JP2004079799A - Method and device for working semiconductor substrate - Google Patents

Method and device for working semiconductor substrate Download PDF

Info

Publication number
JP2004079799A
JP2004079799A JP2002238350A JP2002238350A JP2004079799A JP 2004079799 A JP2004079799 A JP 2004079799A JP 2002238350 A JP2002238350 A JP 2002238350A JP 2002238350 A JP2002238350 A JP 2002238350A JP 2004079799 A JP2004079799 A JP 2004079799A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
light
optical path
cylindrical optical
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002238350A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Nishi
西 信嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2002238350A priority Critical patent/JP2004079799A/en
Publication of JP2004079799A publication Critical patent/JP2004079799A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce variations in the working depth depending on working positions, and hence efficiently utilize light, and reduce the size of a device. <P>SOLUTION: Uniform parallel light C having a sectional shape needed for working is made incident perpendicularly onto the surface of a silicon substrate 10 using a cylindrical optical path 82 having the sectional shape needed for working, a lamp 84 arranged at the inlet side of the cylindrical optical path 82, and a collimator lens 86 arranged on the outlet side of the cylindrical optical path 82. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体基板の加工方法及び装置に係り、特に、三次元積層素子の層間配線や光素子での三次元導波路等に使用する貫通孔や、基板を貫通しない細くて深い深細孔を半導体基板に形成する際に用いるのに好適な、加工位置による加工深さのばらつきが少なく、光を効率良く利用可能な半導体基板の加工方法及び装置に関する。
【0002】
【従来の技術】
幅に対する高さの比(アスペクト比)の大きい貫通孔や、貫通しない深細孔をシリコン基板等の半導体基板に形成するのに適した半導体基板の加工方法及び装置を、出願人は既に特願2001−263618で提案している。これは、図1に示す如く、予めマーキング(傷付け)を行なったシリコン基板10の表面を電解液20に浸し、光照射装置50からレーザ光52を照射することでシリコン基板10内に発生した電荷を用いて、電気化学反応によりシリコン基板10を穿孔するものである。
【0003】
図において、42は、シリコン基板10を下部に支持する電解槽、54は、励起光として例えば紫外光のレーザ光52を発生する光源、56は、該光源54からのレーザ光52を適当な角度で反射・走査して電解槽42の窓44に入射させるための回転ミラー、58は、該回転ミラー56を水平な軸の周りに回転走査する駆動装置である。
【0004】
【発明が解決しようとする課題】
しかしながら、特願2001−263618で提案したような加工装置においては、光源54から出力されるレーザ光52を、回転ミラー56で振ってシリコン基板10に入射するようにしており、走査範囲の両端では半導体基板10に対し光が斜めに入るため、入射光面に対して光の電場ベクトルが垂直な偏光(以下、S偏光と記す)、平行な偏光(以下、P偏光と記す)の一方が強くなるといった影響を受ける。又、光が斜めに入射することで、反射が大きく、効率が悪い。更に、光を整えていないために、シリコン基板に同時に複数の深細孔を形成する際に、孔の開く速度に差を生じて、加工深さのばらつきが生じる等の問題点を有していた。
【0005】
これは、特開平10−256227に記載されている光励起電解研磨装置においても、拡散光を平行化せず、シリコン基板にあてているため、同様である。
【0006】
本発明は、前記従来の問題点を解決するべくなされたもので、加工位置による加工深さのばらつきを低減すると共に、光を効率良く利用し、更に装置のコンパクト化を図ることを課題とする。
【0007】
【課題を解決するための手段】
本発明は、予めマーキングを行なった半導体基板の表面を電解液に浸し、光を照射することで半導体基板内に発生した電荷を用いて、電気化学反応により半導体基板を加工する半導体基板の加工方法において、加工に必要な断面形状を有する均一な平行光を、半導体基板の表面に対して垂直に入射するようにして、前記課題を解決したものである。
【0008】
本発明は、又、予めマーキングを行なった半導体基板の表面を電解液に浸し、光を照射することで半導体基板内に発生した電荷を用いて、電気化学反応により半導体基板を加工する半導体基板の加工装置において、加工に必要な断面形状を有する筒状光路と、該筒状光路の入側に配設された光源と、前記筒状光路の出側に配設されたコリメータレンズとを備え、該コリメータレンズを出射した光が、半導体基板の表面に対して垂直に入射するようにして、同じく前記課題を解決したものである。
【0009】
又、前記筒状光路内に、光の方向を変えるための固定ミラーを設けることにより、装置の高さを低減したものである。
【0010】
【発明の実施の形態】
以下、図面を参照して、本発明の実施形態を詳細に説明する。
【0011】
本発明の第1実施形態は、図1に示したような半導体基板加工装置の光照射装置50として、図2に示す如く、シリコン基板10に対応する断面形状(ここでは円形)を有する円筒光路82と、該円筒光路82の入側(図の下側)に配設されたランプ84と、前記円筒光路82の出側(図の上側)に配設されたコリメータレンズ86と、前記円筒光路82内に設けられた、光の方向を水平方向から上下方向に変えるための固定ミラー88とを備えたものである。
【0012】
前記円筒光路82の内径は、最終的に要求される光の径に合うようにされる。なお、円筒光路の形状は必ずしも円である必要がなく、多角形でもよい。この円筒光路82の内面には、例えば黒色塗料を塗布することで乱反射による光の分布のバラツキをおさえることができる。
【0013】
前記ランプ84としては、例えばハロゲンランプ、キセノンランプ、白熱灯等を用いることができる。このランプ84には、効率を向上させるため、反射板85が設けられている。
【0014】
前記コリメータレンズ86としては、例えば、アレイレンズやフレネルレンズが用いられる。
【0015】
前記固定ミラー88は、円筒光路82内に、例えば45°の角度(必ずしも45°でなくてもよい)で取付けられている。
【0016】
本実施形態において、横向きに設置されたランプ84及び反射板85によって取り出された拡散光Aは、光の径を大きくしながら、円筒光路82の側面に形成された丸穴83から円筒光路82内に入射する。円筒光路82内に取付けられた固定ミラー88により90°曲げられ、上向きとなった拡散光Bは、円筒光路82内で拡散することにより光の径を大きくし、円筒光路82の内壁の大きさになる。拡散光Bは、更に、コリメータレンズ86により均一な光強度の平行光Cとして上向きに取り出され、シリコン基板10に入射する。
【0017】
本実施形態においては、円筒光路82内に固定ミラー88を設けて円筒光路82内で拡散光の方向を90°変換するようにしているので、レイアウトの自由度が高く、加工装置の高さを低く抑えることができる。
【0018】
次に、本発明の第2実施形態を説明する。
【0019】
本実施形態は、第1実施形態と同様の光照射装置50において、図3に示す如く、円筒光路82の下側にランプ84及び反射板85を配置して、固定ミラー88を省略し、固定ミラー88を介することなく、ランプ84から照射された拡散光Aが直接コリメータレンズ86に入射するようにした点が、前記第1実施形態と異なる。
【0020】
他の点については、第1実施形態と同様であるので、説明は省略する。
【0021】
本実施形態においては、固定ミラー88による損失がないので、光の損失を更に低減させることができる。
【0022】
この第2実施形態においては、装置の高さは高くなるが、床面積を小さくすることができる。
【0023】
前記実施形態においては、いずれも、ランプ84に反射板85が設けられていたので、効率が高い。なお、反射板85を省略して、放熱性を高めることも可能である。
【0024】
前記実施形態においては、いずれも、シリコン基板の深細孔の形成に本発明が適用されていたが、本発明の適用対象はこれに限定されず、シリコン以外の半導体基板一般の貫通孔の形成にも同様に適用できる。加工形状も孔に限定されず、溝の形成等にも適用できる。
【0025】
【発明の効果】
本発明によれば、半導体基板の加工に要求される形状の均一な平行光が半導体基板に入射するので、半導体基板に同時に複数の加工を行なう際に、加工位置による加工深さのばらつきを低減させることができる。
【0026】
又、均一な平行光が、半導体基板の表面に対して垂直に入射するので、S偏光、P偏光の一方が強くなるような影響を回避することができる他、反射を低減させることができ、効率の良い光の利用が可能となる。
【0027】
更に、光学系が簡単且つコンパクトであることから、装置自体のコンパクト化を図れる。
【図面の簡単な説明】
【図1】出願人が特願2001−263618で提案した半導体基板加工装置の本発明に係る部分の構成を示す断面図
【図2】本発明の第1実施形態の要部構成を示す断面図
【図3】同じく第2実施形態の要部構成を示す断面図
【符号の説明】
10…シリコン基板
20…電解液
42…電解槽
50…光照射装置
82…円筒光路
83…丸穴
84…ランプ
85…反射板
86…コリメータレンズ
88…固定ミラー
A、B…拡散光
C…平行光
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for processing a semiconductor substrate, and more particularly, to a through hole used for an interlayer wiring of a three-dimensional stacked element or a three-dimensional waveguide in an optical element, and a thin and deep deep hole which does not penetrate the substrate. The present invention relates to a method and an apparatus for processing a semiconductor substrate, which is suitable for use in forming a semiconductor substrate on a semiconductor substrate, has a small variation in processing depth depending on a processing position, and can efficiently use light.
[0002]
[Prior art]
The present applicant has already applied for a method and apparatus for processing a semiconductor substrate suitable for forming a through-hole having a large height-to-width ratio (aspect ratio) and a deep hole that does not penetrate into a semiconductor substrate such as a silicon substrate. 2001-263618. As shown in FIG. 1, the charge generated in the silicon substrate 10 by immersing the surface of the silicon substrate 10 on which marking (scratching) has been performed in advance in an electrolytic solution 20 and irradiating a laser beam 52 from a light irradiation device 50 is performed. Is used to perforate the silicon substrate 10 by an electrochemical reaction.
[0003]
In the figure, reference numeral 42 denotes an electrolytic cell that supports the silicon substrate 10 at a lower portion, 54 denotes a light source that generates, for example, ultraviolet laser light 52 as excitation light, and 56 denotes the laser light 52 from the light source 54 at an appropriate angle. A rotary mirror 58 for reflecting and scanning at the window 44 of the electrolytic cell 42 to make the rotary mirror 56 rotate and scan around a horizontal axis.
[0004]
[Problems to be solved by the invention]
However, in the processing apparatus proposed in Japanese Patent Application No. 2001-263618, the laser beam 52 output from the light source 54 is made to be incident on the silicon substrate 10 by being swung by the rotating mirror 56. Since light enters the semiconductor substrate 10 at an angle, one of polarized light (hereinafter referred to as S-polarized light) and parallel polarized light (hereinafter referred to as P-polarized light) whose electric field vector is perpendicular to the incident light plane is strong. Be affected. In addition, since light is obliquely incident, reflection is large and efficiency is low. Furthermore, since the light is not arranged, when a plurality of deep pores are simultaneously formed in the silicon substrate, there is a problem that a difference occurs in the opening speed of the pores, and a variation in processing depth occurs. Was.
[0005]
The same applies to the photo-excited electropolishing apparatus described in Japanese Patent Application Laid-Open No. H10-256227, since diffused light is not collimated but directed to a silicon substrate.
[0006]
The present invention has been made to solve the above-mentioned conventional problems, and it is an object of the present invention to reduce variations in processing depth depending on processing positions, efficiently use light, and further reduce the size of an apparatus. .
[0007]
[Means for Solving the Problems]
The present invention relates to a method of processing a semiconductor substrate by processing a semiconductor substrate by an electrochemical reaction by using a charge generated in the semiconductor substrate by immersing a surface of the semiconductor substrate, which has been marked in advance, in an electrolytic solution and irradiating light. In the above, the above-mentioned problem has been solved by making uniform parallel light having a cross-sectional shape required for processing perpendicularly enter the surface of the semiconductor substrate.
[0008]
The present invention also provides a method of processing a semiconductor substrate by performing an electrochemical reaction by using a charge generated in the semiconductor substrate by immersing a surface of the semiconductor substrate, which has been marked in advance, in an electrolytic solution and irradiating light. In the processing device, comprising a cylindrical optical path having a cross-sectional shape required for processing, a light source disposed on the entrance side of the cylindrical optical path, and a collimator lens disposed on the exit side of the cylindrical optical path, The above-mentioned problem is also solved by making the light emitted from the collimator lens perpendicularly enter the surface of the semiconductor substrate.
[0009]
The height of the apparatus is reduced by providing a fixed mirror for changing the direction of light in the cylindrical optical path.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0011]
In the first embodiment of the present invention, as shown in FIG. 2, a cylindrical optical path having a cross-sectional shape (here, circular) corresponding to the silicon substrate 10 is used as the light irradiation device 50 of the semiconductor substrate processing apparatus as shown in FIG. 82, a lamp 84 disposed on the entrance side (lower side in the figure) of the cylindrical optical path 82, a collimator lens 86 disposed on the exit side (upper side in the figure) of the cylindrical optical path 82, and the cylindrical optical path 82, a fixed mirror 88 for changing the direction of light from a horizontal direction to a vertical direction.
[0012]
The inner diameter of the cylindrical optical path 82 is adapted to the finally required light diameter. The shape of the cylindrical optical path does not necessarily have to be a circle, but may be a polygon. By applying, for example, a black paint to the inner surface of the cylindrical optical path 82, it is possible to suppress variations in light distribution due to irregular reflection.
[0013]
As the lamp 84, for example, a halogen lamp, a xenon lamp, an incandescent lamp or the like can be used. The lamp 84 is provided with a reflection plate 85 to improve the efficiency.
[0014]
As the collimator lens 86, for example, an array lens or a Fresnel lens is used.
[0015]
The fixed mirror 88 is mounted in the cylindrical optical path 82 at an angle of, for example, 45 ° (not necessarily 45 °).
[0016]
In the present embodiment, the diffused light A extracted by the lamp 84 and the reflector 85 installed in the horizontal direction passes through the round hole 83 formed on the side surface of the cylindrical optical path 82 while increasing the diameter of the light. Incident on. The diffused light B bent 90 ° by the fixed mirror 88 mounted in the cylindrical optical path 82 and directed upward is diffused in the cylindrical optical path 82 to increase the light diameter, and the size of the inner wall of the cylindrical optical path 82 become. The diffused light B is further extracted upward by the collimator lens 86 as parallel light C having a uniform light intensity, and is incident on the silicon substrate 10.
[0017]
In the present embodiment, a fixed mirror 88 is provided in the cylindrical optical path 82 to change the direction of the diffused light by 90 ° in the cylindrical optical path 82, so that the degree of freedom of layout is high and the height of the processing apparatus is increased. It can be kept low.
[0018]
Next, a second embodiment of the present invention will be described.
[0019]
In the present embodiment, as shown in FIG. 3, a lamp 84 and a reflector 85 are disposed below a cylindrical optical path 82 in a light irradiation device 50 similar to the first embodiment, and a fixed mirror 88 is omitted. The difference from the first embodiment is that the diffused light A emitted from the lamp 84 directly enters the collimator lens 86 without passing through the mirror 88.
[0020]
Other points are the same as in the first embodiment, and a description thereof will be omitted.
[0021]
In the present embodiment, since there is no loss due to the fixed mirror 88, the loss of light can be further reduced.
[0022]
In the second embodiment, the height of the device is increased, but the floor area can be reduced.
[0023]
In each of the above embodiments, since the reflector 84 is provided on the lamp 84, the efficiency is high. In addition, it is also possible to omit the reflection plate 85 and to improve heat dissipation.
[0024]
In each of the embodiments, the present invention is applied to the formation of deep pores in a silicon substrate. However, the present invention is not limited to this, and the present invention is not limited to this. The same can be applied to The processing shape is not limited to the hole, and can be applied to the formation of a groove and the like.
[0025]
【The invention's effect】
According to the present invention, since parallel light having a uniform shape required for processing a semiconductor substrate is incident on the semiconductor substrate, variations in the processing depth depending on the processing position can be reduced when performing a plurality of processes on the semiconductor substrate simultaneously. Can be done.
[0026]
In addition, since the uniform parallel light is perpendicularly incident on the surface of the semiconductor substrate, it is possible to avoid the influence that one of the S-polarized light and the P-polarized light becomes strong, and to reduce the reflection. Efficient use of light becomes possible.
[0027]
Furthermore, since the optical system is simple and compact, the size of the apparatus itself can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of a portion according to the present invention of a semiconductor substrate processing apparatus proposed by the applicant in Japanese Patent Application No. 2001-263618. FIG. 2 is a cross-sectional view showing a main part configuration of a first embodiment of the present invention. FIG. 3 is a cross-sectional view showing a configuration of a main part of the second embodiment.
Reference Signs List 10 silicon substrate 20 electrolytic solution electrolytic bath 50 light irradiation device 82 cylindrical optical path 83 round hole 84 lamp 85 reflecting plate 86 collimator lens 88 fixed mirrors A and B diffused light C parallel light

Claims (3)

予めマーキングを行なった半導体基板の表面を電解液に浸し、光を照射することで半導体基板内に発生した電荷を用いて、電気化学反応により半導体基板を加工する半導体基板の加工方法において、
加工に必要な断面形状を有する均一な平行光を、半導体基板の表面に対して垂直に入射することを特徴とする半導体基板の加工方法。
In a semiconductor substrate processing method of processing a semiconductor substrate by electrochemical reaction, using a charge generated in the semiconductor substrate by immersing the surface of the semiconductor substrate that has been marked in advance in an electrolytic solution and irradiating light,
A method for processing a semiconductor substrate, wherein uniform parallel light having a cross-sectional shape required for processing is perpendicularly incident on a surface of the semiconductor substrate.
予めマーキングを行なった半導体基板の表面を電解液に浸し、光を照射することで半導体基板内に発生した電荷を用いて、電気化学反応により半導体基板を加工する半導体基板の加工装置において、
加工に必要な断面形状を有する筒状光路と、
該筒状光路の入側に配設された光源と、
前記筒状光路の出側に配設されたコリメータレンズとを備え、
該コリメータレンズを出射した光が、半導体基板の表面に対して垂直に入射するようにしたことを特徴とする半導体基板の加工装置。
In a semiconductor substrate processing apparatus for processing a semiconductor substrate by an electrochemical reaction by using a charge generated in the semiconductor substrate by immersing a surface of the semiconductor substrate which has been marked in advance in an electrolytic solution and irradiating light,
A cylindrical optical path having a cross-sectional shape required for processing,
A light source disposed on the entrance side of the cylindrical optical path,
A collimator lens disposed on the exit side of the cylindrical optical path,
A semiconductor substrate processing apparatus, wherein the light emitted from the collimator lens is perpendicularly incident on the surface of the semiconductor substrate.
前記筒状光路内に、光の方向を変えるための固定ミラーが設けられていることを特徴とする請求項2に記載の半導体基板の加工装置。3. The semiconductor substrate processing apparatus according to claim 2, wherein a fixed mirror for changing a direction of light is provided in the cylindrical optical path.
JP2002238350A 2002-08-19 2002-08-19 Method and device for working semiconductor substrate Pending JP2004079799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002238350A JP2004079799A (en) 2002-08-19 2002-08-19 Method and device for working semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002238350A JP2004079799A (en) 2002-08-19 2002-08-19 Method and device for working semiconductor substrate

Publications (1)

Publication Number Publication Date
JP2004079799A true JP2004079799A (en) 2004-03-11

Family

ID=32021789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002238350A Pending JP2004079799A (en) 2002-08-19 2002-08-19 Method and device for working semiconductor substrate

Country Status (1)

Country Link
JP (1) JP2004079799A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080456A1 (en) * 2018-10-18 2020-04-23 株式会社サイオクス Structure manufacturing method and structure manufacturing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080456A1 (en) * 2018-10-18 2020-04-23 株式会社サイオクス Structure manufacturing method and structure manufacturing device
JP2020068371A (en) * 2018-10-18 2020-04-30 株式会社サイオクス Method and device for manufacturing structure
US11289322B2 (en) 2018-10-18 2022-03-29 Sciocs Company Limited Structure manufacturing method including surface photoelectrochemical etching and structure manufacturing device
US11791151B2 (en) 2018-10-18 2023-10-17 Sumitomo Chemical Company, Limited Structure production wet etch method and structure production apparatus

Similar Documents

Publication Publication Date Title
TWI247972B (en) Illuminating method, exposing method, and device for therefor
CA1188138A (en) Optical beam concentrator
JP2018073593A (en) Lighting device, method for producing the lighting device, and light distribution control member
JPS5891422A (en) Light beam equalizer
JP2002517082A (en) Gas manifold and photochemistry for uniform gas distribution
US9864276B2 (en) Laser annealing and electric field
US5258808A (en) Exposure apparatus for forming image
TW201511084A (en) Photonic activation of reactants for sub-micron feature formation using depleted beams
JP4777995B2 (en) Method and apparatus for measuring a focused beam
JPH11212021A (en) Laser light radiating device
US8529822B2 (en) Method for manufacturing a flexible optical plate, product and backlight module made therewith
JP2004079799A (en) Method and device for working semiconductor substrate
TWI608521B (en) Techniques for spin-on-carbon planarization
TWI612378B (en) Illumination system and method of reflecting radiation from a plurality of illumination sources to a common optical path
JPH08286382A (en) Semiconductor exposure system and its lighting method
US20030123152A1 (en) Homogenizer
EP3837585A1 (en) Photoresist-free photolithography, photoprocessing tools, and methods with vuv or deep-uv lamps
KR101753075B1 (en) A scan-type exposure apparatus
KR101770637B1 (en) A scan-type exposure apparatus
JP2002086288A (en) Laser beam irradiation device
JP2007222790A (en) Light convergence and irradiation device and ultraviolet irradiation device
WO2016016670A1 (en) Ablating sic wafer configurations and manufacturing light emitting diode (led) devices
JP2006093318A (en) Euv exposure device, euv exposure method and reflection type mask
TW202100271A (en) Laser processing apparatus
JPH10186673A (en) Exposure system

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041013

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060307