both ends of the ceramic sintered body and baked to form an external conductive portion.
[0080]
Thereafter, electrolytic plating is performed to sequentially form a nickel film and a tin film on the surface of the external conductive portion to form external electrodes, thereby manufacturing a multilayer inductor.
[0081]
As described above, in the present embodiment, since the multilayer inductor is manufactured using the conductive paste, the internal electrode 3 is highly shrunk and a desired distance between the internal electrode 3 and the ceramic body 1 is increased. Is formed, whereby it is possible to avoid the occurrence of tensile stress between the two, and to manufacture a multilayer inductor having good electrical characteristics such as inductance and impedance and no structural defects such as cracks. It is possible to do.
[0082]
In addition, since the conductive particles are uniformly dispersed, and furthermore, the resin particles are configured so that the thermal decomposition proceeds at a temperature lower than the sintering temperature of the conductive particles, the residual carbon is also small and the continuity of the internal electrode is reduced. Thus, a multilayer inductor having excellent surge resistance can be obtained.
[0083]
Note that the present invention is not limited to the above embodiment. Although a ferrite-based material is used as the ceramic material in the above embodiment, it is needless to say that the present invention can be applied to a glass powder material and other ceramic materials.
[0084]
Further, in the above embodiment, a sheet method in which a plurality of ceramic green sheets are laminated is used, but it goes without saying that other methods such as a printing method can be used.
[0085]
【Example】
Next, examples of the present invention will be described specifically.
[0086]
(Example 1)
The present inventors first, NiO, CuO, ZnO, Fe2O3After weighing a predetermined amount of a ferrite-based material such as the above, the above-mentioned weighed material is put into a ball mill in which PSZ (partially stabilized zirconia) having a diameter of 1 mm is contained as a pulverization medium, and mixed and pulverized by a wet method to form a slurry powder, After the slurry powder was separated from PSZ, it was dried with a spray dryer and calcined at a temperature of 650 ° C. for 2 hours to produce a calcined product.
[0087]
Next, the calcined product was re-introduced into the ball mill, pulverized sufficiently by a wet method, and dried by a spray dryer to prepare a calcined powder.
[0088]
Next, polyvinyl butyral as a binder, dibutyl phthalate as a plasticizer, ammonium polycarboxylate as a dispersant, and toluene and ethyl alcohol as solvents were added to the calcined powder and mixed to prepare a ceramic slurry. The rally was formed into a sheet by a doctor blade method to produce a magnetic sheet (ceramic green sheet) having a thickness of 50 μm.
[0089]
On the other hand, the present inventors produced a conductive paste as follows.
[0090]
That is, first, the 10% diameter D10Is 1.03 μm, 50% diameter D50Is 1.52 μm, 90% diameter D90Is 2.30 μm, the sphericity is 0.9 and the 10% diameter D10Is 0.73 μm, 50% diameter D50Is 1.04 μm, 90% diameter D90And acrylic resin particles having a sphericity of 0.9 were prepared.
[0091]
The particle sizes of the Ag particles and the acrylic resin particles were measured with a Microtrac HRA particle size distribution analyzer (9320-X100 manufactured by Leeds & Nostep), which is a laser diffraction / scattering type particle size distribution analyzer, and the sphericity was scanned. It was measured with a scanning electron microscope (SEM) (JSM-5310 manufactured by JEOL).
[0092]
Next, α-terpineol is used as a solvent, and ethylcellulose resin is used as an organic binder, and the ethylcellulose resin is dissolved in α-terpineol so that the ratio of ethylcellulose resin to α-terpineol is 10 vol%: 90 vol%. Is prepared, and the Ag particles and the acrylic resin particles are sufficiently kneaded with an organic vehicle in a three-roll mill so that the content of the Ag particles is 23 vol% and the content of the acrylic resin particles is 17 vol%, thereby producing a conductive paste. did.
[0093]
Next, the present inventors formed via holes using a laser processing machine so that the internal electrodes can be electrically connected in series, screen-printed an electrode pattern using the conductive paste, A coil pattern was formed.
[0094]
Thereafter, a plurality of magnetic sheets on which the coil pattern is formed are laminated to form a laminate, and the laminate is sandwiched by the magnetic sheets on which no coil pattern is formed, and 9.8 × 107Pa (1000 kgf / cm2) To produce a crimp block.
[0095]
Next, the crimping block is cut into 1.92 mm in length, 0.96 mm in width, and 0.96 mm in thickness, then subjected to a binder removal treatment at a temperature of 500 ° C. or less, and a firing treatment at a temperature of 870 ° C. Was prepared.
[0096]
Furthermore, the present inventors separately prepared an Ag paste for an external electrode in which a glass frit and an organic vehicle were added to and dispersed in Ag powder, and barrel-polished the ceramic sintered body, thereby forming both ends of the ceramic sintered body. An Ag paste for an external electrode was applied to the portion and baked at 700 ° C. to form an external conductive portion.
[0097]
Thereafter, a well-known electrolytic plating process was performed to sequentially form a nickel film and a tin film on the surface of the external conductive portion to form external electrodes, thereby manufacturing the multilayer inductor of Example 1.
[0098]
(Example 2)
10% diameter D10Is 1.44 μm, 50% diameter D50Is 2.25 μm, 90% diameter D90The laminated inductor of Example 2 was manufactured by the same method and procedure as in Example 1, except that a conductive paste was manufactured using acrylic resin particles having a sphericity of 3,39 μm and a sphericity of 0.9. .
[0099]
(Example 3)
Except that the contents of the Ag particles and the acrylic resin particles in the conductive paste were both blended to be 20 vol% to prepare a conductive paste, the same method and procedure as in Example 1 were used to prepare the conductive paste. A multilayer inductor was manufactured.
[0100]
(Example 4)
The same method as in Example 1 except that the conductive paste was prepared by blending the Ag particles and the acrylic resin particles so that the contents in the conductive paste were 26.7 vol% and 13.3 vol%, respectively. According to the procedure, the multilayer inductor of Example 4 was manufactured.
[0101]
(Example 5)
10% diameter D10Is 1.01 μm, 50% diameter D50Is 1.49 μm, 90% diameter D90Ag particles having a sphericity of 2.29 μm and a sphericity of 0.7 and a 10% diameter D10Is 0.72 μm, 50% diameter D50Is 1.02 μm, 90% diameter D90The laminated inductor of Example 5 was manufactured by the same method and procedure as in Example 1, except that a conductive paste was manufactured using acrylic resin particles having a sphericity of 1.51 μm and a sphericity of 0.7. .
[0102]
(Example 6)
10% diameter D10Is 0.76 μm, 50% diameter D50Is 1.51 μm, 90% diameter D90Is 2.97 μm, the sphericity is 0.9 and the 10% diameter D10Is 0.51 μm, 50% diameter D50Is 0.98 μm, 90% diameter D90The laminated inductor of Example 6 was manufactured by the same method and procedure as in Example 1 except that a conductive paste was manufactured using acrylic resin particles having a sphericity of 1.93 μm and a sphericity of 0.9. .
[0103]
(Example 7)
10% diameter D10Is 0.70 μm, 50% diameter D50Is 1.03 μm, 90% diameter D90Is 1.50 μm, Ag particles having a sphericity of 0.9, and 10% diameter D10Is 0.44 μm, 50% diameter D50Is 0.74 μm, 90% diameter D90The multilayer inductor of Example 7 was manufactured by the same method and procedure as in Example 1 except that a conductive paste was manufactured using acrylic resin particles having a sphericity of 0.97 μm and a sphericity of 0.9. .
[0104]
(Example 8)
10% diameter D10Is 0.10 μm, 50% diameter D50Is 0.27 μm, 90% diameter D90A conductive paste was prepared in the same manner as in Example 7 except that acrylic resin particles having a sphericity of 0.52 μm and a sphericity of 0.9 were used. 8 laminated inductors were produced.
[0105]
(Example 9)
10% diameter D10Is 3.08 μm, 50% diameter D50Is 3.96 μm, 90% diameter D90Is 6.11 μm, Ag particle having a sphericity of 0.9, and 10% diameter D10Is 2.39 μm, 50% diameter D50Is 3.22 μm, 90% diameter D90The laminated inductor of Example 9 was manufactured by the same method and procedure as in Example 1 except that a conductive paste was manufactured using acrylic resin particles having a sphericity of 4.95 μm and a sphericity of 0.9. .
[0106]
(Example 10)
10% diameter D10Is 4.35 μm, 50% diameter D50Is 5.90 μm, 90% diameter D90A conductive paste was prepared in the same manner as in Example 9 except that acrylic resin particles having a sphericity of 9.12 μm and a sphericity of 0.9 were used. Ten laminated inductors were produced.
[0107]
(Comparative Example 1)
10% diameter D10Is 0.16 μm, 50% diameter D50Is 0.31 μm, 90% diameter D90The laminated inductor of Comparative Example 1 was manufactured by the same method and procedure as in Example 1 except that a conductive paste was manufactured using acrylic resin particles having a sphericity of 0.56 μm and a sphericity of 0.9.
[0108]
(Comparative Example 2)
10% diameter D10Is 1.73 μm, 50% diameter D50Is 2.58 μm, 90% diameter D90The laminated inductor of Comparative Example 2 was manufactured by the same method and procedure as in Example 1 except that a conductive paste was manufactured using acrylic resin particles having a sphericity of 3.86 μm and a sphericity of 0.9. .
[0109]
(Comparative Example 3)
The same method and procedure as in Example 3 except that the conductive paste was prepared by blending the Ag particles and the acrylic resin particles so that the contents in the conductive paste were 17.8 vol% and 22.2 vol%, respectively. As a result, a multilayer inductor of Comparative Example 3 was produced.
[0110]
(Comparative Example 4)
A comparison was made by the same method and procedure as in Example 3, except that the conductive paste was prepared by blending the Ag particles and the acrylic resin particles so that the contents in the conductive paste were 32 vol% and 8 vol%, respectively. The multilayer inductor of Example 4 was manufactured.
[0111]
(Comparative Example 5)
10% diameter D10Is 1.05 μm, 50% diameter D50Is 1.52 μm, 90% diameter D90The conductive paste was prepared in the same manner as in Example 5 except that Ag particles having a sphericity of 2.33 μm and a sphericity of 0.4 were used. Was manufactured.
[0112]
(Comparative Example 6)
10% diameter D10Is 0.51 μm, 50% diameter D50Is 1.55 μm, 90% diameter D90A conductive paste was produced in the same manner as in Example 6 except that Ag particles having a sphericity of 3.99 μm and a sphericity of 0.9 were used. Was manufactured.
[0113]
(Comparative Example 7)
10% diameter D10Is 0.30 μm, 50% diameter D50Is 0.57 μm, 90% diameter D90Is 1.06 μm, the sphericity is 0.9 and the 10% diameter D10Is 0.22 μm, 50% diameter D50Is 0.41 μm, 90% diameter D90The multilayer inductor of Comparative Example 7 was manufactured by the same method and procedure as in Example 1 except that a conductive paste was manufactured using acrylic resin particles having a sphericity of 0.83 μm and a sphericity of 0.9. .
[0114]
(Comparative Example 8)
10% diameter D10Is 0.70 μm, 50% diameter D50Is 1.03 μm, 90% diameter D90Is 1.50 μm, the sphericity is 0.9 and the 10% diameter D10Is 0.09 μm, 50% diameter D50Is 0.21 μm, 90% diameter D90The laminated inductor of Comparative Example 8 was produced by the same method and procedure as in Example 1 except that a conductive paste was produced using acrylic resin particles having a sphericity of 0.43 μm and a sphericity of 0.9. .
[0115]
(Comparative Example 9)
10% diameter D10Is 3.83 μm, 50% diameter D50Is 4.90 μm, 90% diameter D90Ag particles having a sphericity of 7.06 μm and a sphericity of 0.9, and a 10% diameter D10Is 2.78 μm, 50% diameter D50Is 3.89 μm, 90% diameter D90The laminated inductor of Comparative Example 9 was produced by the same method and procedure as in Example 1 except that a conductive paste was produced using acrylic resin particles having a sphericity of 5.81 μm and a sphericity of 0.9. .
[0116]
(Comparative Example 10)
10% diameter D10Is 4.76 μm, 50% diameter D50Is 6.78 μm, 90% diameter D90The laminated inductor of Comparative Example 10 was manufactured by the same method and procedure as in Example 1 except that a conductive paste was manufactured using acrylic resin particles having a sphericity of 9.77 μm and a sphericity of 0.9. .
[0117]
Next, the present inventors measured the inductance at 1 MHz and the impedance at 100 MHz of each test piece (Example and Comparative Example) using an RF impedance analyzer (HP4291A, manufactured by Hewlett-Packard Company).
[0118]
For each of the 100 test pieces, the mirror-polished cross section was observed with a stereoscopic microscope, the presence or absence of cracks was observed, and the incidence of structural defects was calculated.
[0119]
Furthermore, a surge current of 30 kV was applied to each of the 100 test pieces, and the disconnection rate was calculated.
[0120]
Table 1 shows specifications of Ag particles and acrylic resin particles contained in the conductive paste, and Table 2 shows various measurement results.
[0121]
[Table 1]
Figure 2004079994
[0122]
[Table 2]
Figure 2004079994
In the table, * indicates out of the range of the present invention.
As is clear from Tables 1 and 2, Comparative Example 1 had a 50% diameter D of Ag particles.5050% diameter D of acrylic resin particles with respect to50, Ie, D50Since the ratio is too small as 0.20, the acrylic resin particles enter the gaps between the Ag particles, the molding density increases, and the shrinkage amount of the internal electrode decreases. For this reason, a desired gap cannot be formed between the internal electrode and the ceramic body, and a tensile stress is generated due to a difference in thermal expansion coefficient in a cooling process of firing, and inductance and impedance are extremely reduced. It was found that the structural defect occurrence rate was deteriorated to 24%.
[0123]
Comparative Example 2 is D50Since the ratio is too large as 1.70, the Ag particles may not be able to contact each other, the Ag particles may be sintered in an island shape, the continuity of the internal electrode may be reduced, and the disconnection rate in the surge resistance test may be 17%. It turned out to be worse.
[0124]
In Comparative Example 3, the volume ratio was 1.25, and the content of the acrylic resin particles was too large, so that the Ag particles could not come into contact with each other. Was reduced, and as a result, the disconnection rate in the surge resistance test was deteriorated to 14%.
[0125]
In Comparative Example 4, the volume ratio was 0.25, and the content of the resin particles in the paste was too small, so that the molding density of the internal electrode when crimped was increased and high shrinkage could not be obtained. And the impedance was low, and the structural defect occurrence rate was deteriorated to 21%.
[0126]
In Comparative Example 5, since the sphericity of the Ag particles was as low as 0.4, the compaction density of the electrode at the time of pressing was high, and high shrinkage could not be obtained. Therefore, the inductance and impedance were low, and the electrical characteristics were low. The rate of occurrence of structural defects was 5%.
[0127]
Comparative Example 6 shows the D of Ag particles.10/ D50Is 0.33, and D90/ D50Is 2.57, and the particle size distribution is wide, so that the compacting density of the internal electrode when Ag particles having a small particle size enter between the Ag particles having a large particle size and press-bonding is increased, thereby obtaining high shrinkage. As a result, the inductance and impedance were low, the electrical characteristics were reduced, and the incidence of structural defects was 4%.
[0128]
Comparative Example 7 has a 50% diameter D of Ag particles.50Is too small as 0.57 μm, the dispersibility of Ag particles and acrylic resin particles is deteriorated, the continuity of the internal electrode is reduced, and the Ag particles are easily diffused during firing, and the disconnection rate in the surge resistance test is reduced. It turned out to be 15% worse.
[0129]
Comparative Example 8 has a 50% diameter D of the acrylic resin particles.50And the particle size distribution was wide, the acrylic resin particles entered between the Ag particles, and the shrinkage of the internal electrode was reduced. For this reason, a desired gap cannot be formed between the internal electrode and the ceramic body, and a tensile stress occurs due to a difference in gland expansion coefficient in a cooling process of firing, and the inductance and impedance become extremely low. The incidence of structural defects was 4%.
[0130]
Comparative Example 9 has a 50% diameter D of Ag particles.50Is as large as 4.90 μm, and the filling ratio of Ag particles or acrylic resin particles in the thickness direction of the internal electrode varies, for example, too many Ag particles or too many resin particles in the thickness direction depending on the position of the internal electrode. It is presumed that the contraction was partially reduced and the continuity of the internal electrodes was reduced. As a result, it was found that the electrical characteristics such as inductance and impedance were reduced, the occurrence rate of structural defects was 7%, and the disconnection rate in the surge resistance test was 8%.
[0131]
Comparative Example 10 has a 50% diameter D of the acrylic resin particles.50Is as large as 6.78 μm, and D50The ratio is 1.71, and the particle size of the acrylic resin particles is relatively larger than that of the Ag particles. Therefore, the Ag particles cannot contact with each other and sinter in an island shape. And the disconnection rate in the surge resistance test was deteriorated to 20%.
[0132]
On the other hand, in Examples 1 to 10, the 50% diameter D50Is 1.0 to 4.0 μm, and 50% diameter D of the acrylic resin particles.50Is 0.25 to 6.0 μm, and both have a particle size distribution of D.10≧ D50/ 2, D90≦ 2D50And D of both50Since the ratio is 0.25 to 1.5, the volume ratio is 0.5 to 1 and the sphericity is 0.7 to 1.0, the molding density of the internal electrode when crimped can be reduced. During firing, the internal electrode can be made to have a desired high shrinkage, whereby a gap can be formed between the internal electrode and the ceramic body, the continuity of the internal electrode is good, and a good electrical It has been confirmed that characteristics can be obtained and the occurrence of structural defects can be suppressed.
[0133]
【The invention's effect】
As described in detail above, the conductive paste according to the present invention is a conductive paste for forming the internal electrode in a multilayer electronic component having a gap between the internal electrode and the component body, and is at least a conductive paste. 50% diameter D of the resin particles in the distribution on the integrated sieve50Is 50% diameter D of the conductive particles.50Is 0.25 to 1.5, so that the molding density at the time of pressure bonding can be reduced in a state where the conductive particles are in contact with each other, and the internal electrode and the component element body can be formed without impairing the continuity of the internal electrode. Between the internal electrode and the component body, thereby suppressing the generation of tensile stress between the internal electrodes and the component body, thereby providing excellent electrical characteristics such as impedance and inductance, and a structure such as a crack. It is possible to manufacture a multilayer electronic component free from defects.
[0134]
Further, the content of the resin particles is 0.5 to 1 in volume ratio with respect to the content of the conductive particles, and the total content of the resin particles and the conductive particles is 30% to 30% by volume. Since it is 60%, a desired amount of resin particles is contained in the conductive paste, a desired high shrinkage can be obtained by baking, and an electrode pattern having a desired film thickness can be formed.
[0135]
Further, the particle shape of the conductive particles and the resin particles is substantially spherical, and the ratio of the minor axis to the major axis is both 0.7 to 1.0. And the resin particles do not enter between them, and high shrinkage can be secured without increasing the molding density.
[0136]
The 50% diameter D of the conductive particles50Is 1.0 to 4.0 μm, and the 50% diameter D of the resin particles is50Is 0.25 to 6.0 μm, and 10% diameter D of the conductive particles and the resin particles in an integrated sieve distribution.10Is the 50% diameter D50Is 90% or more of the conductive particles and the resin particles.9 0Is the 50% diameter D50Are 2.0 or less, the dispersibility of the particles is also good, the particle size distribution is uniform in a narrow range, and a reduction in molding density can be promoted to obtain high shrinkage.
[0137]
Further, since the resin particles start burning at least at a low temperature equal to or lower than the sintering temperature of the conductive particles, sintering of the internal electrode can be completed before the component body is sintered, and the internal electrode The desired gap can be formed by intentionally making the shrinkage behavior of the component and the component body different.
[0138]
Further, in the multilayer electronic component according to the present invention, since the internal electrode is formed using the conductive paste and a gap is formed between the internal electrode and the component element body, the internal electrode and the component element are formed. It is possible to suppress the generation of tensile stress with the body, to obtain a laminated electronic component that is excellent in electrical characteristics such as impedance and inductance and does not cause structural defects such as cracks.
[0139]
Further, in the multilayer electronic component of the present invention, the internal electrode is in a state where one conductive particle is in contact with at least one or more other conductive particles, so that continuity of the internal electrode is good, A multilayer electronic component having a low DC resistance and excellent surge resistance can be obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a multilayer inductor as a multilayer electronic component manufactured using a conductive paste of the present invention.
FIG. 2 is a longitudinal sectional view of the multilayer inductor.
FIG. 3 is an enlarged sectional view of a portion A in FIG. 2;
[Explanation of symbols]
1. Ceramic body (part body)
3a-3g internal electrode
5a ~ 5g void
5a 'to 5g' void

Claims (7)

内部電極と部品素体との間に空隙が形成された積層型電子部品において前記内部電極を形成するための導電性ペーストであって、
少なくとも導電性粒子と樹脂粒子とを含み、積算ふるい上分布で前記樹脂粒子の50%径D50が、前記導電性粒子の50%径D50に対し0.25〜1.5であることを特徴とする導電性ペースト。
A conductive paste for forming the internal electrode in a laminated electronic component in which a gap is formed between the internal electrode and the component element body,
And at least conductive particles and resin particles, the 50% diameter D 50 of the resin particles in the distribution on the sieve integrated with respect to the 50% size D 50 of the conductive particles is 0.25 to 1.5 Characteristic conductive paste.
前記樹脂粒子の含有量は、前記導電性粒子の含有量に対し体積比率で0.5〜1であり、前記樹脂粒子及び前記導電性粒子の含有量総計が、体積%で30%〜60%であることを特徴とする請求項1記載の導電性ペースト。The content of the resin particles is 0.5 to 1 by volume relative to the content of the conductive particles, and the total content of the resin particles and the conductive particles is 30% to 60% by volume. The conductive paste according to claim 1, wherein 前記導電性粒子及び前記樹脂粒子の粒子形状は略球形状であって、長軸に対する短軸の比率が共に0.7〜1.0であることを特徴とする請求項1又は請求項2記載の導電性ペースト。The particle shape of the said conductive particle and the said resin particle is substantially spherical shape, The ratio of the short axis with respect to a long axis is 0.7-1.0, The Claim 1 or Claim 2 characterized by the above-mentioned. Conductive paste. 前記導電性粒子の50%径D50が1.0〜4.0μmであって、前記樹脂粒子の50%径D50が0.25〜6.0μmであり、
且つ、積算ふるい上分布で前記導電性粒子及び前記樹脂粒子の10%径D10が、共に前記50%径D50に対し0.5以上であり、前記導電性粒子及び前記樹脂粒子の90%径D90が、共に前記50%径D50に対し2.0以下であることを特徴とする請求項1乃至請求項3のいずれかに記載の導電性ペースト。
The 50% diameter D 50 of the conductive particles is a 1.0-4.0, 50% diameter D 50 of the resin particles is 0.25~6.0Myuemu,
And 10% diameter D 10 of the conductive particles in the distribution on the sieve integrated and the resin particles are in both the 50% diameter D 50 to 0.5 or more, 90% of the conductive particles and the resin particles 4. The conductive paste according to claim 1, wherein the diameter D 90 is 2.0 or less with respect to the 50% diameter D 50. 5 .
前記樹脂粒子は、前記導電性粒子の焼結温度以下の低温で少なくとも焼失を開始することを特徴とする請求項1乃至請求項4のいずれかに記載の導電性ペースト。The conductive paste according to any one of claims 1 to 4, wherein the resin particles start burning at least at a low temperature equal to or lower than a sintering temperature of the conductive particles. 請求項1乃至請求項5のいずれかに記載の導電性ペーストを使用して内部電極が形成され、該内部電極と部品素体との間に空隙が形成されていることを特徴とする積層型電子部品。A laminate type wherein an internal electrode is formed using the conductive paste according to any one of claims 1 to 5, and a gap is formed between the internal electrode and the component element body. Electronic components. 前記内部電極は、一の導電性粒子が少なくとも1つ以上の他の導電性粒子と接した状態であることを特徴とする請求項6記載の積層型電子部品。The multilayer electronic component according to claim 6, wherein the internal electrode is in a state where one conductive particle is in contact with at least one or more other conductive particles.
JP2003143436A 2002-06-20 2003-05-21 Conductive paste and multilayer electronic parts Expired - Fee Related JP4403488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143436A JP4403488B2 (en) 2002-06-20 2003-05-21 Conductive paste and multilayer electronic parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002179397 2002-06-20
JP2003143436A JP4403488B2 (en) 2002-06-20 2003-05-21 Conductive paste and multilayer electronic parts

Publications (2)

Publication Number Publication Date
JP2004079994A true JP2004079994A (en) 2004-03-11
JP4403488B2 JP4403488B2 (en) 2010-01-27

Family

ID=32032546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143436A Expired - Fee Related JP4403488B2 (en) 2002-06-20 2003-05-21 Conductive paste and multilayer electronic parts

Country Status (1)

Country Link
JP (1) JP4403488B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034824A1 (en) * 2007-09-14 2009-03-19 Murata Manufacturing Co., Ltd. Stacked coil component and mehtod for manufacturing the stacked coil component
US7582404B2 (en) 2004-06-24 2009-09-01 Samsung Sdi Co., Ltd. Photosensitive paste composition, PDP electrode manufactured using the composition, and PDP comprising the PDP electrode
JP2009295828A (en) * 2008-06-06 2009-12-17 Panasonic Corp Electronic component
WO2010035559A1 (en) * 2008-09-24 2010-04-01 株式会社村田製作所 Laminated coil component
CN103137241A (en) * 2011-12-02 2013-06-05 第一毛织株式会社 Paste composition for a solar cell electrode, electrode fabricated using the same, and solar cell including the electrode
KR101412822B1 (en) * 2012-09-06 2014-06-27 삼성전기주식회사 Conductive paste for external electrode, multi-layered ceramic electronic parts fabricated by using the same and fabricating method thereof
US8964354B2 (en) 2012-10-12 2015-02-24 Samsung Electro-Mechanics Co., Ltd. Multi-layered ceramic electronic component and method of manufacturing the same
JP2015161899A (en) * 2014-02-28 2015-09-07 ソマール株式会社 Hard coat film coating composition and hard coat film
KR20170077542A (en) 2015-12-28 2017-07-06 삼성전기주식회사 Multi-layered ceramic electronic component and method for manufacturing the same
KR20170077548A (en) 2015-12-28 2017-07-06 삼성전기주식회사 Multi-layered ceramic electronic component and method for manufacturing the same
KR20170077532A (en) 2015-12-28 2017-07-06 삼성전기주식회사 Conductive paste composition for inner electrode and method for manufacturing multi-layered ceramic electronic component
US10153079B2 (en) 2016-07-15 2018-12-11 Murata Manufacturing Co., Ltd. Laminated coil component and method of manufacturing the same
KR20190116139A (en) 2019-07-22 2019-10-14 삼성전기주식회사 Multi-layered ceramic electronic component and manufacturing method thereof
KR20190116146A (en) 2019-08-02 2019-10-14 삼성전기주식회사 Multi-layered ceramic electronic component and manufacturing method thereof
KR20190121227A (en) 2018-12-10 2019-10-25 삼성전기주식회사 Multi-layered ceramic electronic component and method for manufacturing the same
KR20190121138A (en) 2018-08-06 2019-10-25 삼성전기주식회사 Method for manufacturing multi-layered ceramic electronic componentthe
KR20200004020A (en) 2018-07-03 2020-01-13 삼성전기주식회사 Multi-layered ceramic electronic component and method for manufacturing the same
KR20210012444A (en) 2019-07-25 2021-02-03 삼성전기주식회사 Multi-layered ceramic electronic component and method for manufacturing the same
JP2021108324A (en) * 2019-12-27 2021-07-29 株式会社村田製作所 Multilayer coil component
CN113314313A (en) * 2020-02-27 2021-08-27 株式会社村田制作所 Coil component
JP2021174784A (en) * 2020-04-17 2021-11-01 株式会社村田製作所 Coil component and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560765B2 (en) * 2003-12-05 2010-10-13 株式会社村田製作所 Manufacturing method of multilayer electronic component

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7582404B2 (en) 2004-06-24 2009-09-01 Samsung Sdi Co., Ltd. Photosensitive paste composition, PDP electrode manufactured using the composition, and PDP comprising the PDP electrode
JP5195758B2 (en) * 2007-09-14 2013-05-15 株式会社村田製作所 Multilayer coil component and manufacturing method thereof
KR101075079B1 (en) 2007-09-14 2011-10-21 가부시키가이샤 무라타 세이사쿠쇼 Stacked coil component and mehtod for manufacturing the stacked coil component
WO2009034824A1 (en) * 2007-09-14 2009-03-19 Murata Manufacturing Co., Ltd. Stacked coil component and mehtod for manufacturing the stacked coil component
JPWO2009034824A1 (en) * 2007-09-14 2010-12-24 株式会社村田製作所 Multilayer coil component and manufacturing method thereof
JP2009295828A (en) * 2008-06-06 2009-12-17 Panasonic Corp Electronic component
JP5195904B2 (en) * 2008-09-24 2013-05-15 株式会社村田製作所 Multilayer coil parts
US7889044B2 (en) 2008-09-24 2011-02-15 Murata Manufacturing Co., Ltd. Multilayer coil component
JPWO2010035559A1 (en) * 2008-09-24 2012-02-23 株式会社村田製作所 Multilayer coil parts
WO2010035559A1 (en) * 2008-09-24 2010-04-01 株式会社村田製作所 Laminated coil component
CN103137241A (en) * 2011-12-02 2013-06-05 第一毛织株式会社 Paste composition for a solar cell electrode, electrode fabricated using the same, and solar cell including the electrode
KR101447271B1 (en) * 2011-12-02 2014-10-07 제일모직주식회사 Electrode paste composition for solar cell, electrode fabricated using the same and solar cell comprising the same
US9153355B2 (en) 2011-12-02 2015-10-06 Cheil Industries, Inc. Paste composition for a solar cell electrode, electrode fabricated using the same, and solar cell including the electrode
KR101412822B1 (en) * 2012-09-06 2014-06-27 삼성전기주식회사 Conductive paste for external electrode, multi-layered ceramic electronic parts fabricated by using the same and fabricating method thereof
KR101922867B1 (en) 2012-10-12 2018-11-28 삼성전기 주식회사 Multi-layered ceramic electronic component and method for manufacturing the same
US8964354B2 (en) 2012-10-12 2015-02-24 Samsung Electro-Mechanics Co., Ltd. Multi-layered ceramic electronic component and method of manufacturing the same
JP2015161899A (en) * 2014-02-28 2015-09-07 ソマール株式会社 Hard coat film coating composition and hard coat film
KR20170077548A (en) 2015-12-28 2017-07-06 삼성전기주식회사 Multi-layered ceramic electronic component and method for manufacturing the same
KR20170077532A (en) 2015-12-28 2017-07-06 삼성전기주식회사 Conductive paste composition for inner electrode and method for manufacturing multi-layered ceramic electronic component
US10056190B2 (en) 2015-12-28 2018-08-21 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and method of manufacturing the same
KR20170077542A (en) 2015-12-28 2017-07-06 삼성전기주식회사 Multi-layered ceramic electronic component and method for manufacturing the same
US10153079B2 (en) 2016-07-15 2018-12-11 Murata Manufacturing Co., Ltd. Laminated coil component and method of manufacturing the same
US11049659B2 (en) 2018-07-03 2021-06-29 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and method for manufacturing the same
KR20200004020A (en) 2018-07-03 2020-01-13 삼성전기주식회사 Multi-layered ceramic electronic component and method for manufacturing the same
KR20190121138A (en) 2018-08-06 2019-10-25 삼성전기주식회사 Method for manufacturing multi-layered ceramic electronic componentthe
US11201009B2 (en) 2018-08-06 2021-12-14 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing multilayer ceramic electronic component
KR20230113497A (en) 2018-12-10 2023-07-31 삼성전기주식회사 Multi-layered ceramic electronic component and method for manufacturing the same
KR20190121227A (en) 2018-12-10 2019-10-25 삼성전기주식회사 Multi-layered ceramic electronic component and method for manufacturing the same
US10981833B2 (en) 2018-12-10 2021-04-20 Samsung Electro-Mechanics Co., Ltd. Multi-layered ceramic electronic component and method for manufacturing the same
KR20190116139A (en) 2019-07-22 2019-10-14 삼성전기주식회사 Multi-layered ceramic electronic component and manufacturing method thereof
US11569034B2 (en) 2019-07-22 2023-01-31 Samsung Electro-Mechanics Co., Ltd. Multi-layered ceramic electronic component and manufacturing method thereof
US11158458B2 (en) 2019-07-22 2021-10-26 Samsung Electro-Mechanics Co., Ltd. Multi-layered ceramic electronic component and manufacturing method thereof
KR20210012444A (en) 2019-07-25 2021-02-03 삼성전기주식회사 Multi-layered ceramic electronic component and method for manufacturing the same
US11488782B2 (en) 2019-07-25 2022-11-01 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and method of manufacturing the same
US11342121B2 (en) 2019-08-02 2022-05-24 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component
US11742147B2 (en) 2019-08-02 2023-08-29 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component having specified standard deviation ratio for internal electrode and dielectric layer thicknesses
KR20230156282A (en) 2019-08-02 2023-11-14 삼성전기주식회사 Multi-layered ceramic electronic component
US11636983B2 (en) 2019-08-02 2023-04-25 Samsung Electro-Mechanics Co., Ltd. Manufacturing method of multilayer ceramic electronic component
KR20190116146A (en) 2019-08-02 2019-10-14 삼성전기주식회사 Multi-layered ceramic electronic component and manufacturing method thereof
JP2021108324A (en) * 2019-12-27 2021-07-29 株式会社村田製作所 Multilayer coil component
JP7184030B2 (en) 2019-12-27 2022-12-06 株式会社村田製作所 Laminated coil parts
JP2021136345A (en) * 2020-02-27 2021-09-13 株式会社村田製作所 Coil component
CN113314313A (en) * 2020-02-27 2021-08-27 株式会社村田制作所 Coil component
JP7255522B2 (en) 2020-02-27 2023-04-11 株式会社村田製作所 coil parts
JP2021174784A (en) * 2020-04-17 2021-11-01 株式会社村田製作所 Coil component and manufacturing method thereof
JP7173083B2 (en) 2020-04-17 2022-11-16 株式会社村田製作所 Coil component and its manufacturing method

Also Published As

Publication number Publication date
JP4403488B2 (en) 2010-01-27

Similar Documents

Publication Publication Date Title
JP4403488B2 (en) Conductive paste and multilayer electronic parts
KR100539489B1 (en) A manufacturing method of layer-built type electronic element
US9087639B2 (en) Multilayer ceramic electronic component and method of manufacturing the same
JP4020131B2 (en) Multilayer electronic components
JP2010165964A (en) Multilayer coil and method of manufacturing the same
JP3956136B2 (en) Manufacturing method of multilayer inductor
JP2010235324A (en) Ferrite composition, ferrite sintered body, composite lamination type electronic component, and method for manufacturing ferrite sintered body
JP2011091083A (en) Multilayer ceramic electronic component and method of manufacturing the same, flat conductive fine powder for multilayer ceramic electronic component, and flat conductive fine powder dispersant liquid for multilayer ceramic electronic component
JP2005294725A (en) Stacked ceramic electronic component and method for manufacturing the same
JP4433162B2 (en) Ceramic slurry, method for producing ceramic slurry, and method for producing multilayer ceramic electronic component
JP2000106035A (en) Conductive paste composition and manufacture of laminated ceramic capacitor using it, as well as laminated ceramic capacitor
JPH1145617A (en) Conductive paste and multilayer ceramic capacitor
JP2003318060A (en) Manufacturing method of laminated electronic component
JP4548897B2 (en) Conductive paste, multilayer electronic component and method for producing the same
JP4560765B2 (en) Manufacturing method of multilayer electronic component
JP2021108323A (en) Multilayer coil component
JP2021108326A (en) Multilayer coil component
JP2004014338A (en) Conductive paste
JP2007063060A (en) Coating material for ceramic green sheet and its manufacturing method, ceramic green sheet, and electronic component provided with the same
JP5459951B2 (en) Method for producing ceramic slurry
JP2005310694A (en) Conductive paste, and manufacturing method of laminated ceramic electronic part
JP3806979B2 (en) CERAMIC GREEN SHEET, PROCESS FOR PRODUCING THE SAME, AND PROCESS FOR PRODUCING MULTILAYER CERAMIC ELECTRONIC COMPONENT USING THE CERAMIC GREEN SHEET
CN219936778U (en) Coil component
JP7251395B2 (en) Laminated coil parts
JP2004055759A (en) Stacked electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091008

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4403488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees