JP2004079877A - Method for manufacturing lead wire for electronic component - Google Patents

Method for manufacturing lead wire for electronic component Download PDF

Info

Publication number
JP2004079877A
JP2004079877A JP2002240216A JP2002240216A JP2004079877A JP 2004079877 A JP2004079877 A JP 2004079877A JP 2002240216 A JP2002240216 A JP 2002240216A JP 2002240216 A JP2002240216 A JP 2002240216A JP 2004079877 A JP2004079877 A JP 2004079877A
Authority
JP
Japan
Prior art keywords
metal
mold
wire
lead wire
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002240216A
Other languages
Japanese (ja)
Inventor
Akira Tsuda
津田 明
Keishichi Komatsu
小松 啓七
Toshiyasu Tsubouchi
坪内 利康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Sumiden Fine Conductors Co Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Sumiden Fine Conductors Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Sumiden Fine Conductors Co Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002240216A priority Critical patent/JP2004079877A/en
Publication of JP2004079877A publication Critical patent/JP2004079877A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a lead wire for an electronic component, e.g. a lead pin for PGA while suppressing consumption of a metal mold. <P>SOLUTION: A surface of a metal raw material consisting of Cu or a Cu alloy is coated with one or more kinds of metal 3 selected out of Ni, Cr, Fe, Au, Ag, and Pt to obtain a raw material for a lead wire, which is sandwiched between two divided metal molds 11. An end of the raw material projecting from the metal molds is crushed with a header 13, and shearing processing or cold forging is carried out to form a collar 2 of the lead pin. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、半導体装置のリードピンなどとして使用する電子部品用リード線の製造方法に関する。
【0002】
【従来の技術】
例えば、マイクロプロセッサ(MPU)のPGA(pin grid array)形式のパッケージに採用されるリードピンは、図3に示すように、2分割した金型(ダイ)11で素材の線材1を掴み、先端にダイヤモンドチップ12を取り付けたヘッダ13で金型11の前方に突き出ている線材の端部を平たく打ち潰して鍔2を形成する方法で製造される。
【0003】
金型11の素材には、工具鋼や超硬合金が用いられている。これ等は安価であるが、摩耗し易く、寿命が短い。そのために金型コストが高くつき、さらに、金型交換の回数増、交換によるライン停止により生産性も悪化する。
【0004】
また、リードピンの素材となる銅系材料(Cu又はCu合金)は、固体拡散が起こる。その拡散防止のために金型の表面にNi、Fe、Co等の鉄族金属の被覆を設けているが、厚い被膜を形成するのが難しく、このことも金型寿命を縮める原因になっている。
【0005】
そこで、この発明は、PGA用リードピンをはじめとした各種電子部品用リード線の製造を、金型の寿命低下を抑えて行えるようにすることを課題としている。
【0006】
【課題を解決するための手段】
上記の課題を解決するため、この発明においては、Cu又はCu合金から成る金属素材の表面に、Ni、Cr、Fe、Au、Ag、Ptの中から選ばれた1種以上の金属を被覆した後、当該金属素材を拡散防止用の金属被膜を設けていない金型を用いて剪断加工又は冷間鍛造加工する。
【0007】
金属素材の表面に設ける金属被覆の厚みは、0.1μm〜2μm程度が好ましい。
【0008】
【作用】
この発明では、従来、金型に設けていた拡散防止用の金属被膜をリード線の材料となすCu又はCu合金の金属素材に設ける。こうすれば、被膜が、成分の拡散による金型素材の組成変化を阻止する役割と、金型による加工時の潤滑剤的な役割を果して金型が保護され、金型の寿命が被膜の寿命に左右されることも無くなる。
【0009】
なお、金属素材の表面に設ける被覆は、リード線の特性を悪化させる金属、金属素材や加工後にリード線に被覆する金属との密着性が悪い金属、或いは低融点金属で形成されるものは好ましくない。
【0010】
例えば、図4に示すPGA用リードピン4は、ヘッダによる鍔2の加工後にバレル研磨や化学研磨を行う。このとき、表面が2〜3μm程度の厚さ削り取られる。従って、表面に被覆した金属は、理論上はこのときに無くなる。しかし、実際にはリードピン4の鍔下部(図4のイ部)には研磨材が当たらず、この部分に被覆が残ってしまう。
【0011】
PGA用リードピンには、この後の工程として1〜5μm厚程度の下地めっきが施され、さらに、その上に仕上げめっきが施される。このときの下地めっきには、例えばNiが用いられる。その下地めっきと同一材質の金属やリードピンの特性に影響を及ぼさない金属を金属素材に被覆すれば研磨後のリードピンにその被覆が部分的に残っても何ら問題は生じない。
【0012】
また、Ni等の融点の高い金属であれば、最終径に絞り込む前の太径の金属素材にめっきを行った後、それを加熱軟化させて最終線径まで径を絞り込む方法を採ることができ、最終線径となした素材にめっきする場合よりも生産性を高めることが可能になる。
【0013】
なお、この発明では僅か1回或いは数回の加工のために金属素材に被覆を設けるが、金型の寿命向上、交換回数減少、ラインの稼動率向上を考えれば、この方が、金型に被覆を設ける場合よりも有利である。
【0014】
【発明の実施の形態】
図1に、この発明の方法の実施形態を示す。この図1は、PGA用リードピンの製造を例に挙げている。
【0015】
金属素材である線材1は、Cu又はCu合金から成る。この線材1の表面には、膜厚0.1μm〜3μm程度のNiめっき3が施されている。この線材1は、拡散防止用金属被覆としてここでは融点の高いNiを使用しているので、最終線径となす前の太径の線材にNiめっきを施し、その後に、軟化、伸線工程を経て最終線径となすことができ、その方法を採る場合には、Niめっきによる伸線ダイスの保護効果も得られる。
【0016】
表面にNiめっきを施したこの線材1をチャックを兼ねた金型11で掴み、金型11から突き出た線材の端部をヘッダ13で平たく打ち潰して鍔2を形成する。また、その前後に線材1を所定長さに剪断し、その後、これを研磨加工、下地めっき、仕上げめっきの各工程に送ってリードピンを完成させる。
【0017】
【実施例】
以下に、金属素材に金属被覆を設ける場合と設けない場合の比較試験結果を記す。
【0018】
試験には、金属素材として2.4wt%Fe−0.1wt%P−0.15wt%Zn−残CuのCu合金線を用いた。線径は、φ0.3mmとし、表1に示す膜厚でNiめっきを施したものと、そのNiめっきの無いものを用意した。
【0019】
金型は、図2に示す2個取り用のWC基超硬合金製金型を用いた。
【0020】
その金型と先端にダイヤモンドチップを取り付けたヘッダを用いて各線材についてそれぞれ200万ショットの加工を行い、その時点で金型の線材把持面(ヘッダによる加工時に特に大きな負荷を受ける図2のロ部)の消耗厚み(摩耗による厚み減少量)を調べた。
【0021】
その結果を表1に併記する。
【0022】
【表1】

Figure 2004079877
【0023】
この試験結果に、Niの膜厚は0.1μm〜3μmの範囲が適切であることがよく現れている。
【0024】
一方、Ni膜厚は、膜厚が厚くなるとめっき代のコストが高くなるため、2μm以下におさえるのが好ましい。
【0025】
なお、使用する金型の材質は超硬合金に限定されない。また、金型による加工法もヘッダによる冷間鍛造に限定されず、パンチによる打ち抜き(剪断)加工などにもこの発明は有効である。
【0026】
【発明の効果】
以上述べたように、この発明の製造方法によれば、リード線用の金属素材にNi、Cr、Fe、Au、Ag、Ptの中から選ばれた1種以上の金属を被覆して剪断や冷間鍛造加工を行うので、金型の寿命が向上し、金型コストを低減できる。また、金型の交換回数の削減、ラインの稼動率向上が図れ、生産性が向上する。
【図面の簡単な説明】
【図1】この発明の製造方法における冷間鍛造加工の一例を示す工程図
【図2】試験に用いた2個取り用金型の斜視図
【図3】従来の製造方法での冷間鍛造加工の工程図
【図4】冷間鍛造で鍔を形成し、バレル研磨したPGA用リードピンの側面図
【符号の説明】
1 リード線の素材となす線材
2 鍔
3 Niめっき
4 PGA用リードピン
11 金型
12 ダイヤモンドチップ
13 ヘッダ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a lead wire for an electronic component used as a lead pin of a semiconductor device.
[0002]
[Prior art]
For example, as shown in FIG. 3, a lead pin used in a PGA (pin grid array) package of a microprocessor (MPU) grasps a material wire 1 with a die (die) 11 divided into two parts, and at the tip thereof. Manufactured by a method in which the end of a wire rod protruding forward of the mold 11 is flattened with a header 13 to which a diamond tip 12 is attached to form the ridge 2.
[0003]
Tool steel or cemented carbide is used for the material of the mold 11. These are inexpensive, but are prone to wear and have a short life. For this reason, the mold cost is high, and the productivity is also deteriorated due to an increase in the number of times of mold replacement and stop of the line due to the replacement.
[0004]
In addition, solid diffusion occurs in the copper-based material (Cu or Cu alloy) that is the material of the lead pin. To prevent the diffusion, the surface of the mold is provided with a coating of an iron group metal such as Ni, Fe, Co or the like, but it is difficult to form a thick film, which also causes the mold life to be shortened. Yes.
[0005]
Accordingly, an object of the present invention is to make it possible to manufacture lead wires for various electronic components such as PGA lead pins while suppressing a decrease in the life of the mold.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, in the present invention, the surface of a metal material made of Cu or a Cu alloy is coated with one or more kinds of metals selected from Ni, Cr, Fe, Au, Ag, and Pt. Thereafter, the metal material is subjected to shearing or cold forging using a mold not provided with a metal film for preventing diffusion.
[0007]
The thickness of the metal coating provided on the surface of the metal material is preferably about 0.1 μm to 2 μm.
[0008]
[Action]
In the present invention, a metal film for preventing diffusion, which has been conventionally provided on a mold, is provided on a metal material of Cu or Cu alloy which serves as a lead wire material. In this way, the coating plays a role of preventing the composition change of the mold material due to the diffusion of components and a role of a lubricant during processing by the mold, thereby protecting the mold, and the life of the mold is the life of the coating. It is no longer affected by
[0009]
The coating provided on the surface of the metal material is preferably a metal that deteriorates the characteristics of the lead wire, a metal material, a metal that has poor adhesion to the metal that is coated on the lead wire after processing, or a low melting point metal. Absent.
[0010]
For example, the PGA lead pin 4 shown in FIG. 4 performs barrel polishing or chemical polishing after processing the ridge 2 by the header. At this time, the surface is scraped to a thickness of about 2 to 3 μm. Therefore, the metal coated on the surface is theoretically lost at this time. However, in actuality, the abrasive does not hit the lower part of the heel of the lead pin 4 (a portion in FIG. 4), and the coating remains in this part.
[0011]
The PGA lead pin is subjected to a base plating of about 1 to 5 μm in thickness as a subsequent process, and further subjected to finish plating. For example, Ni is used for the base plating at this time. If the metal material is coated with a metal that is the same material as that of the base plating or a metal that does not affect the characteristics of the lead pin, no problem occurs even if the coating remains partially on the polished lead pin.
[0012]
For metals with a high melting point, such as Ni, after plating on a large-diameter metal material before narrowing down to the final diameter, a method of narrowing the diameter to the final wire diameter by heating and softening it can be adopted. It becomes possible to increase productivity as compared with the case of plating on the material having the final wire diameter.
[0013]
In this invention, the metal material is provided with a coating only once or several times. However, in view of improving the life of the die, reducing the number of replacements, and improving the operation rate of the line, this is more suitable for coating the die. It is more advantageous than the case of providing.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of the method of the present invention. FIG. 1 shows an example of manufacturing a lead pin for PGA.
[0015]
The wire 1 which is a metal material is made of Cu or a Cu alloy. On the surface of the wire 1, Ni plating 3 having a film thickness of about 0.1 μm to 3 μm is applied. Since this wire 1 uses Ni having a high melting point as a metal coating for diffusion prevention, Ni plating is applied to a large-diameter wire before the final wire diameter, and then softening and wire drawing steps are performed. After that, the final wire diameter can be obtained, and when the method is adopted, the effect of protecting the wire drawing die by Ni plating can be obtained.
[0016]
The wire 1 with the Ni plating on the surface is gripped by a mold 11 that also serves as a chuck, and the end of the wire protruding from the mold 11 is flattened by a header 13 to form a ridge 2. Further, before and after that, the wire 1 is sheared to a predetermined length, and thereafter, this is sent to each step of polishing, base plating, and finish plating to complete the lead pin.
[0017]
【Example】
Below, the comparison test result when not providing a metal coating with a metal raw material is described.
[0018]
In the test, a Cu alloy wire of 2.4 wt% Fe-0.1 wt% P-0.15 wt% Zn-residual Cu was used as a metal material. The wire diameter was set to φ0.3 mm, and those with Ni plating having a film thickness shown in Table 1 and those without the Ni plating were prepared.
[0019]
As the mold, a WC-based cemented carbide mold for taking two pieces shown in FIG. 2 was used.
[0020]
Each wire rod is processed for 2 million shots using the die and a header with a diamond tip attached to the tip. At that time, the wire rod gripping surface of the die (see FIG. Part) was investigated (thickness reduction due to wear).
[0021]
The results are also shown in Table 1.
[0022]
[Table 1]
Figure 2004079877
[0023]
The test results often show that the Ni film thickness is suitably in the range of 0.1 μm to 3 μm.
[0024]
On the other hand, the Ni film thickness is preferably set to 2 μm or less because the cost of the plating cost increases as the film thickness increases.
[0025]
The material of the mold used is not limited to cemented carbide. The processing method using a die is not limited to cold forging using a header, and the present invention is also effective for punching (shearing) processing using a punch.
[0026]
【The invention's effect】
As described above, according to the manufacturing method of the present invention, the metal material for the lead wire is coated with one or more kinds of metals selected from Ni, Cr, Fe, Au, Ag, and Pt, and shearing is performed. Since cold forging is performed, the life of the mold is improved and the mold cost can be reduced. In addition, the number of mold replacements can be reduced, the line operating rate can be improved, and productivity can be improved.
[Brief description of the drawings]
FIG. 1 is a process diagram showing an example of cold forging in the manufacturing method of the present invention. FIG. 2 is a perspective view of a two-cavity mold used in a test. FIG. 3 is a cold forging in a conventional manufacturing method. Process diagram [Fig. 4] Side view of PGA lead pins formed by cold forging and barrel polished [Description of symbols]
1 Wire made of lead wire 2 鍔 3 Ni plating 4 PGA lead pin 11 Mold 12 Diamond chip 13 Header

Claims (1)

Cu又はCu合金から成る金属素材の表面に、Ni、Cr、Fe、Au、Ag、Ptの中から選ばれた1種以上の金属を被覆した後、当該金属素材を剪断加工又は冷間鍛造加工することを特徴とする電子部品用リード線の製造方法。After coating one or more kinds of metals selected from Ni, Cr, Fe, Au, Ag, and Pt on the surface of a metal material made of Cu or Cu alloy, the metal material is sheared or cold forged. A method of manufacturing a lead wire for an electronic component.
JP2002240216A 2002-08-21 2002-08-21 Method for manufacturing lead wire for electronic component Withdrawn JP2004079877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002240216A JP2004079877A (en) 2002-08-21 2002-08-21 Method for manufacturing lead wire for electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002240216A JP2004079877A (en) 2002-08-21 2002-08-21 Method for manufacturing lead wire for electronic component

Publications (1)

Publication Number Publication Date
JP2004079877A true JP2004079877A (en) 2004-03-11

Family

ID=32023063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002240216A Withdrawn JP2004079877A (en) 2002-08-21 2002-08-21 Method for manufacturing lead wire for electronic component

Country Status (1)

Country Link
JP (1) JP2004079877A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106424466A (en) * 2015-08-12 2017-02-22 朋程科技股份有限公司 Manufacturing method and device for lead structure of rectifier diode
TWI619566B (en) * 2015-08-06 2018-04-01 朋程科技股份有限公司 Manufacturing method and device of lead line structure of rectifier diode
JP2018510107A (en) * 2015-01-07 2018-04-12 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Reactor for polycrystalline silicon deposition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018510107A (en) * 2015-01-07 2018-04-12 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Reactor for polycrystalline silicon deposition
TWI619566B (en) * 2015-08-06 2018-04-01 朋程科技股份有限公司 Manufacturing method and device of lead line structure of rectifier diode
CN106424466A (en) * 2015-08-12 2017-02-22 朋程科技股份有限公司 Manufacturing method and device for lead structure of rectifier diode

Similar Documents

Publication Publication Date Title
EP2246448B1 (en) High-strength high-conductive copper wire
JP3619516B2 (en) Copper alloy material with good pressability and method for producing the same
KR101281267B1 (en) Electrode for spot welding
JP2007039735A (en) Method for producing copper alloy sheet with deformed cross section
CN101791638A (en) The manufacture method of Cu-Ag alloy wire and Cu-Ag alloy wire
JP2008127606A (en) High-strength copper alloy sheet having oxide film superior in adhesiveness
US2679223A (en) Soldering instrument
JP3797736B2 (en) High strength copper alloy with excellent shear processability
JP2009215570A (en) Copper alloy sheet superior in dicing workability for use in qfn package
JP3957391B2 (en) High strength, high conductivity copper alloy with excellent shear processability
JP2004079877A (en) Method for manufacturing lead wire for electronic component
JP5273952B2 (en) Hot forging die and manufacturing method thereof
JP4009981B2 (en) Copper-based alloy plate with excellent press workability
JP6119495B2 (en) Saw wire and core wire
JP5017719B2 (en) Copper-based alloy plate excellent in press workability and method for producing the same
JP2001303159A (en) Copper alloy for connector, and its producing method
KR102012143B1 (en) Bonding Wires for Semiconductor Devices
JPH08319527A (en) Copper alloy, excellent in adhesion of soft solder and plating suitability and easy of cleaning, and its production
JP2008036668A (en) Copper or copper alloy material, its manufacturing method, and semiconductor package
JP2503793B2 (en) Cu alloy plate material for electric and electronic parts, which has the effect of suppressing the wear of punching dies
JP4186201B2 (en) Copper alloy and copper alloy thin plate with excellent die wear resistance and resin adhesion
JP4186199B2 (en) Copper alloy with excellent die wear resistance, repeated bending fatigue resistance and solderability
JPS6119158A (en) Bonding wire
JP4068486B2 (en) Electrode material for resistance welding and manufacturing method thereof
JP2002069551A (en) Free cutting copper alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101